JP2006092721A - Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium - Google Patents

Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium Download PDF

Info

Publication number
JP2006092721A
JP2006092721A JP2005243541A JP2005243541A JP2006092721A JP 2006092721 A JP2006092721 A JP 2006092721A JP 2005243541 A JP2005243541 A JP 2005243541A JP 2005243541 A JP2005243541 A JP 2005243541A JP 2006092721 A JP2006092721 A JP 2006092721A
Authority
JP
Japan
Prior art keywords
substrate
recording medium
magnetic recording
perpendicular magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005243541A
Other languages
Japanese (ja)
Inventor
Masahiro Omori
将弘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005243541A priority Critical patent/JP2006092721A/en
Publication of JP2006092721A publication Critical patent/JP2006092721A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high corrosion resistance substrate in a substrate for perpendicular magnetic recording medium having a soft magnetic base film. <P>SOLUTION: This substrate 2 for perpendicular magnetic recording medium has the soft magnetic base film 5. On the soft magnetic base film 5, a corrosion-proof film 6 for preventing the corrosion of the soft magnetic base film 5 is provided. It is desirable that the corrosion-proof film 6 is provided in such a state that the corrosion proof film 6 completely covers the whole soft magnetic base film 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、垂直磁気記録媒体、その製造方法、および垂直磁気記録媒体に関し、詳述すると、例えば、基板に垂直方向に磁化容易軸が配向する磁化膜を記録層にもつ垂直磁気記録媒体に用いられる基板、その製造方法、前記基板を用いた垂直磁気記録媒体、および前記基板を備えた垂直磁気記録再生装置に関する。   The present invention relates to a perpendicular magnetic recording medium, a method of manufacturing the same, and a perpendicular magnetic recording medium. More specifically, for example, the present invention is used in a perpendicular magnetic recording medium having a recording layer with a magnetic film whose easy axis is perpendicular to a substrate. The present invention relates to a substrate, a manufacturing method thereof, a perpendicular magnetic recording medium using the substrate, and a perpendicular magnetic recording / reproducing apparatus including the substrate.

実用に供されている磁気記録方式は、基板面に平行な方向に磁化容易軸をもつ磁性膜を利用した長手記録方式である。しかしながら、この方式では、記録密度の向上とともに記録範囲が小さくなるため、これに伴う磁性粒子の体積減少が起因となって発現する熱擾乱による減磁効果が無視できなくなり、熱安定性が劣化してくる。高密度化が進めば進むほどその弊害が露呈してくる。   The magnetic recording system in practical use is a longitudinal recording system using a magnetic film having an easy magnetization axis in a direction parallel to the substrate surface. However, in this method, since the recording range becomes smaller as the recording density increases, the demagnetization effect due to the thermal disturbance caused by the volume reduction of the magnetic particles accompanying this cannot be ignored, and the thermal stability deteriorates. Come. The higher the density, the more harmful the effect becomes.

高密度記録化に伴うその弊害を回避できる方法として、近年、磁気記録膜の磁性体の磁化容易軸を基板面に対して垂直方向に配向させた磁性膜を利用した垂直磁気記録方式が試行されている。   In recent years, a perpendicular magnetic recording method using a magnetic film in which the easy axis of magnetization of the magnetic material of the magnetic recording film is oriented in a direction perpendicular to the substrate surface has been tried as a method for avoiding the adverse effects of high density recording. ing.

一般に、磁気記録膜に信号を書き込むためには、磁気ヘッドから漏れてくる磁界により磁気記録膜の磁区中の磁性粒子を飽和磁化しなければならないが、長手記録方式ではそれを完全に行うためには磁気記録膜をなるべく薄くした方がよいことが知られている。   In general, in order to write a signal to the magnetic recording film, the magnetic particles in the magnetic domain of the magnetic recording film must be saturated and magnetized by the magnetic field leaking from the magnetic head. It is known that it is better to make the magnetic recording film as thin as possible.

これに対して垂直磁気記録方式では、垂直磁気記録膜の下に高飽和磁束密度を有する軟磁性下地膜を付与した重畳型媒体と単磁極ヘッドとを用いるため、軟磁性下地膜が磁気ヘッドから漏洩した磁界を強力に引き込み更に磁気ヘッドに戻す役割を担うことになり、磁気記録膜を薄くしなくとも磁気記録膜の飽和記録が容易となる。   On the other hand, the perpendicular magnetic recording system uses a superimposed medium in which a soft magnetic underlayer having a high saturation magnetic flux density is provided below the perpendicular magnetic recording layer and a single pole head. It plays the role of pulling the leaked magnetic field strongly and returning it to the magnetic head, so that saturation recording of the magnetic recording film is facilitated without reducing the thickness of the magnetic recording film.

上述した軟磁性下地膜は、高透磁率かつ高飽和磁束密度のものが好ましいが、一般的には軟磁性下地膜に軟磁気特性をもたせるために用いられる組成(元素)にはおのずと制限がある。例えば、従来では、軟磁性下地膜に軟磁気特性をもたせるために、コバルト、鉄などが軟磁性下地膜の主要組成元素として用いられ、さらに軟磁性特性改善のためにいくつかの添加元素が用いられる(例えば、特許文献1、特許文献2参照。)。   The soft magnetic undercoating film described above preferably has a high magnetic permeability and a high saturation magnetic flux density, but generally there is a limit to the composition (element) used to give the soft magnetic undercoating film soft magnetic properties. . For example, conventionally, cobalt and iron have been used as the main constituent elements of a soft magnetic underlayer to give the soft magnetic underlayer a soft magnetic characteristic, and several additional elements have been used to improve the soft magnetic characteristics. (For example, see Patent Document 1 and Patent Document 2).

また、従来では、情報の記録又は再生時に発生するノイズを小さくすることを目的として、軟磁性下地膜を上下2層化し、上層をグラニュラー構成とした垂直磁気記録媒体が知られている(例えば、特許文献3参照。)。また、磁気記録膜の結晶配向性を制御することを目的として、軟磁性下地膜を上下2層化し、上層を結晶性軟磁性層とした垂直磁気記録媒体が知られている(例えば、特許文献4参照。)。   Conventionally, there has been known a perpendicular magnetic recording medium in which a soft magnetic underlayer is divided into two upper and lower layers and an upper layer has a granular structure for the purpose of reducing noise generated during information recording or reproduction (for example, (See Patent Document 3). In addition, for the purpose of controlling the crystal orientation of the magnetic recording film, a perpendicular magnetic recording medium is known in which a soft magnetic underlayer is divided into two upper and lower layers and an upper layer is a crystalline soft magnetic layer (for example, Patent Documents). 4).

尚、本発明で言う軟磁性下地膜は一般的に述べられる磁性膜の下地膜のことではなく、垂直磁気記録媒体における裏打ち膜(層)と称されるもののことを指す。
特開平11−149628号公報 特開2003−077123号公報 特開2002−092843号公報 特開2002−208129号公報
The soft magnetic underlayer referred to in the present invention does not refer to an underlayer of a magnetic film generally described, but refers to what is called a backing film (layer) in a perpendicular magnetic recording medium.
Japanese Patent Laid-Open No. 11-149628 JP 2003-077123 A Japanese Patent Laid-Open No. 2002-092843 JP 2002-208129 A

而して、一般に垂直磁気記録媒体において、耐食性は非常に重要な特性であるが、従来の垂直磁気記録媒体においては、軟磁性下地膜は耐食性に乏しく、腐食し易かった。   Thus, in general, the corrosion resistance is a very important characteristic in the perpendicular magnetic recording medium, but in the conventional perpendicular magnetic recording medium, the soft magnetic underlayer has a poor corrosion resistance and is easily corroded.

そこで、従来の垂直磁気記録媒体では、垂直磁性膜(垂直磁気記録膜)上に形成された保護膜によって軟磁性下地膜の耐食性を確保していた。しかるに、この保護膜は、磁気ヘッドと垂直磁性膜との接触に伴う垂直磁性膜の傷付きを防止することを主要目的とするものであるため、この保護膜だけで軟磁性下地膜の耐食性を確保することは困難であった。その上、この保護膜は、磁気ヘッドと垂直磁性膜との距離が出来る限り近くなるように薄く形成されているため、この保護膜で軟磁性下地膜の耐食性を確保することがより一層困難であった。   Therefore, in the conventional perpendicular magnetic recording medium, the corrosion resistance of the soft magnetic underlayer is ensured by a protective film formed on the perpendicular magnetic film (perpendicular magnetic recording film). However, this protective film is mainly intended to prevent the perpendicular magnetic film from being scratched due to the contact between the magnetic head and the perpendicular magnetic film. Therefore, the protective film alone provides the corrosion resistance of the soft magnetic underlayer. It was difficult to secure. In addition, since the protective film is thinly formed so that the distance between the magnetic head and the perpendicular magnetic film is as short as possible, it is even more difficult to ensure the corrosion resistance of the soft magnetic underlayer with this protective film. there were.

本発明は、上述の技術背景に鑑みてなされたものであり、軟磁性下地膜を有する、垂直磁気記録媒体用基板において、耐食性の高い基板、その製造方法、前記基板を用いた垂直磁気記録媒体、前記媒体を備えた垂直磁気記録再生装置を提供することを目的とする。   The present invention has been made in view of the above-described technical background, and a substrate for perpendicular magnetic recording media having a soft magnetic underlayer, which has high corrosion resistance, a manufacturing method thereof, and a perpendicular magnetic recording medium using the substrate. An object of the present invention is to provide a perpendicular magnetic recording / reproducing apparatus including the medium.

本発明者は、上記目的を達成するため鋭意検討した結果、軟磁性下地膜を有する、垂直磁気記録媒体用基板において、前記軟磁性下地膜上に、該軟磁性下地膜の腐食を防止する防食膜が設けられることにより、耐食性の高い垂直磁気記録媒体用基板が得られることを見出し、本発明を完成させるに至った。即ち本発明は以下の手段を提供する。   As a result of intensive studies to achieve the above object, the present inventor, as a result, in a perpendicular magnetic recording medium substrate having a soft magnetic underlayer, prevents corrosion of the soft magnetic underlayer on the soft magnetic underlayer. By providing the film, it was found that a substrate for perpendicular magnetic recording medium having high corrosion resistance was obtained, and the present invention was completed. That is, the present invention provides the following means.

[1] 軟磁性下地膜を有する、垂直磁気記録媒体用基板において、前記軟磁性下地膜上に、該軟磁性下地膜の腐食を防止する防食膜が設けられていることを特徴とする垂直磁気記録媒体用基板。   [1] A perpendicular magnetic recording medium substrate having a soft magnetic underlayer, wherein the antimagnetic film for preventing corrosion of the soft magnetic underlayer is provided on the soft magnetic underlayer. Substrate for recording medium.

[2] 前記防食膜は、前記軟磁性下地膜全体を完全に覆う状態に設けられている前項1記載の垂直磁気記録媒体用基板。   [2] The perpendicular magnetic recording medium substrate according to [1], wherein the anticorrosion film is provided so as to completely cover the entire soft magnetic underlayer.

[3] 前記防食膜は、金属系材料からなる前項1又は2記載の垂直磁気記録媒体用基板。   [3] The perpendicular magnetic recording medium substrate according to [1] or [2], wherein the anticorrosion film is made of a metal material.

[4] 前記防食膜は、ニッケルと、リン及びホウ素からなる群から選択される少なくとも一種の元素とを含んでいる前項1〜3のいずれか1項記載の垂直磁気記録媒体用基板。   [4] The perpendicular magnetic recording medium substrate according to any one of [1] to [3], wherein the anticorrosion film includes nickel and at least one element selected from the group consisting of phosphorus and boron.

[5] 前記防食膜は、更に、金、タングステン及びモリブデンからなる群より選択される少なくとも一種の元素を含んでいる前項4記載の垂直磁気記録媒体用基板。   [5] The perpendicular magnetic recording medium substrate according to [4], wherein the anticorrosion film further contains at least one element selected from the group consisting of gold, tungsten, and molybdenum.

[6] 前記防食膜は、無電解メッキ法により形成されている前項1〜5のいずれか1項記載の垂直磁気記録媒体用基板。   [6] The substrate for a perpendicular magnetic recording medium according to any one of [1] to [5], wherein the anticorrosion film is formed by an electroless plating method.

[7] 前記防食膜の平均粒子径が20nm以下であるか、あるいは前記防食膜の粒子がアモルファス状である前項1〜6のいずれか1項記載の垂直磁気記録媒体用基板。   [7] The perpendicular magnetic recording medium substrate according to any one of [1] to [6], wherein an average particle diameter of the anticorrosion film is 20 nm or less, or particles of the anticorrosion film are amorphous.

[8] 前記防食膜の厚さが1nm〜5000nmの範囲である前項1〜7のいずれか1項記載の垂直磁気記録媒体用基板。   [8] The perpendicular magnetic recording medium substrate according to any one of [1] to [7], wherein the thickness of the anticorrosion film is in the range of 1 nm to 5000 nm.

[9] 前記防食膜の表面の平均面粗さRaが2.0nm以下である前項1〜8のいずれか1項記載の垂直磁気記録媒体用基板。   [9] The substrate for a perpendicular magnetic recording medium according to any one of [1] to [8], wherein an average surface roughness Ra of the surface of the anticorrosion film is 2.0 nm or less.

[10] 軟磁性下地膜を有する、垂直磁気記録媒体用基板の製造方法において、前記軟磁性下地膜上に、該軟磁性下地膜の腐食を防止する防食膜を無電解メッキ法により形成することを特徴とする垂直磁気記録媒体用基板の製造方法。   [10] In the method for manufacturing a substrate for a perpendicular magnetic recording medium having a soft magnetic underlayer, an anticorrosion film for preventing corrosion of the soft magnetic underlayer is formed on the soft magnetic underlayer by an electroless plating method. A method for manufacturing a substrate for a perpendicular magnetic recording medium.

[11] 基板本体上に金属核又はシード層を形成し、その上に前記軟磁性下地膜を無電解メッキ法により形成する前項10記載の垂直磁気記録媒体用基板の製造方法。   [11] The method for producing a substrate for a perpendicular magnetic recording medium as described in [10], wherein a metal nucleus or seed layer is formed on the substrate body, and the soft magnetic underlayer is formed thereon by an electroless plating method.

[12] 前記軟磁性下地膜を形成した後、連続して、前記防食膜を無電解メッキ法により形成する前項10又は11記載の垂直磁気記録媒体用基板の製造方法。   [12] The method for producing a substrate for a perpendicular magnetic recording medium as described in [10] or [11], wherein the anticorrosion film is continuously formed by electroless plating after forming the soft magnetic underlayer.

[13] 前記防食膜を形成する前、又は/及び前記防食膜を形成した後に、基板表面を研磨する前項10〜12のいずれか1項の垂直磁気記録媒体用基板の製造方法。   [13] The method for producing a substrate for a perpendicular magnetic recording medium according to any one of the above items 10 to 12, wherein the surface of the substrate is polished before forming the anticorrosion film and / or after forming the anticorrosion film.

[14] 前記基板表面を研磨する前に、基板を100℃〜350℃の範囲内で熱処理する前項13記載の垂直磁気記録媒体用基板の製造方法。   [14] The method for manufacturing a substrate for a perpendicular magnetic recording medium according to [13], wherein the substrate is heat-treated within a range of 100 ° C. to 350 ° C. before the surface of the substrate is polished.

[15] 前項10〜14のいずれか1項記載の垂直磁気記録媒体用基板の製造方法により製造された垂直磁気記録媒体用基板。   [15] A perpendicular magnetic recording medium substrate manufactured by the method for manufacturing a perpendicular magnetic recording medium substrate according to any one of [10] to [14].

[16] 前項1〜9および15のいずれか1項記載の垂直磁気記録媒体用基板上に、少なくとも、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が前記基板に対し主に垂直に配向する垂直磁性膜と、保護膜とが設けられていることを特徴とする垂直磁気記録媒体。   [16] On the perpendicular magnetic recording medium substrate according to any one of items 1 to 9 and 15, at least an orientation control film for controlling the orientation of the film immediately above and an easy axis of magnetization are mainly in relation to the substrate. A perpendicular magnetic recording medium, comprising: a perpendicular magnetic film oriented perpendicularly to the surface; and a protective film.

[17] 前項15記載の垂直磁気記録媒体と、該垂直磁気記録媒体に情報を記録再生する磁気ヘッドとを備えたことを特徴とする垂直磁気記録再生装置。   [17] A perpendicular magnetic recording / reproducing apparatus comprising: the perpendicular magnetic recording medium according to item 15; and a magnetic head for recording / reproducing information on / from the perpendicular magnetic recording medium.

本発明によれば、耐食性の高い垂直磁気記録媒体用基板、およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for perpendicular magnetic recording media with high corrosion resistance and its manufacturing method can be provided.

また本発明によれば、前記基板上に、配向制御膜と垂直磁性膜と保護膜とが設けられることにより、垂直磁性膜に記録された情報を長期間に亘って良好に保持することができる垂直磁気記録媒体を提供することができる。   Further, according to the present invention, the information recorded on the perpendicular magnetic film can be satisfactorily maintained for a long period of time by providing the orientation control film, the perpendicular magnetic film, and the protective film on the substrate. A perpendicular magnetic recording medium can be provided.

本発明の効果を以下に詳述する。   The effects of the present invention will be described in detail below.

[1]の発明では、耐食性の高い垂直磁気記録媒体用基板を提供できる。   In the invention of [1], a substrate for perpendicular magnetic recording media having high corrosion resistance can be provided.

[2]の発明では、基板の側面から進行する軟磁性下地膜の腐食を防止することができ、もって軟磁性下地膜の腐食を確実に防止することができる。   In the invention of [2], corrosion of the soft magnetic underlayer that proceeds from the side surface of the substrate can be prevented, and corrosion of the soft magnetic underlayer can be reliably prevented.

[3]の発明では、防食膜の防食性が向上する。   In the invention of [3], the anticorrosion property of the anticorrosion film is improved.

[4]の発明では、防食膜の防食性が更に向上する。   In the invention of [4], the anticorrosion property of the anticorrosion film is further improved.

[5]の発明では、防食膜の防食性がより一層向上する。   In the invention of [5], the anticorrosion property of the anticorrosion film is further improved.

[6]の発明では、軟磁性下地膜全体を完全に覆う状態に防食膜を容易に且つ確実に形成することができる。   In the invention of [6], the anticorrosion film can be easily and reliably formed so as to completely cover the entire soft magnetic underlayer.

[7]の発明では、防食膜の防食性が更に向上する。   In the invention of [7], the anticorrosion property of the anticorrosion film is further improved.

[8]の発明では、防食膜の防食性を確実に得ることができる。   In the invention of [8], the anticorrosion property of the anticorrosion film can be reliably obtained.

[9]の発明では、防食膜上に形成される膜(例えば、配向制御膜や垂直磁性膜)を良好に形成することができる。   In the invention [9], a film (for example, an orientation control film or a perpendicular magnetic film) formed on the anticorrosion film can be satisfactorily formed.

[10]〜[14]の発明では、本発明に係る垂直磁気記録媒体用基板を確実に形成することができる。   In the inventions [10] to [14], the perpendicular magnetic recording medium substrate according to the present invention can be reliably formed.

[15]の発明では、高い耐食性を有する垂直磁気記録媒体用基板を提供できる。   In the invention of [15], a substrate for a perpendicular magnetic recording medium having high corrosion resistance can be provided.

[16]の発明では、垂直磁性膜に記録された情報を長期間に亘って保持することができる垂直磁気記録媒体を提供できる。   In the invention of [16], a perpendicular magnetic recording medium capable of retaining information recorded on the perpendicular magnetic film for a long period of time can be provided.

[17]の発明では、垂直磁気記録媒体に情報を確実に記録再生可能な垂直磁気記録再生装置を提供できる。   In the invention of [17], a perpendicular magnetic recording / reproducing apparatus capable of reliably recording / reproducing information on / from a perpendicular magnetic recording medium can be provided.

以下、本発明について、その一実施形態を説明するための図面に基づいて更に詳しく説明する。   Hereinafter, the present invention will be described in more detail based on the drawings for explaining an embodiment thereof.

図1は、本発明の一実施形態に係る垂直磁気記録媒体を示す断面図である。   FIG. 1 is a cross-sectional view showing a perpendicular magnetic recording medium according to an embodiment of the present invention.

同図に示した垂直磁気記録媒体1は、基板2上に、直上の膜の配向性を制御する配向制御膜7と、磁化容易軸が基板2に対し主に垂直に配向する垂直磁性膜8と、保護膜9とが順次積層された状態に設けられた構成となっている。   The perpendicular magnetic recording medium 1 shown in FIG. 1 includes an orientation control film 7 for controlling the orientation of the film immediately above the substrate 2 and a perpendicular magnetic film 8 whose easy axis of magnetization is oriented perpendicularly to the substrate 2. And the protective film 9 are sequentially stacked.

基板2は、非磁性材料からなる基板本体(即ち非磁性基板本体)3上に、金属核又はシード層4と、軟磁性材料からなる軟磁性下地膜5と、該軟磁性下地膜5の腐食を防止する防食膜6とが順次積層された状態に設けられた構成となっている。   The substrate 2 includes a metal core or seed layer 4, a soft magnetic underlayer 5 made of a soft magnetic material, and a corrosion of the soft magnetic underlayer 5 on a substrate main body (that is, a nonmagnetic substrate main body) 3 made of a nonmagnetic material. The anticorrosion film | membrane 6 which prevents this is the structure provided in the state laminated | stacked one by one.

以下、本実施形態の垂直磁気記録媒体1の構成について、基板2側から順次に説明する。   Hereinafter, the configuration of the perpendicular magnetic recording medium 1 of the present embodiment will be described sequentially from the substrate 2 side.

基板2において、基板本体3は非磁性材料からなるものであればよく、またその結晶構造としては、単結晶、多結晶又はアモルファス状のものであればよい。また基板本体3(基板2)の形状としては、ディスク状であってもよいし、他の形状であってもよい。例えば、ガラス、シリコンウェハ、アルミディスクなどが挙げられる。特に、ガラス、アルミディスクが好ましい。また、基板本体3と軟磁性下地膜5との間に別途、Sn、Pd、Znなどの金属成分があらかじめ付与されたものであっても、本発明にはいっこうに差し支えない。   In the substrate 2, the substrate body 3 may be made of a nonmagnetic material, and the crystal structure may be single crystal, polycrystalline or amorphous. Further, the shape of the substrate body 3 (substrate 2) may be a disk shape or other shapes. For example, glass, a silicon wafer, an aluminum disk, etc. are mentioned. In particular, glass and aluminum disks are preferable. Further, even if a metal component such as Sn, Pd, Zn or the like is separately provided in advance between the substrate body 3 and the soft magnetic underlayer 5, there is no problem in the present invention.

軟磁性下地膜5は例えば無電解メッキ法により形成されるが、基板本体3上に軟磁性下地膜5を成膜する前には、成膜促進のために、基板本体3上に、無電解メッキに触媒活性を有する面を形成する必要がある。触媒活性を有する面を形成するには、例えば、基板本体3上に慣用の触媒化処理(Sn/Pd)を施したり、基板本体3上に金属核又はシード層4等を形成する方法が挙げられる。このような面を形成する方法は基板本体3により異なり、適宜選択する必要性があるが、下地膜5の軟磁性膜の反応を均一に開始させられるものであれば特に制限はない。   The soft magnetic underlayer 5 is formed by, for example, an electroless plating method, but before the soft magnetic underlayer 5 is formed on the substrate body 3, the electroless underlayer 5 is electrolessly formed on the substrate body 3 to promote film formation. It is necessary to form a surface having catalytic activity for plating. In order to form a surface having catalytic activity, for example, a conventional catalytic treatment (Sn / Pd) is performed on the substrate body 3 or a metal nucleus or a seed layer 4 is formed on the substrate body 3. It is done. The method of forming such a surface differs depending on the substrate body 3 and needs to be selected as appropriate. However, there is no particular limitation as long as the reaction of the soft magnetic film of the base film 5 can be started uniformly.

触媒化処理としては、慣用の一液型Pd触媒化法や二液型Pd触媒化法、置換によるPd触媒化法などが挙げられる。また、活性化処理の前にリン酸処理、酸処理などの公知の前処理、酸素プラズマなどによるアッシング処理を施してもよい。上記金属核としては、例えば、Ni核、Cu核などの金属核が挙げられるが、Ni核やCu核を形成(付与)する方法としては、基板本体3上に直接NiやCuを析出させる方法などで形成することが可能である。なお、上記金属核は非磁性であることが望ましい。   Examples of the catalyzing treatment include a conventional one-component Pd catalyzing method, a two-component Pd catalyzing method, and a Pd catalyzing method by substitution. Further, prior to the activation treatment, a known pretreatment such as phosphoric acid treatment or acid treatment, or an ashing treatment using oxygen plasma or the like may be performed. Examples of the metal nuclei include metal nuclei such as Ni nuclei and Cu nuclei. As a method of forming (providing) Ni nuclei or Cu nuclei, a method of directly depositing Ni or Cu on the substrate body 3 is used. Or the like. The metal nucleus is preferably nonmagnetic.

一方、シード層4を形成する場合は、下地膜5を形成するための無電解メッキ浴(メッキ液)中の還元剤に対して活性を有する金属でシード層4を形成することが好ましく、例えば、Ni、Cu又はそれらの合金からなる好ましくは厚さ5〜100nm、特に好ましくは10〜50nmのシード層4を形成することが特に好ましい。なお、上記シード層4を形成する場合、基板本体3とシード層4との密着性を向上させるために、シード層4にZnを添加することが望ましい。   On the other hand, when forming the seed layer 4, it is preferable to form the seed layer 4 with a metal having activity against a reducing agent in an electroless plating bath (plating solution) for forming the base film 5. It is particularly preferable to form a seed layer 4 made of Ni, Cu or an alloy thereof, preferably having a thickness of 5 to 100 nm, particularly preferably 10 to 50 nm. When the seed layer 4 is formed, it is desirable to add Zn to the seed layer 4 in order to improve the adhesion between the substrate body 3 and the seed layer 4.

シード層4の形成方法としては、スパッタ、蒸着などの乾式法や、置換メッキ、無電解メッキなどの湿式法が挙げられる。特に、無電解メッキ法によりシード層4を形成することが望ましい。その理由は、シード層4を低コストで成膜できるし、シード層4を基板本体3全体を完全に覆う状態に基板本体3上に容易に形成することができるからである。なお、無電解メッキ法によりシード層4を形成する場合、シード層4を形成する前に金属核を形成することが好ましく、この場合、慣用のPd活性化処理により形成することが望ましい。また、この場合も、金属核を形成する前に、リン酸処理、酸処理などの公知の前処理、酸素プラズマなどによるアッシング処理を施しても良い。   Examples of the method for forming the seed layer 4 include dry methods such as sputtering and vapor deposition, and wet methods such as displacement plating and electroless plating. In particular, it is desirable to form the seed layer 4 by an electroless plating method. This is because the seed layer 4 can be formed at low cost, and the seed layer 4 can be easily formed on the substrate body 3 so as to completely cover the entire substrate body 3. When the seed layer 4 is formed by electroless plating, it is preferable to form a metal nucleus before forming the seed layer 4, and in this case, it is desirable to form by a conventional Pd activation process. Also in this case, a known pretreatment such as a phosphoric acid treatment or an acid treatment, or an ashing treatment using oxygen plasma or the like may be performed before forming the metal nucleus.

なお、上記シード層4を形成する場合、基板本体3とシード層4との密着性を向上させるために、基板本体3とシード層4との間にスパッタリング等公知の方法でTi、Crなどの密着層(図示せず)を形成することが好ましい。この場合、上記密着層の厚さは5〜50nm、特に10〜30nmが好ましい。   When the seed layer 4 is formed, Ti, Cr, or the like is formed between the substrate body 3 and the seed layer 4 by a known method such as sputtering in order to improve the adhesion between the substrate body 3 and the seed layer 4. It is preferable to form an adhesion layer (not shown). In this case, the thickness of the adhesion layer is preferably 5 to 50 nm, particularly 10 to 30 nm.

軟磁性下地膜5は、一般にはスパッタ法、無電解メッキ法により形成されたもののどちらであっても特に問題はないが、低コストで成膜できる無電解メッキ法で形成されたものが好ましい。   The soft magnetic underlayer 5 is generally formed by a sputtering method or an electroless plating method with no particular problem, but is preferably formed by an electroless plating method capable of forming a film at a low cost.

無電解メッキ法で形成された軟磁性下地膜5を構成する軟磁性体としては、少なくとも、Co、Ni及びFeからなる群から選択される1種以上の元素と、P及びBからなる群から選択される1種以上の元素とを組成元素として含有する軟磁性体を用いることができる。例示すると、Co―P、Co−Ni−P、Co−Ni−Fe−P、Co−Ni−B、Co−Ni−P−B等である。特に、高い飽和磁化を有するCo含有量が50原子%以上もしくはFe含有量が20原子%以上の材料がより好ましい。   The soft magnetic material constituting the soft magnetic underlayer 5 formed by the electroless plating method includes at least one element selected from the group consisting of Co, Ni and Fe, and a group consisting of P and B. A soft magnetic material containing one or more selected elements as a composition element can be used. Illustrative examples include Co-P, Co-Ni-P, Co-Ni-Fe-P, Co-Ni-B, and Co-Ni-P-B. In particular, a material having a high saturation magnetization and a Co content of 50 atomic% or more or an Fe content of 20 atomic% or more is more preferable.

防食膜6は、軟磁性下地膜5の腐食を防止するためのものである。この防食膜6は、垂直磁気記録媒体1の使用環境に対して高い防食性(高耐食特性)を有する金属系材料からなることが好ましく、具体的には、酸浸漬試験、塩水加速試験(JIS(日本工業規格) H8502)、恒温恒湿加速試験などにおいて高い耐食性を示す金属系材料からなることが好ましい。なお、金属系材料は、金属合金であっても良いし、合金以外の形態のものであっても良い。   The anticorrosion film 6 is for preventing the corrosion of the soft magnetic underlayer film 5. The anticorrosion film 6 is preferably made of a metal material having high anticorrosion properties (high corrosion resistance) with respect to the usage environment of the perpendicular magnetic recording medium 1, and specifically, an acid immersion test, a salt water acceleration test (JIS). (Japanese Industrial Standards) H8502), a constant temperature and humidity accelerated test, and the like, preferably made of a metal-based material exhibiting high corrosion resistance. The metal-based material may be a metal alloy or may be in a form other than the alloy.

そのような金属系材料からなる防食膜6のうち、特に、防食膜6は、ニッケルをベース金属成分とした金属系材料からなることが好ましく、詳述すると、ニッケルと、リン及びホウ素からなる群から選択される少なくとも1種の元素とを組成元素として含有する金属系材料からなることが好ましい。これらの膜は、無電解メッキ法によって容易に形成することができる。   Of the anticorrosion film 6 made of such a metal-based material, the anti-corrosion film 6 is preferably made of a metal-based material containing nickel as a base metal component, and more specifically, a group consisting of nickel, phosphorus and boron. It is preferable that it consists of a metallic material which contains at least 1 sort (s) of elements selected from these as a composition element. These films can be easily formed by an electroless plating method.

さらに、防食膜6は、防食性を更に向上させるために、ニッケルに、ニッケル以外の金属として、金、タングステンおよびモリブデンからなる群から選択される少なくとも一種の金属元素を含有させてニッケル合金化させたものからなるものであってもよい。   Furthermore, in order to further improve the anticorrosion property, the anticorrosion film 6 contains nickel and contains at least one metal element selected from the group consisting of gold, tungsten, and molybdenum as a metal other than nickel to form a nickel alloy. You may consist of things.

特に、防食膜6は、軟磁性を有していることが好ましい。そのような防食膜6を軟磁性下地膜5上に形成することにより、軟磁性下地膜5の役割を補うことができて、垂直磁気記録媒体1の磁気的特性が向上するからである。そのような防食膜6を具体的に示すと、Ni―P、Ni−B、Ni−Au―P、Ni−Au−B、Ni−W―P、Ni−W−B、Ni−Mo−P、Ni−Mo−Bなどが挙げられる。   In particular, the anticorrosion film 6 preferably has soft magnetism. This is because by forming such an anticorrosion film 6 on the soft magnetic underlayer 5, the role of the soft magnetic underlayer 5 can be supplemented and the magnetic characteristics of the perpendicular magnetic recording medium 1 are improved. Specifically, the anticorrosion film 6 is Ni-P, Ni-B, Ni-Au-P, Ni-Au-B, Ni-WP, Ni-WB, Ni-Mo-P. Ni-Mo-B and the like.

上記防食膜6の組成としては、Ni−Pの場合では、リンを1〜13(特に好ましくは1〜10)原子%含有し、残部がニッケルであることが望ましい。   As the composition of the anticorrosion film 6, in the case of Ni—P, it is desirable that 1 to 13 (particularly preferably 1 to 10) atomic% of phosphorus is contained and the balance is nickel.

Ni−Bの場合では、ホウ素を0.01〜10(特に好ましくは0.01〜5)原子%含有し、残部がニッケルであることが望ましい。   In the case of Ni-B, it is desirable that boron is contained in an amount of 0.01 to 10 (particularly preferably 0.01 to 5) atomic% and the balance is nickel.

Ni−Au―Pの場合では、金を0.1〜10(特に好ましくは0.1〜5)原子%、リンを1〜13(特に好ましくは1〜10)原子%含有し、残部がニッケルであることが望ましい。   In the case of Ni—Au—P, 0.1 to 10 (particularly preferably 0.1 to 5) atomic percent of gold, 1 to 13 (particularly preferably 1 to 10) atomic percent of phosphorus, and the balance being nickel It is desirable that

Ni−Au−Bの場合では、金を0.1〜10(特に好ましくは0.1〜5)原子%、ホウ素を0.01〜10(特に好ましくは0.01〜5)原子%含有し、残部がニッケルであることが望ましい。   In the case of Ni-Au-B, 0.1 to 10 (particularly preferably 0.1 to 5) atomic% of gold and 0.01 to 10 (particularly preferably 0.01 to 5) atomic% of boron are contained. The balance is preferably nickel.

Ni−W―Pの場合では、タングステンを1〜20(特に好ましくは3〜15)原子%、リンを1〜13(特に好ましくは1〜10)原子%含有し、残部がニッケルであることが望ましい。   In the case of Ni-WP, the content of tungsten is 1 to 20 (particularly preferably 3 to 15) atomic%, phosphorus is 1 to 13 (particularly preferably 1 to 10) atomic%, and the balance is nickel. desirable.

Ni−W−Bの場合では、タングステンを1〜20(特に好ましくは3〜15)原子%、ホウ素を0.01〜10(特に好ましくは0.01〜5)原子%含有し、残部がニッケルであることが望ましい。   In the case of Ni-WB, it contains 1 to 20 (particularly preferably 3 to 15) atomic% tungsten, 0.01 to 10 (particularly preferably 0.01 to 5) atomic% boron, and the balance is nickel. It is desirable that

Ni−Mo−Pの場合では、モリブデンを1〜20(特に好ましくは3〜15)原子%、リンを1〜13(特に好ましくは1〜10)原子%含有し、残部がニッケルであることが望ましい。
、Ni−Mo−Bの場合には、モリブデンを1〜20(特に好ましくは3〜15)原子%、ホウ素を0.01〜10(特に好ましくは0.01〜5)原子%含有し、残部がニッケルであることが望ましい。
In the case of Ni-Mo-P, it should contain 1 to 20 (particularly preferably 3 to 15) atomic% of molybdenum, 1 to 13 (particularly preferably 1 to 10) atomic% of phosphorus, and the balance being nickel. desirable.
In the case of Ni-Mo-B, it contains 1 to 20 (particularly preferably 3 to 15) atomic% of molybdenum, 0.01 to 10 (particularly preferably 0.01 to 5) atomic% of boron, and the balance Is preferably nickel.

なお、上述した防食膜6の組成において、残部には不純物が含まれていても良く、即ち残部がニッケル及び不純物であっても良いことはもちろんである。   In the above-described composition of the anticorrosion film 6, the balance may contain impurities, that is, the balance may be nickel and impurities.

而して、先述した軟磁性下地膜5は耐食性が低いために、従来の垂直磁気記録媒体では最終的に耐食性は保護膜で確保していた。一般的には保護膜は浸漬法により形成されて、軟磁性下地膜、配向制御膜及び垂直磁性膜の全体を覆っているが、配向制御膜と垂直磁性膜の2層はスパッタ法で積層されるので、従来の媒体の側面では耐食性の低い軟磁性下地膜は単に保護膜でのみ被覆される。従って、従来の媒体の耐食性は、保護膜の耐食性に左右されることになる。しかるに、上述したように、この保護膜は、磁気ヘッドと垂直磁性膜との接触に伴う垂直磁性膜の傷付きを防止することを主要目的とするものであるため、この保護膜だけで軟磁性下地膜の耐食性を確保することは困難であった。その上、この保護膜は、磁気ヘッドと垂直磁性膜との距離が出来る限り近くなるように薄く形成されているため、この保護膜で軟磁性下地膜の耐食性を確保することがより一層困難であった。   Thus, since the soft magnetic underlayer 5 described above has low corrosion resistance, the conventional perpendicular magnetic recording medium has finally secured the corrosion resistance with a protective film. In general, the protective film is formed by a dipping method and covers the entire soft magnetic underlayer, orientation control film, and perpendicular magnetic film, but the orientation control film and the perpendicular magnetic film are laminated by sputtering. Therefore, the soft magnetic undercoating film having low corrosion resistance on the side surface of the conventional medium is simply covered only with the protective film. Therefore, the corrosion resistance of the conventional medium depends on the corrosion resistance of the protective film. However, as described above, this protective film is mainly intended to prevent the perpendicular magnetic film from being damaged due to the contact between the magnetic head and the perpendicular magnetic film. It was difficult to ensure the corrosion resistance of the underlying film. In addition, since the protective film is thinly formed so that the distance between the magnetic head and the perpendicular magnetic film is as short as possible, it is even more difficult to ensure the corrosion resistance of the soft magnetic underlayer with this protective film. there were.

垂直磁気記録媒体の耐食性の向上には、腐食の原因因子であるこの軟磁性下地膜の耐食性を向上させる必要がある。本発明では、軟磁性下地膜5上に防食膜6を設けることにより、好ましくは軟磁性下地膜5全体を防食膜6で完全に覆う状態に防食膜6を設けることにより、上述の難点を解消しようとするものである。   In order to improve the corrosion resistance of the perpendicular magnetic recording medium, it is necessary to improve the corrosion resistance of the soft magnetic underlayer which is a causative factor of corrosion. In the present invention, by providing the anticorrosion film 6 on the soft magnetic underlayer 5, preferably by providing the anticorrosion film 6 so that the entire soft magnetic underlayer 5 is completely covered with the anticorrosion film 6, the above-mentioned difficulties are solved. It is something to try.

上述の難点を解消するため、防食膜6の成膜方法としては、スパッタ法などの気相成膜法ではなく、無電解メッキ法を採用するのが好適である。スパッタ法などの気相中の処理は、基板外周部もしくは内周部を支持治具で固定するので、基板2の側面(軟磁性下地膜5まで成膜された段階)を防食膜6で完全に覆うことが出来なかったり、またスパッタ膜の付き回りの影響で側面の膜厚が薄くなる場合が多い。この側面部から腐食が発生する虞があるからである。   In order to eliminate the above-mentioned difficulties, it is preferable to employ an electroless plating method as a method for forming the anticorrosion film 6, not a vapor phase film forming method such as a sputtering method. In the process in the gas phase such as sputtering, the outer peripheral part or inner peripheral part of the substrate is fixed with a supporting jig, so that the side surface of the substrate 2 (the stage where the soft magnetic underlayer 5 has been formed) is completely covered with the anticorrosive film 6. In many cases, the film thickness on the side surface becomes thin due to the influence of the sputtered film. This is because corrosion may occur from the side surface portion.

これに対し、防食膜6の成膜方法として無電解メッキ法を採用することにより、軟磁性下地膜5全体を防食膜6で完全に覆う状態に防食膜6を形成することができて、基板2の側面部からの腐食の発生を防止することができ、もって耐食性を大幅に向上させることができる。その上、そのような状態の防食膜6を容易に形成することができる。さらに、無電解メッキ法では、基板2を回転させながら成膜を行うことが容易であるため、治具による基板2の支持箇所においても膜の被覆が可能となり、軟磁性下地膜5の全体を完全に覆う状態での成膜ができる。さらに、軟磁性下地膜5の形成後(もしくは形成直後)に連続して防食膜6を無電解メッキ法によって軟磁性下地膜5上に形成することにより、そのような状態の防食膜6を確実に且つ能率良く形成することができ、もって耐食性を確実に向上させることができる。   On the other hand, by employing an electroless plating method as a method of forming the anticorrosion film 6, the anticorrosion film 6 can be formed in a state in which the entire soft magnetic undercoat film 5 is completely covered with the anticorrosion film 6, and the substrate The occurrence of corrosion from the side surface portion 2 can be prevented, and the corrosion resistance can be greatly improved. In addition, the anticorrosion film 6 in such a state can be easily formed. Furthermore, in the electroless plating method, it is easy to form a film while rotating the substrate 2, so that it is possible to cover the film even at a place where the substrate 2 is supported by a jig, and the entire soft magnetic underlayer 5 is covered. Film formation in a completely covered state is possible. Further, the anticorrosion film 6 is formed on the soft magnetic underlayer 5 continuously by the electroless plating method after the soft magnetic underlayer 5 is formed (or immediately after the formation). In addition, it can be formed efficiently and corrosion resistance can be improved with certainty.

防食膜6を形成するための無電解メッキ浴(液)は、形成しようとする防食膜6の組成に応じて公知のメッキ浴から適宜選択される。   The electroless plating bath (liquid) for forming the anticorrosion film 6 is appropriately selected from known plating baths according to the composition of the anticorrosion film 6 to be formed.

このメッキ浴において、金属イオンの供給源としては、硫酸ニッケル、塩化ニッケル等の水溶性のニッケル塩が挙げられ、耐食性を更に向上させるために添加する金属塩(即ち、金塩、タングステン塩、モリブデン塩など)も同様の水溶性金属塩を用いることが出来る。メッキ浴中の金属塩の濃度も適宜選定されるが、総金属塩濃度は1〜100g/リットル(0.1〜10質量%)が好ましく、10〜50g/リットル(1〜5質量%)とすることがより好ましい。   In this plating bath, examples of a metal ion supply source include water-soluble nickel salts such as nickel sulfate and nickel chloride, and metal salts added to further improve corrosion resistance (that is, gold salts, tungsten salts, molybdenum). The same water-soluble metal salt can be used for the salt). The concentration of the metal salt in the plating bath is also appropriately selected, but the total metal salt concentration is preferably 1 to 100 g / liter (0.1 to 10 mass%), and 10 to 50 g / liter (1 to 5 mass%). More preferably.

このメッキ浴には、ホウ酸などのpH緩衝剤を用いてもよい。また、無電解メッキ法で形成される膜の均一性を向上させるために界面活性剤を用いてもよく、界面活性剤としては、ドデシル硫酸ナトリウム、ポリエチレングリコールが好ましい。更に、膜の平滑性を向上させるために慣用の添加剤を用いてもよい。   A pH buffer such as boric acid may be used for this plating bath. Further, a surfactant may be used in order to improve the uniformity of the film formed by the electroless plating method, and as the surfactant, sodium dodecyl sulfate or polyethylene glycol is preferable. Furthermore, a conventional additive may be used to improve the smoothness of the film.

また、成膜時におけるメッキ浴の温度及びpHは、メッキ浴の組成により適宜決定されるが、浴温度は60℃〜90℃が好ましく、pHは4.5〜8.5が好ましい。pHが4.5未満あるいは8.5を超えると、軟磁性下地膜5に耐食性が無いために、軟磁性下地膜5が処理液中の酸成分、あるいはアルカリ成分によってダメージを受ける虞があるからである。特に好ましい浴温度は70℃〜85℃、pHは7前後である。ただし本発明では、メッキ浴の温度及びpHは上述の範囲に限定されるものではない。   The temperature and pH of the plating bath during film formation are appropriately determined depending on the composition of the plating bath. The bath temperature is preferably 60 ° C to 90 ° C, and the pH is preferably 4.5 to 8.5. If the pH is less than 4.5 or more than 8.5, the soft magnetic undercoat film 5 has no corrosion resistance, and therefore the soft magnetic undercoat film 5 may be damaged by the acid component or the alkali component in the treatment liquid. It is. A particularly preferred bath temperature is 70 ° C. to 85 ° C., and pH is around 7. However, in the present invention, the temperature and pH of the plating bath are not limited to the above ranges.

更に、上記無電解メッキ法により形成された防食膜6は、密着性の向上のために熱処理してもよい。この場合、熱処理温度は、150℃〜300℃の範囲内であることが好ましい。   Furthermore, the anticorrosion film 6 formed by the electroless plating method may be heat-treated for improving the adhesion. In this case, the heat treatment temperature is preferably in the range of 150 ° C to 300 ° C.

防食膜6の厚さは1nm〜5000nmの範囲が好ましく、20nm〜3000nmの範囲がより好ましい。その理由は次のとおりである。すなわち、防食膜6の厚さが上記範囲未満であると、十分な防食効果を得ることができなくなる虞がある。一方、防食膜6の厚さが上記範囲を超えると、軟磁性下地膜5の磁性を弱めてしまったり、生産性が低下したりする虞があるからである。ただし本発明では、防食膜6の厚さは上述の範囲に限定されるものではない。   The thickness of the anticorrosion film 6 is preferably in the range of 1 nm to 5000 nm, and more preferably in the range of 20 nm to 3000 nm. The reason is as follows. That is, if the thickness of the anticorrosion film 6 is less than the above range, there is a possibility that a sufficient anticorrosion effect cannot be obtained. On the other hand, if the thickness of the anticorrosion film 6 exceeds the above range, the magnetism of the soft magnetic underlayer 5 may be weakened or the productivity may be reduced. However, in the present invention, the thickness of the anticorrosion film 6 is not limited to the above range.

さらに、防食膜6の平均粒子径は20nm以下が好ましく、10nm以下がより好ましい。また、この粒子の結晶性としてはアモルファス状であることが好ましい。ただし本発明では、防食膜6の平均粒子径は上述の範囲に限定されるものではなく、また防食膜6の結晶性についてもアモルファス状であることに限定されるものではない。   Furthermore, the average particle diameter of the anticorrosion film 6 is preferably 20 nm or less, and more preferably 10 nm or less. The crystallinity of the particles is preferably amorphous. However, in the present invention, the average particle diameter of the anticorrosion film 6 is not limited to the above range, and the crystallinity of the anticorrosion film 6 is not limited to being amorphous.

本実施形態では、軟磁性下地膜5全体が完全に防食膜6で覆われた基板2を用い、この基板2に対して常法により表面の研磨(平滑化)を施したり、配向制御膜7、垂直磁性膜8及び保護膜9の形成等を行ったりすることにより、本実施形態の垂直磁気記録媒体1が得られる。この垂直磁気記録媒体1は、本実施形態の基板2が用いられているから、該媒体1に記録された情報を長期間に亘って良好に保持することができる。以下に、本実施形態の垂直磁気記録媒体1の製造例を示す。   In the present embodiment, the substrate 2 in which the entire soft magnetic underlayer 5 is completely covered with the anticorrosion film 6 is used, and the substrate 2 is subjected to surface polishing (smoothing) by a conventional method, or the orientation control film 7. The perpendicular magnetic recording medium 1 of this embodiment is obtained by forming the perpendicular magnetic film 8 and the protective film 9 or the like. Since the perpendicular magnetic recording medium 1 uses the substrate 2 of this embodiment, the information recorded on the medium 1 can be satisfactorily held for a long period of time. Hereinafter, an example of manufacturing the perpendicular magnetic recording medium 1 of the present embodiment will be shown.

基板2表面の研磨工程(平滑化工程)としては、防食膜6の形成後に防食膜6の表面に対して研磨を施す場合や、防食膜6の形成前に軟磁性下地膜5又はシード層4の表面に対して研磨を施す場合が挙げられ、本発明ではいずれの場合であっても良い。   As a polishing process (smoothing process) on the surface of the substrate 2, the surface of the anticorrosion film 6 is polished after the formation of the anticorrosion film 6, or the soft magnetic underlayer film 5 or the seed layer 4 is formed before the formation of the anticorrosion film 6. A case where the surface is polished is mentioned, and any case may be used in the present invention.

また、研磨工程(平滑化工程)の直前に、基板2全体に加熱処理を施して、基板2および膜の歪などを除去する工程を追加することも可能である。その熱処理温度としては100℃〜350℃(特に好ましくは150℃〜280℃)の範囲内が好ましく、処理時間は10分〜60分(特に好ましくは15分〜45分)の範囲内が好ましい。ただし本発明では、熱処理温度及び処理時間は上述の範囲に限定されるものではない。   It is also possible to add a step of removing the distortion of the substrate 2 and the film by subjecting the entire substrate 2 to heat treatment immediately before the polishing step (smoothing step). The heat treatment temperature is preferably in the range of 100 ° C. to 350 ° C. (particularly preferably 150 ° C. to 280 ° C.), and the treatment time is preferably in the range of 10 minutes to 60 minutes (particularly preferably 15 minutes to 45 minutes). However, in the present invention, the heat treatment temperature and the treatment time are not limited to the above ranges.

研磨工程(平滑化工程)の具体的な例としては、アルミナもしくはシリカ(コロイダルシリカ)等が主成分である研磨材を含有する研磨液を用いた化学機械研磨法により行うことが好ましい。その際、表面平滑度としては、平均面粗さRaが2.0nm〜0.05nmであることが好ましく、0.8nm〜0.05nmであることがより好ましい。ただし本発明では、表面平坦度は上述の範囲に限定されるものではない。   As a specific example of the polishing step (smoothing step), it is preferably performed by a chemical mechanical polishing method using a polishing liquid containing an abrasive mainly composed of alumina or silica (colloidal silica). In that case, as surface smoothness, it is preferable that average surface roughness Ra is 2.0 nm-0.05 nm, and it is more preferable that it is 0.8 nm-0.05 nm. However, in the present invention, the surface flatness is not limited to the above range.

垂直磁性膜8は、その磁化容易軸が基板2(基板本体3)に対し主に垂直方向に向いた磁性膜であれば良く、特に組成が限定されるものではない。一般的には、Co系合金(例えば、CoCrPt、CoCrPtB、CoCrPt−SiO2、Co/Pd多層、CoB/PdB多層、CoSiO2/PdSiO2多層等)などが好んで用いられる。 The perpendicular magnetic film 8 may be a magnetic film whose easy axis of magnetization is mainly perpendicular to the substrate 2 (substrate body 3), and the composition is not particularly limited. In general, a Co-based alloy (for example, CoCrPt, CoCrPtB, CoCrPt—SiO 2 , Co / Pd multilayer, CoB / PdB multilayer, CoSiO 2 / PdSiO 2 multilayer, etc.) is preferably used.

垂直磁性膜8は、上記Co系合金材料からなる1層構造とすることもできるし、Co系合金材料からなる層と、Co系合金材料とは異なる材料からなる層とを含む2層以上の構造とすることもできる。   The perpendicular magnetic film 8 may have a single-layer structure made of the Co-based alloy material, or two or more layers including a layer made of the Co-based alloy material and a layer made of a material different from the Co-based alloy material. It can also be a structure.

また、垂直磁性膜8は、Co系合金層とPd系合金層を積層した構造や、TbFeCo等のアモルファス材料層とCoCrPt系合金材料層とを含む複層構造とすることも好ましい。   The perpendicular magnetic film 8 preferably has a structure in which a Co-based alloy layer and a Pd-based alloy layer are laminated, or a multilayer structure including an amorphous material layer such as TbFeCo and a CoCrPt-based alloy material layer.

垂直磁性膜8の厚さは、3〜60nm(より好ましくは5〜40nm)とするのが好ましい。垂直磁性膜8の厚さが上記範囲未満であると、十分な磁束が得られず、再生出力が低下する。また、垂直磁性膜8の厚さが上記範囲を超えると、垂直磁性膜8内の磁性粒子の粗大化が起き、記録再生特性が低下する虞がある。   The thickness of the perpendicular magnetic film 8 is preferably 3 to 60 nm (more preferably 5 to 40 nm). If the thickness of the perpendicular magnetic film 8 is less than the above range, sufficient magnetic flux cannot be obtained, and the reproduction output is lowered. On the other hand, if the thickness of the perpendicular magnetic film 8 exceeds the above range, the magnetic particles in the perpendicular magnetic film 8 are coarsened, and the recording / reproducing characteristics may be deteriorated.

垂直磁性膜8の保磁力(Hc)は、3000Oe以上とすることが好ましい。この保磁力が3000Oe未満の磁気記録媒体は、高記録密度化に不適であり、また熱揺らぎ耐性にも劣る虞があるためである。なお、1Oeは約79A/mである。   The coercive force (Hc) of the perpendicular magnetic film 8 is preferably 3000 Oe or more. This is because a magnetic recording medium having a coercive force of less than 3000 Oe is unsuitable for increasing the recording density and may be inferior in thermal fluctuation resistance. 1 Oe is about 79 A / m.

垂直磁性膜8の残留磁化(Ms)と飽和磁化(Mr)の比Mr/Msは、0.9以上であることが好ましい。このMr/Msが0.9未満の磁気記録媒体は、熱揺らぎ耐性に劣る虞がある。   The ratio Mr / Ms between the residual magnetization (Ms) and the saturation magnetization (Mr) of the perpendicular magnetic film 8 is preferably 0.9 or more. A magnetic recording medium having an Mr / Ms of less than 0.9 may be inferior in thermal fluctuation resistance.

垂直磁性膜8の逆磁区核形成磁界(−Hn)は、0Oe以上2500Oe以下であることが好ましい。この逆磁区核形成磁界(−Hn)が0Oe未満の磁気記録媒体は、熱揺らぎ耐性に劣る虞がある。   The reverse magnetic domain nucleation magnetic field (-Hn) of the perpendicular magnetic film 8 is preferably 0 Oe or more and 2500 Oe or less. A magnetic recording medium having a reverse domain nucleation magnetic field (-Hn) of less than 0 Oe may be inferior in thermal fluctuation resistance.

ただし本発明では、垂直磁性膜8の厚さ、保持力、Mr/Ms比の値及び逆磁区核形成磁界は、それぞれ上述の範囲に限定されるものではない。   However, in the present invention, the thickness of the perpendicular magnetic film 8, the coercive force, the value of Mr / Ms ratio, and the reverse domain nucleation magnetic field are not limited to the above-mentioned ranges.

以下、逆磁区核形成磁界(−Hn)について説明する。   Hereinafter, the reverse magnetic domain nucleation magnetic field (-Hn) will be described.

図2に示すように、MH曲線において、磁化が飽和した状態から外部磁界を減少させる過程で外部磁界が0となる点をaとし、磁化が0になった点をbとし、点bでのMH曲線の接線と飽和磁化を示す直線との交点をcとすると、逆磁区核形成磁界(−Hn)は、点aと点cとの距離(Oe)で表すことができる。   As shown in FIG. 2, in the MH curve, the point where the external magnetic field becomes 0 in the process of decreasing the external magnetic field from the state where the magnetization is saturated is defined as a, the point where the magnetization becomes 0 is defined as b, and the point b If the intersection of the tangent line of the MH curve and the straight line indicating the saturation magnetization is c, the reverse domain nucleation magnetic field (-Hn) can be expressed by the distance (Oe) between the point a and the point c.

なお、逆磁区核形成磁界(−Hn)は、外部磁界が負となる領域に点cがある場合に正の値をとり(図2を参照)、逆に、外部磁界が正となる領域に点cがある場合に負の値をとる(図3を参照)。   The reverse domain nucleation magnetic field (-Hn) takes a positive value when the point c is in a region where the external magnetic field is negative (see FIG. 2), and conversely, in the region where the external magnetic field is positive. It takes a negative value when there is a point c (see FIG. 3).

この垂直磁気記録媒体1では、配向制御膜7がNiを33〜80原子%含み、更に、Sc、Y、Ti、Zr、Hf、Nb及びTaからなる群から選択される少なくとも1種の金属元素を含む非磁性材料からなるものであることが望ましい。こうすることにより、優れたエラーレート、熱揺らぎ耐性を得ることができる。また、保護膜9は例えばカーボン膜(C膜)で形成される。   In this perpendicular magnetic recording medium 1, the orientation control film 7 contains 33 to 80 atomic% of Ni, and at least one metal element selected from the group consisting of Sc, Y, Ti, Zr, Hf, Nb, and Ta. It is desirable that it is made of a nonmagnetic material containing By doing so, an excellent error rate and thermal fluctuation resistance can be obtained. The protective film 9 is formed of, for example, a carbon film (C film).

ただし本発明では、配向制御膜7及び保護膜9の材料は、それぞれ上述のものに限定されるものではない。   However, in the present invention, the materials of the alignment control film 7 and the protective film 9 are not limited to those described above.

また、本実施形態の垂直磁気記録媒体1を公知の複合型磁気ヘッドと組み合わせることにより、垂直磁気記録再生装置を構成することができる。図4−A及び図4−Bは、それぞれ、本実施形態の垂直磁気記録媒体1を用いた垂直磁気記録再生装置、及びこれに用いられた磁気ヘッドの概略図を示している。   Further, a perpendicular magnetic recording / reproducing apparatus can be configured by combining the perpendicular magnetic recording medium 1 of the present embodiment with a known composite magnetic head. FIG. 4-A and FIG. 4-B respectively show schematic views of a perpendicular magnetic recording / reproducing apparatus using the perpendicular magnetic recording medium 1 of the present embodiment and a magnetic head used therefor.

この垂直磁気記録再生装置10は、互いに並行状に配設された複数個の円板状の垂直磁気記録媒体1と、該各媒体1に情報を記録再生する、図4−Bに示した磁気ヘッド12とを備える。   The perpendicular magnetic recording / reproducing apparatus 10 includes a plurality of disk-shaped perpendicular magnetic recording media 1 arranged in parallel to each other, and the magnetic recording / reproducing shown in FIG. A head 12.

この垂直磁気記録再生装置10では、複数個の媒体1は、スピンドルからなる媒体駆動部11により同軸回転される。そして、この回転状態の媒体1の垂直磁性膜8に、ヘッド駆動部13により駆動される磁気ヘッド12によって情報が記録再生される。なお14は、媒体1に記録再生する情報を処理する記録再生信号処理部である。   In the perpendicular magnetic recording / reproducing apparatus 10, a plurality of media 1 are coaxially rotated by a medium driving unit 11 including a spindle. Information is recorded on and reproduced from the perpendicular magnetic film 8 of the rotating medium 1 by the magnetic head 12 driven by the head drive unit 13. Reference numeral 14 denotes a recording / reproducing signal processing unit for processing information to be recorded / reproduced on the medium 1.

磁気ヘッド12は、図4−Bに示すように、詳述すると複合型磁気ヘッドであり、主磁極12aと補助磁極12bとが連結部12cを介して互いに連結された構成となっている。連結部12cにはコイル12dが装着されている。この磁気ヘッド12は3.0kOe以上の書き込み磁界を発生できることが好ましい。   As shown in FIG. 4B, the magnetic head 12 is a composite magnetic head in detail, and has a configuration in which a main magnetic pole 12a and an auxiliary magnetic pole 12b are connected to each other via a connecting portion 12c. A coil 12d is attached to the connecting portion 12c. The magnetic head 12 is preferably capable of generating a write magnetic field of 3.0 kOe or more.

この垂直磁気記録再生装置10によれば、垂直磁気記録媒体1に情報を確実に記録再生することができる。また、この装置10は本実施形態の垂直磁気記録媒体1を備えているので、垂直磁気記録媒体1に記録された情報を長期間に亘って良好に保持することができる。   According to the perpendicular magnetic recording / reproducing apparatus 10, information can be reliably recorded / reproduced on / from the perpendicular magnetic recording medium 1. In addition, since the apparatus 10 includes the perpendicular magnetic recording medium 1 according to the present embodiment, information recorded on the perpendicular magnetic recording medium 1 can be favorably retained for a long period of time.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

(実施例1)
非磁性基板本体3として直径2.5インチのAl基板本体を用いた。常法により基板本体3両面を研磨し、次いでこの基板本体3上に無電解メッキ法によりシード層4として膜厚12μmのNi−Pメッキ膜を形成した。次に250℃、30分間熱処理を行いメッキ膜の歪を取り除いた後、アルミナ系・シリカ系研磨材をそれぞれ主成分とする研磨液を用いた2段階研磨処理を行って基板表面を約2μm研磨することにより、Ni−Pメッキ膜の平均面粗さRaを2nmに設定した。次いで、この上に、CoNiFePの軟磁性下地膜5を公知の無電解メッキ法により膜厚600nm形成し、その後連続して、無電解メッキ法によりNi−Pからなる防食膜6を軟磁性下地膜5上に膜厚1500nm形成した。これにより、Ni−P防食膜6は、軟磁性下地膜5上に該軟磁性下地膜5全体を完全に覆う状態に形成された。なお、この防食膜6の形成に使用した無電解メッキ浴の組成を表1に示す。このメッキ浴の浴温度は85℃に、pHは6.5にそれぞれ調整されている。次いで、上記と同様の2段階研磨処理によってNi−P防食膜6の表面を研磨することにより、軟磁性下地膜5全体がNi−P防食膜6で完全に覆われた基板2を得た。この基板2のNi−P防食膜6の表面(即ち垂直磁性膜8を積層する側の面)の平均面粗さRaをVeeco社製TMS2000(Texture Measurement System)で測定したところ0.7nmであった。TEM観察からNi−P防食膜6の平均粒子径は2〜5nmであり、X線回折からこの粒子はアモルファス状であることが判明した。なお研磨後の防食膜6の膜厚は300nmであった。
Example 1
An Al substrate body having a diameter of 2.5 inches was used as the nonmagnetic substrate body 3. Both surfaces of the substrate body 3 were polished by a conventional method, and then a 12 μm thick Ni—P plating film was formed as a seed layer 4 on the substrate body 3 by an electroless plating method. Next, after heat treatment at 250 ° C. for 30 minutes to remove the strain on the plating film, the substrate surface is polished by about 2 μm by performing a two-step polishing process using a polishing liquid mainly composed of an alumina-based and silica-based abrasive. As a result, the average surface roughness Ra of the Ni—P plating film was set to 2 nm. Next, a CoNiFeP soft magnetic undercoat film 5 is formed thereon with a thickness of 600 nm by a known electroless plating method, and subsequently, an anticorrosion film 6 made of Ni-P is formed by a nonelectrolytic plating method. A film thickness of 1500 nm was formed on 5. As a result, the Ni—P anticorrosion film 6 was formed on the soft magnetic underlayer 5 so as to completely cover the entire soft magnetic underlayer 5. The composition of the electroless plating bath used for forming the anticorrosion film 6 is shown in Table 1. The bath temperature of this plating bath is adjusted to 85 ° C. and the pH is adjusted to 6.5. Next, the surface of the Ni—P anticorrosion film 6 was polished by a two-step polishing process similar to that described above, whereby the substrate 2 in which the entire soft magnetic underlayer 5 was completely covered with the Ni—P anticorrosion film 6 was obtained. When the average surface roughness Ra of the surface of the Ni-P anticorrosion film 6 of this substrate 2 (that is, the surface on which the perpendicular magnetic film 8 is laminated) was measured by TMS2000 (Texture Measurement System) manufactured by Veeco, it was 0.7 nm. It was. From the TEM observation, the average particle diameter of the Ni-P anticorrosive film 6 was 2 to 5 nm, and it was found from the X-ray diffraction that the particles were amorphous. The film thickness of the anticorrosion film 6 after polishing was 300 nm.

次に、清浄環境下で乾燥させた基板2の防食膜6の上に、配向制御膜7として、DCマグネトロンスパッタリング法により膜厚5nmのCo膜と膜厚5nmのRu膜を室温にて形成した。   Next, a Co film having a film thickness of 5 nm and a Ru film having a film thickness of 5 nm were formed at room temperature as the orientation control film 7 on the anticorrosion film 6 of the substrate 2 dried in a clean environment by a DC magnetron sputtering method. .

次に、配向制御膜7上に、厚さ0.2nmのCo層と厚さ0.8nmのPd層を交互に10層積層させ、総膜厚10nmの垂直磁性膜8(垂直磁気記録膜)を形成した。   Next, 10 layers of a Co layer having a thickness of 0.2 nm and a Pd layer having a thickness of 0.8 nm are alternately stacked on the orientation control film 7, and a perpendicular magnetic film 8 having a total thickness of 10 nm (perpendicular magnetic recording film). Formed.

更に、垂直磁性膜8上に、保護膜9として膜厚5nmのC膜を形成し、もって垂直磁気記録媒体1を得た。   Further, a C film having a thickness of 5 nm was formed as a protective film 9 on the perpendicular magnetic film 8 to obtain the perpendicular magnetic recording medium 1.

得られた垂直磁気記録媒体1について、書き込み部が単磁極型ヘッド、読み込み部がシールド型磁気抵抗ヘッドにより構成される複合型ヘッドを用い電磁変換特性を測定してMF−S/N比を評価した。その結果を表4に示した。   For the obtained perpendicular magnetic recording medium 1, the MF-S / N ratio is evaluated by measuring the electromagnetic conversion characteristics using a composite head in which the writing part is a single pole type head and the reading part is a shield type magnetoresistive head. did. The results are shown in Table 4.

<耐食性試験>
耐食性試験は、防食膜6を形成して垂直磁気記録媒体用基板2とした段階、最終的に保護膜9を形成して垂直磁気記録媒体1とした段階の2段階で行った。また、試験は、恒温恒湿試験を採用し70℃、80%で2週間連続暴露を行い、目視にて結果を判断した。その結果を表4に示した。
<Corrosion resistance test>
The corrosion resistance test was performed in two stages, that is, a stage where the anticorrosion film 6 was formed to form the perpendicular magnetic recording medium substrate 2 and a protective film 9 was finally formed to form the perpendicular magnetic recording medium 1. In addition, a constant temperature and humidity test was adopted for the test, and continuous exposure was performed at 70 ° C. and 80% for 2 weeks, and the result was visually judged. The results are shown in Table 4.

(実施例2)
実施例1において、Ni−Pからなるシード層が形成されたAl基板の代わりに、Cuからなるシード層4がスパッタ法により形成されたガラスウエハを基板として用いたこと以外は実施例1と同様に公知の無電解メッキ法によりCoNiFeBの軟磁性下地膜5を膜厚1500nm形成した。その後、水洗、乾燥後、100℃15分間熱処理を行った。その後、コロイダルシリカの研磨液を用いて、表面を研磨して平均面粗さRaを0.5nmとした。次に、無電解メッキ法によりNi−Au−Pからなる防食膜6を軟磁性下地膜5上に膜厚500nm形成した。これにより、Ni−Au−P防食膜6は、軟磁性下地膜5上に該軟磁性下地膜5全体を完全に覆う状態に形成された。なお、この防食膜6の形成に使用した無電解メッキ浴の組成を表2に示す。このメッキ浴の浴温度は70℃に、pHは6.5にそれぞれ調整されている。この時の防食膜6の表面の平均面粗さRaは0.9nmであった。以上により、軟磁性下地膜5全体がNi−Au−P防食膜6で完全に覆われた基板2を得た。この基板2のNi−Au−P防食膜6の平均粒子径は10〜15nmであり、X線回折からこの粒子はアモルファス状であることが判明した。以下、実施例1と同様にして垂直磁気記録媒体1を製作し、MF−S/N比を測定した。その結果を、耐食性試験結果と合わせて表4に示した。
(Example 2)
Example 1 is the same as Example 1 except that instead of the Al substrate on which the seed layer made of Ni—P is formed, a glass wafer on which the seed layer 4 made of Cu is formed by sputtering is used as the substrate. Then, a CoNiFeB soft magnetic underlayer 5 was formed to a thickness of 1500 nm by a known electroless plating method. Then, after washing with water and drying, heat treatment was performed at 100 ° C. for 15 minutes. Then, the surface was grind | polished using the polishing liquid of colloidal silica, and average surface roughness Ra was 0.5 nm. Next, the anticorrosion film 6 made of Ni—Au—P was formed on the soft magnetic underlayer 5 with a film thickness of 500 nm by an electroless plating method. As a result, the Ni—Au—P anticorrosion film 6 was formed on the soft magnetic underlayer 5 so as to completely cover the entire soft magnetic underlayer 5. Table 2 shows the composition of the electroless plating bath used for forming the anticorrosion film 6. The bath temperature of the plating bath is adjusted to 70 ° C. and the pH is adjusted to 6.5. At this time, the average surface roughness Ra of the surface of the anticorrosion film 6 was 0.9 nm. As a result, the substrate 2 in which the entire soft magnetic underlayer 5 was completely covered with the Ni—Au—P anticorrosion film 6 was obtained. The average particle diameter of the Ni—Au—P anticorrosion film 6 of the substrate 2 is 10 to 15 nm, and it was found from X-ray diffraction that the particles were amorphous. Thereafter, the perpendicular magnetic recording medium 1 was manufactured in the same manner as in Example 1, and the MF-S / N ratio was measured. The results are shown in Table 4 together with the corrosion resistance test results.

(実施例3)
実施例1において、Ni−Pからなるシード層が形成されたAl基板の代わりに、Ni−Pからなるシード層が形成されたシリコンウエハを基板として用いたこと以外は実施例1と同様にして垂直磁気記録媒体1を製作した。この垂直磁気記録媒体1において、防食膜6の形成に使用した無電解メッキ浴の組成及び成膜条件は、実施例1と同じである。以下、実施例1と同様に耐食性試験を行い、またMF−S/N比を測定した。その結果を表4に示した。
(Example 3)
In Example 1, instead of an Al substrate on which a seed layer made of Ni—P was formed, a silicon wafer on which a seed layer made of Ni—P was formed was used as the substrate in the same manner as in Example 1. A perpendicular magnetic recording medium 1 was manufactured. In this perpendicular magnetic recording medium 1, the composition and film forming conditions of the electroless plating bath used for forming the anticorrosion film 6 are the same as those in Example 1. Thereafter, the corrosion resistance test was performed in the same manner as in Example 1, and the MF-S / N ratio was measured. The results are shown in Table 4.

(実施例4)
実施例1において、Ni−Pからなる防食膜の代わりにNi−Bからなる防食膜6を無電解メッキ法により軟磁性下地膜5上に形成したこと以外は実施例1と同様にして垂直磁気記録媒体1を製作した。この垂直磁気記録媒体1において、防食膜6の形成に使用した無電解メッキ浴の組成を表3に示す。このメッキ浴の浴温度は70℃に、pHは8.0にそれぞれ調整されている。また、Ni−B防食膜6の表面の平均面粗さRaは0.7nm、Ni−B防食膜6の膜厚は300nmであった。以下、実施例1と同様に耐食性試験を行い、またMF−S/N比を測定した。その結果を表4に示した。
Example 4
In Example 1, a perpendicular magnetic film was formed in the same manner as in Example 1 except that the anticorrosion film 6 made of Ni-B was formed on the soft magnetic underlayer 5 by the electroless plating method instead of the anticorrosion film made of Ni-P. Recording medium 1 was manufactured. Table 3 shows the composition of the electroless plating bath used for forming the anticorrosion film 6 in the perpendicular magnetic recording medium 1. The bath temperature of the plating bath is adjusted to 70 ° C. and the pH is adjusted to 8.0. The average surface roughness Ra of the surface of the Ni—B anticorrosion film 6 was 0.7 nm, and the thickness of the Ni—B anticorrosion film 6 was 300 nm. Thereafter, the corrosion resistance test was performed in the same manner as in Example 1, and the MF-S / N ratio was measured. The results are shown in Table 4.

(実施例5)
実施例1において、Ni−Pからなるシード層が形成されたAl基板の代わりに、Cuからなるシード層4がスパッタ法により形成されたガラスウエハを基板として用いたこと以外は実施例1と同様に公知の無電解メッキ法によりCoNiFeBの軟磁性下地膜5を膜厚1500nm形成した。その後、水洗、乾燥後、100℃15分間熱処理を行った。その後、コロイダルシリカの研磨液を用いて、表面を研磨して平均面粗さRaを0.5nmとした。次に、無電解メッキ法によりNi−Au−Pからなる防食膜6を軟磁性下地膜5上に膜厚500nm形成した。これにより、Ni−Au−P防食膜6は、軟磁性下地膜5上に該軟磁性下地膜5全体を完全に覆う状態に形成された。なお、この防食膜6の形成に使用した無電解メッキ浴の組成を表2に示す。このメッキ浴の浴温度は70℃に、pHは6.5にそれぞれ調整されている。この時の防食膜6の表面の平均面粗さRaは0.9nmであった。以上により、軟磁性下地膜5全体がNi−Au−P防食膜6で完全に覆われた基板2を得た。この基板2のNi−Au−P防食膜6の平均粒子径は10〜15nmであり、X線回折からこの粒子はアモルファス状であることが判明した。以下、実施例1と同様にして垂直磁気記録媒体1を製作し、MF−S/N比を測定した。その結果を、耐食性試験結果と合わせて表4に示した。
(Example 5)
Example 1 is the same as Example 1 except that instead of the Al substrate on which the seed layer made of Ni—P is formed, a glass wafer on which the seed layer 4 made of Cu is formed by sputtering is used as the substrate. Then, a CoNiFeB soft magnetic underlayer 5 was formed to a thickness of 1500 nm by a known electroless plating method. Then, after washing with water and drying, heat treatment was performed at 100 ° C. for 15 minutes. Then, the surface was grind | polished using the polishing liquid of colloidal silica, and average surface roughness Ra was 0.5 nm. Next, the anticorrosion film 6 made of Ni—Au—P was formed on the soft magnetic underlayer 5 with a film thickness of 500 nm by an electroless plating method. As a result, the Ni—Au—P anticorrosion film 6 was formed on the soft magnetic underlayer 5 so as to completely cover the entire soft magnetic underlayer 5. Table 2 shows the composition of the electroless plating bath used for forming the anticorrosion film 6. The bath temperature of the plating bath is adjusted to 70 ° C. and the pH is adjusted to 6.5. At this time, the average surface roughness Ra of the surface of the anticorrosion film 6 was 0.9 nm. As a result, the substrate 2 in which the entire soft magnetic underlayer 5 was completely covered with the Ni—Au—P anticorrosion film 6 was obtained. The average particle diameter of the Ni—Au—P anticorrosion film 6 of the substrate 2 is 10 to 15 nm, and it was found from X-ray diffraction that the particles were amorphous. Thereafter, the perpendicular magnetic recording medium 1 was manufactured in the same manner as in Example 1, and the MF-S / N ratio was measured. The results are shown in Table 4 together with the corrosion resistance test results.

(比較例1)
実施例1において、軟磁性下地膜5上にNi−P防食膜6を形成しないで配向制御膜7を直接形成したこと以外は実施例1と同様にして垂直磁気記録媒体1を製作した。以下、実施例1と同様に耐食性試験を行い、またMF−S/N比を測定した。その結果を表4に示した。なお、配向制御膜7は、軟磁性下地膜5の表面を研磨して平均面粗さRaを1.0nmにした後で該軟磁性下地膜5上に直接形成した。
(Comparative Example 1)
In Example 1, the perpendicular magnetic recording medium 1 was manufactured in the same manner as in Example 1 except that the orientation control film 7 was directly formed without forming the Ni-P anticorrosion film 6 on the soft magnetic underlayer 5. Thereafter, the corrosion resistance test was performed in the same manner as in Example 1, and the MF-S / N ratio was measured. The results are shown in Table 4. The orientation control film 7 was directly formed on the soft magnetic underlayer 5 after polishing the surface of the soft magnetic underlayer 5 to have an average surface roughness Ra of 1.0 nm.

比較例1では、MF―S/N比は防食膜有りよりも良好であったが、耐食性試験は基板2、垂直磁気記録媒体1ともに悪く、試験後白濁が認められたため、実用に用いることはできなかった。   In Comparative Example 1, the MF-S / N ratio was better than that with the anticorrosion film, but the corrosion resistance test was poor for both the substrate 2 and the perpendicular magnetic recording medium 1, and white turbidity was observed after the test. could not.

(比較例2)
実施例1において、Ni−Pからなる防食膜の代わりにCo−Pからなる膜を無電解メッキ法により軟磁性下地膜5上に形成したこと以外は実施例1と同様にして垂直磁気記録媒体1を製作した。この垂直磁気記録媒体1において、上述したCo−Pからなる膜は、防食膜としての作用を奏しないものである。以下、実施例1と同様に耐食性試験を行い、またMF−S/N比を測定した。その結果を表4に示した。
(Comparative Example 2)
In Example 1, a perpendicular magnetic recording medium was obtained in the same manner as in Example 1 except that a film made of Co-P was formed on the soft magnetic underlayer 5 by an electroless plating method instead of the anticorrosive film made of Ni-P. 1 was made. In the perpendicular magnetic recording medium 1, the film made of Co-P described above does not function as an anticorrosion film. Thereafter, the corrosion resistance test was performed in the same manner as in Example 1, and the MF-S / N ratio was measured. The results are shown in Table 4.

比較例2では、MF―S/N比は防食膜有りよりも良好であったが、耐食性試験は基板2、垂直磁気記録媒体1ともに悪く、試験後白濁が認められたため、実用に用いることはできなかった。   In Comparative Example 2, the MF-S / N ratio was better than that with the anticorrosion film, but the corrosion resistance test was poor for both the substrate 2 and the perpendicular magnetic recording medium 1, and white turbidity was observed after the test. could not.

表4に示すように、比較例に比べ、実施例では耐食性試験結果は良好で、実用に十分耐えるものである。それに対し、比較例ではMF―S/N比は良好であるが、耐食性試験結果が悪く、実用に耐えないものであることを確認し得た。   As shown in Table 4, compared to the comparative example, the results of the corrosion resistance test are better in the examples, and they are sufficiently practical. On the other hand, in the comparative example, although the MF-S / N ratio was good, it was confirmed that the corrosion resistance test result was bad and it could not withstand practical use.

Figure 2006092721
Figure 2006092721

Figure 2006092721
Figure 2006092721

Figure 2006092721
Figure 2006092721

Figure 2006092721
Figure 2006092721

本発明は、垂直方向に磁化容易軸が配向する磁化膜を記録層にもつ垂直磁気記録媒体に用いられる基板、その製造方法、前記基板を用いた垂直磁気記録媒体、および前記基板を備えた垂直磁気記録再生装置に利用可能である。   The present invention relates to a substrate used for a perpendicular magnetic recording medium having a magnetic film with a magnetization easy axis oriented in the perpendicular direction as a recording layer, a manufacturing method thereof, a perpendicular magnetic recording medium using the substrate, and a perpendicular provided with the substrate. It can be used for a magnetic recording / reproducing apparatus.

本発明の一実施形態に係る垂直磁気記録媒体を示す断面図である。1 is a cross-sectional view showing a perpendicular magnetic recording medium according to an embodiment of the present invention. MH曲線の一例を示す図(グラフ)である。It is a figure (graph) which shows an example of MH curve. MH曲線のもう一つの例を示す図(グラフ)である。It is a figure (graph) which shows another example of MH curve. 同垂直磁気記録媒体を用いた垂直磁気記録再生装置を示す概略全体構成図である。It is a schematic whole block diagram which shows the perpendicular magnetic recording / reproducing apparatus using the perpendicular magnetic recording medium. 同記録再生装置の磁気ヘッドを示す概略図である。It is the schematic which shows the magnetic head of the recording / reproducing apparatus.

符号の説明Explanation of symbols

1…垂直磁気記録媒体
2…基板
3…基板本体
4…シード層(又は金属核)
5…軟磁性下地膜
6…防食膜
7…配向制御膜
8…垂直磁性膜
9…保護膜
10…垂直磁気記録再生装置
11…媒体駆動部
12…磁気ヘッド
12a…主磁極
12b…補助磁極
12c…連結部
12d…コイル
13…ヘッド駆動部
14…記録再生信号処理部
DESCRIPTION OF SYMBOLS 1 ... Perpendicular magnetic recording medium 2 ... Substrate 3 ... Substrate body 4 ... Seed layer (or metal nucleus)
5 ... Soft magnetic underlayer film 6 ... Anticorrosion film 7 ... Orientation control film 8 ... Perpendicular magnetic film 9 ... Protective film 10 ... Perpendicular magnetic recording / reproducing device 11 ... Medium drive unit 12 ... Magnetic head 12a ... Main magnetic pole 12b ... Auxiliary magnetic pole 12c ... Connecting part 12d ... Coil 13 ... Head driving part 14 ... Recording / reproducing signal processing part

Claims (17)

軟磁性下地膜を有する、垂直磁気記録媒体用基板において、
前記軟磁性下地膜上に、該軟磁性下地膜の腐食を防止する防食膜が設けられていることを特徴とする垂直磁気記録媒体用基板。
In a substrate for a perpendicular magnetic recording medium having a soft magnetic underlayer,
A substrate for a perpendicular magnetic recording medium, wherein an anticorrosion film for preventing corrosion of the soft magnetic underlayer is provided on the soft magnetic underlayer.
前記防食膜は、前記軟磁性下地膜全体を完全に覆う状態に設けられている請求項1記載の垂直磁気記録媒体用基板。   The perpendicular magnetic recording medium substrate according to claim 1, wherein the anticorrosion film is provided so as to completely cover the entire soft magnetic underlayer. 前記防食膜は、金属系材料からなる請求項1又は2記載の垂直磁気記録媒体用基板。   3. The perpendicular magnetic recording medium substrate according to claim 1, wherein the anticorrosion film is made of a metal material. 前記防食膜は、ニッケルと、リン及びホウ素からなる群から選択される少なくとも一種の元素とを含んでいる請求項1〜3のいずれか1項記載の垂直磁気記録媒体用基板。   4. The perpendicular magnetic recording medium substrate according to claim 1, wherein the anticorrosion film includes nickel and at least one element selected from the group consisting of phosphorus and boron. 5. 前記防食膜は、更に、金、タングステン及びモリブデンからなる群より選択される少なくとも一種の元素を含んでいる請求項4記載の垂直磁気記録媒体用基板。   The perpendicular magnetic recording medium substrate according to claim 4, wherein the anticorrosion film further contains at least one element selected from the group consisting of gold, tungsten, and molybdenum. 前記防食膜は、無電解メッキ法により形成されている請求項1〜5のいずれか1項記載の垂直磁気記録媒体用基板。   The perpendicular magnetic recording medium substrate according to claim 1, wherein the anticorrosion film is formed by an electroless plating method. 前記防食膜の平均粒子径が20nm以下であるか、あるいは前記防食膜の粒子がアモルファス状である請求項1〜6のいずれか1項記載の垂直磁気記録媒体用基板。   The substrate for a perpendicular magnetic recording medium according to claim 1, wherein the average particle diameter of the anticorrosion film is 20 nm or less, or the particles of the anticorrosion film are amorphous. 前記防食膜の厚さが1nm〜5000nmの範囲である請求項1〜7のいずれか1項記載の垂直磁気記録媒体用基板。   The perpendicular magnetic recording medium substrate according to claim 1, wherein a thickness of the anticorrosion film is in a range of 1 nm to 5000 nm. 前記防食膜の表面の平均面粗さRaが2.0nm以下である請求項1〜8のいずれか1項記載の垂直磁気記録媒体用基板。   The substrate for perpendicular magnetic recording media according to claim 1, wherein an average surface roughness Ra of the surface of the anticorrosion film is 2.0 nm or less. 軟磁性下地膜を有する、垂直磁気記録媒体用基板の製造方法において、
前記軟磁性下地膜上に、該軟磁性下地膜の腐食を防止する防食膜を無電解メッキ法により形成することを特徴とする垂直磁気記録媒体用基板の製造方法。
In a method for manufacturing a substrate for a perpendicular magnetic recording medium having a soft magnetic underlayer,
A method of manufacturing a substrate for a perpendicular magnetic recording medium, comprising forming an anticorrosion film for preventing corrosion of the soft magnetic underlayer on the soft magnetic underlayer by an electroless plating method.
基板本体上に金属核又はシード層を形成し、その上に前記軟磁性下地膜を無電解メッキ法により形成する請求項10記載の垂直磁気記録媒体用基板の製造方法。   11. The method for manufacturing a substrate for a perpendicular magnetic recording medium according to claim 10, wherein a metal nucleus or a seed layer is formed on the substrate body, and the soft magnetic underlayer is formed thereon by an electroless plating method. 前記軟磁性下地膜を形成した後、連続して、前記防食膜を無電解メッキ法により形成する請求項10又は11記載の垂直磁気記録媒体用基板の製造方法。   12. The method for manufacturing a substrate for a perpendicular magnetic recording medium according to claim 10, wherein the anticorrosion film is continuously formed by an electroless plating method after the soft magnetic underlayer is formed. 前記防食膜を形成する前、又は/及び前記防食膜を形成した後に、基板表面を研磨する請求項10〜12のいずれか1項の垂直磁気記録媒体用基板の製造方法。   The method for manufacturing a substrate for a perpendicular magnetic recording medium according to claim 10, wherein the surface of the substrate is polished before forming the anticorrosion film and / or after forming the anticorrosion film. 前記基板表面を研磨する前に、基板を100℃〜350℃の範囲内で熱処理する請求項13記載の垂直磁気記録媒体用基板の製造方法。   The method for manufacturing a substrate for a perpendicular magnetic recording medium according to claim 13, wherein the substrate is heat-treated within a range of 100 ° C. to 350 ° C. before polishing the surface of the substrate. 請求項10〜14のいずれか1項記載の垂直磁気記録媒体用基板の製造方法により製造された垂直磁気記録媒体用基板。   A substrate for a perpendicular magnetic recording medium manufactured by the method for manufacturing a substrate for a perpendicular magnetic recording medium according to claim 10. 請求項1〜9および15のいずれか1項記載の垂直磁気記録媒体用基板上に、少なくとも、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が前記基板に対し主に垂直に配向する垂直磁性膜と、保護膜とが設けられていることを特徴とする垂直磁気記録媒体。   The perpendicular control recording medium substrate according to any one of claims 1 to 9 and 15, wherein at least an orientation control film for controlling orientation of a film immediately above and an easy axis of magnetization are mainly perpendicular to the substrate. A perpendicular magnetic recording medium, comprising: a perpendicular magnetic film oriented in a direction; and a protective film. 請求項16記載の垂直磁気記録媒体と、該垂直磁気記録媒体に情報を記録再生する磁気ヘッドとを備えたことを特徴とする垂直磁気記録再生装置。   17. A perpendicular magnetic recording / reproducing apparatus comprising: the perpendicular magnetic recording medium according to claim 16; and a magnetic head for recording / reproducing information on / from the perpendicular magnetic recording medium.
JP2005243541A 2004-08-26 2005-08-25 Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium Pending JP2006092721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243541A JP2006092721A (en) 2004-08-26 2005-08-25 Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004246818 2004-08-26
JP2005243541A JP2006092721A (en) 2004-08-26 2005-08-25 Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2006092721A true JP2006092721A (en) 2006-04-06

Family

ID=36233533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243541A Pending JP2006092721A (en) 2004-08-26 2005-08-25 Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2006092721A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109358A (en) * 2005-10-17 2007-04-26 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium
JP2007184019A (en) * 2006-01-04 2007-07-19 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and magnetic storage using the medium
JP2009043300A (en) * 2007-08-06 2009-02-26 Fujitsu Ltd Perpendicular magnetism recording medium and magnetic storage device
WO2009041398A1 (en) * 2007-09-25 2009-04-02 Sanyo Special Steel Co., Ltd. Ni-w-b sputtering target member for producing intermediate layer film of perpendicular magnetic recording medium, and thin film produced by using the same
JP2009263757A (en) * 2008-04-30 2009-11-12 Sanyo Special Steel Co Ltd SPUTTERING TARGET MATERIAL FOR MANUFACTURING Ni-W-P,Zr-BASED INTERMEDIATE LAYER FILM IN PERPENDICULAR MAGNETIC RECORDING MEDIUM AND THIN FILM MANUFACTURED BY USING THE TARGET MATERIAL
JP2010086587A (en) * 2008-09-30 2010-04-15 Hoya Corp Vertical magnetic recording medium
US7859792B2 (en) 2007-03-27 2010-12-28 Tdk Corporation Magnetic head with a recording element including a non-magnetic film and a magnetic pole film of an electrode and plated film formed in a depression of the magnetic pole film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109358A (en) * 2005-10-17 2007-04-26 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium
JP4527645B2 (en) * 2005-10-17 2010-08-18 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium
JP2007184019A (en) * 2006-01-04 2007-07-19 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and magnetic storage using the medium
JP4499044B2 (en) * 2006-01-04 2010-07-07 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium and magnetic storage device using the same
US7859792B2 (en) 2007-03-27 2010-12-28 Tdk Corporation Magnetic head with a recording element including a non-magnetic film and a magnetic pole film of an electrode and plated film formed in a depression of the magnetic pole film
JP2009043300A (en) * 2007-08-06 2009-02-26 Fujitsu Ltd Perpendicular magnetism recording medium and magnetic storage device
WO2009041398A1 (en) * 2007-09-25 2009-04-02 Sanyo Special Steel Co., Ltd. Ni-w-b sputtering target member for producing intermediate layer film of perpendicular magnetic recording medium, and thin film produced by using the same
JP2009263757A (en) * 2008-04-30 2009-11-12 Sanyo Special Steel Co Ltd SPUTTERING TARGET MATERIAL FOR MANUFACTURING Ni-W-P,Zr-BASED INTERMEDIATE LAYER FILM IN PERPENDICULAR MAGNETIC RECORDING MEDIUM AND THIN FILM MANUFACTURED BY USING THE TARGET MATERIAL
JP2010086587A (en) * 2008-09-30 2010-04-15 Hoya Corp Vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
CN100485785C (en) Disk substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
US20050249984A1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
TW200805317A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
US20050221129A1 (en) Monocrystalline silicon substrate coated with metal-plated layer and perpendicular magnetic recording medium
TW200534246A (en) Substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
JP2009110607A (en) Magnetic recording medium, its manufacturing method and magnetic recording system
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP4408210B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2007073136A (en) Magnetic recording medium and magnetic recording/reproducing device
JPWO2004061829A1 (en) Perpendicular magnetic recording medium
JP4220475B2 (en) Magnetic recording medium and method for manufacturing the same, magnetic recording apparatus and magnetic recording method
JP2006048906A (en) Perpendicular magnetic recording medium, its manufacturing method and device, and magnetic recorder
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
US20070111036A1 (en) Substrate for magnetic recording medium and fabrication method thereof
JP4535666B2 (en) Perpendicular magnetic recording medium
JP2006127624A (en) Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording and reproducing device
CN100495544C (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
JP2007287216A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP4525496B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
US20090004510A1 (en) Substrate For Perpendicular Magnetic Recording Medium, Method Of Manufacturing The Same, And Perpendicular Magnetic Recording Medium
JP2007026536A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reproducing apparatus
JP2005092924A (en) Perpendicular magnetic recording medium and device
JP2008123633A (en) Substrate for magnetic recording medium, and magnetic recording medium