JP2006089311A - Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial - Google Patents

Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial Download PDF

Info

Publication number
JP2006089311A
JP2006089311A JP2004274605A JP2004274605A JP2006089311A JP 2006089311 A JP2006089311 A JP 2006089311A JP 2004274605 A JP2004274605 A JP 2004274605A JP 2004274605 A JP2004274605 A JP 2004274605A JP 2006089311 A JP2006089311 A JP 2006089311A
Authority
JP
Japan
Prior art keywords
tricalcium phosphate
porous body
porous
powder
biomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004274605A
Other languages
Japanese (ja)
Inventor
Koji Ioku
洪二 井奥
Takatoshi Okuda
貴俊 奥田
Ikuo Yonezawa
郁穂 米澤
Hideyuki Minaki
秀幸 三奈木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2004274605A priority Critical patent/JP2006089311A/en
Publication of JP2006089311A publication Critical patent/JP2006089311A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous β-tricalcium phosphate body capable of developing sufficient strength when applied as a scaffold for bone cell culture and to provide a biomaterial using the porous body and used as a scaffold for bone cell culture. <P>SOLUTION: What is provided is: a method for producing acicular β-tricalcium phosphate porous body comprising effecting the pressure powder molding of a mixture of an α-tricalcium phosphate powder with a thermally decomposable substance, heating the molding to 1,200 to 1,400°C, and subjecting the obtained sintered body to steam treatment to form a porous acicular hydroxyapatite body, and heating the formed body to 850 to 1,000°C to form a porous body comprising acicular β-tricalcium phosphate; a porous β-tricalcium phosphate body produced by the method; and a biomaterial using the porous β-tricalcium phosphate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、β−リン酸三カルシウムからなる多孔体、その製造方法及び該多孔体を用いてなる生体材料、特に人工骨を培養させる足場材に関する。   The present invention relates to a porous body composed of β-tricalcium phosphate, a method for producing the same, and a biomaterial using the porous body, particularly a scaffold for culturing artificial bone.

タンパク質などの生体組織との親和性が良好なハイドロキシアパタイトを、人工骨や骨欠損部を再生させる足場材として用いることが試みられている。すなわち、ハイドロキシアパタイト多孔体に骨細胞の増殖を促進する処理を施し、これに生体から得た骨髄細胞や骨芽細胞を吸着させ、これらの細胞を培養して形成された人工骨を移植して生体の骨欠損部を補填することが行われる。そのため、ハイドロキシアパタイト多孔体は、タンパク質などが吸着しやすいように数十〜数百μmの径の貫通孔が多数形成された10〜90%の空隙率を有し、かつ骨が形成されるまで所定の形状を維持することができる強度が必要とされる。しかし、従来のハイドロキシアパタイト多孔体においては、高い空隙率と大きな強度を両立することが極めて困難であった。   Attempts have been made to use hydroxyapatite, which has good affinity with biological tissues such as proteins, as a scaffold for regenerating artificial bones and bone defects. That is, the hydroxyapatite porous body is treated to promote the growth of bone cells, bone marrow cells and osteoblasts obtained from the living body are adsorbed thereto, and artificial bones formed by culturing these cells are transplanted. A bone defect part of a living body is compensated. Therefore, the hydroxyapatite porous body has a porosity of 10 to 90% in which many through-holes with a diameter of several tens to several hundreds of μm are formed so that proteins and the like are easily adsorbed, and until bone is formed. The strength that can maintain the predetermined shape is required. However, in conventional hydroxyapatite porous bodies, it has been extremely difficult to achieve both high porosity and large strength.

このような高い空隙率と大きな強度を両立することを目的として、例えば特許文献1にはリン酸三カルシウム粉末に多孔度を増加させるための水溶性物質又は熱分解性物質からなる粉末を混合し、混合粉を圧粉し、次いで水蒸気処理するか又は更に熱分解性物質の分解温度以上に加熱して水溶性物質又は熱分解性物質を除去することにより、六方晶のハイドロキシアパタイトの多孔質体を得る方法が記載されている。特許文献1の記載によれば、搬送のため手で把持したり、搬送後卓上においたりする際に破壊しない程度のハンドリング強度を有し、25〜90%の空隙率を有する多孔質体が得られるとされている。しかし、この特許文献1記載の技術を用いて作成した多孔質体は、直方体の形状に成形した場合に端部が欠けることがあり、人工骨を培養させる足場材として必ずしも十分な強度を有していない。   In order to achieve both such a high porosity and high strength, for example, Patent Document 1 mixes a powder of a water-soluble substance or a pyrolyzable substance to increase the porosity in tricalcium phosphate powder. A porous body of hexagonal hydroxyapatite by compacting the mixed powder and then subjecting it to steam treatment or further heating to a temperature higher than the decomposition temperature of the thermally decomposable substance to remove the water-soluble substance or the thermally decomposable substance Is described. According to the description in Patent Document 1, a porous body having a handling strength that does not break when gripped by hand for transport or placed on a table after transport and having a porosity of 25 to 90% is obtained. It is supposed to be done. However, the porous body prepared by using the technique described in Patent Document 1 may lack an end when formed into a rectangular parallelepiped shape, and has a sufficient strength as a scaffold for culturing artificial bone. Not.

本出願に関する先行技術文献情報として次のものがある。
特開2004−073401号公報
Prior art document information relating to the present application includes the following.
Japanese Patent Laid-Open No. 2004-073401

本発明は、骨の細胞を培養させる足場材に適用した際に十分な強度を発現することが可能なβ−リン酸三カルシウム多孔体の製造方法、及びその製造方法を用いて作成してなるβ−リン酸三カルシウム多孔体、ならびにそのβ−リン酸三カルシウム多孔体を用いた、骨細胞を培養させる足場材となる生体材料を提供することを目的とする。   The present invention is produced using a method for producing a β-tricalcium phosphate porous body capable of expressing sufficient strength when applied to a scaffold for culturing bone cells, and a method for producing the same. It is an object of the present invention to provide a β-tricalcium phosphate porous body and a biomaterial that serves as a scaffold for culturing bone cells using the β-tricalcium phosphate porous body.

本発明は、以下の発明を包含する。
(1)α−リン酸三カルシウム粉末と熱分解性物質を混合して圧粉成形し、次いで1200〜1400℃に加熱して得られる焼結体を水蒸気処理して針状結晶のハイドロキシアパタイト多孔体とした後、850〜1000℃に加熱して針状結晶のβ−リン酸三カルシウムからなる多孔体とすることを特徴とする針状結晶のβ−リン酸三カルシウム多孔体の製造方法。
(2)α−リン酸三カルシウム粉末、熱分解性物質としてのパラフィン、及び有機溶媒を混合した後、有機溶媒を蒸発して造粒してなる粉末を圧粉成形して焼結する前記(1)に記載の製造方法。
(3)前記(1)又は(2)に記載の製造方法を用いて製造してなるβ−リン酸三カルシウム多孔体。
(4)空隙率が10〜90%である前記(3)に記載のβ−リン酸三カルシウム多孔体。
(5)圧縮強度が30〜90kg/cmである前記(3)又は(4)に記載のβ−リン酸三カルシウム多孔体。
(6)前記(3)〜(5)のいずれかに記載のβ−リン酸三カルシウム多孔体を用いてなる生体材料。
(7)骨細胞を培養させる足場材である前記(6)に記載の生体材料。
The present invention includes the following inventions.
(1) α-tricalcium phosphate powder and a thermally decomposable substance are mixed and compacted, and then heated to 1200 to 1400 ° C. to subject the sintered body to steam treatment to form hydroxyapatite porous porous needles A method for producing a needle-like β-tricalcium phosphate porous body characterized by forming a porous body made of needle-like crystal β-tricalcium phosphate by heating to 850 to 1000 ° C.
(2) α-tricalcium phosphate powder, paraffin as a thermally decomposable substance, and an organic solvent are mixed, and then the powder formed by granulating by evaporating the organic solvent is compacted and sintered ( The manufacturing method as described in 1).
(3) A β-tricalcium phosphate porous body produced by using the production method according to (1) or (2).
(4) The β-tricalcium phosphate porous body according to (3), wherein the porosity is 10 to 90%.
(5) The β-tricalcium phosphate porous body according to (3) or (4), wherein the compressive strength is 30 to 90 kg / cm 2 .
(6) A biomaterial using the β-tricalcium phosphate porous body according to any one of (3) to (5).
(7) The biomaterial according to (6), which is a scaffold for culturing bone cells.

本発明の製造方法を用いて作成したβ−リン酸三カルシウム多孔体は、熱分解性物質を混合して造粒しない通常のα−リン酸三カルシウム粉末を用い焼結して得られる多孔体と同様の高い空隙率を有するが、端部に欠けが生じにくく、ハンドリング強度に優れている。そのため、本発明のβ−リン酸三カルシウム多孔体は、骨細胞を培養させる足場材としての生体材料として好適に適用できる。   The β-tricalcium phosphate porous body prepared by using the production method of the present invention is a porous body obtained by sintering using a normal α-tricalcium phosphate powder that is not granulated by mixing a thermally decomposable substance. It has the same high void ratio as the above, but is less likely to be chipped at the end and has excellent handling strength. Therefore, the β-tricalcium phosphate porous body of the present invention can be suitably applied as a biomaterial as a scaffold for culturing bone cells.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明によるβ−リン酸三カルシウム多孔体の製造に際しては、好ましくは、出発原料として1〜60μmの粒径を有するα−リン酸三カルシウム粉末を用い、3〜20MPaの加圧力を負荷して加圧成形した後、成形体を1200〜1400℃の温度範囲で30分〜4時間加熱して焼結する。本発明においては、好ましくは、出発原料のα−リン酸三カルシウム粉末にパラフィンやパルプ繊維などの熱分解性物質を好ましくは5〜70体積%で添加して混合し、更にアセトンなどの有機溶媒を添加して混合した後、有機溶媒を蒸発させてα−リン酸三カルシウム粉末の表面を熱分解性物質で被覆するように造粒した粉末を用いる。造粒粉を用いることにより、焼結体の端部に欠けが更に生じにくくなり、ハンドリング強度が向上する。焼結温度が1200℃未満であるとα−リン酸三カルシウムが本発明の目的とする針状結晶のβ−リン酸三カルシウムとは異なる、結晶形状が塊状であるβ−リン酸三カルシウムに変換するので好ましくない。1400℃を超える温度で焼結しても差し支えないが、エネルギー的に不経済である。また焼結時間が1時間未満では焼結が進行せず、十分なハンドリング強度を有する焼結体が得られない。一方、焼結時間が4時間を超えると焼結体の強度の向上効果が飽和し、経済的に有利でなくなる。   In the production of the β-tricalcium phosphate porous body according to the present invention, preferably, α-tricalcium phosphate powder having a particle size of 1 to 60 μm is used as a starting material, and a pressure of 3 to 20 MPa is applied. After the pressure molding, the molded body is heated and sintered in a temperature range of 1200 to 1400 ° C. for 30 minutes to 4 hours. In the present invention, preferably, α-tricalcium phosphate powder as a starting material is mixed with a thermally decomposable substance such as paraffin or pulp fiber preferably in an amount of 5 to 70% by volume, and further an organic solvent such as acetone. After mixing, the organic solvent is evaporated and the powder granulated so as to cover the surface of the α-tricalcium phosphate powder with a thermally decomposable substance is used. By using the granulated powder, chipping is less likely to occur at the end of the sintered body, and handling strength is improved. When the sintering temperature is less than 1200 ° C., α-tricalcium phosphate is different from the β-tricalcium phosphate of the needle-like crystal which is the object of the present invention. Since it converts, it is not preferable. Sintering at temperatures above 1400 ° C is acceptable, but is uneconomical. If the sintering time is less than 1 hour, the sintering does not proceed, and a sintered body having sufficient handling strength cannot be obtained. On the other hand, if the sintering time exceeds 4 hours, the effect of improving the strength of the sintered body is saturated, which is not economically advantageous.

また、多孔体の空隙率を高めるために、塩化ナトリウムなどの水溶性物質や、前記のパラフィンやパルプ繊維以外に、1200〜1400℃の焼結温度で熱分解するポリエチレン粉末やナイロン粉末などの有機樹脂粉末、炭酸水素アンモニウムや炭酸水素ナトリウムなどの無機粉末を加えて混合し、これらの混合粉を前記と同様に加圧成形して焼結してもよい。パラフィン、パルプ繊維、ポリエチレン粉末あるいはナイロン粉末は粒径5〜150μm、添加量5〜70体積%が望ましい。特に、パラフィンは添加物として望ましい。更に、アルミナ粉、ジルコニア粉などのセラミックス粉末やチタン粉などの金属粉で生体許容性のある物質からなる粉末を含有させてもよい。なお、これらの粉末の粒径は10〜500μmであることが好ましい。このようにしてα−リン酸三カルシウム粉末とこれらの粉末を混合して加圧成形して焼結することにより、10〜90%の空隙率を有するα−リン酸三カルシウム多孔体が得られる。   In addition to water-soluble substances such as sodium chloride and the above paraffin and pulp fibers, organic materials such as polyethylene powder and nylon powder that thermally decompose at a sintering temperature of 1200 to 1400 ° C. are used to increase the porosity of the porous body. Resin powder and inorganic powder such as ammonium hydrogen carbonate and sodium hydrogen carbonate may be added and mixed, and the mixed powder may be pressure-molded and sintered as described above. Paraffin, pulp fiber, polyethylene powder or nylon powder preferably have a particle size of 5 to 150 μm and an addition amount of 5 to 70% by volume. In particular, paraffin is desirable as an additive. Further, ceramic powders such as alumina powder and zirconia powder, and metal powders such as titanium powder and powders made of a substance that is biotolerable may be contained. In addition, it is preferable that the particle size of these powders is 10-500 micrometers. In this way, α-tricalcium phosphate porous material having a porosity of 10 to 90% is obtained by mixing α-tricalcium phosphate powder with these powders, press-molding and sintering. .

次いで、前記のようにして得られたα−リン酸三カルシウム多孔体を、好ましくは100〜180℃の水蒸気中で1〜50時間処理することにより、針状結晶のハイドロキシアパタイト多孔体に変換させる。このようにして得られる針状結晶のハイドロキシアパタイト多孔体は、タンパク質などの生体組織との親和性が良好であるが、更に加熱処理により、針状結晶のハイドロキシアパタイトを針状結晶のβ−リン酸三カルシウムに変換させることにより骨内に吸収させることが可能な材料となるので、欠損した骨組織を完全に近い状態に修復することができる。針状結晶のβ−リン酸三カルシウム多孔体は、針状結晶のハイドロキシアパタイト多孔体を850〜1000℃で1〜4時間に加熱することにより得られる。850℃未満の温度及び1時間未満の加熱時間ではハイドロキシアパタイトの全てをβ−リン酸三カルシウムに変換させることができない。1000℃を超える温度又は4時間を超える加熱時間で加熱しても差し支えないが、エネルギー的に不経済である。このようにして、本発明の目的とする針状結晶のβ−リン酸三カルシウム多孔体が得られる。   Next, the α-tricalcium phosphate porous body obtained as described above is preferably converted into a needle-like hydroxyapatite porous body by treatment in water vapor at 100 to 180 ° C. for 1 to 50 hours. . The needle-like hydroxyapatite porous body obtained in this way has good affinity with biological tissues such as proteins. However, by further heat treatment, the needle-like hydroxyapatite is converted into needle-like crystal β-phosphorus. Since it becomes a material that can be absorbed into the bone by converting it to tricalcium acid, the deficient bone tissue can be restored to a nearly complete state. The acicular crystalline β-tricalcium phosphate porous body is obtained by heating the acicular crystalline hydroxyapatite porous body at 850 to 1000 ° C. for 1 to 4 hours. Not all hydroxyapatite can be converted to β-tricalcium phosphate at a temperature below 850 ° C. and a heating time of less than 1 hour. Heating at a temperature exceeding 1000 ° C. or a heating time exceeding 4 hours can be carried out, but it is uneconomical. Thus, the needle-like crystalline β-tricalcium phosphate porous body of the present invention is obtained.

本発明の針状結晶のβ−リン酸三カルシウム多孔体は10〜90%の空隙率を有し、成形体の端部に欠けが生じにくくハンドリング強度に優れているので、生体材料、特に患者の生体から得た骨髄細胞や骨芽細胞などを播種し、培養して骨細胞が十分に形成された人工骨とし、患者に移植して骨の欠損部分を補填するために用いられる骨細胞を培養させる足場材として好適に適用することができる。   The acicular crystalline β-tricalcium phosphate porous body of the present invention has a porosity of 10 to 90%, and is difficult to be chipped at the end of the molded body, and has excellent handling strength. Bone marrow cells and osteoblasts obtained from the living body of the body are seeded and cultured to form an artificial bone in which bone cells are sufficiently formed, and bone cells that are used to fill bone defects by transplanting to a patient It can be suitably applied as a scaffold material to be cultured.

以下、実施例を示して本発明を更に詳細に説明する。
[供試材の作成]
1〜30μmの粒径を有するα−リン酸三カルシウム粉末に、表1に示す粒径のパラフィン粉末を表1に示す量で添加して混合し、更にアセトンを添加して混合した後、アセトンを蒸発させてα−リン酸三カルシウム粉末表面にパラフィンを被覆した造粒粉を作成した。この造粒粉を油圧プレスを用いて5MPaの圧力を負荷して30mm×10mm×10mmの形状に成形した。この成形体を大気中1300℃で1時間加熱して焼結した。次いで、この焼結体に160℃で6時間の水蒸気処理を施した。引き続いて、水蒸気処理を施した焼結体を、大気中900℃で2時間加熱した。このようにして試料番号1〜4の供試材を作成した。また比較用にパラフィンを添加せずにα−リン酸三カルシウム粉末のみを用いた以外は試料番号1〜4の供試材と同様にして作成したもの(試料番号5)、及び造粒粉を油圧プレスした後の焼結を省略した以外は試料番号1〜4の供試材と同様にして作成したもの(試料番号6)も作成した。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Create test material]
To the α-tricalcium phosphate powder having a particle size of 1 to 30 μm, the paraffin powder having the particle size shown in Table 1 is added and mixed in the amount shown in Table 1, and further acetone is added and mixed. Was evaporated to prepare granulated powder in which the surface of α-tricalcium phosphate powder was coated with paraffin. This granulated powder was molded into a shape of 30 mm × 10 mm × 10 mm by applying a pressure of 5 MPa using a hydraulic press. The molded body was sintered by heating in the atmosphere at 1300 ° C. for 1 hour. Next, the sintered body was subjected to steam treatment at 160 ° C. for 6 hours. Subsequently, the sintered body subjected to the steam treatment was heated in the atmosphere at 900 ° C. for 2 hours. In this way, specimens of sample numbers 1 to 4 were prepared. For comparison, a sample prepared in the same manner as the test materials of sample numbers 1 to 4 (sample number 5) and granulated powder except that only α-tricalcium phosphate powder was used without adding paraffin. A sample (sample number 6) prepared in the same manner as the sample materials of sample numbers 1 to 4 except that the sintering after the hydraulic press was omitted was also prepared.

Figure 2006089311
Figure 2006089311

[特性評価]
前記の試料番号1〜6の供試材を、下記の項目について特性評価した。
<アスペクト比>
各供試材のSEM像(倍率1500倍)をそれぞれ5視野撮影し、それぞれの視野について代表的な結晶粒子を10個選択して粒径を測定してアスペクト比を算定し、その平均値を表2にアスペクト比として記載した。
[Characteristic evaluation]
The specimens of the above sample numbers 1 to 6 were evaluated for the following items.
<Aspect ratio>
SEM images (1500 times magnification) of each specimen were photographed in 5 fields, 10 representative crystal grains were selected for each field, the grain size was measured, the aspect ratio was calculated, and the average value was calculated. Table 2 shows the aspect ratio.

<空隙率>
各供試材のそれぞれの重量(g)を供試材の体積(30mm×10mm×10mm)で除した見かけ密度(X)、及びβ−リン酸三カルシウムの理論密度(3.14)(Y)を用い、以下の式にしたがって空隙率を求めた。
空隙率(%)=[(Y−X)/Y]×100
<Porosity>
Apparent density (X) obtained by dividing the weight (g) of each test material by the volume of the test material (30 mm × 10 mm × 10 mm), and the theoretical density of β-tricalcium phosphate (3.14) (Y ) And the porosity was determined according to the following formula.
Porosity (%) = [(Y−X) / Y] × 100

<孔径>
各供試材のSEM像(倍率1500倍)をそれぞれ5視野撮影し、それぞれの視野について代表的な結晶粒子を10個選択して孔径を測定し、その平均値を表2に孔径として記載した。
<Pore diameter>
SEM images of each specimen (magnification 1500 times) were photographed in 5 fields, 10 representative crystal particles were selected for each field, the pore diameter was measured, and the average value is shown in Table 2 as the pore diameter. .

<圧縮強度>
試料番号1〜4は、600番の研磨紙を用いて試料サイズを底面7mm×7mm、長さ28mmに調整した。比較材試料番号5及び6は端部の欠けが発生するため、サイズ調整は行わず、試料サイズ底面10mm×10mm、長さ30mmのままとした。圧縮強度試験は、長さ方向に圧縮することで行った。圧縮強度は試料が破壊した際の加重kgを断面積cmで割った数値(kg/cm)とした。
<Compressive strength>
Sample Nos. 1 to 4 were adjusted to a sample size of 7 mm × 7 mm on the bottom and 28 mm in length using No. 600 abrasive paper. Since the comparative material sample numbers 5 and 6 were chipped at the ends, the size was not adjusted, and the sample size bottom surface was 10 mm × 10 mm and the length was 30 mm. The compressive strength test was performed by compressing in the length direction. The compressive strength was a numerical value (kg / cm 2 ) obtained by dividing the weight kg when the sample was broken by the cross-sectional area cm 2 .

<ハンドリング性>
各供試材のハンドリング性を下記の評価基準で評価した。
○:搬送のため手で把持したり搬送後卓上に置いたりする際に供試材の端部に欠けが生じない程度のハンドリング性を有している。
×:搬送のため手で把持したり搬送後卓上に置いたりする際に供試材の端部に欠けが生じる。
<Handling>
The handling property of each specimen was evaluated according to the following evaluation criteria.
○: Handled to the extent that the end of the specimen is not chipped when gripped by hand for transport or placed on a table after transport.
X: Chipping occurs at the end of the specimen when gripped by hand for transport or placed on a table after transport.

以上の特性評価結果を表2に示す。   The above characteristic evaluation results are shown in Table 2.

Figure 2006089311
Figure 2006089311

本発明の針状結晶のβ−リン酸三カルシウム多孔体は10〜90%の空隙率を有し、成形体の端部に欠けが生じにくくハンドリング強度に優れている。また、針状結晶のβ−リン酸三カルシウムは骨内に吸収可能であるので、欠損した骨組織を完全に近い状態に修復することができる。そのため、本発明の針状結晶のβ−リン酸三カルシウム多孔体は生体材料、特に患者の生体から得た骨髄細胞や骨芽細胞などを播種し、培養して骨細胞が十分に形成された人工骨とし、患者に移植して骨の欠損部分を補填するために用いられる骨細胞を培養させる足場材として好適に適用することができる。   The acicular crystalline β-tricalcium phosphate porous body of the present invention has a porosity of 10 to 90%, and is less prone to chipping at the end of the molded body and has excellent handling strength. In addition, since the needle-like crystal β-tricalcium phosphate can be absorbed into the bone, the deficient bone tissue can be restored to a nearly complete state. Therefore, the needle-like crystal β-tricalcium phosphate porous body of the present invention was seeded with biomaterials, especially bone marrow cells and osteoblasts obtained from a patient's living body, and cultured to sufficiently form bone cells. It can be suitably applied as a scaffold for culturing bone cells that are used for artificial bones and transplanted into a patient to make up bone defects.

Claims (7)

α−リン酸三カルシウム粉末と熱分解性物質を混合して圧粉成形し、次いで1200〜1400℃に加熱して得られる焼結体を水蒸気処理して針状結晶のハイドロキシアパタイト多孔体とした後、850〜1000℃に加熱して針状結晶のβ−リン酸三カルシウムからなる多孔体とすることを特徴とする針状結晶のβ−リン酸三カルシウム多孔体の製造方法。   α-tricalcium phosphate powder and a thermally decomposable substance are mixed and compacted, and then the sintered body obtained by heating to 1200 to 1400 ° C. is steamed to obtain a hydroxyapatite porous body of acicular crystals. Then, it heats to 850-1000 degreeC, It is set as the porous body which consists of beta-tricalcium phosphate of an acicular crystal, The manufacturing method of the beta-tricalcium phosphate porous body of an acicular crystal characterized by the above-mentioned. α−リン酸三カルシウム粉末、熱分解性物質としてのパラフィン、及び有機溶媒を混合した後、有機溶媒を蒸発して造粒してなる粉末を圧粉成形して焼結する請求項1に記載の製造方法。   The α-tricalcium phosphate powder, the paraffin as a thermally decomposable substance, and an organic solvent are mixed, and then the powder formed by granulating by evaporating the organic solvent is compacted and sintered. Manufacturing method. 請求項1又は2に記載の製造方法を用いて製造してなるβ−リン酸三カルシウム多孔体。   A β-tricalcium phosphate porous body produced by using the production method according to claim 1. 空隙率が10〜90%である請求項3に記載のβ−リン酸三カルシウム多孔体。   The porous β-tricalcium phosphate according to claim 3, wherein the porosity is 10 to 90%. 圧縮強度が30〜90kg/cmである請求項3又は4に記載のβ−リン酸三カルシウム多孔体。 The β-tricalcium phosphate porous body according to claim 3 or 4, which has a compressive strength of 30 to 90 kg / cm 2 . 請求項3〜5のいずれか1項に記載のβ−リン酸三カルシウム多孔体を用いてなる生体材料。   The biomaterial which uses the (beta) -tricalcium phosphate porous body of any one of Claims 3-5. 骨細胞を培養させる足場材である請求項6に記載の生体材料。   The biomaterial according to claim 6, which is a scaffold for culturing bone cells.
JP2004274605A 2004-09-22 2004-09-22 Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial Withdrawn JP2006089311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274605A JP2006089311A (en) 2004-09-22 2004-09-22 Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274605A JP2006089311A (en) 2004-09-22 2004-09-22 Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial

Publications (1)

Publication Number Publication Date
JP2006089311A true JP2006089311A (en) 2006-04-06

Family

ID=36230639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274605A Withdrawn JP2006089311A (en) 2004-09-22 2004-09-22 Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial

Country Status (1)

Country Link
JP (1) JP2006089311A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024067A (en) * 2007-07-18 2009-02-05 National Institute For Materials Science Method for producing porous body having high communicating property
WO2021032681A1 (en) 2019-08-16 2021-02-25 Johann Wolfgang Goethe-Universität Frankfurt am Main Bone marrow derived cell bone graft material
WO2021032688A1 (en) 2019-08-16 2021-02-25 Johann Wolfgang Goethe-Universität Frankfurt am Main Mesenchymal stromal cell bone graft material
CN116617455A (en) * 2023-05-29 2023-08-22 重庆生物智能制造研究院 Preparation method of porous biological ceramic artificial bone scaffold with bioactivity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024067A (en) * 2007-07-18 2009-02-05 National Institute For Materials Science Method for producing porous body having high communicating property
WO2021032681A1 (en) 2019-08-16 2021-02-25 Johann Wolfgang Goethe-Universität Frankfurt am Main Bone marrow derived cell bone graft material
WO2021032688A1 (en) 2019-08-16 2021-02-25 Johann Wolfgang Goethe-Universität Frankfurt am Main Mesenchymal stromal cell bone graft material
CN116617455A (en) * 2023-05-29 2023-08-22 重庆生物智能制造研究院 Preparation method of porous biological ceramic artificial bone scaffold with bioactivity

Similar Documents

Publication Publication Date Title
Fabbri et al. Hydroxyapatite-based porous aggregates: physico-chemical nature, structure, texture and architecture
KR910001352B1 (en) Porous ceramic material and method for producing thereof
Figueiredo et al. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone
Descamps et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural
Laranjeira et al. Innovative macroporous granules of nanostructured‐hydroxyapatite agglomerates: bioactivity and osteoblast‐like cell behaviour
KR20140009282A (en) Bone substitute material
Dash et al. Gel casting of hydroxyapatite with naphthalene as pore former
JP2008541958A (en) Modeled product
Qian et al. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite
Alshaaer et al. Fabrication of porous bioceramics for bone tissue applications using luffa cylindrical fibres (LCF) as template
US10646615B2 (en) Bone substitute material
Ajaal et al. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts
EP3946488B1 (en) Collagen matrix or granulate blend of bone substitute material
Gunawan et al. Characterization of porous hydroxyapatite-alumina composite scaffold produced via powder compaction method
JP2006089311A (en) Porous beta-tricalcium phosphate body, method for producing the same, and biomaterial
Novak et al. TiO 2 foams with poly-(d, l-lactic acid)(PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds
Arifin et al. Development and characterization of porous hydroxyapatite-Alumina composite for engineering application
TWI380832B (en) Porous bio-material and method of preparation thereof
Sopyan et al. Fabrication of porous ceramic scaffolds via polymeric sponge method using sol-gel derived strontium doped hydroxyapatite powder
JPH0566909B2 (en)
KR100759718B1 (en) Porous calcium phosphates using a hydrothermal hot pressing method and Preparation thereof
US11285242B1 (en) Processing and bioactivation of a novel SiC medical device
Kolos et al. Osteoblast attachment to hydroxyapatite micro-tube scaffolds
JP2004073401A (en) Porous body, biological material using the same and manufacturing method for porous body
Beletskii et al. Development of implant materials with a gradient porous structure for neurosurgery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204