JP2006092933A - Strand and flexible cable using it - Google Patents

Strand and flexible cable using it Download PDF

Info

Publication number
JP2006092933A
JP2006092933A JP2004277561A JP2004277561A JP2006092933A JP 2006092933 A JP2006092933 A JP 2006092933A JP 2004277561 A JP2004277561 A JP 2004277561A JP 2004277561 A JP2004277561 A JP 2004277561A JP 2006092933 A JP2006092933 A JP 2006092933A
Authority
JP
Japan
Prior art keywords
wire
conductor
stranded wire
layer
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277561A
Other languages
Japanese (ja)
Other versions
JP4639723B2 (en
Inventor
Hirohisa Endo
裕寿 遠藤
Masayoshi Aoyama
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004277561A priority Critical patent/JP4639723B2/en
Publication of JP2006092933A publication Critical patent/JP2006092933A/en
Application granted granted Critical
Publication of JP4639723B2 publication Critical patent/JP4639723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stranded wire having good flexibility without being affected by tensile strength of a conductor strand, and a flexible cable. <P>SOLUTION: This stranded wire 10 has a stranded wire layer 12 formed by stranding strands around a center conductor 11, and conductor strands 13 and highly strong conductor strands 14 having tensile strength stronger than that of the conductor strand 13 are used and stranded to form the stranded wire layer 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電源・電力用や信号伝送用の耐屈曲ケーブルに関するものである。   The present invention relates to a bending-resistant cable for power supply / power and signal transmission.

従来の一般的なケーブルは、中心導体の周りに、導体素線を撚り合わせてなる撚線層を有する。ここで、導体素線の撚り合わせ方により、集合撚り線と同心撚り線とがある。   A conventional general cable has a stranded wire layer formed by twisting conductor wires around a central conductor. Here, depending on how the conductor strands are twisted, there are aggregate strands and concentric strands.

図10に示すように、複数本(図10中では7本)の素線からなる中心導体101及び複数本(図10中では54本)の導体素線103をまとめて撚り合わせたものが集合撚り線100であり、3層構造の撚線層102を有する。また、図11に示すように、複数本(図11中では7本)の素線からなる中心導体101の周りに、複数本(図11中では54本)の導体素線103を層状に、かつ、同心状に撚り合わせたものが同心撚り線110であり、3層構造の撚線層112を有する。各撚線100,110は、その周りに、用途又は必要性に応じて絶縁被覆層105を有していてもよい。また、中心導体の構成素線及び導体素線103としては、一般的に、導電性の高い銅線が用いられる。   As shown in FIG. 10, a central conductor 101 composed of a plurality of wires (seven in FIG. 10) and a plurality of conductor wires 103 (54 in FIG. 10) are gathered together and assembled. The stranded wire 100 has a stranded wire layer 102 having a three-layer structure. Further, as shown in FIG. 11, a plurality (54 in FIG. 11) of conductor wires 103 are layered around the central conductor 101 composed of a plurality of wires (7 in FIG. 11). And what is twisted concentrically is the concentric stranded wire 110, and has a stranded wire layer 112 having a three-layer structure. Each twisted wire 100, 110 may have an insulating coating layer 105 around it, depending on the application or need. Further, as the constituent wire of the center conductor and the conductor wire 103, generally, a copper wire having high conductivity is used.

ロボットアームなどの駆動用電源ケーブルや屋外用送電線などの電源・電力用ケーブル、信号伝送(信号線)用ケーブルは、動きが激しい部位に使用されることから、外力による強制的な動き(屈曲)を伴う。このため、これらのケーブルにおいては、良好な屈曲特性が求められる。例えば、Snを0.1〜0.9wt%、Inを0.1〜0.5wt%、酸素を50ppm以下含み、残部がCuから成る熱処理された銅合金で構成される銅合金線がある(例えば、特許文献1参照)。   Power cables for driving such as robot arms, power / power cables such as outdoor power transmission lines, and signal transmission (signal line) cables are used in areas where movement is intense. ) Is accompanied. For this reason, these cables are required to have good bending characteristics. For example, there is a copper alloy wire composed of a heat-treated copper alloy containing 0.1 to 0.9 wt% of Sn, 0.1 to 0.5 wt% of In, 50 ppm or less of oxygen, and the balance of Cu (for example, see Patent Document 1) ).

特開2000−96200号公報JP 2000-96200 A

特許文献1記載の銅合金線では、良好な屈曲特性が得られる。これは銅合金の組成及び製造プロセス(熱処理プロセス)を適正化したことにより、銅合金自体の引張強度が向上したことに起因している。   With the copper alloy wire described in Patent Document 1, good bending characteristics can be obtained. This is because the tensile strength of the copper alloy itself is improved by optimizing the composition and manufacturing process (heat treatment process) of the copper alloy.

ところで、特許文献1記載の銅合金線では、銅合金線(導体素線)の引張強度により屈曲寿命が決まり、銅合金線の引張強度が高い程、屈曲寿命が長くなる。しかし、銅合金線の引張強度の向上には自ずと限界があることから、屈曲特性の向上についても限界があった。   By the way, in the copper alloy wire described in Patent Document 1, the bending life is determined by the tensile strength of the copper alloy wire (conductor wire). The higher the tensile strength of the copper alloy wire, the longer the bending life. However, since there is a limit to the improvement of the tensile strength of the copper alloy wire, there is a limit to the improvement of the bending property.

以上の事情を考慮して創案された本発明の目的は、導体素線の引張強度に左右されることなく、屈曲特性が良好な撚線及びそれを用いた耐屈曲ケーブルを提供することにある。   An object of the present invention created in view of the above circumstances is to provide a twisted wire having good bending characteristics and a bending-resistant cable using the same without being influenced by the tensile strength of the conductor wire. .

上記目的を達成すべく本発明に係る撚線は、中心導体の周りに、導体素線を撚り合わせてなる撚線層を有する撚線において、上記導体素線、及びその導体素線よりも引張強度の高い高強度導体素線を用いて撚り合わせ、上記撚線層を形成したものである。   In order to achieve the above object, a stranded wire according to the present invention is a stranded wire having a stranded wire layer formed by twisting a conductor strand around a central conductor, and is more tensioned than the conductor strand and the conductor strand. The stranded wire layer is formed by twisting together using a high-strength, high-strength conductor wire.

ここで、高強度導体素線は、Cu-In系合金で構成されるものであってもよい。また、導体素線は、Cu-In系合金又はCu-Sn-In系合金のアニール処理材或いはフルアニール処理材で、上記高強度導体素線が、Cu-In系合金又はCu-Sn-In系合金のアニール未処理材で構成されるものであってもよい。   Here, the high-strength conductor wire may be made of a Cu—In alloy. The conductor wire is a Cu-In alloy or Cu-Sn-In alloy annealed material or full annealed material, and the high-strength conductor wire is a Cu-In alloy or Cu-Sn-In It may be composed of a non-annealed material of a system alloy.

撚線層の内、最外層の直下の層は、高強度導体素線で構成してもよい。また、撚線層の最外層を除く全ての層は、高強度導体素線で構成してもよい。さらに、中心導体の少なくとも一部は、高強度導体素線で構成してもよい。   Of the stranded wire layer, the layer immediately below the outermost layer may be composed of a high-strength conductor wire. Moreover, you may comprise all the layers except the outermost layer of a strand wire layer with a high intensity | strength conductor strand. Furthermore, at least a part of the center conductor may be composed of a high-strength conductor wire.

高強度導体素線は、1種類の線材からなってもよい。また、高強度導体素線は、引張強度の異なる少なくとも2種類の線材を含んでいてもよい。   The high-strength conductor wire may consist of one type of wire. The high-strength conductor wire may include at least two types of wires having different tensile strengths.

また、本発明に係る撚線は、中心導体の周りに、導体素線を撚り合わせてなる撚線層を有する撚線において、上記導体素線及び銅被覆鋼線を用いて撚り合わせ、上記撚線層を形成したものである。   In addition, the stranded wire according to the present invention is a stranded wire having a stranded wire layer formed by twisting a conductor wire around a central conductor, and is twisted by using the conductor wire and the copper-coated steel wire. A line layer is formed.

ここで、撚線層の内、最外層の直下の層は、銅被覆鋼線で構成してもよい。また、撚線層の最外層を除く全ての層は、上記銅被覆鋼線で構成してもよい。さらに、中心導体の少なくとも一部は、銅被覆鋼線で構成してもよい。   Here, in the stranded wire layer, the layer immediately below the outermost layer may be formed of a copper-coated steel wire. Moreover, you may comprise all the layers except the outermost layer of a strand wire layer with the said copper covering steel wire. Furthermore, you may comprise at least one part of a center conductor with a copper covering steel wire.

銅被覆鋼線は、1種類の鋼線材からなってもよい。また、銅被覆鋼線は、引張強度の異なる少なくとも2種類の鋼線材を含んでいてもよい。   The copper-coated steel wire may be made of one type of steel wire material. Moreover, the copper covering steel wire may contain the at least 2 types of steel wire material from which tensile strength differs.

銅被覆鋼線は、400MPa以上の引張強度を有することが好ましい。   The copper-coated steel wire preferably has a tensile strength of 400 MPa or more.

一方、本発明に係る耐屈曲ケーブルは、前述した撚線の周りに、絶縁被覆層を設けたものである。   On the other hand, the bending resistant cable according to the present invention is provided with an insulating coating layer around the above-described stranded wire.

本発明によれば、屈曲特性及び導電率の調整が可能な撚線を得ることができるという優れた効果を発揮する。   According to the present invention, it is possible to obtain an excellent effect that a stranded wire capable of adjusting bending characteristics and conductivity can be obtained.

以下、本発明の好適な実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

(第1の実施形態)
本発明の好適一実施の形態に係る撚線の横断面図を図1に、図1における高強度導体素線の拡大断面図を図2に示す。
(First embodiment)
FIG. 1 shows a cross-sectional view of a stranded wire according to a preferred embodiment of the present invention, and FIG. 2 shows an enlarged cross-sectional view of a high-strength conductor wire in FIG.

図1に示すように、本発明の好適一実施の形態に係る撚線10は、中心導体11の周りに、導体素線13と、その導体素線13よりも引張強度の高い高強度導体素線14とを撚り合わせてなる複層構造(図1中では3層構造)の撚線層12を有している。この撚線10の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。   As shown in FIG. 1, a stranded wire 10 according to a preferred embodiment of the present invention includes a conductor wire 13 around a central conductor 11 and a high-strength conductor element having a higher tensile strength than the conductor wire 13. A stranded wire layer 12 having a multilayer structure (three-layer structure in FIG. 1) formed by twisting the wire 14 is provided. What provided the insulating coating layer 15 in the outer periphery of this twisted wire 10 turns into a bending resistant cable.

ここで、撚線10は、集合撚り線であり、複数本(図1中では7本)の素線からなる中心導体11及び複数本(図1中では54本)の素線(導体素線13と高強度導体素線14を混ぜた束線)をまとめて撚り合わせたものである。また、中心導体11は、図1に示したように、導体素線13と高強度導体素線14を混ぜた束線で形成する他に、導体素線13のみで形成してもよい。   Here, the stranded wire 10 is a collective stranded wire, and includes a central conductor 11 composed of a plurality of (7 in FIG. 1) strands and a plurality (54 in FIG. 1) of strands (conductor strands). 13 and high-strength conductor wire 14) are bundled together. Further, as shown in FIG. 1, the center conductor 11 may be formed of only the conductor wire 13 in addition to the bundle wire in which the conductor wire 13 and the high-strength conductor wire 14 are mixed.

導体素線13の構成材としては、80%IACS以上の導電率を有するものが好ましく、例えば、純Cu(例えば、引張強度が約200MPaのタフピッチ銅(以下、TPCと記す))、導電性が良好なCu合金(例えば、Cu-Ag系合金)、引張強度が高いCu合金(例えば、Cu-In系合金、具体的には引張強度が約300MPa以上のCu-In合金、Cu-Sn-In合金)などが挙げられる。   The constituent material of the conductor wire 13 preferably has a conductivity of 80% IACS or higher. For example, pure Cu (for example, tough pitch copper having a tensile strength of about 200 MPa (hereinafter referred to as TPC)), conductivity is good. Good Cu alloy (for example, Cu-Ag alloy), Cu alloy with high tensile strength (for example, Cu-In alloy, specifically Cu-In alloy having a tensile strength of about 300 MPa or more, Cu-Sn-In Alloy).

高強度導体素線14としては、導体素線13よりも引張強度が高い線材であれば特に限定するものではないが、例えば、導体素線13がTPCで構成される場合、Cu-In系合金などが挙げられる。また、導体素線13がCu-In系合金のアニール処理材又はフルアニール処理材で構成される場合、Cu-In系合金の未アニール処理材などが挙げられる。さらに、導体素線13がTPCやCu-In系合金(Cu-In合金、Cu-Sn-In合金)で構成される場合、図2に示すように、鋼線21の周りを銅被覆層22で被覆した銅被覆鋼線などが挙げられる。高強度導体素線14として銅被覆鋼線を用いることで、導体素線13の約2〜3倍、具体的には、400MPa以上、好ましくは400〜700MPaの引張強度を得ることが可能となる。   The high-strength conductor wire 14 is not particularly limited as long as it has a higher tensile strength than the conductor strand 13. For example, when the conductor strand 13 is made of TPC, a Cu—In alloy is used. Etc. Moreover, when the conductor strand 13 is comprised with the annealing treatment material of a Cu-In type alloy, or a full annealing treatment material, the unannealed treatment material of a Cu-In type alloy etc. are mentioned. Further, when the conductor wire 13 is made of TPC or a Cu—In alloy (Cu—In alloy, Cu—Sn—In alloy), as shown in FIG. Copper-coated steel wire coated with By using a copper-coated steel wire as the high-strength conductor wire 14, it is possible to obtain a tensile strength of about 2 to 3 times the conductor wire 13, specifically 400 MPa or more, preferably 400 to 700 MPa. .

銅被覆層22の構成材は、純Cu又はCu合金のいずれであってもよい。また、銅被覆層22の層厚は、鋼線21の表面を完全に覆うことができる厚さであれば、特に限定するものではない。例えば、製造の容易さを考慮すると、銅被覆層22の層厚は、最低でも約20μmあればよく、これよりも厚い方がより好ましい。さらに、銅被覆層22の形成方法は、メッキなどの化学的手法や、押出被覆などの物理的手法のいずれを用いてもよい。   The constituent material of the copper coating layer 22 may be pure Cu or a Cu alloy. Moreover, the layer thickness of the copper coating layer 22 will not be specifically limited if it is the thickness which can cover the surface of the steel wire 21 completely. For example, considering the ease of manufacture, the thickness of the copper coating layer 22 may be at least about 20 μm, and is preferably thicker than this. Furthermore, as a method for forming the copper coating layer 22, either a chemical method such as plating or a physical method such as extrusion coating may be used.

撚線層12全体に占める高強度導体素線14の割合を多くすると、引張強度は著しく向上するものの、導電率が低下してしまう。そこで、この高強度導体素線14の割合は、所望とする導電率及び引張強度に応じて適宜選択される。   Increasing the proportion of the high-strength conductor wire 14 occupying the entire stranded wire layer 12 significantly increases the tensile strength but decreases the electrical conductivity. Therefore, the ratio of the high-strength conductor wire 14 is appropriately selected according to the desired conductivity and tensile strength.

本実施の形態においては、全ての高強度導体素線14の引張強度が同じ場合(1種類の線材で構成される場合)について説明を行ったが、これに限定するものではない。つまり、引張強度の異なる少なくとも2種類の線材で構成される高強度導体素線14を用いてもよい。例えば、撚線10の、撚線層12の外側に配置される高強度導体素線は、銅被覆層22を薄くした引張強度優先タイプの線材とし、撚線10の、撚線層12の内側に配置される高強度導体素線は、銅被覆層22を厚くした導電率優先タイプの線材としてもよい。また、この逆に、撚線層12の外側に配置される高強度導体素線を導電率優先タイプ、撚線層12の内側に配置される高強度導体素線を引張強度優先タイプとしてもよい。   In the present embodiment, the case where the tensile strengths of all the high-strength conductor wires 14 are the same (in the case where the high-strength conductor wires 14 are formed of one kind of wire) has been described, but the present invention is not limited to this. That is, you may use the high intensity | strength conductor strand 14 comprised with at least 2 types of wire from which tensile strength differs. For example, the high-strength conductor wire disposed outside the stranded wire 12 of the stranded wire 10 is a tensile strength priority type wire with the copper coating layer 22 made thin, and the inside of the stranded wire 12 of the stranded wire 10 The high-strength conductor strands arranged in (1) may be a conductivity-priority type wire with a thick copper coating layer 22. On the contrary, the high-strength conductor wire arranged outside the stranded wire layer 12 may be a conductivity priority type, and the high-strength conductor wire arranged inside the stranded wire layer 12 may be a tensile strength priority type. .

また、図1に示した本実施の形態に係る撚線10の一変形例を図3に示すように、撚線30は、複数本(図3中では7本)の素線(導体素線13と高強度導体素線14を混ぜた束線)からなる中心導体11の周りに、複数本(図3中では54本)の素線(導体素線13と高強度導体素線14を混ぜた束線)を層状に、かつ、同心状に撚り合わせた同心撚り線であってもよい。つまり、撚線30は、中心導体11の周りに、導体素線13と高強度導体素線14とを同心状に撚り合わせてなる複層構造(図3中では3層構造)の撚線層32を有している。この撚線30の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。   Further, as shown in FIG. 3 as a modification of the stranded wire 10 according to the present embodiment shown in FIG. 1, the stranded wire 30 is composed of a plurality of strands (seven in FIG. 3) (conductor strands). A plurality of wires (54 wires in FIG. 3) (conductor wires 13 and high-strength conductor wires 14) are mixed around a central conductor 11 composed of a bundle of 13 and high-strength conductor wires 14). Concentric strands in which the bundled wires are layered and concentrically twisted. That is, the stranded wire 30 is a stranded wire layer having a multilayer structure (three-layer structure in FIG. 3) in which the conductor strand 13 and the high-strength conductor strand 14 are concentrically twisted around the central conductor 11. 32. What provided the insulating coating layer 15 in the outer periphery of this twisted wire 30 becomes a bending-resistant cable.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

一般に、線径が同じである場合、鋼線は、Cu又はCu合金で構成される導体素線13の約2〜3倍の引張強度を有していることから、導体素線13と鋼線とを撚り合わせて撚線層12を形成することで、屈曲寿命の向上を図ることができる。ところが、大気中又は多湿環境下で、Cu(導体素線13)とFe(鋼線)を接触放置すると、電池作用腐食(異種金属接触腐食)により腐食が進行してしまう。   In general, when the wire diameter is the same, the steel wire has a tensile strength of about 2 to 3 times that of the conductor wire 13 made of Cu or Cu alloy. The twist life can be improved by forming the stranded wire layer 12 by twisting together. However, when Cu (conductor wire 13) and Fe (steel wire) are left in contact in the atmosphere or in a humid environment, corrosion proceeds due to battery action corrosion (dissimilar metal contact corrosion).

そこで、本実施の形態に係る撚線10においては、高強度導体素線14の一例として、鋼線21の周りを銅被覆層22で被覆した銅被覆鋼線を用いている。これによって、導体素線13と、その導体素線13に隣接配置された高強度導体素線(銅被覆鋼線)14との接触が同種金属接触となり、導体素線13と高強度導体素線(銅被覆鋼線)14との間で腐食が進行するおそれはない。また、この高強度導体素線(銅被覆鋼線)14は、導体素線13の約2倍の引張強度を有していることから、導体素線13と高強度導体素線14を撚り合わせて撚線層12を形成した撚線10は、導体素線103だけで撚線層102を形成した撚線100(図10参照)と比べて、屈曲寿命を長くすることができる。   Therefore, in the stranded wire 10 according to the present embodiment, a copper-coated steel wire in which the periphery of the steel wire 21 is covered with the copper coating layer 22 is used as an example of the high-strength conductor wire 14. As a result, the contact between the conductor strand 13 and the high-strength conductor strand (copper-coated steel wire) 14 disposed adjacent to the conductor strand 13 becomes the same kind of metal contact, and the conductor strand 13 and the high-strength conductor strand There is no possibility that corrosion will proceed with the (copper-coated steel wire) 14. In addition, since the high-strength conductor wire (copper-coated steel wire) 14 has a tensile strength approximately twice that of the conductor strand 13, the conductor strand 13 and the high-strength conductor strand 14 are twisted together. The stranded wire 10 in which the stranded wire layer 12 is formed can have a longer bending life than the stranded wire 100 (see FIG. 10) in which the stranded wire layer 102 is formed only by the conductor strand 103.

撚線10の屈曲特性は、高強度導体素線14自体の引張強度、及び撚線層12全体に占める高強度導体素線14の割合に大きく依存しており、導体素線13自体の引張強度の割合は低い。このため、導体素線13の引張強度を重視する必要性はあまりない。よって、導体素線13は、導電率を重視した材料(例えば、純Cu)で形成してもよい。その結果、引張強度は高強度導体素線14、導電率は導体素線13という具合に、撚線10に要求される機能を、導体素線13及び高強度導体素線14で分担させることができる。このため、同じ導体素線13及び高強度導体素線14を用いながらも、屈曲特性及び導電率の異なる複数の撚線を作製することができる。   The bending property of the stranded wire 10 depends greatly on the tensile strength of the high-strength conductor wire 14 itself and the ratio of the high-strength conductor wire 14 in the entire stranded wire layer 12. The percentage is low. For this reason, there is not much necessity to give great importance to the tensile strength of the conductor wire 13. Therefore, you may form the conductor strand 13 with the material (for example, pure Cu) which attached importance to the electrical conductivity. As a result, the conductor element 13 and the high-strength conductor element 14 can share the functions required of the stranded wire 10 such that the tensile strength is the high-strength conductor element 14 and the conductivity is the conductor element 13. it can. For this reason, while using the same conductor strand 13 and the high-strength conductor strand 14, the several twisted wire from which a bending characteristic and electrical conductivity differ can be produced.

また、図10に示した従来の撚線100は、一旦、導体素線の材質を決定すると、線径及び素線数を変えることでしか、屈曲特性及び導電率を調整することができなかった。これに対して、本実施の形態に係る撚線10は、撚線層12全体に占める高強度導体素線14の割合を変えることで、線径は一定に保ったまま、屈曲特性及び導電率を自在に調整することができる。   Moreover, once the material of the conductor strand was determined for the conventional stranded wire 100 shown in FIG. 10, the bending characteristics and conductivity could be adjusted only by changing the wire diameter and the number of strands. . On the other hand, the twisted wire 10 according to the present embodiment changes the ratio of the high-strength conductor element wire 14 occupying the entire twisted wire layer 12 so that the wire diameter is kept constant and the bending characteristics and conductivity are kept constant. Can be adjusted freely.

本実施の形態に係る撚線10は、撚線層12における導体素線13及び高強度導体素線14の配置はランダムであり、それらの配置位置は任意であることから、撚線層12の形成が容易となり、ケーブルの製造プロセスが簡略化される。その結果、撚線10を安価に製造することができる。   In the stranded wire 10 according to the present embodiment, the arrangement of the conductor wires 13 and the high-strength conductor wires 14 in the stranded wire layer 12 is random, and the arrangement positions thereof are arbitrary. It is easy to form and simplifies the cable manufacturing process. As a result, the stranded wire 10 can be manufactured at low cost.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

(第2の実施形態)
本発明の他の好適一実施の形態に係る撚線の横断面図を図4に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については説明を省略する。
(Second Embodiment)
A cross-sectional view of a stranded wire according to another preferred embodiment of the present invention is shown in FIG. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 1, and description is abbreviate | omitted about these members.

図1に示した撚線10は、撚線層12における導体素線13及び高強度導体素線14の配置がランダムなものであった。   In the stranded wire 10 shown in FIG. 1, the arrangement of the conductor wires 13 and the high-strength conductor wires 14 in the stranded wire layer 12 is random.

これに対して、図4に示すように、本実施の形態に係る撚線40は、図1に示した撚線10と基本的な構造は同じであるが、撚線層42の層構造が異なっている。具体的には、撚線層42の内、最外層42cの直下の層42bが高強度導体素線14で構成され、層42bを除く層(図4中では層42a,42c)が導体素線13で構成される。   On the other hand, as shown in FIG. 4, the stranded wire 40 according to the present embodiment has the same basic structure as the stranded wire 10 shown in FIG. Is different. Specifically, in the stranded wire layer 42, the layer 42b immediately below the outermost layer 42c is composed of the high-strength conductor strand 14, and the layers excluding the layer 42b (layers 42a and 42c in FIG. 4) are conductor strands. 13.

ここで、中心導体11の少なくとも一部が、高強度導体素線14で構成されてもよい。言い換えると、導体素線13と高強度導体素線14を混ぜた束線で、中心導体11を形成してもよい。   Here, at least a part of the center conductor 11 may be composed of the high-strength conductor wire 14. In other words, the central conductor 11 may be formed by a bundled wire in which the conductor wire 13 and the high-strength conductor wire 14 are mixed.

この撚線40の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。本実施の形態に係る撚線40及び耐屈曲ケーブルにおいても、第1の実施形態に係る撚線10及び耐屈曲ケーブルと同様の作用効果が得られる。   What provided the insulating coating layer 15 in the outer periphery of this twisted wire 40 becomes a bending-resistant cable. Also in the stranded wire 40 and the bending resistant cable according to the present embodiment, the same effects as the stranded wire 10 and the bending resistant cable according to the first embodiment can be obtained.

更に、本実施の形態に係る撚線40においては、撚線層42の内、最外層42cの直下の層42bを高強度導体素線14で構成している。一般に、ケーブルを屈曲させるとケーブルに歪みが生じるが、最大歪みはケーブルの最外層に生じる。よって、ケーブルの断線は、ケーブル外層から内層側に向かって進行する。撚線40は、撚線層42の内、層42bだけに高強度導体素線14を配置させる必要があることから、図1に示した撚線10と比較して、撚線層42の形成工程がやや複雑になる。しかし、撚線40は、最外層42cの直下の層42bを高強度導体素線14で構成することによって、ケーブル外層から内層側に向かう断線の進行を、層42bでくい止めることができるため、結果として、撚線40の長寿命化(屈曲特性の向上)を図ることができる。また、撚線40における撚線層42の内、層42bを除く層は全て導体素線13で構成されるため、導電性を十分に確保することができる。   Furthermore, in the stranded wire 40 according to the present embodiment, the layer 42 b immediately below the outermost layer 42 c of the stranded wire layer 42 is constituted by the high-strength conductor wire 14. Generally, when a cable is bent, the cable is distorted, but the maximum distortion is generated in the outermost layer of the cable. Therefore, the disconnection of the cable proceeds from the cable outer layer toward the inner layer side. Since the stranded wire 40 needs to arrange the high-strength conductor wire 14 only in the layer 42b in the stranded wire layer 42, compared to the stranded wire 10 shown in FIG. The process is a little complicated. However, in the stranded wire 40, by forming the layer 42b immediately below the outermost layer 42c with the high-strength conductor element wire 14, the progress of disconnection from the cable outer layer toward the inner layer side can be stopped by the layer 42b. As a result, it is possible to extend the life of the stranded wire 40 (improve the bending property). Moreover, since all the layers except the layer 42b in the stranded wire layer 42 in the stranded wire 40 are composed of the conductor wires 13, sufficient conductivity can be ensured.

また、図4に示した撚線40(集合撚り線)の一変形例を図5に示すように、撚線50は、複数本(図5中では7本)の導体素線13からなる中心導体11の周りに、第1層52aとして複数本(図5中では12本)の導体素線13を、第2層52bとして複数本(図5中では18本)の高強度導体素線14を、第3層52cとして複数本(図5中では24本)の導体素線13を、それぞれ層状に、かつ、同心状に撚り合わせてなる同心撚り線であってもよい。つまり、導体素線13で構成される中心導体11の周りに、導体素線13で構成される第1層52a及び第3層52cと高強度導体素線14で構成される第2層52bとを同心状に撚り合わせてなる複層構造(図5中では3層構造)の撚線層52を有する撚線50であってもよい。この撚線50の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。   Further, as shown in FIG. 5 as a modification of the stranded wire 40 (gathered stranded wire) shown in FIG. 4, the stranded wire 50 is a center composed of a plurality (seven in FIG. 5) of conductor wires 13. Around the conductor 11, a plurality of (12 in FIG. 5) conductor strands 13 as the first layer 52a and a plurality (18 in FIG. 5) of high-strength conductor strands 14 as the second layer 52b. Alternatively, the third layer 52c may be a concentric stranded wire in which a plurality of conductor wires 13 (24 in FIG. 5) are twisted in layers and concentrically. That is, the first layer 52 a and the third layer 52 c configured by the conductor strand 13 and the second layer 52 b configured by the high-strength conductor strand 14 around the central conductor 11 configured by the conductor strand 13; May be a stranded wire 50 having a stranded wire layer 52 having a multilayer structure (three-layer structure in FIG. 5) formed by concentrically twisting wires. What provided the insulating coating layer 15 in the outer periphery of this twisted wire 50 becomes a bending-resistant cable.

尚、上述の図4,図5に示したような撚線40,50における導体素線13及び高強度導体素線14の組み合わせとして、例えば、次のようなものが挙げられる。導体素線13として、Cu-In系合金(例えば、Cu-0.1mass%In)やCu-Sn-In系合金(例えば、Cu-0.2mass%Sn-0.2mass%In,Cu-0.19mass%Sn-0.2mass%In)をアニール処理材又はフルアニール処理材が挙げられる。高強度導体素線14として、Cu-In系合金(例えば、Cu-0.1mass%In)やCu-Sn-In系合金(例えば、Cu-0.2mass%Sn-0.2mass%In,Cu-0.19mass%Sn-0.2mass%In)のアニール未処理材(硬材(H材))が挙げられる。このような組み合わせを行うことで、撚線40,50の可撓性を向上させることができると共に、屈曲特性も向上させることができる。   Examples of the combination of the conductor wire 13 and the high-strength conductor wire 14 in the stranded wires 40 and 50 as shown in FIGS. 4 and 5 described above include the following. As the conductor wire 13, a Cu-In alloy (for example, Cu-0.1 mass% In) or a Cu-Sn-In alloy (for example, Cu-0.2 mass% Sn-0.2 mass% In, Cu-0.19 mass% Sn) -0.2 mass% In) is an annealing treatment material or a full annealing treatment material. As the high-strength conductor wire 14, a Cu-In alloy (for example, Cu-0.1 mass% In) or a Cu-Sn-In alloy (for example, Cu-0.2 mass% Sn-0.2 mass% In, Cu-0.19 mass) % Sn-0.2mass% In) annealed untreated material (hard material (H material)). By performing such a combination, the flexibility of the stranded wires 40 and 50 can be improved, and the bending characteristics can also be improved.

(第3の実施形態)
本発明の他の好適一実施の形態に係る撚線の横断面図を図6に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については説明を省略する。
(Third embodiment)
FIG. 6 shows a cross-sectional view of a stranded wire according to another preferred embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 1, and description is abbreviate | omitted about these members.

図4に示した撚線40は、撚線層42の内、最外層42cの直下の層42bが高強度導体素線14で構成され、層42bを除く層が導体素線13で構成されるものであった。   In the stranded wire 40 shown in FIG. 4, the layer 42 b immediately below the outermost layer 42 c in the stranded wire layer 42 is composed of the high-strength conductor strand 14, and the layers excluding the layer 42 b are composed of the conductor strand 13. It was a thing.

これに対して、図6に示すように、本実施の形態に係る撚線60は、図1に示した撚線10と基本的な構造は同じであるが、撚線層62の層構造が異なっている。具体的には、撚線層62の内、最外層62cを除く全ての層(図6中では層62a,62b)が高強度導体素線14で構成され、最外層62cが導体素線13で構成される。   On the other hand, as shown in FIG. 6, the stranded wire 60 according to the present embodiment has the same basic structure as the stranded wire 10 shown in FIG. Is different. Specifically, in the stranded wire layer 62, all layers (the layers 62a and 62b in FIG. 6) except the outermost layer 62c are composed of the high-strength conductor wire 14, and the outermost layer 62c is the conductor wire 13. Composed.

ここで、中心導体11の少なくとも一部が、高強度導体素線14で構成されてもよい。言い換えると、導体素線13と高強度導体素線14を混ぜた束線で、中心導体11を形成してもよい。   Here, at least a part of the center conductor 11 may be composed of the high-strength conductor wire 14. In other words, the central conductor 11 may be formed by a bundled wire in which the conductor wire 13 and the high-strength conductor wire 14 are mixed.

この撚線60の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。本実施の形態に係る撚線60及び耐屈曲ケーブルにおいても、第1の実施形態に係る撚線10及び耐屈曲ケーブルと同様の作用効果が得られる。   What provided the insulating coating layer 15 in the outer periphery of this twisted wire 60 becomes a bending-resistant cable. Also in the stranded wire 60 and the bending resistant cable according to the present embodiment, the same effects as the stranded wire 10 and the bending resistant cable according to the first embodiment can be obtained.

更に、本実施の形態に係る撚線60においては、撚線層62の内、最外層62cだけを導体素線13で構成し、その他の層62a,62bを高強度導体素線14で構成している。このため、撚線60は、図4に示した撚線40と比較して、撚線の更なる長寿命化(屈曲特性の向上)を図ることができる。この撚線60は、撚線層62全体に占める高強度導体素線14の割合が多いため、高い導電率を得にくい。このため、導体素線13を、純Cu又は導電率の高いCu合金で構成することが好ましい。この撚線60は、非常に高い屈曲寿命が要求される耐屈曲ケーブルに好適である。   Furthermore, in the stranded wire 60 according to the present embodiment, only the outermost layer 62c of the stranded wire layer 62 is constituted by the conductor strand 13, and the other layers 62a and 62b are constituted by the high-strength conductor strand 14. ing. For this reason, compared with the twisted wire 40 shown in FIG. 4, the twisted wire 60 can aim at the further life extension (improvement of a bending characteristic) of a twisted wire. Since this stranded wire 60 has a large proportion of the high-strength conductor wire 14 in the entire stranded wire layer 62, it is difficult to obtain high electrical conductivity. For this reason, it is preferable to comprise the conductor strand 13 with pure Cu or Cu alloy with high electrical conductivity. The stranded wire 60 is suitable for a bending-resistant cable that requires a very high bending life.

また、図6に示した撚線60(集合撚り線)の一変形例を図7に示すように、撚線70は、複数本(図7中では7本)の導体素線13からなる中心導体11の周りに、第1層72aとして複数本(図7中では12本)の高強度導体素線14を、第2層72bとして複数本(図7中では18本)の高強度導体素線14を、第3層72cとして複数本(図7中では24本)の導体素線13を、それぞれ層状に、かつ、同心状に撚り合わせてなる同心撚り線であってもよい。つまり、導体素線13で構成される中心導体11の周りに、高強度導体素線14で構成される第1層72a及び第2層72bと導体素線13で構成される第3層72cとを同心状に撚り合わせてなる複層構造(図7中では3層構造)の撚線層72を有する撚線70であってもよい。この撚線70の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。   Further, as shown in FIG. 7 as a modification of the stranded wire 60 (gathered stranded wire) shown in FIG. 6, the stranded wire 70 is a center composed of a plurality of conductor wires 13 (seven in FIG. 7). Around the conductor 11, a plurality of (12 in FIG. 7) high-strength conductor wires 14 are provided as the first layer 72a, and a plurality (18 in FIG. 7) of high-strength conductor elements are provided as the second layer 72b. The wire 14 may be a concentric stranded wire formed by twisting a plurality of (24 in FIG. 7) conductor strands 13 in layers and concentrically as the third layer 72c. That is, the first layer 72 a and the second layer 72 b configured by the high-strength conductor strand 14 and the third layer 72 c configured by the conductor strand 13 around the central conductor 11 configured by the conductor strand 13 and May be a stranded wire 70 having a stranded wire layer 72 having a multilayer structure (three-layer structure in FIG. 7) formed by concentrically twisting wires. What provided the insulating coating layer 15 in the outer periphery of this twisted wire 70 becomes a bending-resistant cable.

尚、上述の図6,図7に示したような撚線60,70における導体素線13及び高強度導体素線14の組み合わせとして、例えば、次のようなものが挙げられる。導体素線13として、Cu-In系合金(例えば、Cu-0.1mass%In)やCu-Sn-In系合金(例えば、Cu-0.2mass%Sn-0.2mass%In,Cu-0.19mass%Sn-0.2mass%In)をアニール処理材又はフルアニール処理材が挙げられる。高強度導体素線14として、Cu-In系合金(例えば、Cu-0.1mass%In)やCu-Sn-In系合金(例えば、Cu-0.2mass%Sn-0.2mass%In,Cu-0.19mass%Sn-0.2mass%In)のアニール未処理材(硬材(H材))が挙げられる。このような組み合わせを行うことで、撚線60,70の可撓性を向上させることができると共に、屈曲特性も向上させることができる。
(第4の実施形態)
本発明の他の好適一実施の形態に係る撚線の横断面図を図8に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については説明を省略する。
In addition, as a combination of the conductor strand 13 and the high-strength conductor strand 14 in the twisted wires 60 and 70 as shown in FIGS. As the conductor wire 13, a Cu-In alloy (for example, Cu-0.1 mass% In) or a Cu-Sn-In alloy (for example, Cu-0.2 mass% Sn-0.2 mass% In, Cu-0.19 mass% Sn) -0.2 mass% In) is an annealing treatment material or a full annealing treatment material. As the high-strength conductor wire 14, a Cu-In alloy (for example, Cu-0.1 mass% In) or a Cu-Sn-In alloy (for example, Cu-0.2 mass% Sn-0.2 mass% In, Cu-0.19 mass) % Sn-0.2mass% In) annealed untreated material (hard material (H material)). By performing such a combination, the flexibility of the stranded wires 60 and 70 can be improved, and the bending characteristics can also be improved.
(Fourth embodiment)
FIG. 8 shows a cross-sectional view of a stranded wire according to another preferred embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 1, and description is abbreviate | omitted about these members.

図4に示した撚線40及び図6に示した撚線60は、撚線層の一部を高強度導体素線14で構成したものであった。   The stranded wire 40 shown in FIG. 4 and the stranded wire 60 shown in FIG. 6 are configured such that a part of the stranded wire layer is composed of the high-strength conductor wire 14.

これに対して、図8に示すように、本実施の形態に係る撚線80は、高強度導体素線14で構成される中心導体11の周りに、導体素線13を撚り合わせてなる複層構造(図8中では3層構造)の撚線層82を有している。ここで、撚線80は、集合撚り線であり、複数本(図8中では7本)の高強度導体素線14からなる中心導体11及び複数本(図8中では54本)の導体素線13をまとめて撚り合わせたものである。   On the other hand, as shown in FIG. 8, the stranded wire 80 according to the present embodiment has a composite wire formed by twisting the conductor wire 13 around the central conductor 11 constituted by the high-strength conductor wire 14. The stranded wire layer 82 has a layer structure (three-layer structure in FIG. 8). Here, the stranded wire 80 is a collective stranded wire, and includes a central conductor 11 composed of a plurality of (seven in FIG. 8) high-strength conductor wires 14 and a plurality (54 in FIG. 8) of conductor elements. The wires 13 are twisted together.

この撚線80の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。本実施の形態に係る撚線80及び耐屈曲ケーブルにおいても、第1の実施形態に係る撚線10及び耐屈曲ケーブルと同様の作用効果が得られる。   What provided the insulating coating layer 15 in the outer periphery of this twisted wire 80 becomes a bending-resistant cable. Also in the stranded wire 80 and the bending resistant cable according to the present embodiment, the same effects as the stranded wire 10 and the bending resistant cable according to the first embodiment can be obtained.

更に、本実施の形態に係る撚線80は、中心導体11を高強度導体素線14で構成し、撚線層82を導体素線13で構成しており、導体素線13の層及び高強度導体素線14の層という観点で捉えると、2層構造である。これに対して、図4に示した撚線40及び図6に示した撚線60は、導体素線13の層及び高強度導体素線14の層という観点で捉えると、3層構造である。よって、本実施の形態に係る撚線80は、撚線40及び撚線60と比較して、層構造がシンプルであるため、撚り合わせが容易であり、ケーブルの製造プロセスが簡略化される。その結果、撚線80は、図10に示した撚線100と略同等の導電性を有し、撚線100よりも屈曲寿命が長く、かつ、撚線40及び撚線60よりも製造コストが安価となる。   Furthermore, in the stranded wire 80 according to the present embodiment, the central conductor 11 is composed of the high-strength conductor strand 14, and the stranded wire layer 82 is composed of the conductor strand 13. From the perspective of the layer of the strength conductor wire 14, it has a two-layer structure. On the other hand, the stranded wire 40 shown in FIG. 4 and the stranded wire 60 shown in FIG. 6 have a three-layer structure in terms of the layer of the conductor strand 13 and the layer of the high-strength conductor strand 14. . Therefore, the stranded wire 80 according to the present embodiment has a simple layer structure as compared with the stranded wire 40 and the stranded wire 60, so that the twisting is easy and the cable manufacturing process is simplified. As a result, the stranded wire 80 has substantially the same conductivity as the stranded wire 100 shown in FIG. 10, has a longer bending life than the stranded wire 100, and is less expensive to manufacture than the stranded wire 40 and the stranded wire 60. It will be cheap.

また、図8に示した撚線80(集合撚り線)の一変形例を図9に示すように、撚線90は、複数本(図9中では7本)の高強度導体素線14からなる中心導体11の周りに、第1層92aとして複数本(図9中では12本)の導体素線13を、第2層92bとして複数本(図9中では18本)の導体素線13を、第3層92cとして複数本(図9中では24本)の導体素線13を、それぞれ層状に、かつ、同心状に撚り合わせてなる同心撚り線であってもよい。つまり、高強度導体素線14で構成される中心導体11の周りに、導体素線13で構成される第1層92a、第2層92b、及び第3層92cを同心状に撚り合わせてなる複層構造(図9中では3層構造)の撚線層92を有する撚線90であってもよい。この撚線90の外周に絶縁被覆層15を設けたものが、耐屈曲ケーブルとなる。   Further, as shown in FIG. 9 as a modification of the stranded wire 80 (gathered stranded wire) shown in FIG. 8, the stranded wire 90 includes a plurality of (seven in FIG. 9) high-strength conductor wires 14. Around the central conductor 11, a plurality of (12 in FIG. 9) conductor wires 13 are formed as the first layer 92a, and a plurality (18 in FIG. 9) of conductor wires 13 are formed as the second layer 92b. The third layer 92c may be a concentric stranded wire formed by twisting a plurality of conductor wires 13 (24 in FIG. 9) in layers and concentrically. That is, the first layer 92a, the second layer 92b, and the third layer 92c made of the conductor wire 13 are twisted concentrically around the central conductor 11 made of the high-strength conductor wire 14. A stranded wire 90 having a stranded wire layer 92 having a multilayer structure (three-layer structure in FIG. 9) may be used. What provided the insulating coating layer 15 in the outer periphery of this twisted wire 90 becomes a bending-resistant cable.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

導体素線として線径が0.1mm、引張強度が220MPaのTPC線材を、高強度導体素線として線径が0.1mm、引張強度が300MPaのCu-0.1mass%In線材を用い、図4に示した構造の集合撚線を作製した(試料11)。   Fig. 4 shows a TPC wire with a wire diameter of 0.1 mm and a tensile strength of 220 MPa as the conductor wire, and a Cu-0.1 mass% In wire with a wire diameter of 0.1 mm and a tensile strength of 300 MPa as the high-strength conductor wire. An assembled stranded wire having the above structure was prepared (Sample 11).

導体素線として線径が0.1mm、引張強度が220MPaのTPC線材を、高強度導体素線として線径が0.1mm、引張強度が300MPaのCu-0.2mass%Sn-0.2mass%In線材を用い、図4に示した構造の集合撚線を作製した(試料12)。   TPC wire with 0.1 mm diameter and 220 MPa tensile strength is used as the conductor wire, and Cu-0.2 mass% Sn-0.2 mass% In wire with 0.1 mm diameter and 300 MPa tensile strength is used as the high-strength conductor wire. The assembly strand wire of the structure shown in FIG. 4 was produced (sample 12).

導体素線として線径が0.1mm、引張強度が220MPaのTPC線材を用い、図10に示した構造の集合撚線を作製した(試料13)。   Using a TPC wire having a wire diameter of 0.1 mm and a tensile strength of 220 MPa as a conductor wire, an assembled stranded wire having the structure shown in FIG. 10 was prepared (Sample 13).

得られた試料11〜13の各集合撚線について、屈曲特性の評価を行った。屈曲特性は、屈曲寿命の長短により評価した。ここで言う屈曲寿命とは、集合撚線に特定の歪み割合の屈曲を繰り返し行った際に、集合撚線を構成する素線が少なくとも1本断線した時の屈曲回数を表している。   The bending properties of each of the assembled strands of Samples 11 to 13 obtained were evaluated. The bending characteristics were evaluated based on the length of the bending life. The term “bending life” as used herein refers to the number of bendings when at least one of the strands constituting the collective stranded wire is disconnected when the collective stranded wire is repeatedly bent at a specific strain ratio.

試料13における集合撚線の屈曲寿命は500,000回であったのに対して、試料11,12における各集合撚線の屈曲寿命はいずれも700,000回であった。つまり、本発明の撚線である試料11,12は、従来の撚線である試料13と比べて、屈曲特性が1.4倍に向上することが確認できた。   The bending life of the collective stranded wire in the sample 13 was 500,000 times, whereas the bending life of each collective stranded wire in the samples 11 and 12 was 700,000 times. That is, it was confirmed that the bending properties of the samples 11 and 12 which are the stranded wires of the present invention are improved by 1.4 times compared to the sample 13 which is a conventional stranded wire.

導体素線として線径が0.1mm、引張強度が220MPaのTPC線材を、高強度導体素線として線径が0.1mm、引張強度が300MPaのCu-0.1mass%In線材を用い、図8に示した構造の集合撚線を作製した(試料21)。   A TPC wire with a wire diameter of 0.1 mm and a tensile strength of 220 MPa is used as the conductor wire, and a Cu-0.1 mass% In wire with a wire diameter of 0.1 mm and a tensile strength of 300 MPa is used as the high-strength conductor wire, as shown in FIG. An assembled stranded wire having the above structure was prepared (Sample 21).

導体素線として線径が0.1mm、引張強度が220MPaのTPC線材を、高強度導体素線として線径が0.1mm、引張強度が300MPaのCu-0.2mass%Sn-0.2mass%In線材を用い、図8に示した構造の集合撚線を作製した(試料22)。   TPC wire with 0.1 mm diameter and 220 MPa tensile strength is used as the conductor wire, and Cu-0.2 mass% Sn-0.2 mass% In wire with 0.1 mm diameter and 300 MPa tensile strength is used as the high-strength conductor wire. The assembly strand wire of the structure shown in FIG. 8 was produced (sample 22).

得られた試料21,22の各集合撚線及び[実施例1]の試料13の集合撚線について、屈曲特性の評価を行った。   The bending characteristics of each of the assembled strands of the obtained samples 21 and 22 and the assembled strand of the sample 13 of [Example 1] were evaluated.

試料13における集合撚線の屈曲寿命は500,000回であったのに対して、試料21,22における各集合撚線の屈曲寿命は650,000回であった。つまり、本発明の撚線である試料21,22は、従来の撚線である試料13と比べて、屈曲特性が1.3倍に向上することが確認できた。   The bending life of the collective stranded wire in Sample 13 was 500,000 times, whereas the bending life of each of the collective stranded wires in Samples 21 and 22 was 650,000. That is, it was confirmed that the bending characteristics of Samples 21 and 22 which are the stranded wires of the present invention were improved 1.3 times compared to Sample 13 which was a conventional stranded wire.

導体素線として線径が1.0mm、引張強度が220MPaのTPC線材を、高強度導体素線として線径が1.0mm、銅被覆層の層厚が20〜50μm、引張強度が500MPaの銅被覆鋼線を用い、図4に示した構造で、4層構造の撚線層を有する集合撚線(素線総数91本)を作製した(試料31)。中心導体(素線数7本)、第1層(素線数18本)、第2層(素線数18本)、及び第4層(素線数30本)はTPC線材で、第3層(素線数24本)は銅被覆鋼線で形成した。   TPC wire with a conductor diameter of 1.0mm and tensile strength of 220MPa, high-strength conductor wire with a diameter of 1.0mm, copper coating layer thickness of 20-50μm, and copper-coated steel with a tensile strength of 500MPa Using the wire, an assembly stranded wire (91 strands in total) having a four-layer stranded wire layer with the structure shown in FIG. 4 was prepared (Sample 31). The central conductor (7 strands), the first layer (18 strands), the second layer (18 strands), and the fourth layer (30 strands) are TPC wires. The layer (24 wires) was formed of a copper-coated steel wire.

得られた試料31の集合撚線及び[実施例1]の試料13の集合撚線について、屈曲特性の評価を行った。   The bending properties of the assembled strand of the obtained sample 31 and the assembled strand of the sample 13 of [Example 1] were evaluated.

試料13における集合撚線の屈曲寿命は500,000回であったのに対して、試料31における集合撚線の屈曲寿命は800,000回であった。つまり、本発明の撚線である試料31は、従来の撚線である試料13と比べて、屈曲特性が1.6倍に向上することが確認できた。   The bending life of the collective stranded wire in the sample 13 was 500,000 times, whereas the bending life of the collective stranded wire in the sample 31 was 800,000 times. That is, it was confirmed that the sample 31 which is a stranded wire according to the present invention has a bending characteristic improved by 1.6 times compared to the sample 13 which is a conventional stranded wire.

本発明の好適一実施の形態に係る撚線の横断面図である。It is a cross-sectional view of a stranded wire according to a preferred embodiment of the present invention. 図1における高強度導体素線の拡大断面図である。It is an expanded sectional view of the high intensity | strength conductor strand in FIG. 図1の一変形例である。It is a modification of FIG. 本発明の他の好適一実施の形態に係る撚線の横断面図である。It is a cross-sectional view of a stranded wire according to another preferred embodiment of the present invention. 図4の一変形例である。It is a modification of FIG. 本発明の別の好適一実施の形態に係る撚線の横断面図である。It is a cross-sectional view of a stranded wire according to another preferred embodiment of the present invention. 図6の一変形例である。It is a modification of FIG. 本発明の更に別の好適一実施の形態に係る撚線の横断面図である。It is a cross-sectional view of a stranded wire according to still another preferred embodiment of the present invention. 図8の一変形例である。It is a modification of FIG. 従来のケーブルの一例を示す横断面図である。It is a cross-sectional view showing an example of a conventional cable. 従来のケーブルの他の例を示す横断面図である。It is a cross-sectional view which shows the other example of the conventional cable.

符号の説明Explanation of symbols

10 撚線
11 中心導体
12 撚線層
13 導体素線
14 高強度導体素線
10 Stranded wire 11 Central conductor 12 Stranded wire layer 13 Conductor strand 14 High-strength conductor strand

Claims (17)

中心導体の周りに、導体素線を撚り合わせてなる撚線層を有する撚線において、上記導体素線、及びその導体素線よりも引張強度の高い高強度導体素線を用いて撚り合わせ、上記撚線層を形成したことを特徴とする撚線。   In the stranded wire having a stranded wire layer formed by twisting the conductor wire around the central conductor, the conductor wire and the high-strength conductor wire having a higher tensile strength than the conductor wire are twisted together, A stranded wire, wherein the stranded wire layer is formed. 上記高強度導体素線が、Cu-In系合金で構成される請求項1記載の撚線。   The stranded wire according to claim 1, wherein the high-strength conductor strand is made of a Cu—In alloy. 上記導体素線が、Cu-In系合金又はCu-Sn-In系合金のアニール処理材或いはフルアニール処理材で、上記高強度導体素線が、Cu-In系合金又はCu-Sn-In系合金のアニール未処理材で構成される請求項1記載の撚線。   The conductor wire is a Cu-In alloy or Cu-Sn-In alloy annealed or full annealed material, and the high-strength conductor wire is a Cu-In alloy or Cu-Sn-In alloy. The stranded wire according to claim 1, which is made of an alloy untreated material. 上記撚線層の内、最外層の直下の層が、上記高強度導体素線で構成される請求項1から3いずれかに記載の撚線。   The stranded wire according to any one of claims 1 to 3, wherein a layer immediately below the outermost layer of the stranded wire layer is composed of the high-strength conductor strand. 上記撚線層の最外層を除く全ての層が、上記高強度導体素線で構成される請求項1から3いずれかに記載の撚線。   All the layers except the outermost layer of the said strand wire layer are the twisted wires in any one of Claim 1 to 3 comprised with the said high intensity | strength conductor strand. 上記中心導体の少なくとも一部が、上記高強度導体素線で構成される請求項1から5いずれかに記載の撚線。   The stranded wire according to any one of claims 1 to 5, wherein at least a part of the central conductor is composed of the high-strength conductor wire. 上記高強度導体素線が、1種類の線材からなる請求項1から6いずれかに記載の撚線。   The stranded wire according to any one of claims 1 to 6, wherein the high-strength conductor strand is made of one type of wire. 上記高強度導体素線が、引張強度の異なる少なくとも2種類の線材を含む請求項1から6いずれかに記載の撚線。   The stranded wire according to any one of claims 1 to 6, wherein the high-strength conductor strand includes at least two types of wires having different tensile strengths. 請求項1から8いずれかに記載の撚線の周りに、絶縁被覆層を設けたことを特徴とする耐屈曲ケーブル。   A bending-resistant cable, wherein an insulating coating layer is provided around the stranded wire according to claim 1. 中心導体の周りに、導体素線を撚り合わせてなる撚線層を有する撚線において、上記導体素線及び銅被覆鋼線を用いて撚り合わせ、上記撚線層を形成したことを特徴とする撚線。   A stranded wire having a stranded wire layer formed by twisting conductor strands around a central conductor, and the stranded wire layer is formed by twisting together using the conductor strand and the copper-coated steel wire. Stranded wire. 上記撚線層の内、最外層の直下の層が、上記銅被覆鋼線で構成される請求項10記載の撚線。   The stranded wire according to claim 10, wherein a layer immediately below the outermost layer among the stranded wire layers is composed of the copper-coated steel wire. 上記撚線層の最外層を除く全ての層が、上記銅被覆鋼線で構成される請求項10記載の撚線。   The stranded wire according to claim 10, wherein all layers except the outermost layer of the stranded wire layer are composed of the copper-coated steel wire. 上記中心導体の少なくとも一部が、上記銅被覆鋼線で構成される請求項10から12いずれかに記載の撚線。   The stranded wire according to any one of claims 10 to 12, wherein at least a part of the central conductor is made of the copper-coated steel wire. 上記銅被覆鋼線が、1種類の鋼線材からなる請求項10から13いずれかに記載の撚線。   The stranded wire according to any one of claims 10 to 13, wherein the copper-coated steel wire is made of one type of steel wire. 上記銅被覆鋼線が、引張強度の異なる少なくとも2種類の鋼線材を含む請求項10から13いずれかに記載の撚線。   The stranded wire according to any one of claims 10 to 13, wherein the copper-coated steel wire includes at least two types of steel wires having different tensile strengths. 上記銅被覆鋼線が、400MPa以上の引張強度を有する請求項10から15いずれかに記載の撚線。   The stranded wire according to any one of claims 10 to 15, wherein the copper-coated steel wire has a tensile strength of 400 MPa or more. 請求項10から16いずれかに記載の撚線の周りに、絶縁被覆層を設けたことを特徴とする耐屈曲ケーブル。
A bend-resistant cable comprising an insulating coating layer around the stranded wire according to any one of claims 10 to 16.
JP2004277561A 2004-09-24 2004-09-24 Twisted wire and flexible cable using the same Active JP4639723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277561A JP4639723B2 (en) 2004-09-24 2004-09-24 Twisted wire and flexible cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277561A JP4639723B2 (en) 2004-09-24 2004-09-24 Twisted wire and flexible cable using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009220154A Division JP5177107B2 (en) 2009-09-25 2009-09-25 Twisted wire and flexible cable using the same

Publications (2)

Publication Number Publication Date
JP2006092933A true JP2006092933A (en) 2006-04-06
JP4639723B2 JP4639723B2 (en) 2011-02-23

Family

ID=36233718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277561A Active JP4639723B2 (en) 2004-09-24 2004-09-24 Twisted wire and flexible cable using the same

Country Status (1)

Country Link
JP (1) JP4639723B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111831A1 (en) * 2011-02-17 2012-08-23 矢崎総業株式会社 High-flexion insulated wire
JP2017157428A (en) * 2016-03-02 2017-09-07 矢崎総業株式会社 Heat resistant-oil resistant insulated wire
JP2019179594A (en) * 2018-03-30 2019-10-17 株式会社フジクラ cable
CN112289484A (en) * 2020-10-20 2021-01-29 浙江美通导体科技有限公司 Copper-clad aluminum wire clad stranded wire and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613014U (en) * 1992-07-17 1994-02-18 沖電線株式会社 Coaxial cable and composite cable with coaxial
JPH0660739A (en) * 1992-08-12 1994-03-04 Sumitomo Wiring Syst Ltd Electrical wire conductor for automobile
JP2001148206A (en) * 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613014U (en) * 1992-07-17 1994-02-18 沖電線株式会社 Coaxial cable and composite cable with coaxial
JPH0660739A (en) * 1992-08-12 1994-03-04 Sumitomo Wiring Syst Ltd Electrical wire conductor for automobile
JP2001148206A (en) * 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111831A1 (en) * 2011-02-17 2012-08-23 矢崎総業株式会社 High-flexion insulated wire
JP2012174337A (en) * 2011-02-17 2012-09-10 Yazaki Corp Highly flexible insulated wire
US9190191B2 (en) 2011-02-17 2015-11-17 Yazaki Corporation Extra-flexible insulated electric wire
JP2017157428A (en) * 2016-03-02 2017-09-07 矢崎総業株式会社 Heat resistant-oil resistant insulated wire
JP2019179594A (en) * 2018-03-30 2019-10-17 株式会社フジクラ cable
CN112289484A (en) * 2020-10-20 2021-01-29 浙江美通导体科技有限公司 Copper-clad aluminum wire clad stranded wire and preparation method thereof

Also Published As

Publication number Publication date
JP4639723B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US7228627B1 (en) Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
JP2002352630A (en) Strand conductor for movable part wiring material and cable using it
JP2015526605A (en) Steel cord for rubber reinforcement with filaments selectively coated with brass
JP2017199457A (en) High flex insulation wire and wire harness
AT506897B1 (en) METALLIC COMPOSITE WIRE WITH AT LEAST TWO METALLIC LAYERS
JP2009004256A (en) Compound conductor and cable for cabling using it
JP5177107B2 (en) Twisted wire and flexible cable using the same
JP2013045529A (en) Wire and wire harness for automobile
JP4639723B2 (en) Twisted wire and flexible cable using the same
EP2646586B1 (en) High strength, high conductivity copper alloys and electrical conductors made therefrom
US20160133353A1 (en) Multilayer Composite Conductor and Manufacturing Method Thereof
WO2014103750A1 (en) Insulated wire
JP2005259583A (en) Stranded wire conductor, its manufacturing method, and electric wire
JP6460214B1 (en) Wire Harness
JP2006031954A (en) Flexible shield structure and cable
JP2007299562A (en) Bending resistant cable, cable for automobile, and cable for robot
JP2009117037A (en) Exothermic wire for seat heater
WO2015118942A1 (en) Shielded wire
WO2016203758A1 (en) Headphone cable
JP4153933B2 (en) Vacuum-resistant composite cable manufacturing method and vacuum-resistant composite cable
JP2002373526A (en) Overhead wire
US283764A (en) Pateick b
JP4462004B2 (en) Composite conductor, method for manufacturing the same, and cable using the same
JP2000251529A (en) Ultra-fine conductor for wiring material in movable portion
JP2008091283A (en) Electric wire, and wire harness using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350