JP2006090824A - Manufacturing method of sensor chip - Google Patents

Manufacturing method of sensor chip Download PDF

Info

Publication number
JP2006090824A
JP2006090824A JP2004276284A JP2004276284A JP2006090824A JP 2006090824 A JP2006090824 A JP 2006090824A JP 2004276284 A JP2004276284 A JP 2004276284A JP 2004276284 A JP2004276284 A JP 2004276284A JP 2006090824 A JP2006090824 A JP 2006090824A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
film
water
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276284A
Other languages
Japanese (ja)
Inventor
Mizue Fukushima
福島  瑞惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2004276284A priority Critical patent/JP2006090824A/en
Publication of JP2006090824A publication Critical patent/JP2006090824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein: a method for simply manufacturing electrodes different in function is desired in a sensor having a plurality of electrodes provided on one element; the non-specific adsorption of a detection part to an electrode peripheral substrate also becomes a problem; it is necessary to selectively apply surface treatment such as water and oil repelling treatment to the electrode peripheral substrate in order to prevent the non-specific adsorption but, in a usual method; it is also necessary to repeat the masking of the electrodes, the surface treatment such as water and oil repelling treatment to the surface of the electrode peripheral substrate, the mask peeling and functionalizing of a specific electrode, and the mask peeling and functionalizing of an electrode other than the specific electrode; a process is complicated; and the functional film on the electrode, and the water and oil repelling films in the periphery of the electrode are peeled and damaged. <P>SOLUTION: Processes of: forming a water repelling film and an oil repelling film on the whole of an element detecting part; applying negative voltage to the specific electrode of the element to remove the film on the surface of the specific electrode; and functionalizing are repeated to obtain the sensor chip having a plurality of functionalizing electrodes and to keep the surface of the electrode peripheral substrate selectively treated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、センサーチップの製造方法に関し、特に複数の電極を有し、溶液試料に含まれる生体物質を認識、定量するセンサーに関するものである。   The present invention relates to a method for manufacturing a sensor chip, and more particularly to a sensor having a plurality of electrodes for recognizing and quantifying a biological substance contained in a solution sample.

電極表面を化学修飾することにより、特定の測定対象物質を認識し特異的反応を生じる機能性膜を電極上に設け、得られた電気信号を処理することにより、測定対象物質の濃度等を測定する種々のセンサーが開発されている。   By chemically modifying the electrode surface, a functional film that recognizes a specific measurement target substance and generates a specific reaction is provided on the electrode, and the concentration of the measurement target substance is measured by processing the resulting electrical signal. Various sensors have been developed.

たとえば、反応生成物の酸化、還元反応による電流値を電気信号として検出する酵素センサーや、特定物質の吸着に伴う振動数変化を電気信号に変換する水晶振動子マイクロバランス(QCM)センサーなどが存在する。   For example, there are enzyme sensors that detect the electric current value due to oxidation and reduction reactions of reaction products as electrical signals, and quartz crystal microbalance (QCM) sensors that convert frequency changes accompanying adsorption of specific substances into electrical signals. To do.

これらの電極を有するセンサーにおいて、例えば酵素センサーなどではセンサーチップの小型化が図られ、酵素を固定化した作用極と酵素を固定化していない対極とを一つの素子上に形成する必要がある。   In a sensor having these electrodes, for example, in an enzyme sensor, a sensor chip is downsized, and it is necessary to form a working electrode on which an enzyme is immobilized and a counter electrode on which an enzyme is not immobilized on one element.

また、QCMセンサーでは、電極表面に特定の抗原に対して反応する抗体などを固定化し、抗原抗体反応による振動数変化から溶液中の抗原濃度を測定するが、個々の水晶振動子自身の経時的振動数変化や、振動数の温度依存性が大きい場合は、特定の抗原抗体反応による振動数変化が正確に測定できないという問題があり、一つの水晶振動子上に複数の電極を設け、そのうちの一つをリファレンス電極とし個々の水晶振動子自身の経時的振動数変化や、振動数の温度依存性をキャンセルする必要がある。   In addition, in the QCM sensor, an antibody that reacts with a specific antigen is immobilized on the electrode surface, and the antigen concentration in the solution is measured from the change in the frequency due to the antigen-antibody reaction. If the frequency change or the temperature dependence of the frequency is large, there is a problem that the frequency change due to a specific antigen-antibody reaction cannot be measured accurately, and multiple electrodes are provided on one crystal resonator. It is necessary to cancel the change in the frequency of each crystal resonator over time and the temperature dependence of the frequency by using one as a reference electrode.

更に、これらの電極を有するセンサーにおいて、測定対象物質が蛋白質等の吸着性の強い物質で、測定対象物質の濃度が低い試料を測定する場合、測定対象物質が選択的に検出部の電極に吸着、または電極上で反応する必要がある。しかし、多くの物質は非特異的な吸着を起こし、検出部全体に吸着し、得られる電気信号が微弱なものとなってしまうという問題がある。   Furthermore, in the sensor having these electrodes, when measuring a sample whose measurement target substance is a substance having strong adsorptivity such as protein and whose concentration of the measurement target substance is low, the measurement target substance is selectively adsorbed on the electrode of the detection unit. Or react on the electrode. However, many substances cause non-specific adsorption and are adsorbed on the entire detection unit, resulting in a weak electrical signal.

そこで、非特異的吸着を防止するには選択的に電極周辺基板表面に撥水、撥油処理等の表面処理を施す必要がある。   Therefore, in order to prevent nonspecific adsorption, it is necessary to selectively perform surface treatment such as water repellency and oil repellency on the electrode peripheral substrate surface.

選択的な電極周辺基板表面の撥水、撥油処理は、電極部分をあらかじめマスキングして試料溶液が接触する部分に撥水、撥油膜を設け、後に電極部分のマスクを取り除く方法がとられている(例えば、特許文献1参照)。   The selective water-repellent and oil-repellent treatment of the electrode peripheral substrate surface is a method in which the electrode portion is masked in advance, a water-repellent and oil-repellent film is provided on the portion in contact with the sample solution, and then the mask on the electrode portion is removed. (For example, refer to Patent Document 1).

特開2002−025582号公報JP 2002-025582 A

上記の手段によるセンサーチップの製造方法では、電極表面をマスクする材料を完全に取り除くことが難しく、電極表面が汚染されてしまう問題がある。   In the sensor chip manufacturing method by the above means, it is difficult to completely remove the material for masking the electrode surface, and there is a problem that the electrode surface is contaminated.

また、マスクする材料を除去するために用いられる種々の界面活性剤や有機溶剤、あるいは超音波洗浄などの作業工程により、電極周辺に施された撥水、撥油膜が剥がれてしま
う問題がある。
In addition, there is a problem that the water- and oil-repellent films applied to the periphery of the electrodes are peeled off by various surfactants and organic solvents used for removing the masking material, or by an operation process such as ultrasonic cleaning.

更に、上記手段によるセンサーチップの製造方法は工程が複雑となる問題がある。   Furthermore, the sensor chip manufacturing method using the above means has a problem that the process becomes complicated.

また、上記方法で一つの素子に複数の機能性の異なる電極を設ける事は困難であるとともに、何らかの工夫で特定電極表面のマスクを剥離し機能化した場合も、次の工程で特定電極以外のマスクを剥離する際に用いる種々の界面活性剤や有機溶剤、あるいは超音波洗浄などの作業工程により特定電極上に設けた機能性膜などが損傷、剥離されるという問題がある。   In addition, it is difficult to provide a plurality of electrodes having different functionalities in one element by the above method, and even if the mask on the surface of the specific electrode is peeled off and functionalized by some device, other than the specific electrode in the next step There is a problem that a functional film or the like provided on a specific electrode is damaged or peeled by various surfactants and organic solvents used when peeling the mask, or an operation process such as ultrasonic cleaning.

本発明は、検出部に機能性の異なる複数の電極を有し、更に電極周辺に撥水、撥油処理を施したセンサーチップの製造方法を提供することを目的とする。   An object of the present invention is to provide a method of manufacturing a sensor chip having a plurality of electrodes having different functions in a detection unit and further performing water and oil repellency treatment around the electrodes.

本発明のセンサーチップの製造方法は、複数の電極を有する素子全体に撥水性被膜または撥油性被膜を形成した後に、撥水性被膜または撥油性被膜を形成した素子を水溶液中に浸漬し、特定の電極に一定電圧を印加することにより、特定の電極上の被膜を除去する工程と、被膜を除去した特定の電極を化学修飾する工程とを組み合わせることによる一つの素子上に複数の機能化された電極を設けること特徴とするものである。   In the method for producing a sensor chip of the present invention, after forming a water-repellent coating or oil-repellent coating on the entire device having a plurality of electrodes, the device on which the water-repellent coating or oil-repellent coating is formed is immersed in an aqueous solution. By applying a constant voltage to the electrodes, a plurality of functionalized functions on a single device by combining a process of removing a film on a specific electrode and a process of chemically modifying a specific electrode from which the film has been removed An electrode is provided.

本発明のセンサーチップの製造方法において、シリコン化合物を使用して撥水処理または撥油処理を行うことが好ましい。   In the method for producing a sensor chip of the present invention, it is preferable to perform a water-repellent treatment or an oil-repellent treatment using a silicon compound.

更に本発明のセンサーチップの製造方法は、素子の電極以外に少なくとも一つの電極を設け、検出素子の電極に負の電圧を印加することがより好ましい。   Furthermore, in the method for manufacturing a sensor chip of the present invention, it is more preferable to provide at least one electrode in addition to the electrode of the element and apply a negative voltage to the electrode of the detection element.

(作用)
本発明のセンサーチップの製造方法によると、あらかじめ複数の電極を有する検出部全体を撥水、撥油膜で覆い、その後特定の電極に負の電圧をかけることにより電圧をかけた電極表面の被膜のみが選択的に除去できる。この現象は、電極表面のシリル基が還元的に脱離したものと考えられる。
(Function)
According to the method for manufacturing a sensor chip of the present invention, only the coating on the surface of the electrode to which a voltage is applied by applying a negative voltage to a specific electrode after covering the entire detection part having a plurality of electrodes with a water- and oil-repellent film in advance. Can be selectively removed. This phenomenon is thought to be due to reductive elimination of the silyl group on the electrode surface.

本発明によれば、一つの素子に複数の電極が存在する場合、特定の電極に電圧をかけることにより電極表面の被膜を除去しその後、電極表面を化学修飾するため、表面状態や機能性の異なる複数の電極を有する素子を簡便に作製することが可能となる。   According to the present invention, when a plurality of electrodes are present in one element, the coating on the electrode surface is removed by applying a voltage to a specific electrode, and then the electrode surface is chemically modified. An element having a plurality of different electrodes can be easily produced.

また、本発明によれば、被膜自身が撥水、撥油性を有するため、電極周辺基板表面への非特異的吸着を防ぐと共に、電極表面をあらかじめマスクする必要が無いことから、工程の簡略化が可能となると共に、マスク材料除去のための界面活性剤や有機溶剤を用いる必要が無い。   In addition, according to the present invention, since the coating itself has water and oil repellency, nonspecific adsorption to the electrode peripheral substrate surface is prevented, and it is not necessary to mask the electrode surface in advance, thereby simplifying the process. In addition, it is not necessary to use a surfactant or an organic solvent for removing the mask material.

更に、本発明によれば、マスク材料除去のために特定の界面活性剤や有機溶剤を用いる必要が無い事から、製造時の環境負荷の低減化に役立つ。   Furthermore, according to the present invention, since it is not necessary to use a specific surfactant or organic solvent for removing the mask material, it is useful for reducing the environmental load during production.

また、本発明によれば電極に直接触れることが無いので電極表面の汚染や傷の発生を最小限にとどめることが可能となる。   Further, according to the present invention, since the electrode is not directly touched, it is possible to minimize the occurrence of contamination and scratches on the electrode surface.

以下、図面を用いて本発明のセンサーチップの製造方法を実施するための構成を説明す
る。
Hereinafter, a configuration for carrying out the method for manufacturing a sensor chip of the present invention will be described with reference to the drawings.

図1は、本発明のセンサーチップの製造方法における複数の電極を有する素子の形態の一例で、2個の電極を有する素子を示す。
基板1はガラス、シリコン、水晶、ガラスエポキシ、ポリエチレンテレフタレート等を用いることが可能である。
FIG. 1 shows an element having two electrodes as an example of the form of an element having a plurality of electrodes in the method for producing a sensor chip of the present invention.
As the substrate 1, glass, silicon, crystal, glass epoxy, polyethylene terephthalate, or the like can be used.

基板上の電極2、電極3は、化学的に安定な電極材料であれば用いることが可能であり、金、白金、パラジウム黒、白金黒、炭素電極、あるいはITO等の無機酸化物電極などを用いることができ、これらの電極は基板1上にスクリーン印刷、メッキ、蒸着、スパッタ法などにより直接設けることも、電極を設けた水晶やガラス基板を基板1に接着し形成することが可能である。   The electrodes 2 and 3 on the substrate can be used as long as they are chemically stable electrode materials, such as gold, platinum, palladium black, platinum black, carbon electrodes, or inorganic oxide electrodes such as ITO. These electrodes can be directly provided on the substrate 1 by screen printing, plating, vapor deposition, sputtering, or the like, or can be formed by bonding a crystal or glass substrate provided with electrodes to the substrate 1. .

素子には、あらかじめ電極で発生した電気信号を検出するために引き出し線4、5が設けられている。引き出し線4は電極2と、引き出し線5は電極3と導通している。必要に応じて引き出し線4、5表面に絶縁コート6を設ける。   The element is provided with lead lines 4 and 5 for detecting an electric signal generated in advance at the electrode. The lead wire 4 is electrically connected to the electrode 2, and the lead wire 5 is electrically connected to the electrode 3. If necessary, an insulating coat 6 is provided on the surface of the lead wires 4 and 5.

まず、素子全体に撥水、撥油処理剤を用いて素子全体を図2に示すように被膜7で覆う。   First, the entire element is covered with a film 7 as shown in FIG.

被膜7を形成する撥水、撥油処理剤としてはポリジメチルシロキサン等のアルキル基を有するシロキサン、あるいはパーフルオロアルキル基を有するアルコキシシランやポリシラザン等を用いることができる。被膜7形成後の素子形態の一例を図2に示す。   As the water- and oil-repellent treatment agent for forming the film 7, siloxane having an alkyl group such as polydimethylsiloxane, alkoxysilane having a perfluoroalkyl group, polysilazane, or the like can be used. An example of the element form after the coating 7 is formed is shown in FIG.

次に被膜7を形成した基板1を水溶液8に浸漬し、電源9から引き出し線4を通して電極2に負の電圧を印加し電極2表面上の被膜7を除去する。図3に電極2表面上の被膜7を除去する工程の形態の一例を示す。   Next, the substrate 1 on which the film 7 is formed is immersed in the aqueous solution 8, and a negative voltage is applied to the electrode 2 from the power source 9 through the lead wire 4 to remove the film 7 on the surface of the electrode 2. FIG. 3 shows an example of a form of a process for removing the coating 7 on the surface of the electrode 2.

水溶液8中には素子の電極以外に対極10を一つ、必要に応じて参照電極11を設ける。
対極10としては白金やカーボン等を用いることができる。参照電極11としては銀/塩化銀などの一般的な参照電極を用いることができ、塩橋等を通して参照電極11のみを異なる容器に設置してもかまわない。
In the aqueous solution 8, one counter electrode 10 is provided in addition to the element electrode, and a reference electrode 11 is provided as necessary.
Platinum or carbon can be used as the counter electrode 10. As the reference electrode 11, a general reference electrode such as silver / silver chloride can be used, and only the reference electrode 11 may be installed in a different container through a salt bridge or the like.

水溶液8には硫酸ナトリウム、塩化ナトリウム、塩化カリウム、過塩素酸ナトリウム、リン酸塩などの電極材料に不活性で、水に良く溶けてイオン解離する種々の電解質を用いることができる。更に被膜7の特性によって種々のpHを有するリン酸緩衝液や硼酸緩衝液を用いることができる。   For the aqueous solution 8, various electrolytes that are inert to electrode materials such as sodium sulfate, sodium chloride, potassium chloride, sodium perchlorate, and phosphate, dissolve well in water, and ion dissociate can be used. Furthermore, phosphate buffers and borate buffers having various pH values can be used depending on the characteristics of the coating 7.

電極に印加する負の電圧は電極の材質により異なるが、電極から水素発生をともなう負の電圧を印加した場合、ガラスや水晶等の基板上に形成した電極自身の剥離等を伴うため、電極に印加する負の電圧の大きさは水の電気分解により水素発生が生じない範囲とすることが必要であり、通常は−1V以下が好ましい。図4に電極2表面のみの被膜7が除去された素子形態の一例を示す。   The negative voltage applied to the electrode varies depending on the electrode material, but when a negative voltage accompanied by hydrogen generation is applied from the electrode, the electrode itself formed on the substrate such as glass or quartz is peeled off. The magnitude of the negative voltage to be applied must be within a range where hydrogen generation does not occur due to water electrolysis, and is usually preferably −1 V or less. FIG. 4 shows an example of an element configuration in which the film 7 only on the surface of the electrode 2 is removed.

次に、図1の基板1にガラス基板を、電極2、3と電極引き出し線4、5としてスパッタ法による金電極(厚さ2000オングストロームで密着層として500オングストロームのクロム層を設けた)を有する素子を作製した。なお、電極引き出し線上は一部スクリーン印刷で絶縁コート6を設けた。 Next, a glass substrate is provided on the substrate 1 of FIG. 1, and electrodes 2 and 3 and electrode lead wires 4 and 5 are provided with gold electrodes by sputtering (a thickness of 2000 angstroms and a 500 angstrom chromium layer provided as an adhesion layer). An element was produced. Note that an insulating coating 6 was provided on the electrode lead lines by screen printing.

次に、素子を、5mMのフェリシアン化カリウムを溶解したpH7.2のリン酸緩衝液と参照電極11として銀/塩化銀電極を、対極10として白金を入れたガラス容器に浸漬し、電極引き出し線4を通して−0.2Vから+0.5Vの範囲での電極2のサイクリックボルタンメトリー(CV)測定をし、図6のグラフを得た。図6から、明瞭なフェリシアン化カリウムの酸化−還元電流が確認されることが判った。電極引き出し線5を通して電極3で同様のCV測定を行った場合も、図6と同様のグラフを得た。   Next, the device was immersed in a glass container containing a phosphate buffer solution of pH 7.2 in which 5 mM potassium ferricyanide was dissolved, a silver / silver chloride electrode as the reference electrode 11, and platinum as the counter electrode 10, and the electrode lead wire 4 Through the cyclic voltammetry (CV) measurement of the electrode 2 in the range of -0.2V to + 0.5V through, the graph of FIG. 6 was obtained. From FIG. 6, it was found that a clear oxidation-reduction current of potassium ferricyanide was confirmed. When the same CV measurement was performed on the electrode 3 through the electrode lead-out line 5, the same graph as that in FIG. 6 was obtained.

次に、素子を純水で洗浄後、シリコンコーティング剤(岩城硝子製)の50倍希釈水溶液中(70℃)に10秒間浸漬し、引き上げた後、純水で洗浄後24時間室温放置し素子表面全体にポリジメチルシロキサンからなる被膜7を形成した。   Next, the device was washed with pure water, immersed in a 50-fold diluted aqueous solution (70 ° C.) of a silicon coating agent (manufactured by Iwaki Glass) for 10 seconds, pulled up, washed with pure water, and left at room temperature for 24 hours. A film 7 made of polydimethylsiloxane was formed on the entire surface.

被膜形成後、上記フェリシアン化カリウム溶液にて再び電極2、電極3に対してCV測定をしたところ、図7が得られた。被膜形成前のCV測定で得られたフェリシアン化カリウムの酸化−還元電流が見られず、また電流がほとんど流れていないことから、素子の電極2、3の表面が絶縁体である被膜7により覆われていることを確認した。   After the coating was formed, CV measurement was again performed on the electrodes 2 and 3 using the potassium ferricyanide solution. As a result, FIG. 7 was obtained. Since the oxidation-reduction current of potassium ferricyanide obtained by CV measurement before film formation is not seen and almost no current flows, the surfaces of the electrodes 2 and 3 of the device are covered with the film 7 which is an insulator. Confirmed that.

その後、素子を純水で洗浄後、溶液をpH7.2のリン酸緩衝液である水溶液8に交換し、電極引き出し線4を通して電極2に−1Vの電圧を5分間印加した。   Thereafter, the device was washed with pure water, and then the solution was replaced with an aqueous solution 8 that was a phosphate buffer solution having a pH of 7.2. A voltage of −1 V was applied to the electrode 2 through the electrode lead wire 4 for 5 minutes.

電圧印加後、再度フェリシアン化カリウム溶液にて引き出し線4を通して電極2のCV測定をしたところ、図8が得られた。図8と図6は同様のCV特性を示し、またフェリシアン化カリウムの酸化−還元ピーク電流値が同じことから、電極2表面の被膜7が完全に除去されている事を確認した。同時に引き出し線5を通して電極3のCV測定をしたところ、図7と同様のグラフが得られ、電極3上の被膜7は除去されずに残っていることを確認した。   After the voltage application, CV measurement of the electrode 2 was again performed with the potassium ferricyanide solution through the lead wire 4, and FIG. 8 was obtained. 8 and 6 show the same CV characteristics, and since the oxidation-reduction peak current value of potassium ferricyanide is the same, it was confirmed that the film 7 on the surface of the electrode 2 was completely removed. At the same time, CV measurement of the electrode 3 was conducted through the lead-out line 5. As a result, a graph similar to FIG. 7 was obtained, and it was confirmed that the film 7 on the electrode 3 remained without being removed.

次に被膜を除去した電極2表面に酵素を溶解したグルタルアルデヒド水溶液を滴下し乾燥させた後に、素子をTris−HCl緩衝液(pH;8.0)中に浸漬し未反応のアルデヒド基をブロッキングし酵素固定化作用極12とした。   Next, after the glutaraldehyde aqueous solution in which the enzyme is dissolved is dropped on the surface of the electrode 2 from which the film has been removed and dried, the element is immersed in a Tris-HCl buffer solution (pH; 8.0) to block unreacted aldehyde groups. The enzyme immobilization working electrode 12 was obtained.

その後、素子をリン酸緩衝液で洗浄後、pH7.2のリン酸緩衝液である水溶液8に浸漬し、引き出し線5を通して電極3に−1Vの電圧を5分間印加することにより電極3上の被膜を除去し、露出した電極を対極13として、図5に示す酵素センサーチップを作製した。   Thereafter, the device is washed with a phosphate buffer solution, immersed in an aqueous solution 8 that is a phosphate buffer solution having a pH of 7.2, and a voltage of −1 V is applied to the electrode 3 through the lead wire 5 for 5 minutes. The coating was removed, and the enzyme sensor chip shown in FIG. 5 was produced using the exposed electrode as the counter electrode 13.

複数の電極を有する素子として、図9に示す水晶基板14表面に2個の隣接する電極2、3(スパッタ法による金電極)を形成し、各電極の裏面に金からなる対向電極を形成した2チャンネル水晶振動子をガラスエポキシからなる基板1上にシリコーン樹脂にて封止し、金からなる電極2の引き出し線4、金からなる電極3の引き出し線5、金からなる電極2の対向電極の引き出し線15、金からなる電極3の対向電極の引き出し線16を基板1上に形成したQCM(水晶振動子マイクロバランス)素子を作製した。なお、引き出し線上は一部スクリーン印刷で絶縁コート6を設けた。   As an element having a plurality of electrodes, two adjacent electrodes 2 and 3 (gold electrodes by sputtering) were formed on the surface of the quartz substrate 14 shown in FIG. 9, and a counter electrode made of gold was formed on the back surface of each electrode. A two-channel crystal resonator is sealed with a silicone resin on a substrate 1 made of glass epoxy, the lead wire 4 of the electrode 2 made of gold, the lead wire 5 of the electrode 3 made of gold, and the counter electrode of the electrode 2 made of gold A QCM (Quartz Crystal Microbalance) element was produced in which the lead wire 15 and the lead wire 16 of the counter electrode of the electrode 3 made of gold were formed on the substrate 1. In addition, the insulating coat 6 was provided on a part of the lead line by screen printing.

撥水、撥油処理剤としてヘプタデカフルオロデシルトリイソプロポキシシランを主成分とするフルオロシランコーティング剤(XC98−B2472 東芝シリコーン製)を用い、ディップコート法により素子表面を被覆し室温で2時間放置することにより被膜7を得た。   Using a fluorosilane coating agent (XC98-B2472 made by Toshiba Silicone) mainly composed of heptadecafluorodecyltriisopropoxysilane as a water and oil repellent treatment agent, the surface of the element is coated by dip coating and left at room temperature for 2 hours. As a result, a film 7 was obtained.

その後、素子を純水で洗浄後、pH7.2のリン酸緩衝液である水溶液8に浸漬し、引き出し線4を通して電極2に−1Vの電圧を5分間印加することで、電極2表面の被膜7を除去した。   Thereafter, the device is washed with pure water, immersed in an aqueous solution 8 that is a phosphate buffer solution having a pH of 7.2, and a voltage of −1 V is applied to the electrode 2 through the lead wire 4 for 5 minutes, whereby the film on the surface of the electrode 2 is coated. 7 was removed.

被膜形成後、並びに電圧印加後のフェリシアン化カリウム溶液中のCV測定結果は実施例1と同様の結果が得られた。   The CV measurement results in the potassium ferricyanide solution after the film formation and after the voltage application were the same as those in Example 1.

次に被膜を除去した電極2上にジチオプロピオン酸、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、N−ヒドロキシスクシンイミドを用いた自己集合単分子膜(SAM)法により抗マウスIgG抗体を固定化し、1%BSA(ウシ血清アルブミン)のリン酸緩衝液にてブロッキング処理を施し、抗体固定化電極17とした。   Next, an anti-mouse IgG antibody is obtained by self-assembled monolayer (SAM) method using dithiopropionic acid, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide on the electrode 2 from which the film has been removed. Was immobilized with a 1% BSA (bovine serum albumin) phosphate buffer to obtain an antibody-immobilized electrode 17.

その後、素子をpH7.2のリン酸緩衝液である水溶液8に浸漬し、電極引き出し線5を通して電極3に−1Vの電圧を5分間印加することにより電極3上の被膜を除去し、1%BSA(ウシ血清アルブミン)のリン酸緩衝液にてブロッキング処理を施しリファレンス電極18とし、図10に示すマウスIgGのQCM免疫センサーチップを作製した。   Thereafter, the device was immersed in an aqueous solution 8 that is a phosphate buffer solution having a pH of 7.2, and a voltage of −1 V was applied to the electrode 3 through the electrode lead wire 5 for 5 minutes to remove the coating on the electrode 3 to 1% A blocking treatment was performed with a phosphate buffer solution of BSA (bovine serum albumin) to form a reference electrode 18, and a mouse IgG QCM immunosensor chip shown in FIG. 10 was produced.

以上、上記実施例で示したように、本発明によれば、一つの素子で機能の異なる複数の電極を簡便に製造する事が可能となり、更に電極周辺基板の選択的表面処理を施したセンサーチップの製造が可能となる。   As described above, according to the present invention, according to the present invention, it is possible to easily manufacture a plurality of electrodes having different functions with a single element, and further, a sensor that has been subjected to selective surface treatment of an electrode peripheral substrate. Chips can be manufactured.

また本発明により、電極上の被膜を除去させた際は、電極周辺部分は撥水、撥油性を持ち蛋白質等の吸着を防げることから、被膜除去後に電極表面のみに種々の機能膜を形成することが可能となる。   Further, according to the present invention, when the coating on the electrode is removed, the peripheral portion of the electrode has water repellency and oil repellency and can prevent adsorption of proteins and the like, so that various functional films are formed only on the electrode surface after the coating is removed. It becomes possible.

本発明のセンサーチップの製造方法における素子の形態の一例を示す図である。It is a figure which shows an example of the form of the element in the manufacturing method of the sensor chip of this invention. 本発明のセンサーチップの製造方法における被膜形成後の素子の形態の一例を示す図である。It is a figure which shows an example of the form of the element after the film formation in the manufacturing method of the sensor chip of this invention. 本発明のセンサーチップの製造方法における電極表面上の被膜を除去する工程の形態の一例を示す図である。It is a figure which shows an example of the form of the process of removing the film on the electrode surface in the manufacturing method of the sensor chip of this invention. 本発明のセンサーチップの製造方法における被膜除去後の素子の形態の一例を示す図である。It is a figure which shows an example of the form of the element after the film removal in the manufacturing method of the sensor chip of this invention. 本発明のセンサーチップの製造方法により得られるセンサーチップの形態の一例を示す図である。It is a figure which shows an example of the form of the sensor chip obtained by the manufacturing method of the sensor chip of this invention. 素子のCV測定結果の図である。It is a figure of the CV measurement result of an element. 被膜形成工程後の素子のCV測定結果を示す図である。It is a figure which shows the CV measurement result of the element after a film formation process. 被膜除去工程後のセンサーチップのCV測定結果を示す図である。It is a figure which shows the CV measurement result of the sensor chip after a film removal process. 本発明のセンサーチップの製造方法における素子の形態の一例を示す図である。It is a figure which shows an example of the form of the element in the manufacturing method of the sensor chip of this invention. 本発明のセンサーチップの製造方法により得られるセンサーチップの形態の一例を示す図である。It is a figure which shows an example of the form of the sensor chip obtained by the manufacturing method of the sensor chip of this invention.

符号の説明Explanation of symbols

1 基板
2、3 電極
4、5 引き出し線
6 絶縁コート
7 被膜
8 水溶液
9 電源
10 対極
11 参照電極
12 酵素固定化作用極
13 対極
14 水晶基板
15 引き出し線
16 引き出し線
17 抗体固定化電極
18 リファレンス電極
DESCRIPTION OF SYMBOLS 1 Substrate 2, 3 Electrode 4, 5 Lead wire 6 Insulation coating 7 Coating 8 Aqueous solution 9 Power supply 10 Counter electrode 11 Reference electrode 12 Enzyme immobilization working electrode 13 Counter electrode 14 Crystal substrate 15 Lead wire 16 Lead wire 17 Antibody immobilization electrode 18 Reference electrode

Claims (3)

複数の電極を有する素子全体に撥水性被膜または撥油性被膜を形成した後に、該撥水性被膜または撥油性被膜を形成した素子を水溶液中に浸漬し、特定の電極に一定電圧を印加することにより、該特定の電極上の被膜を除去する工程と、被膜を除去した特定の電極を化学修飾する工程とを組み合わせて一つの素子上に複数の機能化された電極を形成するセンサーチップの製造方法。 By forming a water-repellent coating or oil-repellent coating on the entire device having a plurality of electrodes, then immersing the device on which the water-repellent coating or oil-repellent coating is formed in an aqueous solution and applying a constant voltage to a specific electrode And a method of manufacturing a sensor chip, wherein a plurality of functionalized electrodes are formed on one element by combining the step of removing the coating on the specific electrode and the step of chemically modifying the specific electrode from which the coating has been removed. . シリコン化合物を使用して前記撥水性被膜または撥油性被膜を形成することを特徴とする請求項1に記載のセンサーチップの製造方法。 The method for producing a sensor chip according to claim 1, wherein the water-repellent film or the oil-repellent film is formed using a silicon compound. 前記素子の電極以外に少なくとも一つの電極を設け、前記素子の電極に負の電圧を印加することを特徴とする請求項1または請求項2に記載のセンサーチップの製造方法。

The method for manufacturing a sensor chip according to claim 1, wherein at least one electrode is provided in addition to the electrode of the element, and a negative voltage is applied to the electrode of the element.

JP2004276284A 2004-09-24 2004-09-24 Manufacturing method of sensor chip Pending JP2006090824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276284A JP2006090824A (en) 2004-09-24 2004-09-24 Manufacturing method of sensor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276284A JP2006090824A (en) 2004-09-24 2004-09-24 Manufacturing method of sensor chip

Publications (1)

Publication Number Publication Date
JP2006090824A true JP2006090824A (en) 2006-04-06

Family

ID=36231962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276284A Pending JP2006090824A (en) 2004-09-24 2004-09-24 Manufacturing method of sensor chip

Country Status (1)

Country Link
JP (1) JP2006090824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122894A1 (en) * 2021-12-27 2023-07-06 深圳华大生命科学研究院 Biosensor chip, and electrode activation method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122894A1 (en) * 2021-12-27 2023-07-06 深圳华大生命科学研究院 Biosensor chip, and electrode activation method and apparatus thereof

Similar Documents

Publication Publication Date Title
US6096497A (en) Electrostatic enzyme biosensor
Paska et al. Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors
Laureyn et al. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing
Bhalla et al. Chip cleaning and regeneration for electrochemical sensor arrays
Baranski et al. Potentiometric stripping determination of heavy metals with carbon fiber and gold microelectrodes
Yakimova et al. Novel material concepts of transducers for chemical and biosensors
Bourigua et al. Impedimetric immunosensor based on SWCNT-COOH modified gold microelectrodes for label-free detection of deep venous thrombosis biomarker
Tarasov et al. Gold-coated graphene field-effect transistors for quantitative analysis of protein–antibody interactions
JP2009521332A (en) Manufacturing method of nanogap and nanogap sensor
Li et al. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors
KR20190118558A (en) Gate electrode functionalization method of field effect transistor sensor
Bhatt et al. Amorphous IGZO field effect transistor based flexible chemical and biosensors for label free detection
Wu et al. A novel capacitive immunosensor based on gold colloid monolayers associated with a sol–gel matrix
Li et al. A reusable capacitive immunosensor with a novel immobilization procedure based on 1, 6-hexanedithiol and nano-Au self-assembled layers
Firek et al. ISFET structures with chemically modified membrane for bovine serum albumin detection
Rezaei et al. Stainless steel modified with an aminosilane layer and gold nanoparticles as a novel disposable substrate for impedimetric immunosensors
JP4049250B2 (en) Semiconductor sensing device, manufacturing method thereof, and sensor having the device
Sinha et al. Selective, ultra-sensitive, and rapid detection of serotonin by optimized ZnO nanorod FET biosensor
Lin et al. Comparison between performances of In2O3 and In2TiO5-based EIS biosensors using post plasma CF4 treatment applied in glucose and urea sensing
Kumar et al. Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure
JP5159453B2 (en) Ion sensor
German et al. Determination of antibodies against human growth hormone using a direct immunoassay format and different electrochemical methods
JP3952193B2 (en) Semiconductor sensing device
Kao et al. Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment
JP2006090824A (en) Manufacturing method of sensor chip