JP2006090202A - Control device of cylinder direct injection spark ignition internal combustion engine - Google Patents

Control device of cylinder direct injection spark ignition internal combustion engine Download PDF

Info

Publication number
JP2006090202A
JP2006090202A JP2004276330A JP2004276330A JP2006090202A JP 2006090202 A JP2006090202 A JP 2006090202A JP 2004276330 A JP2004276330 A JP 2004276330A JP 2004276330 A JP2004276330 A JP 2004276330A JP 2006090202 A JP2006090202 A JP 2006090202A
Authority
JP
Japan
Prior art keywords
top dead
dead center
injection
fuel
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276330A
Other languages
Japanese (ja)
Inventor
Taro Sakai
太朗 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004276330A priority Critical patent/JP2006090202A/en
Priority to US11/189,058 priority patent/US7194999B2/en
Priority to EP05016245A priority patent/EP1621748A1/en
Publication of JP2006090202A publication Critical patent/JP2006090202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the rise in an exhaust gas temperature and the reduction of an HC exhaust gas amount at the time of a cold engine, making the substantial retardation of an angle of the ignition timing and combustion stability be compatible. <P>SOLUTION: In the warm-up completion state exceeding 80°C in a cooling water temperature, a normal stratified charged combustion operation and a homogenized combustion operation are carried out. In the cold state not higher than 80°C, fuel is injected ranging over a top dead center so that an injection start timing ITS becomes before compression top dead center and an injection completion timing ITE becomes after the top dead center as a top dead center operation mode in order to promote the activation of a catalyst converter and reduce the exhaust amount. The ignition timing ADV becomes after the top dead center. At the compression top dead center, swirl and tumble are damped, a very small turbulence is activated, and a piston changes little in position, then stable combustion can be realized. When the fuel property is distinguished, and heavy gasoline is used, the ignition timing and fuel injection starting timing are corrected in an advanced angle to prevent the fuel stability from deterioration. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、その噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and more particularly to control of the injection timing and ignition timing.

特許文献1には、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態にあるときに、圧縮行程中に燃料噴射を行い、かつ、点火時期を圧縮上死点よりも遅角させる技術が開示されている。
特開2001−336467号公報
Patent Document 1 discloses that when an exhaust purification catalytic converter is in an unwarmed state lower than an activation temperature, fuel is injected during the compression stroke, and the ignition timing is retarded from the compression top dead center. Technology is disclosed.
JP 2001-336467 A

内燃機関冷機時の触媒の早期活性化を図るべく排気ガス温度を昇温させるとともにHCを低減するためには、点火時期をなるべく大きく遅角させることが望ましいが、点火時期を大幅に遅角すると、燃焼安定度が悪化するため、燃焼安定度の観点から定まるある限界よりも遅角することはできない。特許文献1のような従来の技術では、特に冷機時のような条件下において、安定した燃焼の確保が難しく、燃焼安定度から定まる点火時期の遅角限界が比較的進み側にあり、十分な点火時期の遅角を実現することができない。   In order to raise the exhaust gas temperature and reduce HC in order to achieve early activation of the catalyst when the internal combustion engine is cold, it is desirable to retard the ignition timing as much as possible, but if the ignition timing is significantly retarded Since the combustion stability deteriorates, it cannot be retarded from a certain limit determined from the viewpoint of combustion stability. In the conventional technique such as Patent Document 1, it is difficult to ensure stable combustion, particularly under conditions such as cold, and the retard limit of the ignition timing determined from the combustion stability is relatively advanced, which is sufficient. The ignition timing delay cannot be realized.

本発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば冷機時のような排気ガス温度の昇温が必要な場合などに、上死点噴射運転モードとして、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うことを特徴としている。そして、特に、燃料性状の判定に基づき、重質ガソリン使用時には点火時期を進角補正するようにしている。   The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug. When it is necessary to raise the exhaust gas temperature, the fuel injection is performed as the top dead center injection operation mode so that the injection start timing is before the compression top dead center and the injection end timing is after the compression top dead center. The ignition is performed in a period straddling the compression top dead center, and ignition is performed after the compression top dead center delayed from the injection start timing. In particular, based on the determination of fuel properties, the ignition timing is corrected to advance when heavy gasoline is used.

図1は、本発明の上死点噴射運転モードにおける燃料噴射期間および点火時期を筒内圧変化とともに例示したものであり、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となる。その間の噴射期間Tの長さは、噴射量に相当する。点火時期ADVは、圧縮上死点(TDC)後であり、噴射開始時期ITSから所定クランク角(例えば10°CA〜25°CA)遅れた時期となる。この遅れ期間Dは、一般に、燃料噴射弁から点火プラグまでの距離に相関する。   FIG. 1 illustrates the fuel injection period and ignition timing in the top dead center injection operation mode of the present invention together with the change in the in-cylinder pressure. The injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is After compression top dead center (TDC). The length of the injection period T during that time corresponds to the injection amount. The ignition timing ADV is after compression top dead center (TDC), and is a timing delayed by a predetermined crank angle (for example, 10 ° CA to 25 ° CA) from the injection start timing ITS. This delay period D generally correlates with the distance from the fuel injection valve to the spark plug.

なお、圧縮上死点(TDC)を中心として前半の圧縮上死点前の期間と後半の圧縮上死点後の期間とがほぼ等しくなるように、噴射開始時期ITSおよび噴射終了時期ITEを制御するようにしてもよい。   The injection start timing ITS and the injection end timing ITE are controlled so that the period before the compression top dead center in the first half and the period after the compression top dead center in the second half are substantially equal with the compression top dead center (TDC) as the center. You may make it do.

図2は、内燃機関の1サイクル中のピストンストロークによるピストン位置変化量と燃焼室の体積変化量とを示したものである。図示するように、単位クランク角当たりの変化量は、ストロークの中間位置付近で最も大きく、下死点(BDC)付近ならびに上死点(TDC)付近では、非常に小さい。従って、本発明で燃料噴射を行う圧縮上死点付近は、ピストン位置変化や体積変化が非常に小さく、ピストンの動き等に影響されない安定した場が形成され得る。   FIG. 2 shows the piston position change amount and the combustion chamber volume change amount due to the piston stroke in one cycle of the internal combustion engine. As shown in the figure, the amount of change per unit crank angle is the largest near the middle position of the stroke, and is very small near the bottom dead center (BDC) and near the top dead center (TDC). Therefore, in the vicinity of the compression top dead center where the fuel injection is performed in the present invention, the piston position change and volume change are very small, and a stable field that is not affected by the piston movement or the like can be formed.

また、筒内には、吸気行程において、スワール流やタンブル流といった比較的大きな流れのガス流動が発生し、圧縮行程においても残存しているが、このようなスワール流やタンブル流といった大きな流れは、ピストンが圧縮上死点付近に達して燃焼室が狭小なものとなると、急激に崩壊する。図3は、種々の機関回転数の下での燃焼室内の大きな流れの流速変化を示したものであり、図示するように、回転数に応じた強さのスワール流ないしタンブル流が発生するが、圧縮上死点(360°CA)に達する前に、急激に崩壊する。従って、本発明において圧縮上死点付近で噴射された燃料噴霧は、スワール流やタンブル流のような大きな流れにより動かされることがなく、点火プラグに対し、常に安定した形で噴霧を形成することが可能である。   In the cylinder, a relatively large gas flow such as a swirl flow or a tumble flow is generated in the intake stroke and remains in the compression stroke. However, a large flow such as a swirl flow or a tumble flow is When the piston reaches near the compression top dead center and the combustion chamber becomes narrow, it collapses rapidly. FIG. 3 shows a change in flow velocity of a large flow in the combustion chamber under various engine speeds. As shown in the figure, a swirl flow or a tumble flow having a strength corresponding to the rotation speed is generated. Collapses rapidly before reaching compression top dead center (360 ° CA). Therefore, in the present invention, the fuel spray injected near the compression top dead center is not moved by a large flow such as a swirl flow or a tumble flow, and always forms a spray in a stable manner on the spark plug. Is possible.

一方、上記のスワール流やタンブル流といった比較的大きな流れのエネルギは、その流れの崩壊に伴って、微小な乱れへと遷移する。従って、燃焼室内の微小な乱れは、圧縮上死点の直前に、急激に増大する。図4は、図3に示した流れの崩壊に伴って生じる微小な乱れの強さを、流速に換算していわゆる乱れ流速として示したものであり、図示するように、圧縮上死点直前に、乱れが大きく増加する。このような微小な乱れは、燃焼場の活性化に寄与し、燃焼改善作用が得られる。   On the other hand, the energy of a relatively large flow such as the swirl flow or the tumble flow described above transitions to minute turbulence as the flow collapses. Therefore, the minute disturbance in the combustion chamber increases rapidly just before the compression top dead center. FIG. 4 shows the intensity of the minute turbulence caused by the collapse of the flow shown in FIG. 3 as a so-called turbulent flow rate converted to a flow velocity, and as shown in the figure, immediately before the compression top dead center. , Disturbances increase greatly. Such minute disturbances contribute to the activation of the combustion field, and a combustion improving action is obtained.

つまり、燃料が噴射される圧縮上死点付近での燃焼室内の場は、噴霧を動かしてしまうような大きな流れが存在せず、かつ燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   In other words, the field in the combustion chamber near the compression top dead center where the fuel is injected does not have a large flow that moves the spray, and there are many minute disturbances that activate the combustion, It is a very stable place against the movement of the piston. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be significantly increased by a large retardation of the ignition timing, and the HC emission amount is reduced.

ここで、上記のような燃料噴射時期および点火時期は、基本的に、燃料として非重質ガソリンを使用することを前提として設定されている。これに対し、燃料として重質ガソリンを使用すると、燃焼安定度が低下する。そのため、本発明では、公知の種々の手法により使用中の燃料性状の判定を行い、重質ガソリンであると判定した場合には、非重質ガソリン使用時よりも点火時期を進角補正する。これにより、重質ガソリン使用時にも、燃焼の不安定化を招来することがない。   Here, the fuel injection timing and ignition timing as described above are basically set on the assumption that non-heavy gasoline is used as fuel. On the other hand, when heavy gasoline is used as the fuel, the combustion stability is lowered. Therefore, in the present invention, the fuel property being used is determined by various known methods, and when it is determined that the gasoline is heavy gasoline, the ignition timing is corrected in advance than when the non-heavy gasoline is used. Thereby, even when heavy gasoline is used, instability of combustion is not caused.

また、本発明の一つの態様では、重質ガソリン使用時に、さらに燃料噴射時期を進角補正する。重質ガソリンは非重質ガソリンよりも気化が遅れるが、このように燃料噴射時期を進角補正することで気化時間の不足が補われる。   Further, in one aspect of the present invention, the fuel injection timing is further advanced when the heavy gasoline is used. Heavy gasoline vaporizes more slowly than non-heavy gasoline, but the shortage of vaporization time is compensated for by correcting the fuel injection timing in this way.

上記上死点噴射運転モードにおける基本的な点火時期ならびに基本的な燃料噴射開始時期は、例えば、冷却水温に応じて設定され、低温であるほど進角側に設定される。   The basic ignition timing and the basic fuel injection start timing in the top dead center injection operation mode are set according to the coolant temperature, for example, and set to the advance side as the temperature becomes lower.

この発明によれば、点火時期を圧縮上死点よりも大幅に遅角させた状態で安定した燃焼を得ることができ、例えば内燃機関の冷機時に、排気ガス温度を昇温させて触媒の早期活性化を図ることができるとともに、HC排出量の低減が可能となる。そして、重質ガソリン使用時に点火時期を進角補正することで、重質ガソリン使用時にも安定した燃焼を維持することができる。   According to the present invention, stable combustion can be obtained in a state where the ignition timing is significantly retarded from the compression top dead center. For example, when the internal combustion engine is cold, the exhaust gas temperature is raised and the catalyst is accelerated. Activation can be achieved and HC emissions can be reduced. Further, by correcting the ignition timing when using heavy gasoline, stable combustion can be maintained even when using heavy gasoline.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図5〜図7は、この発明が適用される筒内直接噴射式火花点火内燃機関の一実施例を示しており、特に、図5,図6は、一つの気筒の構成を示し、図7は機関全体のシステム構成を示している。   5 to 7 show an embodiment of a direct injection type spark ignition internal combustion engine to which the present invention is applied. In particular, FIGS. 5 and 6 show the configuration of one cylinder. Indicates the system configuration of the entire organization.

図5,図6に示すように、シリンダブロック1に形成されたシリンダ2にピストン3が摺動可能に配置されているとともに、シリンダブロック1上面に固定されたシリンダヘッド4と上記ピストン3との間に、燃焼室5が形成されている。上記シリンダヘッド4には、吸気弁6によって開閉される吸気ポート7と、排気弁8によって開閉される排気ポート9と、が形成されている。1つの気筒に対し、一対の吸気弁6と一対の排気弁8とが設けられており、これらの4つの弁に囲まれた燃焼室5天井面中心部に、点火プラグ10が配置されている。また、この実施例では、運転状態によってタンブル流を強化することができるように、吸気ポート7内に、該吸気ポート7内を上下2つの流路に区画する隔壁11が設けられているとともに、その下側の流路を上流端で開閉するタンブル制御弁12が設けられている。当業者には容易に理解できるように、タンブル制御弁12によって下側の流路を閉塞した状態ではタンブル流が強化され、タンブル制御弁12を開いた状態ではタンブル流が弱まる。なお、このタンブル制御弁12は本発明において必ずしも必須のものではなく、省略することも可能であり、また、これに代えて、公知のスワール制御弁を設けるようにしてもよい。   As shown in FIGS. 5 and 6, a piston 3 is slidably disposed in a cylinder 2 formed in the cylinder block 1, and a cylinder head 4 fixed to the upper surface of the cylinder block 1 and the piston 3 A combustion chamber 5 is formed between them. The cylinder head 4 is formed with an intake port 7 that is opened and closed by an intake valve 6 and an exhaust port 9 that is opened and closed by an exhaust valve 8. A pair of intake valves 6 and a pair of exhaust valves 8 are provided for one cylinder, and an ignition plug 10 is disposed at the center of the ceiling surface of the combustion chamber 5 surrounded by these four valves. . Further, in this embodiment, a partition wall 11 is provided in the intake port 7 so as to partition the intake port 7 into two upper and lower flow paths so that the tumble flow can be strengthened depending on the operation state. A tumble control valve 12 that opens and closes the lower flow path at the upstream end is provided. As can be easily understood by those skilled in the art, the tumble flow is strengthened when the lower flow path is closed by the tumble control valve 12, and the tumble flow is weakened when the tumble control valve 12 is opened. The tumble control valve 12 is not necessarily essential in the present invention, and can be omitted. Alternatively, a known swirl control valve may be provided.

上記シリンダヘッド4の吸気ポート7の下側、より詳しくは一対の吸気ポート7の中間部の位置には、筒内へ燃料を直接噴射する燃料噴射弁15が配置されている。つまり、この燃料噴射弁15は、燃焼室5の吸気弁6側の側部に位置し、平面図上において図示せぬピストンピンと直交する方向に沿って燃料を噴射するように配置されているとともに、図5の断面図上において、斜め下方を指向して配置されている。但し、下方への傾斜角は比較的小さく、つまり水平に近い方向へ燃料を噴射する。   A fuel injection valve 15 for directly injecting fuel into the cylinder is disposed below the intake port 7 of the cylinder head 4, more specifically at a position between the pair of intake ports 7. That is, the fuel injection valve 15 is located on the side of the combustion chamber 5 on the intake valve 6 side, and is arranged so as to inject fuel along a direction orthogonal to a piston pin (not shown) on the plan view. In the cross-sectional view of FIG. However, the downward inclination angle is relatively small, that is, the fuel is injected in a direction close to the horizontal.

一方、ピストン3の頂部は、ペントルーフ型をなす燃焼室5天井面の傾斜に沿った凸部形状をなしているとともに、その中央部に、平面図上において略矩形をなす凹部16が形成されている。この凹部16の底面は、タンブル流に沿うように、所定の曲率半径の円弧面ないしは円弧に近似した湾曲面をなしている。   On the other hand, the top of the piston 3 has a convex shape along the inclination of the ceiling surface of the combustion chamber 5 that forms a pent roof type, and a concave portion 16 having a substantially rectangular shape in plan view is formed at the center. Yes. The bottom surface of the recess 16 forms an arc surface having a predetermined radius of curvature or a curved surface approximating an arc so as to follow the tumble flow.

図7に示すように、この実施例の内燃機関は、例えば直列4気筒機関であり、各気筒の排気ポート9が接続された排気通路21に、排気浄化用の触媒コンバータ22が設けられており、その上流側に、酸素センサ等の空燃比センサ23が配置されている。また、各気筒の吸気ポート7が接続された吸気通路24は、その入口側に、制御信号により開閉される電子制御スロットル弁25を備えている。上記排気通路21と上記吸気通路24との間には、排気還流通路26が設けられており、その途中に、排気還流制御弁27が介装されている。また、各気筒のタンブル制御弁12は、ソレノイドバルブ28を介して導入される吸入負圧により動作する負圧式タンブル制御アクチュエータ29によって、一斉に開閉される構成となっている。   As shown in FIG. 7, the internal combustion engine of this embodiment is, for example, an in-line four-cylinder engine, and a catalytic converter 22 for purifying exhaust gas is provided in an exhaust passage 21 to which an exhaust port 9 of each cylinder is connected. An air-fuel ratio sensor 23 such as an oxygen sensor is disposed on the upstream side. The intake passage 24 to which the intake port 7 of each cylinder is connected is provided with an electronically controlled throttle valve 25 that is opened and closed by a control signal on the inlet side. An exhaust gas recirculation passage 26 is provided between the exhaust passage 21 and the intake air passage 24, and an exhaust gas recirculation control valve 27 is interposed in the middle. Further, the tumble control valves 12 of the respective cylinders are configured to be simultaneously opened and closed by a negative pressure type tumble control actuator 29 that is operated by a suction negative pressure introduced via a solenoid valve 28.

また、上記燃料噴射弁15には、燃料ポンプ31およびプレッシャレギュレータ32によって所定圧力に調圧された燃料が、燃料ギャラリ33を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、本実施例では、燃圧は常に一定に維持される。また、各気筒の点火プラグ10は、イグニッションコイル34に接続されている。   The fuel injection valve 15 is supplied with the fuel adjusted to a predetermined pressure by the fuel pump 31 and the pressure regulator 32 via the fuel gallery 33. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. In this embodiment, the fuel pressure is always kept constant. The ignition plug 10 of each cylinder is connected to an ignition coil 34.

上記内燃機関の燃料噴射時期や噴射量、噴射率、点火時期等は、コントロールユニット35によって制御される。このコントロールユニット35には、アクセルペダル踏み込み量を検出するアクセル開度センサ30の検出信号や、クランク角センサ36の検出信号、空燃比センサ23の検出信号、冷却水温を検出する水温センサ37の検出信号、等が入力されている。   The fuel injection timing, injection amount, injection rate, ignition timing, and the like of the internal combustion engine are controlled by the control unit 35. The control unit 35 includes a detection signal of an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal, a detection signal of a crank angle sensor 36, a detection signal of an air-fuel ratio sensor 23, and a detection of a water temperature sensor 37 that detects a cooling water temperature. Signals, etc. are input.

上記のように構成された内燃機関においては、暖機が完了した後の状態、例えば冷却水温が80℃を越えているときには、通常の成層燃焼運転および均質燃焼運転が行われる。   In the internal combustion engine configured as described above, when the warm-up is completed, for example, when the cooling water temperature exceeds 80 ° C., normal stratified combustion operation and homogeneous combustion operation are performed.

すなわち、低速低負荷側の所定の領域では、通常の成層燃焼運転モードとして、基本的にタンブル制御弁12を閉じた状態の下で、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。なお、この運転モードでは、圧縮上死点前に必ず燃料噴射が終了する。圧縮行程中にピストン3へ向けて噴射された燃料は、凹部16に沿って旋回するタンブル流を利用して点火プラグ10近傍へ集められ、ここで点火される。そのため、平均的な空燃比がリーンとなった成層燃焼が実現される。   That is, in a predetermined region on the low speed and low load side, as a normal stratified combustion operation mode, fuel injection is performed at an appropriate time in the compression stroke, with the tumble control valve 12 basically closed. Ignition is performed before the top dead center. In this operation mode, fuel injection always ends before compression top dead center. The fuel injected toward the piston 3 during the compression stroke is collected in the vicinity of the spark plug 10 using a tumble flow swirling along the recess 16 and ignited there. Therefore, stratified combustion with an average air-fuel ratio lean is realized.

また、暖機完了後の高速高負荷側の所定の領域では、通常の均質燃焼運転モードとして、基本的にタンブル制御弁12を開いた状態の下で、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点において点火が行われる。この場合は、燃料は筒内で均質な混合気となり、基本的に理論空燃比近傍で運転が行われる。   Further, in a predetermined region on the high speed and high load side after the warm-up is completed, fuel injection is performed during the intake stroke under the condition that the tumble control valve 12 is basically opened as a normal homogeneous combustion operation mode. And ignition is performed at the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous air-fuel mixture in the cylinder and is basically operated near the stoichiometric air-fuel ratio.

これに対し、内燃機関の冷却水温が80℃以下のとき、つまり暖機が完了していない状態では、触媒コンバータ22の活性化つまり温度上昇の促進とHC排出量低減のために、上死点噴射運転モードとなる。そして、前述した図1に示したように、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となり、圧縮上死点を跨いで燃料噴射が行われる。点火時期ADVは、圧縮上死点(TDC)後となり、噴射開始時期ITSから10°CA〜25°CA遅れた時期に点火される。この遅れ期間の間に、燃料噴霧がちょうど点火プラグ10付近に到達し、点火プラグ10付近に可燃混合気を形成するので、確実に着火燃焼に至り、成層燃焼が行われる。このとき、燃料噴射量は、平均的な空燃比が理論空燃比となるように制御される。   On the other hand, when the cooling water temperature of the internal combustion engine is 80 ° C. or lower, that is, when the warm-up is not completed, the top dead center is used to activate the catalytic converter 22, that is, promote the temperature rise and reduce the HC emission amount. It becomes the injection operation mode. Then, as shown in FIG. 1 described above, the injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is after the compression top dead center (TDC). Is done. The ignition timing ADV is after compression top dead center (TDC), and is ignited at a timing delayed by 10 ° CA to 25 ° CA from the injection start timing ITS. During this delay period, the fuel spray just reaches the vicinity of the spark plug 10 and forms a combustible air-fuel mixture in the vicinity of the spark plug 10, so that ignition combustion is surely performed and stratified combustion is performed. At this time, the fuel injection amount is controlled so that the average air-fuel ratio becomes the stoichiometric air-fuel ratio.

本実施例では、上記の燃料噴射時期は、噴射開始時期ITSが所定のクランク角となるように制御され、噴射終了時期ITEは、この噴射開始時期ITSと燃料噴射量(噴射時間)とによって定まる。なお、燃料噴射期間における圧縮上死点前の期間と圧縮上死点後の期間とが等しくなるように、燃料噴射量に基づき、噴射開始時期ITSと噴射終了時期ITEとを求めるようにすることも可能である。   In this embodiment, the fuel injection timing is controlled so that the injection start timing ITS becomes a predetermined crank angle, and the injection end timing ITE is determined by the injection start timing ITS and the fuel injection amount (injection time). . The injection start timing ITS and the injection end timing ITE are obtained based on the fuel injection amount so that the period before the compression top dead center and the period after the compression top dead center in the fuel injection period are equal. Is also possible.

前述したように、この上死点噴射運転モードにおいて燃料が噴射される圧縮上死点付近での燃焼室内の場は、大きな流れの崩壊により噴霧を動かしてしまうような大きな流れが存在せず、かつ大きな流れの崩壊に伴い、燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   As described above, the field in the combustion chamber near the compression top dead center where fuel is injected in this top dead center injection operation mode does not have a large flow that causes the spray to move due to the collapse of the large flow, Along with the collapse of the large flow, there are many minute disturbances that activate the combustion, and the field becomes very stable against the movement of the piston. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be significantly increased by a large retardation of the ignition timing, and the HC emission amount is reduced.

ここで、上記のような上死点噴射運転モードにおける燃料噴射時期ITS,ITEおよび点火時期ADVは、基本的に、燃料として非重質ガソリン(換言すれば相対的に軽質なガソリン)を使用することを前提として設定されている。これに対し、燃料として重質ガソリンを使用すると、燃焼安定度が低下する。そのため、本発明では、図8に示すような処理によって、点火時期ADVおよび燃料噴射時期(例えば燃料噴射開始時期ITS)の補正を行う。以下、これを説明する。   Here, the fuel injection timings ITS, ITE and ignition timing ADV in the top dead center injection operation mode as described above basically use non-heavy gasoline (in other words, relatively light gasoline) as fuel. It is set on the assumption. On the other hand, when heavy gasoline is used as the fuel, the combustion stability is lowered. Therefore, in the present invention, the ignition timing ADV and the fuel injection timing (for example, the fuel injection start timing ITS) are corrected by the processing shown in FIG. This will be described below.

まずステップ1では、上述した冷却水温などから上死点噴射運転モードとする条件であるか否かを判定する。上死点噴射運転モードでなければ、この図8のルーチンは終了する。上死点噴射運転モードの場合は、ステップ2で、基本的な点火時期Xをテーブルルックアップ等により決定する。この基本的な点火時期Xは、図9に示すように、冷却水温に応じて設定され、冷却水温が低いほど進角側となる。同様に、ステップ3で、基本的な燃料噴射開始時期Yをテーブルルックアップ等により決定する。この基本的な燃料噴射開始時期Yは、図10に示すように、冷却水温に応じて設定され、やはり冷却水温が低いほど進角側となる。   First, in step 1, it is determined whether or not it is a condition for setting the top dead center injection operation mode from the cooling water temperature or the like described above. If it is not the top dead center injection operation mode, the routine of FIG. 8 ends. In the case of the top dead center injection operation mode, in step 2, the basic ignition timing X is determined by table lookup or the like. As shown in FIG. 9, the basic ignition timing X is set in accordance with the cooling water temperature, and is advanced as the cooling water temperature is lower. Similarly, in step 3, the basic fuel injection start timing Y is determined by table lookup or the like. As shown in FIG. 10, the basic fuel injection start timing Y is set in accordance with the cooling water temperature, and is also advanced as the cooling water temperature is lower.

次に、ステップ4で、公知の種々の手法(例えば特開平9−151777号公報記載の方法等)により、使用中の燃料が重質ガソリンであるか非重質ガソリンであるかの判別を行う。重質ガソリンでない場合は、ステップ5,6へ進み、ステップ2,3で決定した点火時期Xおよび燃料噴射開始時期Yの値をそのまま用いて、燃料噴射および点火を実行する。   Next, in step 4, it is determined whether the fuel in use is heavy gasoline or non-heavy gasoline by various known methods (for example, the method described in JP-A-9-151777). . If it is not heavy gasoline, the process proceeds to Steps 5 and 6, and the values of the ignition timing X and the fuel injection start timing Y determined in Steps 2 and 3 are used as they are, and fuel injection and ignition are executed.

重質ガソリンであると判断した場合には、ステップ7へ進み、所定の補正量αを基本的な点火時期Xに加えて、進角側に補正する。上記の補正量αは、例えば予め実験により定められた値である。さらに、ステップ8へ進み、所定の補正量βを基本的な燃料噴射開始時期Yに加えて、進角側に補正する。上記の補正量βは、例えば予め実験により定められた値である。但し、この補正量βは、補正量α以上の大きさとする。つまり、両者の補正に伴って、燃料噴射開始時期から点火時期までの期間(つまり燃料気化時間)が補正前よりも拡大するように、補正量α,βを設定してある。なお、ガソリン性状の判定は、例えば、始動の度に実行され、次回の始動までの間、その判定結果が保持される。   If it is determined that the gasoline is heavy gasoline, the routine proceeds to step 7 where a predetermined correction amount α is added to the basic ignition timing X and corrected to the advance side. The correction amount α is a value determined in advance through experiments, for example. Further, the process proceeds to step 8 where a predetermined correction amount β is added to the basic fuel injection start timing Y and corrected to the advance side. The correction amount β is a value determined in advance through experiments, for example. However, the correction amount β is larger than the correction amount α. That is, the correction amounts α and β are set so that the period from the fuel injection start timing to the ignition timing (that is, the fuel vaporization time) is longer than that before the correction with the correction of both. The determination of the gasoline property is executed, for example, every time the engine is started, and the determination result is held until the next start.

図11は、このような燃料噴射時期および点火時期の補正の一例を示したもので、非重質ガソリン使用時の燃料噴射時期および点火時期をそれぞれ実線で示し、重質ガソリン使用時の燃料噴射時期および点火時期をそれぞれ破線で示す。このように重質ガソリン使用時に点火時期および燃料噴射時期を進角補正することで、重質ガソリンの使用に伴う燃焼安定度の悪化が抑制され、非重質ガソリン使用時と同様の燃焼安定度を確保することができる。   FIG. 11 shows an example of correction of such fuel injection timing and ignition timing. The fuel injection timing and ignition timing when using non-heavy gasoline are shown by solid lines, respectively, and the fuel injection when using heavy gasoline is shown. Timing and ignition timing are indicated by broken lines. By correcting the ignition timing and fuel injection timing when using heavy gasoline in this way, the deterioration of combustion stability associated with the use of heavy gasoline is suppressed, and the same combustion stability as when using non-heavy gasoline is used. Can be secured.

なお、上記実施例では、補正量α,βをそれぞれ一定値であるとして説明したが、上述したステップ4において、使用中のガソリンの重質度合を検出し、この重質度合に応じた補正量α,βを与えるようにすることもできる。図12は、ガソリン性状つまり重質度合に対する点火時期補正量αの特性の一例を示し、また図13は、重質度合に対する噴射時期補正量βの特性の一例を示す。これらの図に示すように、点火時期および燃料噴射開始時期は、ガソリンが重質であるほど大きく進角補正される。また、燃料の気化時間となる燃料噴射開始時期から点火時期までの期間が、ガソリンが重質であるほど大きく与えられるように、補正量α,βの特性が定められている。   In the above-described embodiment, the correction amounts α and β have been described as being constant values. However, in step 4 described above, the heavy level of the gasoline being used is detected, and the correction amount according to the heavy level. α and β can also be given. FIG. 12 shows an example of the characteristic of the ignition timing correction amount α with respect to the gasoline property, that is, the heavy degree, and FIG. 13 shows an example of the characteristic of the injection timing correction amount β with respect to the heavy degree. As shown in these figures, the ignition timing and the fuel injection start timing are more advanced and corrected as the gasoline is heavier. Further, the characteristics of the correction amounts α and β are determined so that the period from the fuel injection start timing to the ignition timing, which is the fuel vaporization time, is increased as the gasoline is heavier.

本発明の燃料噴射期間および点火時期の一例を示した特性図。The characteristic view which showed an example of the fuel-injection period and ignition timing of this invention. サイクル中のピストン位置変化量と体積変化量の特性図。The characteristic figure of the piston position change amount and volume change amount during a cycle. 大きな流れのサイクル中の変化を示す特性図。The characteristic figure which shows the change in the cycle of a big flow. 微小な乱れのサイクル中の変化を示す特性図。The characteristic view which shows the change in the cycle of a minute disturbance. 筒内直接噴射式火花点火内燃機関の一実施例を示す断面図。Sectional drawing which shows one Example of a direct injection type spark ignition internal combustion engine. 同じく平面図。FIG. この内燃機関全体のシステム構成を示す構成説明図。FIG. 2 is a configuration explanatory view showing the system configuration of the entire internal combustion engine. 燃料性状による補正の処理を示すフローチャート。The flowchart which shows the process of correction | amendment by a fuel property. 冷却水温に対する基本的な点火時期の特性を示す特性図。The characteristic view which shows the characteristic of the basic ignition timing with respect to cooling water temperature. 冷却水温に対する基本的な燃料噴射開始時期の特性を示す特性図。The characteristic view which shows the characteristic of the basic fuel injection start time with respect to cooling water temperature. 補正された燃料噴射時期および点火時期の一例を示す特性図。The characteristic view which shows an example of the corrected fuel-injection timing and ignition timing. 燃料性状に対する点火時期補正量αの特性を示す特性図。The characteristic view which shows the characteristic of the ignition timing correction amount (alpha) with respect to a fuel property. 燃料性状に対する噴射時期補正量βの特性を示す特性図。The characteristic view which shows the characteristic of the injection timing correction amount (beta) with respect to a fuel property.

符号の説明Explanation of symbols

3…ピストン
5…燃焼室
10…点火プラグ
15…燃料噴射弁
3 ... Piston 5 ... Combustion chamber 10 ... Spark plug 15 ... Fuel injection valve

Claims (5)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、上死点噴射運転モードとして、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うとともに、燃料性状の判定に基づき、重質ガソリン使用時には点火時期を進角補正することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。   In a control device for a direct injection type spark ignition internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, the top dead center injection operation mode is set in a predetermined operating state. , Fuel injection is performed in a period straddling the compression top dead center such that the injection start time is before the compression top dead center and the injection end time is after the compression top dead center, and the compression top dead is delayed from the injection start time. An in-cylinder direct injection spark ignition internal combustion engine control device characterized in that ignition is performed after a point and ignition timing is advanced at the time of heavy gasoline use based on determination of fuel properties. 重質ガソリン使用時には、さらに燃料噴射時期を進角補正することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control apparatus for a direct injection type spark ignition internal combustion engine according to claim 1, wherein when the heavy gasoline is used, the fuel injection timing is further advanced. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記上死点噴射運転モードを実行することを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to claim 1 or 2, wherein the top dead center injection operation mode is executed when the exhaust gas temperature is required to be raised as a predetermined operation state. Engine control device. 上記上死点噴射運転モードにおける基本的な点火時期が、冷却水温に応じて設定されることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The basic ignition timing in the top dead center injection operation mode is set according to the coolant temperature, and the control of the direct injection type spark ignition internal combustion engine according to any one of claims 1 to 3. apparatus. 上記上死点噴射運転モードにおける基本的な燃料噴射開始時期が、冷却水温に応じて設定されることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
The direct injection spark-ignition internal combustion engine according to any one of claims 1 to 4, wherein a basic fuel injection start timing in the top dead center injection operation mode is set according to a coolant temperature. Control device.
JP2004276330A 2004-07-26 2004-09-24 Control device of cylinder direct injection spark ignition internal combustion engine Pending JP2006090202A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004276330A JP2006090202A (en) 2004-09-24 2004-09-24 Control device of cylinder direct injection spark ignition internal combustion engine
US11/189,058 US7194999B2 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combustion engine
EP05016245A EP1621748A1 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combusion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276330A JP2006090202A (en) 2004-09-24 2004-09-24 Control device of cylinder direct injection spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006090202A true JP2006090202A (en) 2006-04-06

Family

ID=36231425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276330A Pending JP2006090202A (en) 2004-07-26 2004-09-24 Control device of cylinder direct injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006090202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050960A (en) * 2006-08-23 2008-03-06 Denso Corp Fuel injection control device
JP2008157142A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Engine control method and control device
US7983832B2 (en) 2007-02-28 2011-07-19 Hitachi, Ltd. Control method of direct injection engine, controller for implementing the control method, and control circuit device used for the controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050960A (en) * 2006-08-23 2008-03-06 Denso Corp Fuel injection control device
JP4670771B2 (en) * 2006-08-23 2011-04-13 株式会社デンソー Fuel injection control device
JP2008157142A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Engine control method and control device
US7983832B2 (en) 2007-02-28 2011-07-19 Hitachi, Ltd. Control method of direct injection engine, controller for implementing the control method, and control circuit device used for the controller

Similar Documents

Publication Publication Date Title
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
US9945297B2 (en) Engine controller and engine control method
JP4400379B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4539476B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP4375295B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006090202A (en) Control device of cylinder direct injection spark ignition internal combustion engine
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4207866B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4360323B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4379279B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
US20180128235A1 (en) Engine controller and engine control method
JP2006017062A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4380481B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929