JP2006090539A - Magnetic bearing - Google Patents

Magnetic bearing Download PDF

Info

Publication number
JP2006090539A
JP2006090539A JP2004308869A JP2004308869A JP2006090539A JP 2006090539 A JP2006090539 A JP 2006090539A JP 2004308869 A JP2004308869 A JP 2004308869A JP 2004308869 A JP2004308869 A JP 2004308869A JP 2006090539 A JP2006090539 A JP 2006090539A
Authority
JP
Japan
Prior art keywords
speed
magnetic
magnetic bearing
output
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004308869A
Other languages
Japanese (ja)
Inventor
Takahiko Ito
孝彦 伊東
Junko Seki
純子 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKIGAYA SEIGYO KENKYUSHO KK
Yukigaya Institute Co Ltd
Original Assignee
YUKIGAYA SEIGYO KENKYUSHO KK
Yukigaya Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKIGAYA SEIGYO KENKYUSHO KK, Yukigaya Institute Co Ltd filed Critical YUKIGAYA SEIGYO KENKYUSHO KK
Priority to JP2004308869A priority Critical patent/JP2006090539A/en
Publication of JP2006090539A publication Critical patent/JP2006090539A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the operation of a magnetic levitation control loop by improving control characteristic of a magnetic bearing by directly detecting a position change speed by a speed detecting device, and removing influence by noise generated on a speed signal in differentiation, and influence caused by delay in transmitting the signal which can not be avoided in denoising. <P>SOLUTION: The detecting devices 4, 4a for directly detecting the position change speed are mounted on position detecting devices 3, 3a for detecting a levitation position of the magnetic bearing, thus the control of magnetic levitation is stabilized. As the speed information of high S/N ratio can be obtained, the control can be performed by determining acceleration by differentiating the speed, thus the magnetic bearing capable of being used under severe conditions, which is difficult by a conventional one, can be realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁気吸引力によって浮上させる磁気浮上装置の制御に関するものであって磁気軸受と総称する支持装置の制御方法を改良して磁気軸受の性能を向上させる技術に関わる。  The present invention relates to control of a magnetic levitation device that is levitated by a magnetic attractive force, and relates to a technique for improving the performance of a magnetic bearing by improving a control method of a support device generally called a magnetic bearing.

従来から磁気軸受や、磁気吸引力によって浮上させる磁気浮上装置の制御は、支持体と浮上体との間の相対距離を検出する位置検出装置を備え、位置検装置の出力信号を微分して速度信号を得た上で位置検出装置の出力信号と、速度信号を帰還増幅器に入力して軸受装置である電磁石の磁化力を調節して磁気浮上力を安定に浮上させるべく制御する負帰還ループで構成されている。  Conventionally, the control of a magnetic bearing or a magnetic levitation device that is levitated by a magnetic attraction force has been provided with a position detection device that detects the relative distance between the support and the levitation body, and the output signal of the position detection device is differentiated to speed. In the negative feedback loop that controls the magnetic levitation force stably by obtaining the signal and adjusting the magnetizing force of the electromagnet that is the bearing device by inputting the output signal of the position detection device and the speed signal to the feedback amplifier. It is configured.

位置検出装置の出力信号を微分する際に高域ノイズが含まれ易く,ローパスフィルターを用いている。また、処理速度の高いコンピューターを使用して数値計算を行っても、高域ノイズを除去しようとすると時間遅れが避けられず、制御ループが不安定になり易いので位置検出装置の出力を微分して変化速度計測に替えて予測制御なども用いられている。  When differentiating the output signal of the position detection device, high-frequency noise is likely to be included, and a low-pass filter is used. In addition, even if numerical calculation is performed using a computer with high processing speed, a time delay is unavoidable when trying to remove high-frequency noise, and the control loop tends to become unstable, so the output of the position detection device is differentiated. Therefore, predictive control is also used instead of change rate measurement.

従来技術による距離検装置の出力の微分操作は、原理的には正しい手段であるが、磁気軸受や磁気吸引力によって浮上させる磁気浮上式搬送装置などに適用する場合で、特に高速回転する磁気軸受に適用する場合には、回転体の加工精度誤差や、表面粗さや回転に伴う遠心力による回転体の弾性歪による変位や振動、更に軸受制御に伴う漏洩磁束変動などの影響が位置検装置の出力信号に混入しやすく、距離検出器の出力を微分する際にそれらがノイズとして出力されて、磁気軸受などを良好に制御することを妨げている。  The differential operation of the output of the distance measuring device according to the prior art is a correct means in principle, but when applied to a magnetic bearing or a magnetic levitation transport device that is levitated by a magnetic attractive force, especially a magnetic bearing that rotates at high speed. When applied to the position detection device, the positioning accuracy is affected by the processing accuracy error of the rotating body, the displacement and vibration due to the elastic distortion of the rotating body due to the surface roughness and the centrifugal force accompanying the rotation, and the fluctuation of the leakage magnetic flux accompanying the bearing control. They are easily mixed into the output signal, and when the output of the distance detector is differentiated, they are output as noise, preventing good control of the magnetic bearing and the like.

また、微分操作は原理的に高域利得が大きくなるので、正確な微分出力信号波形を得ることが困難であり、軸の回転角度に同期して相対位置検出器の出力に修正を加えるなどの対策が採られていたが、抜本的な解決には至らず、DSPなどを用いた対症療法的な手段によって磁気浮上を実現していた。  In addition, since the high frequency gain is increased in principle in the differential operation, it is difficult to obtain an accurate differential output signal waveform, and the output of the relative position detector is corrected in synchronization with the rotation angle of the shaft. Countermeasures have been taken, but no radical solution has been achieved, and magnetic levitation has been realized by means of symptomatic treatment using DSP or the like.

また、アナログ演算による直接微分、デジタルプロセッサーによる数値微分はともに原理的にハイパスフィルターであるので、位置検出装置の出力からローパスフィルターで除去した位置検出装置の出力を微分すると、微分操作によってノイズが再生されて正常な制御を損なうなど、磁気軸受を構成する上での問題があった。  In addition, both direct differentiation by analog computation and numerical differentiation by digital processor are high-pass filters in principle, so if you differentiate the output of the position detector removed by the low-pass filter from the output of the position detector, noise will be reproduced by the differentiation operation As a result, there are problems in configuring the magnetic bearing, such as impairing normal control.

本発明はノイズによる障害の問題を解決しようとしてなされたもので、磁気吸引力で浮上している回転軸の状態を検知する検出装置が受けるノイズのレベルを下げるとともに、より正確な情報を得るために、磁気軸受電磁石の漏洩磁束のレベルが低く、且つ、磁気軸受の作動力の力学的な中心近傍に位置検出装置、または速度検出装置、または位置検出装置と速度検出装置の両方を配置することが課題となっている。  The present invention has been made in order to solve the problem of disturbance caused by noise. In order to reduce the level of noise received by a detection device that detects the state of a rotating shaft that is levitated by magnetic attraction, and to obtain more accurate information. In addition, the position of the position detecting device, the speed detecting device, or both the position detecting device and the speed detecting device is arranged near the dynamic center of the operating force of the magnetic bearing, and the leakage magnetic flux level of the magnetic bearing electromagnet is low. Has become an issue.

磁気力により浮揚支持されている対象物の軸受側からの距離の変化速度を検出する相対速度検出装置と、該相対速度検出装置の出力信号を磁気軸受の磁束を制御する回路の速度信号として磁気軸受の磁化力を制御する装置を備える磁気軸受においては原理的に相対速度を検出する速度検出装置を設けることによって相対速度信号を直接的に出力して,微分操作を経ないで軸受制御を行い安定な磁気軸受制御を実現した.  A relative speed detection device that detects the speed of change of the distance from the bearing side of an object that is levitated and supported by a magnetic force, and uses the output signal of the relative speed detection device as a speed signal of a circuit that controls the magnetic flux of the magnetic bearing. In a magnetic bearing equipped with a device for controlling the magnetizing force of the bearing, in principle, a relative speed signal is directly output by providing a speed detection device that detects the relative speed, and the bearing control is performed without performing a differential operation. Stable magnetic bearing control was realized.

微分操作による高域ノイズが再生される問題を解決すべく、相対速度を理学上の原理に基づいて検出する速度検出器を設けることによって、相対速度信号を直接的に出力して磁気軸受の制御を行い、磁気軸受などの制御型磁気浮上装置の安定な制御を実現するように構成した。  In order to solve the problem that high frequency noise due to differential operation is reproduced, a relative speed signal is directly output to control the magnetic bearing by providing a speed detector that detects the relative speed based on the theoretical principle. To achieve stable control of a control type magnetic levitation device such as a magnetic bearing.

請求項1に記載の速度検装置が浮揚支持されている前記回転軸または前記回転軸に取り付けられた導電性部分と、導電性部分に対向して軸受側に設けた電極によって形成された蓄電器と、蓄電器に直流電圧を印加する回路と蓄電器の電極間距離の変化速度に従って蓄電電器の電極に出入する電流または蓄電器の電極間の電圧を検出する回路を備えることを特徴とする請求項1に記載の磁気軸受において、相対速度検出装置として公知の静電容量の変化を利用する方法があるが、工学上の原理的な速度電気変換手段であって構造が簡単であるとともに出力の忠実度が高く原理的にS/N比が高いという特徴を備える.  The accumulator formed by the rotating shaft on which the speed detecting device according to claim 1 is levitated or a conductive portion attached to the rotating shaft, and an electrode provided on the bearing side facing the conductive portion, 2. The circuit according to claim 1, further comprising: a circuit that applies a DC voltage to the capacitor and a circuit that detects a current flowing in and out of the electrode of the capacitor or a voltage between the electrodes of the capacitor according to a change speed of a distance between the electrodes of the capacitor. As a relative speed detection device, there is a known method using a change in electrostatic capacity. However, this is a theoretical electrical speed conversion means with a simple structure and high output fidelity. In principle, it has the feature of high S / N ratio.

公知の速度検出装置の一例としては、静電容量を利用する方法では静電マイクロフォンが広く知られており、検出装置としての性能の高さと、S/N比の高さはすでに実証されている。  As an example of a known speed detection device, an electrostatic microphone is widely known as a method using capacitance, and the high performance as a detection device and the high S / N ratio have already been demonstrated. .

請求項1に記載の速度検装置が浮揚支持されている前記回転軸、または回転軸に取り付けられた磁性体と、磁性体と電磁的に結合する状態で軸受側に設けたサーチコイルと、サーチコイルにバイアス磁界を与える手段と、サーチコイルと前記回転体の距離の変化速度に従ってサーチコイルに誘導された電流または電圧を検出する回路を備えることを特徴とする請求項1に記載の磁気軸受けにおいて、相対速度検出装置として公知の電磁誘導を利用する方法が知られているが、何れも工学上で原理的な速度電気変換手段であって構造が簡単であるとともに速度に対応する出力の忠実度が高く原理的にS/N比が高いという特徴を備える。  The rotating shaft on which the speed detecting device according to claim 1 is levitated, or a magnetic body attached to the rotating shaft, a search coil provided on the bearing side in an electromagnetically coupled state with the magnetic body, and a search 2. The magnetic bearing according to claim 1, further comprising means for applying a bias magnetic field to the coil, and a circuit for detecting a current or a voltage induced in the search coil in accordance with a changing speed of a distance between the search coil and the rotating body. Although known methods using electromagnetic induction are known as relative speed detection devices, all are speed electrical conversion means that are fundamental in engineering, have a simple structure, and output fidelity corresponding to speed. It is characterized by a high S / N ratio in principle.

公知の速度検出装置の一例としては、電磁誘導を利用する方法は電話等に広く利用されていた受話器と送話器が広く知られており、感度と忠実度が高いので長期に亘って独占的に電話に利用されていた。この技術を磁気軸受の速度検出装置に利用している。  As an example of a known speed detection device, the method using electromagnetic induction is widely known for handsets and transmitters widely used for telephones, etc., and has high sensitivity and fidelity, so it is exclusive for a long time. It was used for telephone. This technology is used in a magnetic bearing speed detection device.

明細書10乃至13項に記載の本発明において、検出装置を構成する要素として用いた速度検出手段には既に充分に性能が実証されている公知の手段であるか、または、それらを組み合わせて利用できるので磁気軸受等の浮上制御安定化を実現するためにそれらを利用した。  In the present invention described in the specification 10 to 13, the speed detection means used as an element constituting the detection apparatus is a known means whose performance has already been sufficiently demonstrated, or a combination thereof is used. Because they can be used, they were used to stabilize the levitation control of magnetic bearings.

明細書10乃至14項に記載の様に,本発明における速度検出手段には,既に充分に性能が実証されている公知の手段またはそれらを組み合わせるか、新たに発明される速度検出装置、新たに発見される原理を利用した速度検出装置などを利用する事によって,これらの原理及び構造を磁気軸受の浮上体と支持体との間の相対速度検出手段として用いることができる。  As described in the specification 10 to 14, the speed detection means in the present invention is a known means whose performance has already been sufficiently demonstrated, or a combination thereof, or a newly invented speed detection apparatus, newly These principles and structures can be used as a means for detecting the relative speed between the floating body and the support body of the magnetic bearing by using a speed detection device using the discovered principle.

請求項1乃至3に記載の磁気軸受において検出軸毎に複数個の速度検出器を設け、出力回路を差動接続して奇数次歪を減少させる機能を備える速度検出装置を構成して、理学原理による相対速度検出器の位置によって検出感度が変化するという原理的な欠陥を補正して磁気浮上制御に応用することを可能にする。  A magnetic bearing according to any one of claims 1 to 3, wherein a plurality of speed detectors are provided for each detection shaft, and a speed detecting device having a function of reducing odd-order distortion by differentially connecting output circuits is provided. The principle defect that the detection sensitivity changes depending on the position of the relative velocity detector according to the principle can be corrected and applied to the magnetic levitation control.

請求項1乃至3に記載の磁気軸受において位置検出信号によって相対速度検出器の感度を補正する手段を備えて、位置の如何を問わず速度検出信号の出力を速度に比例するように補正することを可能にする.  4. The magnetic bearing according to claim 1, further comprising means for correcting the sensitivity of the relative speed detector based on the position detection signal, and correcting the output of the speed detection signal so as to be proportional to the speed regardless of the position. Makes possible.

請求項1乃至5に記載の磁気軸受において出力される相対速度に相当する信号を微分する装置を備え、相対速度を微分することによって磁気浮上系の相対的な加速度を知ることができ設計当上明らかな磁気軸受を構成する各部分の質量や剛性と、軸受電磁石と検出器との位置関係などから、電磁石が吸引して浮上させている力を直接的に検出することができる。  A device for differentiating a signal corresponding to the relative speed output in the magnetic bearing according to claim 1, wherein the relative acceleration of the magnetic levitation system can be known by differentiating the relative speed. From the mass and rigidity of each part constituting an obvious magnetic bearing and the positional relationship between the bearing electromagnet and the detector, it is possible to directly detect the force that the electromagnet attracts and floats.

明細書18項に記載の手段で磁気軸受の動作している力を検出が可能となり、磁気軸受などで軸受部分と浮上部分の一方か両方の剛性が低い場合や、軸受支持点が多数にのぼる場合に、装置全体の応力歪を検出できるので、良好な制御が可能になて、大型の磁気浮上装置や高速回転の磁気軸受の性能向上に利用できる。  It is possible to detect the operating force of the magnetic bearing with the means described in the specification 18, and when the rigidity of one or both of the bearing portion and the floating portion is low in the magnetic bearing or the like, or there are many bearing support points. In this case, since the stress strain of the entire apparatus can be detected, good control can be performed, and it can be used for improving the performance of a large-sized magnetic levitation apparatus or a high-speed rotating magnetic bearing.

明細書18項に記載の相対速度を微分する操作は、相対速度検出器が原理的検出法による検出器であることによって初めて成立する。位置出器の出力の2階微分は理論上では可能であるが、ノイズの障害を受けやすく殆ど実現できないが、相対速度検出器の出力を微分して、明細書19項に記載の制御を行うことは容易である。  The operation for differentiating the relative speed described in the specification 18 is realized only when the relative speed detector is a detector based on the principle detection method. The second-order differentiation of the output of the positioner is theoretically possible, but it is susceptible to noise disturbance and can hardly be realized. However, the output of the relative speed detector is differentiated and the control described in item 19 is performed. It is easy.

請求項1乃至5に記載の磁気軸受において、速度検出装置の出力信号を積分する装置を備え,不定積分された出力の積分定数に位置測定装置の出力の時間平均値を与えれば,前記不定積分の出力に積分定数として回転軸の現在位置の平均値を与えることができて、速度信号積分により位置出力が得られるので、位置検出器の出力に代るか、それと複合して制御を行うことができる。  6. The magnetic bearing according to claim 1, further comprising a device for integrating the output signal of the speed detection device, wherein the time constant value of the output of the position measuring device is given to the integral constant of the indefinitely integrated output. The average value of the current position of the rotation axis can be given as an integral constant to the output of, and the position output can be obtained by speed signal integration, so control can be performed in place of or combined with the output of the position detector Can do.

請求項1乃至7に記載の磁気軸受において回転軸の位置と位置の変化速度の検出器または、いずれかを浮上用電磁石の磁化が作用する面の反対側を代表とする電磁石の磁化が作用する面以外の面に配置して前記電磁石の漏洩磁束または励磁電流を供給する給電線からの静電及び電磁ノイズを遮ることができる場所に検出器を装着する。  8. The magnetic bearing according to claim 1, wherein the position of the rotating shaft and the position change speed detector or the electromagnet magnetization represented by the opposite side of the surface on which the magnetization of the levitation electromagnet acts act. The detector is mounted in a place where it can be arranged on a surface other than the surface to block electrostatic and electromagnetic noise from a power supply line that supplies leakage flux or excitation current of the electromagnet.

請求項1乃至7に記載の磁気軸受において回転軸の位置と位置の変化速度の検出器または、いずれかを浮上用電磁石の磁化が作用する面の反対側を代表とする電磁石の磁化が作用する面以外の面で、前記磁気軸受電磁石の吸引力の力学的中心に近づくように配置した請求項1乃至7に記載の磁気軸受により、磁気軸受で支持する場合に磁気軸受の機能上の中心位置に検出器を装着することを可能にする。  8. The magnetic bearing according to claim 1, wherein the position of the rotating shaft and the position change speed detector or the electromagnet magnetization represented by the opposite side of the surface on which the magnetization of the levitation electromagnet acts act. The center position on the function of the magnetic bearing when supported by the magnetic bearing by the magnetic bearing according to claim 1, which is arranged so as to approach the mechanical center of the attractive force of the magnetic bearing electromagnet on a surface other than the surface. Makes it possible to mount a detector.

速度検出装置を備えて位置変化速度を直接的に検出するので、磁気浮上制御ループの安定化に必要な位置変化速度を、位置出器の出力を微分して作り出す必要がなく、速度信号に、微分に際して発生するノイズによる影響と、ノイズを除去しようとすると避けられない信号の伝達遅延による影響を除去して、磁気軸受の制御特性を改善して磁気浮上制御ループの動作を安定化できる。  Since the position change speed is detected directly with the speed detection device, it is not necessary to create the position change speed necessary for stabilizing the magnetic levitation control loop by differentiating the output of the positioner. By removing the influence of noise generated during differentiation and the influence of signal transmission delay that cannot be avoided when removing the noise, the control characteristics of the magnetic bearing can be improved and the operation of the magnetic levitation control loop can be stabilized.

非接触で電気信号を得ることを目的とする相対速度検出器は物理現象として古くから知られて居り、原理的に良質の出力信号が得られるので磁気浮上制御ループの速度帰還入力として用いれば、磁気軸受等の浮上安定化に効果的である。  Relative speed detectors aimed at obtaining electrical signals without contact have long been known as a physical phenomenon, and in principle a good quality output signal can be obtained, so if used as a speed feedback input for a magnetic levitation control loop, It is effective for stabilization of levitation of magnetic bearings.

しかし物理現象を直接的に利用する速度検出器は検出対象物との距離によって検出感度が変化し、一般に近づくと感度が高くなり、遠ざかると感度が低くなる傾向を示すので回転体の直径上に相対速度検出器気を回転体の直径上の2箇所に配置して両者の検出出力を加算することによって位置による検出感度の変化を著しく軽減する効果が得られる。  However, speed detectors that use physical phenomena directly change the detection sensitivity depending on the distance to the object to be detected. In general, the sensitivity increases when approaching, and the sensitivity decreases when moving away. By arranging the relative velocity detectors at two positions on the diameter of the rotating body and adding the detection outputs of both, the effect of remarkably reducing the change in detection sensitivity due to the position can be obtained.

また,相対位置検出器の出力によって相対速度検出器の検出感度を修正する方法でも効果が得られる.  An effect can also be obtained by correcting the detection sensitivity of the relative velocity detector based on the output of the relative position detector.

位置検出器の出力の2階微分を行えば、理論的に加速度が算出されて、上記の軸受力を求められるが、微分ノイズなどが原因となって現実的には困難であり、現在までは試みられていないが、相対速度検出器の出力は原理的にノイズが少ないので微分するのに都合がよい上に、加速度を得るために2階微分の必要がなくなる。  If the second-order differentiation of the output of the position detector is performed, the acceleration is theoretically calculated and the above bearing force can be obtained. However, it is actually difficult due to differential noise, etc. Although not tried, the output of the relative velocity detector is low noise in principle, so that it is convenient to differentiate and there is no need for second order differentiation to obtain acceleration.

磁気軸受で支持する回転体の回転数数が極めて高い場合、歳差運動を伴う場合、剛性の低い回転体の場合、多数の軸受を備える回転体の場合などに適用する磁気軸受などの磁気浮揚装置に制御の安定化の可能性をもたらした。  Magnetic levitation such as magnetic bearings applied to rotating bodies supported by magnetic bearings when the number of rotations is extremely high, accompanying precession, rotating bodies with low rigidity, or rotating bodies with multiple bearings The device brought the possibility of control stabilization.

請求項1乃至5に記載の磁気軸受において出力される相対速度に相当する信号を積分する装置を備える請求項1乃至5に記載の磁気軸受けを用いれば、位置検出信号を創生することができ、位置検出装置の出力を積分定数の決定に用いれば、位置検出装置の出力よりも質の高い位置検出信号が得られる。  A position detection signal can be created by using the magnetic bearing according to any one of claims 1 to 5 provided with a device that integrates a signal corresponding to the relative velocity output in the magnetic bearing according to any one of claims 1 to 5. If the output of the position detection device is used to determine the integral constant, a position detection signal with higher quality than the output of the position detection device can be obtained.

請求項1乃至6に記載の磁気軸受において出力される相対速度に相当する信号を微分する装置を備える請求項1乃至6に記載の磁気軸受を用いれば、速度検出装置の出力を微分して力を求めることができるので、柔軟な回転体の場合や、磁気軸受の支持点が多数に上る場合に、制御を容易にする効果が得られる。  The magnetic bearing according to claim 1, further comprising a device for differentiating a signal corresponding to the relative speed output in the magnetic bearing according to claim 1. Therefore, the effect of facilitating the control can be obtained in the case of a flexible rotating body or when the number of support points of the magnetic bearing is increased.

請求項1乃至7に記載の磁気軸受において浮上対象物の位置や位置の変化速度の検出器を浮上用電磁石の磁化が作用する面の反対側を代表とする前記電磁石の磁化が作用する面以外の面に配置して検出器の出力にノイズが混入することを防止できる。  8. The magnetic bearing according to claim 1, wherein the position of the levitating object and the position change speed detector are other than the surface on which the magnetization of the electromagnet represented by the opposite side of the surface on which the magnetization of the electromagnet for floating acts. It is possible to prevent noise from being mixed into the output of the detector.

図1は本発明の相対速度検出器を適用して成る磁気軸受の概念を説明する実施例であって、回転軸に相当する磁性円柱1を、その両端部に吸引電磁石2,2aを配置して吊り上げる形態の磁気浮上システムを説明している。なを、実用に供する磁気軸受では、円柱を挟んで吸引電磁石2,2aの反対側にも吸引電磁石を設けて、それぞれ両者が必要に応じて吸引する構造になっていて、一対の吸引電磁石で1制御軸を形成する。更に、直交方向と、円柱の軸方向にも制御軸を設けて円柱の位置と姿勢を制御するのを基本形として一般に5軸制御と呼ばれている。本説明では1軸の半分を重力加速度にゆだねて、半軸を2組示して説明する。  FIG. 1 is an embodiment for explaining the concept of a magnetic bearing to which a relative speed detector according to the present invention is applied, in which a magnetic cylinder 1 corresponding to a rotating shaft is arranged and attracting electromagnets 2 and 2a are arranged at both ends thereof. A magnetic levitation system in the form of lifting up is described. In a magnetic bearing for practical use, an attracting electromagnet is provided on the opposite side of the attracting electromagnets 2 and 2a with a cylinder interposed therebetween, and both are attracted as necessary. One control axis is formed. Furthermore, control of the position and orientation of the cylinder by providing control axes in the orthogonal direction and the axial direction of the cylinder is generally called 5-axis control. In this description, half of one axis is subjected to gravitational acceleration, and two sets of half axes are shown.

位置検出装置3,3aは磁性円柱1の位置に相当する電気信号を出力する。4,4aは従来の磁気軸受では使用されていなかった速度検出装置であって、磁気軸受に対する円柱の相対速度に相当する電気信号を出力する。  The position detection devices 3 and 3 a output an electric signal corresponding to the position of the magnetic cylinder 1. Reference numerals 4 and 4a denote speed detection devices that have not been used in conventional magnetic bearings, and output an electrical signal corresponding to the relative speed of the cylinder with respect to the magnetic bearing.

出力増幅器を兼ねる演算増幅器5,5aを加算器として用いて位置と速度による制御、即ち、PD制御を行って円柱1を安定に静止状態で浮上させる。詳細な説明は省くが、それぞれの検出装置3,4、3a,4aの加算抵抗6,7、6a,7aを介して演算増幅器に入力され、帰還抵抗8,8aを介して帰還される帰還入力と平衡してリファレンス電圧と同じ値を保って円柱1を、それぞれの磁気軸受2,2aによって安定に浮上させる。なを、リファレンス電圧は図1でref.の記号で示した。  The operational amplifiers 5 and 5a that also serve as output amplifiers are used as adders to perform control based on position and speed, that is, PD control, so that the cylinder 1 is stably floated in a stationary state. Although not described in detail, a feedback input that is input to the operational amplifier through the addition resistors 6, 7, 6a, and 7a of the respective detection devices 3, 4, 3a, and 4a and fed back through the feedback resistors 8 and 8a. The cylinder 1 is stably floated by the respective magnetic bearings 2 and 2a while maintaining the same value as the reference voltage in equilibrium. The reference voltage is ref. Indicated by the symbol.

図2は従来から実施されている磁気軸受の概念を説明する実施例であって、図1の説明図から、更に一方の磁気軸受が省略されている。従来技術では、速度検出措置を備えないで、位置検出装置の円柱1の位置に相当する電気信号を微分して 位置検出装置の出力信号に替えている。演算増幅器9及び、抵抗11,12,13の機能は図1の実施例の説明と同じである。演算増幅器9、キャパシタ14、抵抗15で微分回路を構成して、位置の変化速度として演算増幅器10に入力している。説明は省くが、微分回路の動作には実務上の問題が多く、応答周波数大域幅やノイズの発生などが障害になって、磁気軸受が技術的に困難を伴うものとされてきた。  FIG. 2 is an embodiment for explaining the concept of a conventional magnetic bearing, in which one of the magnetic bearings is omitted from the explanatory view of FIG. In the prior art, an electric signal corresponding to the position of the column 1 of the position detection device is differentiated and replaced with an output signal of the position detection device without providing a speed detection measure. The functions of the operational amplifier 9 and the resistors 11, 12, and 13 are the same as those in the embodiment of FIG. A differential circuit is configured by the operational amplifier 9, the capacitor 14, and the resistor 15, and is input to the operational amplifier 10 as a position change speed. Although explanation is omitted, there are many practical problems in the operation of the differentiation circuit, and the response frequency bandwidth and noise generation have become obstacles, and magnetic bearings have been considered technically difficult.

明細書36に記載の欠陥が放置されていた理由の一つには、速度検出装置の適当な物を磁気軸受関係技術者が発見できなかった所にある。以下、公知の理論と公知の技術を用いて成した本発明の、速度検出装置に関して詳細に説明をする。  One of the reasons why the defect described in the specification 36 has been neglected is that an engineer related to a magnetic bearing could not find an appropriate thing for the speed detection device. Hereinafter, the speed detection apparatus according to the present invention, which is made using a known theory and a known technique, will be described in detail.

図3のBは速度検出装置を磁気軸受に適用した一実施例の該当部分の斜視図、Aは、同断面図である。円柱1の電極16,16a,17,17a,18,18a,19,19aに対向する部分は連続で導電性表面を備えるものとすると、例えば、電極16と16aののそれぞれの端子20と20aから見ると、キャパシタを形成している。該キャパシタの静電容量はそれぞれ電極16,16aと円柱1の対向面積と、距離と、雰囲気の誘電率とによって決定され、端子20と20aとの間の静電容量は、電極16,16aによってそれぞれ形成されたキャパシタを直列に接続した値となり、円柱1、電極16,16aの電位は無関係である。但し、理論上は対向する電極の面積が充分に大きいか、電極間の距離が充分に小さい場合に限られるが、速度検出装置として考える場合には静電容量を修正する係数を用意すれば充分である。  FIG. 3B is a perspective view of a corresponding portion of an embodiment in which the speed detection device is applied to a magnetic bearing, and FIG. 3A is a sectional view thereof. If the portions of the cylinder 1 facing the electrodes 16, 16a, 17, 17a, 18, 18a, 19, 19a are continuous and have conductive surfaces, for example, from the respective terminals 20 and 20a of the electrodes 16 and 16a As seen, a capacitor is formed. The capacitance of the capacitor is determined by the facing area of the electrodes 16 and 16a and the cylinder 1, the distance, and the dielectric constant of the atmosphere, and the capacitance between the terminals 20 and 20a is determined by the electrodes 16 and 16a. Each of the formed capacitors is connected in series, and the potentials of the cylinder 1 and the electrodes 16 and 16a are irrelevant. Theoretically, however, this is limited to the case where the area of the opposing electrodes is sufficiently large or the distance between the electrodes is sufficiently small, but when considering it as a speed detection device, it is sufficient to prepare a coefficient for correcting the capacitance. It is.

ストレイキャパシタンス、リークカレント等を無視して、理想的な状態を仮定すれば、電極20,20a、21,21a、22,22a、23,23a、それぞれの間に同電位差の電圧を与えるべく直流電源に接続して、円柱を半径方向に移動させると各電極間にそれぞれ速度成分に対応する電流が流れる。  If an ideal state is assumed ignoring stray capacitance, leakage current, etc., a direct current power source is used to apply a voltage having the same potential difference between the electrodes 20, 20a, 21, 21a, 22, 22a, 23, 23a. When the cylinder is moved in the radial direction, currents corresponding to velocity components flow between the electrodes.

図4は前記速度成分に対応する電流を検出して増幅する回路の一施例を示すが、回路に使用する演算増輻器24,25は入力抵抗値が高くバイアス電流の少ない演算増幅器を使用することが好ましい。本実施例では基準電圧端子35を信号接地として、端子36にプラス、37にマイナスの絶対値の等しい直流電圧を印加する。電極16には、演算増幅器24の出力端子から帰還抵抗27を介して充電電流が流れて、端子36に印加された電圧に達する、電極16aの電圧も同様にして端子37の電圧に達する。  FIG. 4 shows an example of a circuit for detecting and amplifying a current corresponding to the speed component. The operational amplifiers 24 and 25 used in the circuit use operational amplifiers having a high input resistance value and a small bias current. It is preferable to do. In this embodiment, the reference voltage terminal 35 is set as signal ground, and a DC voltage having the same absolute value is applied to the terminal 36 and plus to 37. A charging current flows from the output terminal of the operational amplifier 24 to the electrode 16 via the feedback resistor 27 and reaches the voltage applied to the terminal 36. The voltage of the electrode 16a similarly reaches the voltage of the terminal 37.

円柱の移動によって電極16,16aと円柱1との間の静電容量が変化して、帰還抵抗27,28を介して電流が流れて、円柱の変位速度が演算増幅器24,25の出力電圧に変換される。演算増幅器26によって信号レベルを整えて端子38に変位速度信号を出力する。  The capacitance between the electrodes 16 and 16a and the cylinder 1 changes due to the movement of the cylinder, and a current flows through the feedback resistors 27 and 28, so that the displacement speed of the cylinder becomes the output voltage of the operational amplifiers 24 and 25. Converted. A signal level is adjusted by the operational amplifier 26 and a displacement speed signal is output to the terminal 38.

図5の速度検出装置C,Dは本発明の電磁型速度検出装置の実施例であって、速度検出装置Cはサーチコイル40にバイアス磁界を与えるために永久磁石41を備えてマグネットヨーク39を励磁し、速度検出装置Dはサーチコイル40aにバイアス磁界を与えるために励磁コイル43を備え、励磁コイル43には、記載しない定電流電源によって制御された一定電流を流してマグネットヨーク42を励磁する。その結果、C、D、の速度検出装置は全く同一の速度検出動作を行うことになる。  Speed detectors C and D in FIG. 5 are embodiments of the electromagnetic speed detector of the present invention. The speed detector C includes a permanent magnet 41 and a magnet yoke 39 for applying a bias magnetic field to the search coil 40. The excitation speed detector D is provided with an excitation coil 43 for applying a bias magnetic field to the search coil 40a. The excitation coil 43 is supplied with a constant current controlled by a constant current power source (not shown) to excite the magnet yoke 42. . As a result, the C, D speed detection devices perform exactly the same speed detection operation.

C、Dいずれもマグネットヨーク39,42の磁束は、ほぼ、マグネットヨークの端面と円柱表面との距離、即ち、ギャップ長さで決まり、磁束はギャップの長さの分数関数で表され、明細書39乃至41項に記載の静電型速度検出装置と同じ動作特性を示す。  In both C and D, the magnetic flux of the magnet yokes 39 and 42 is almost determined by the distance between the end surface of the magnet yoke and the cylindrical surface, that is, the gap length, and the magnetic flux is expressed as a fractional function of the gap length. The same operational characteristics as those of the electrostatic speed detection device according to the items 39 to 41 are exhibited.

図6は、本発明の電磁型速度検出装置を磁気軸受けに適用する場合の一回路例であって、演算増幅器44によってサーチコイルに誘導された速度に対応する誘導電流を帰還抵抗46で電圧に変換して端子47に出力する。入力抵抗45はゲインの設定と温度補償などの機能を持ち、端子48は信号接地線である。  FIG. 6 is an example of a circuit when the electromagnetic speed detecting device of the present invention is applied to a magnetic bearing, and an induced current corresponding to the speed induced in the search coil by the operational amplifier 44 is converted into a voltage by the feedback resistor 46. The data is converted and output to the terminal 47. The input resistor 45 has functions such as gain setting and temperature compensation, and the terminal 48 is a signal ground line.

静電型速度検出装置、電磁誘導型速度検出装置のいずれも明細書43項に記載のように円柱1の表面からの距離の分数関数として速度検出感度が変化するので、磁気軸受けを制御する上で不都合な場合が多い。図7に図3Bを再掲するが、電極16,16a、17,17aと、18,18a、19,19aを、それぞれ一対にして磁気軸受制御の一軸の速度検出装置を構成すれば速度検出出力の位置による変化を減少させることができる。  Since both the electrostatic speed detection device and the electromagnetic induction speed detection device change the speed detection sensitivity as a fractional function of the distance from the surface of the cylinder 1 as described in Item 43, the magnetic bearing is controlled. In many cases, it is inconvenient. FIG. 3B is shown again in FIG. 7. If a pair of electrodes 16, 16 a, 17, 17 a and 18, 18 a, 19, 19 a is paired to form a single-axis speed detection device for magnetic bearing control, speed detection output can be obtained. Changes due to position can be reduced.

図9は、図7の電極16,16a,17,17aと、18,18a、19,19aを、を一対として位置による感度の変化を減少させて、特性を改善する回路の一例であって、図4の回路を2組、位相を反転して加算するものである。49は信号設置、端子50は正直流電圧、端子51は負の直流電圧、端子52は速度検出出力である。  FIG. 9 is an example of a circuit that improves the characteristics by reducing the change in sensitivity depending on the position of a pair of the electrodes 16, 16a, 17, 17a and 18, 18a, 19, 19a of FIG. Two sets of the circuit of FIG. 4 are added with their phases inverted. 49 is a signal installation, terminal 50 is a positive DC voltage, terminal 51 is a negative DC voltage, and terminal 52 is a speed detection output.

図8は誘導型検出装置を各制御軸に一対ずつ設けたものであって、Eは検出装置のバイアス磁界の励磁を直列に配置した例で、Fは励磁を並列に行い、戻りの磁路は拡散さた例であるが、磁気軸受周辺の構造によって、いずれかの方法を選択する。  FIG. 8 shows a pair of inductive detection devices provided on each control axis. E is an example in which the excitation of the bias magnetic field of the detection device is arranged in series, F is the excitation in parallel, and the return magnetic path. Is a diffused example, but either method is selected depending on the structure around the magnetic bearing.

図10は、図8の誘導型速度検出装置の一対を接続した例であって、位置による速度検出の感度変化を除去する効果は大きく、回路は極めて簡単である。演算増幅器54、抵抗55,56で構成する増幅器で所定の電圧に整えられて端子58に出力する。端子57は信号設置である。  FIG. 10 shows an example in which a pair of the inductive speed detection devices of FIG. 8 are connected, and the effect of removing the sensitivity change in speed detection due to the position is great, and the circuit is very simple. An amplifier composed of an operational amplifier 54 and resistors 55 and 56 is adjusted to a predetermined voltage and output to a terminal 58. Terminal 57 is a signal installation.

図11は、速度検出装置の特性を評価するために、図4に示した回路と位置検出装置を併設して、円柱1に偏心量を与えて回転させた時の位置検出装置の出力59と、速度検出装置の出力60を同時に記録したものであって、速度検出装置の出力60に著しい波形歪が認められるが、図9の回路を用いると、速度検出波形は、図12の波形62になり、図11の出力波形60に比べて著しく改善された。図12の波形61は、併設した位置検出装置の出力波形である。  FIG. 11 shows an output 59 of the position detection device when the column detector 1 is rotated by giving an eccentricity to the cylinder 1 in order to evaluate the characteristics of the speed detection device. The output 60 of the speed detection device is recorded at the same time, and significant waveform distortion is recognized in the output 60 of the speed detection device. However, when the circuit of FIG. 9 is used, the speed detection waveform is changed to the waveform 62 of FIG. Thus, the output waveform 60 of FIG. 11 is remarkably improved. A waveform 61 in FIG. 12 is an output waveform of the position detection apparatus provided together.

図13は、図10の回路に位置検出装置を併設して、明細書49項に記載の説明と同様に円柱1に偏心量を与えて回転させた時の併設された位置検出装置の出力63と、速度検出装置の出力64を同時に記録したもので、速度検出装置の出力56に、殆ど波形歪が認められず、図10の回路による効果が明らかに認められる。  FIG. 13 shows an output 63 of the position detection device provided when the position detection device is added to the circuit of FIG. 10 and the column 1 is rotated by giving an eccentric amount in the same manner as described in Item 49. The output 64 of the speed detector is recorded at the same time, and almost no waveform distortion is observed in the output 56 of the speed detector, and the effect of the circuit of FIG. 10 is clearly recognized.

図14は、円柱1の軸方向に相当する、図17に示す検出装置102aまたは、図18の検出装置109aのように、速度検出装置を対にして装着することが困難な場合などに用いる手段であって、位置検出装置3の出力を用いて速度検出装置4の出力の非直線性を補正する回路の一例である。演算増幅器67の帰還ループに制御非線形素子71を配置したが、補正は順方向回路で行うこともできる。端子72は位置検出出力、端子73は補正された速度検出出力、端子74は信号接地端子である。  14 corresponds to the axial direction of the cylinder 1 and is used when it is difficult to mount a pair of speed detection devices, such as the detection device 102a shown in FIG. 17 or the detection device 109a shown in FIG. In this example, the output of the position detection device 3 is used to correct the non-linearity of the output of the speed detection device 4. Although the control nonlinear element 71 is arranged in the feedback loop of the operational amplifier 67, the correction can be performed by a forward circuit. Terminal 72 is a position detection output, terminal 73 is a corrected speed detection output, and terminal 74 is a signal ground terminal.

図15は、速度検出装置4の出力を積分する回路を備える本発明の一実施例であって、演算増幅器77、速度信号入力抵抗80、積分キャパシタ81で構成する積分器に位置信号入力抵抗82と、直流ゲインを設定する帰還抵抗83を付加してあり、積分器の出力は円柱1の速度が零の時に位置検出出力に相当する値を出力し、速度を積分した位置に相当する信号を重畳して出力することができる。この方法を用いれば位置検出信号の周波数応答特性に対する制約が無くなり、高い精度の磁気軸受の制御が可能になる。端子84は直接の位置検出出力であり、端子85が速度検出出力、端子86が積分回路による高精度位置検出出力、端子87が信号接地である。  FIG. 15 shows an embodiment of the present invention provided with a circuit for integrating the output of the speed detection device 4. The position signal input resistor 82 is added to the integrator composed of the operational amplifier 77, the speed signal input resistor 80, and the integration capacitor 81. And a feedback resistor 83 for setting a DC gain, and the output of the integrator outputs a value corresponding to the position detection output when the velocity of the cylinder 1 is zero, and a signal corresponding to the position obtained by integrating the velocity. Superimposed and output. If this method is used, the restriction on the frequency response characteristics of the position detection signal is eliminated, and the magnetic bearing can be controlled with high accuracy. A terminal 84 is a direct position detection output, a terminal 85 is a speed detection output, a terminal 86 is a high-accuracy position detection output by an integration circuit, and a terminal 87 is a signal ground.

図16は、速度検出装置4の出力を微分する回路を備える本発明の一実施例であって、演算増幅器90、微分キャパシタ93、帰還抵抗94で微分器を構成している。端子95は位置検出出力であり、端子96は速度検出出力、端子97は速度を微分した出力、端子98が信号接地である。  FIG. 16 shows an embodiment of the present invention provided with a circuit for differentiating the output of the speed detection device 4, and an operational amplifier 90, a differential capacitor 93, and a feedback resistor 94 constitute a differentiator. A terminal 95 is a position detection output, a terminal 96 is a speed detection output, a terminal 97 is an output obtained by differentiating the speed, and a terminal 98 is signal ground.

明細書53項に記載の速度を微分した出力は円柱1の加速度であって、速度微分回路を備えることによって、円柱1が吸引電磁石2を初めとする磁気軸受電磁石から受けている力の他に、円柱1の撓み、ジャイロモーメントなどによる力の総和を知ることができ、例えば円柱1の撓み量が大きい場合や、慣性モーメントが大きい場合、回転角速度が大きい場合、軸受が多数設けられている場合、磁気軸受を据え付ける架台の剛性が低い場合などの、従来技術による磁気軸受では困難とされていた種類の回転体などの磁気浮揚が容易に実現できる。  The output obtained by differentiating the speed described in the specification 53 is the acceleration of the cylinder 1, and by providing a speed differentiation circuit, in addition to the force that the cylinder 1 receives from the magnetic bearing electromagnet including the attraction electromagnet 2. The total force due to the deflection of the cylinder 1 and the gyro moment can be known. For example, when the deflection amount of the cylinder 1 is large, when the moment of inertia is large, when the rotational angular velocity is large, or when many bearings are provided In addition, magnetic levitation of a rotating body of a kind that has been considered difficult with conventional magnetic bearings, such as when the rigidity of a gantry on which the magnetic bearings are installed is low, can be easily realized.

図17は、円柱1に同心状に空洞部分99を設けて、空洞部分99の内面100の位置または速度、または、位置と速度を検出するべく、空洞部分99に検出装置102,102aを設けて、磁気軸受電磁石103及び励磁コイル104から漏洩する磁束が、検出装置102,102aに影響するのを遮蔽する構造の本発明の一実施例を示す図である。磁気軸受電磁石をスイッチング制御する場合には、軸受部分から発生するノイズのレベルが高くなるので、図17に示す構造並びに検出装置の配置は検出器の誘導ノイズ低減のために有効である。101は円柱1に嵌装された円筒状の磁性体、105は検出装置を支持する構造体を示す。  In FIG. 17, a hollow portion 99 is provided concentrically in the cylinder 1, and detection devices 102 and 102 a are provided in the hollow portion 99 in order to detect the position or velocity of the inner surface 100 of the hollow portion 99 or the position and velocity. FIG. 3 is a diagram showing an embodiment of the present invention having a structure that shields magnetic flux leaking from the magnetic bearing electromagnet 103 and the exciting coil 104 from affecting the detection devices 102 and 102a. In the case of switching control of the magnetic bearing electromagnet, the level of noise generated from the bearing portion becomes high. Therefore, the structure and arrangement of the detection device shown in FIG. 17 are effective for reducing the induction noise of the detector. Reference numeral 101 denotes a cylindrical magnetic body fitted to the column 1, and 105 denotes a structure that supports the detection device.

図18は、図17に示す磁気軸受の構造を半径方向において反転した構造の本発明の一実施例を示す図である。円柱1に同心状に空洞部分107を設けて、空洞部分107に磁気軸受電磁石110及び励磁コイル111を配置した構造の本発明の一実施例を示す図である。108は円柱1の空洞部分107の内面に嵌装された円筒状の磁性体、112は磁気軸受電磁石と検出装置を支持する構造体である。  FIG. 18 is a view showing an embodiment of the present invention having a structure in which the structure of the magnetic bearing shown in FIG. 17 is inverted in the radial direction. FIG. 3 is a view showing an embodiment of the present invention having a structure in which a hollow portion 107 is provided concentrically on a cylinder 1 and a magnetic bearing electromagnet 110 and an exciting coil 111 are arranged in the hollow portion 107. Reference numeral 108 denotes a cylindrical magnetic body fitted on the inner surface of the hollow portion 107 of the column 1, and 112 denotes a structure that supports the magnetic bearing electromagnet and the detection device.

この様に、磁気軸受電磁石と同心上で、異なる半径上に検出装置を配置することによって、軸受電磁石が発生する吸引力の軸方向の分布の中心部分に検出装置を配置することが可能になって、磁気軸受制御回路または制御プログラムの単純化が可能になる。  In this manner, by arranging the detection devices concentrically with the magnetic bearing electromagnet and on different radii, it becomes possible to arrange the detection device in the central portion of the axial distribution of the attractive force generated by the bearing electromagnet. Thus, the magnetic bearing control circuit or the control program can be simplified.

明細書34乃至57に記載の実施例では制御手段を示す場合にはアナログ技術を以って表現したが、簡単に説明を行うことが目的であって、制御手段を限定するものではなく、ディタルプロセッサーを用いてソフトウェアによって本発明を実施してもよい。  In the embodiments described in the specification 34 to 57, the control means is expressed by analog technology. However, the description is provided for the sake of simplicity, and the control means is not limited. The present invention may be implemented by software using a tall processor.

本発明の磁気軸受の構成要素を示す図である。  It is a figure which shows the component of the magnetic bearing of this invention. 従来の技術による磁気軸受制御を示す図である。  It is a figure which shows the magnetic bearing control by a prior art. Aは本発明の速度検出装置を磁気軸受に適用した一実施例の該当部分の斜視図、Bは断面図である。  A is a perspective view of a corresponding part of an embodiment in which the speed detection device of the present invention is applied to a magnetic bearing, and B is a sectional view. 前記速度成分に対応する電流を検出して増幅する回路の実施例を示す図である。  It is a figure which shows the Example of the circuit which detects and amplifies the electric current corresponding to the said speed component. 速度検出装置C,Dは電磁型速度検出装置の実施例を示す図である。  Speed detection devices C and D are diagrams showing an embodiment of an electromagnetic speed detection device. 電磁型速度検出装置を磁気軸受けに適用する場合の回路例を示す図である。  It is a figure which shows the circuit example in the case of applying an electromagnetic type | mold speed detection apparatus to a magnetic bearing. 図3Bを再掲した図である。  It is the figure which reproduced FIG. 3B again. 誘導型検出装置を各制御軸に一対ずつ設けた例を示す図である。  It is a figure which shows the example which provided the induction | guidance | derivation type | mold detection apparatus one by one on each control axis | shaft. 図7に示した電極を一対として位置による感度の変化を減少させた例を示す図である。  It is a figure which shows the example which reduced the change of the sensitivity by a position by making the electrode shown in FIG. 7 into a pair. 図8に示した誘導型速度検出装置の一対を接続した例を示す図である。  It is a figure which shows the example which connected a pair of the induction | guidance | derivation type speed detection apparatuses shown in FIG. 速度検出装置の特性を評価するために測定した波形を示す図である。  It is a figure which shows the waveform measured in order to evaluate the characteristic of a speed detection apparatus. 出力波形が著しく改善されたのを示す図である。  It is a figure which shows that the output waveform was remarkably improved. 位置検出装置の出力55と、速度検出装置の出力56を同時に記録した図である。  It is the figure which recorded simultaneously the output 55 of the position detection apparatus, and the output 56 of the speed detection apparatus. 位置検出器57の出力を用いて速度検出装置58の出力の非直線性を補正する回路の一例を示す図である。  It is a figure which shows an example of the circuit which correct | amends the nonlinearity of the output of the speed detection apparatus 58 using the output of the position detector 57. FIG. 速度検出装置58の出力を積分する回路を備える実施例を示す図である。  It is a figure which shows an Example provided with the circuit which integrates the output of the speed detection apparatus. 速度検出装置58の出力を微分する回路を備える実施例を示す図である。  It is a figure which shows an Example provided with the circuit which differentiates the output of the speed detection apparatus. 図17は、円柱に同心状に空洞部分を設けて、該空洞部分に検出装置を設ける構造の一実施例を示す図である。  FIG. 17 is a diagram showing an embodiment of a structure in which a hollow portion is provided concentrically on a cylinder and a detection device is provided in the hollow portion. 図18は、円柱に同心状に空洞部分を設けて、該空洞部分に磁気軸受電磁石を配置した構造の実施例を示す図である。  FIG. 18 is a diagram showing an embodiment of a structure in which a hollow portion is provided concentrically on a cylinder and a magnetic bearing electromagnet is disposed in the hollow portion.

Claims (8)

磁気吸引力により浮揚支持されている回転軸の軸受に対する相対位置を検出する位置検出装置と、回転軸の軸受に対す相対位置変化速度を検出する相対速度検出装置を備える磁気軸受。  A magnetic bearing comprising: a position detection device that detects a relative position of a rotary shaft that is levitated and supported by a magnetic attractive force; and a relative speed detection device that detects a relative position change speed of the rotary shaft with respect to the bearing. 請求項1に記載の速度検装置が浮揚支持されている前記回転軸または前記回転軸に取り付けられた導電性部分と、導電性部分に対向して軸受側に設けた電極によって形成された蓄電器と、蓄電器に直流電圧を印加する回路と蓄電器の電極間距離の変化速度に従って蓄電電器の電極に出入する電流または、蓄電器の電極間電圧を検出する回路を備えることを特徴とする請求項1に記載の磁気軸受。  The accumulator formed by the rotating shaft on which the speed detecting device according to claim 1 is levitated or a conductive portion attached to the rotating shaft, and an electrode provided on the bearing side facing the conductive portion, 2. The circuit according to claim 1, further comprising: a circuit that applies a DC voltage to the capacitor and a circuit that detects a current flowing in and out of the electrode of the capacitor or a voltage between the electrodes of the capacitor in accordance with a change speed of a distance between the electrodes of the capacitor. Magnetic bearings. 請求項1に記載の速度検装置が浮揚支持されている前記回転軸または回転軸に取り付けられた磁性体部分と、磁性体部分と電磁的に結合する状態で軸受側に設けたサーチコイルと、前記サーチコイルにバイアス磁界を与える手段と、サーチコイルと前記回転体の距離の変化速度に従ってサーチコイルに誘導された電流または電圧を検出する回路を備えることを特徴とする請求項1に記載の磁気軸受。  The rotary shaft on which the speed detection device according to claim 1 is levitated, or a magnetic part attached to the rotary shaft, a search coil provided on the bearing side in an electromagnetically coupled state with the magnetic part, 2. The magnetism according to claim 1, further comprising means for applying a bias magnetic field to the search coil, and a circuit for detecting a current or a voltage induced in the search coil according to a change speed of a distance between the search coil and the rotating body. bearing. 請求項1乃至3に記載の磁気軸において、1軸の相対速度を検出する為に一対の検出器を差動動作をするような関係位置に装着して、前記相対速度の差動出力を得る回路を備え、速度検出装置の出力の波形歪を減少させる機能を備える請求項1乃至3に記載の磁気軸受。  4. The magnetic shaft according to claim 1, wherein a pair of detectors are mounted at relative positions for differential operation in order to detect a relative speed of one axis to obtain a differential output of the relative speed. The magnetic bearing according to claim 1, further comprising a circuit and having a function of reducing waveform distortion of an output of the speed detection device. 請求項1乃至3に記載の磁気軸受において位置検出装置の出力信号を用いて速度検出器の感度を補正する装置を備え、速度検出装置の波形歪を減少させる機能を備える請求項1乃至3に記載の磁気軸受。  The magnetic bearing according to any one of claims 1 to 3, further comprising a device for correcting the sensitivity of the speed detector using an output signal of the position detection device, and a function of reducing waveform distortion of the speed detection device. The magnetic bearing described. 請求項1乃至5に記載の磁気軸受において出力される相対速度に相当する信号を積分する装置を備える請求項1乃至3に記載の磁気軸受け。  The magnetic bearing according to any one of claims 1 to 3, further comprising a device that integrates a signal corresponding to a relative speed output from the magnetic bearing according to any one of claims 1 to 5. 請求項1乃至5に記載の磁気軸受において出力される相対速度に相当する信号を微分する装置を備える請求項1乃至4に記載の磁気軸受。  The magnetic bearing according to any one of claims 1 to 4, further comprising a device for differentiating a signal corresponding to a relative speed output in the magnetic bearing according to any one of claims 1 to 5. 請求項1乃至7に記載の磁気軸受において回転軸の位置と位置の変化速度の検出器を浮上用電磁石の磁化が作用する面の反対側を代表とする電磁石の磁化が作用する面以外の面で、前記磁気軸受電磁石の吸引力の力学的中心に近づくように配置した請求項1乃至7に記載の磁気軸受。  8. The magnetic bearing according to claim 1, wherein the surface of the rotating shaft and the position change speed detector are surfaces other than the surface on which the magnetization of the electromagnet represented by the opposite side of the surface on which the magnetization of the levitation electromagnet acts. The magnetic bearing according to claim 1, wherein the magnetic bearing is disposed so as to approach a mechanical center of an attractive force of the magnetic bearing electromagnet.
JP2004308869A 2004-09-25 2004-09-25 Magnetic bearing Pending JP2006090539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308869A JP2006090539A (en) 2004-09-25 2004-09-25 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308869A JP2006090539A (en) 2004-09-25 2004-09-25 Magnetic bearing

Publications (1)

Publication Number Publication Date
JP2006090539A true JP2006090539A (en) 2006-04-06

Family

ID=36231704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308869A Pending JP2006090539A (en) 2004-09-25 2004-09-25 Magnetic bearing

Country Status (1)

Country Link
JP (1) JP2006090539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249011A (en) * 2007-03-30 2008-10-16 Ihi Corp Electromagnetic attraction type magnetic bearing and its control method
CN110159584A (en) * 2018-02-14 2019-08-23 株式会社岛津制作所 Magnetic suspension control device and vacuum pump
CN111016975A (en) * 2020-01-02 2020-04-17 中车株洲电力机车有限公司 Speed measurement positioning method and system of magnetic-levitation train and magnetic-levitation train

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249011A (en) * 2007-03-30 2008-10-16 Ihi Corp Electromagnetic attraction type magnetic bearing and its control method
WO2008126462A1 (en) * 2007-03-30 2008-10-23 Ihi Corporation Electromagnetic attraction magnetic bearing and its control method
AU2008238698B2 (en) * 2007-03-30 2011-01-06 Ihi Corporation Electromagnetic attraction magnetic bearing and its control method
US8203243B2 (en) 2007-03-30 2012-06-19 Ihi Corporation Electromagnetic attraction type magnetic bearing and control method thereof
KR101184689B1 (en) 2007-03-30 2012-09-20 가부시키가이샤 아이에이치아이 Electromagnetic attraction type magnetic bearing and control method thereof
CN110159584A (en) * 2018-02-14 2019-08-23 株式会社岛津制作所 Magnetic suspension control device and vacuum pump
CN111016975A (en) * 2020-01-02 2020-04-17 中车株洲电力机车有限公司 Speed measurement positioning method and system of magnetic-levitation train and magnetic-levitation train

Similar Documents

Publication Publication Date Title
US4562430A (en) Position detection device for magnetic bearing
JP2749748B2 (en) Variable reluctance servo controlled linear motor
JP5331304B2 (en) Detection circuit, interface circuit, electronic device, differential capacitive sensor reading method
CN113833757B (en) Five-degree-of-freedom rotor axial displacement self-sensing magnetic suspension bearing
US20180238386A1 (en) Magnetic bearing device and vacuum pump
JP2006090539A (en) Magnetic bearing
US20090072644A1 (en) Thrust magnetic bearing system
WO1992008150A1 (en) Displacement transducer
JP2004132537A (en) Magnetic bearing control device
JP5311228B2 (en) Magnetic position detection device and signal processing method thereof
JP3731698B2 (en) Servo type vibration detector
Kuroki et al. A micro-magnetic bearing using capacitive axial displacement sensing
JP2005036839A (en) Magnetic supporting device
JP3773076B2 (en) Servo type vibration detector
JP2821837B2 (en) Fine positioning device with acceleration feedback
JP2012185052A (en) Output circuit for current output type servo accelerometer
JPH02201101A (en) Displacement sensor for magnetic bearing
JPH09257035A (en) Control device for magnetic bearing
JP2000055930A (en) Acceleration sensor
JPH056418Y2 (en)
JPH11148815A (en) Displacement servo sensor
KR100210655B1 (en) Control method and apparatus of the magnetic bearing using collocated capacitance sensor
JPH05122892A (en) Linear dynamic magnetic bearing device
JP2606256Y2 (en) Magnetic bearing device
JPH08200364A (en) Control method for magnetic bearing and device thereof