JP2006088918A - Collision determination apparatus for vehicle - Google Patents

Collision determination apparatus for vehicle Download PDF

Info

Publication number
JP2006088918A
JP2006088918A JP2004277698A JP2004277698A JP2006088918A JP 2006088918 A JP2006088918 A JP 2006088918A JP 2004277698 A JP2004277698 A JP 2004277698A JP 2004277698 A JP2004277698 A JP 2004277698A JP 2006088918 A JP2006088918 A JP 2006088918A
Authority
JP
Japan
Prior art keywords
acceleration
collision determination
speed change
collision
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277698A
Other languages
Japanese (ja)
Inventor
Tatsuji Osaki
達治 大▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2004277698A priority Critical patent/JP2006088918A/en
Publication of JP2006088918A publication Critical patent/JP2006088918A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Bags (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform appropriate collision determination according to the situation of a collision by a simple and inexpensive constitution. <P>SOLUTION: A ΔV operation part 21 performs primary integration by time on an acceleration signal G<SB>SIS</SB>outputted from a side impact sensor 12 (L-SIS or R-SIS), and calculates an on-vehicle person moving speed change ΔV in the time section (tp-n≤t≤tp) of a prescribed time width n to present time tp. A ΔV comparison part 23 determines whether the on-vehicle person moving speed is larger than a prescribed ΔV threshold or not, and outputs the determination result to an AND circuit 27. A ΔV<SB>P</SB>operation part 24 performs primary integration by time on the absolute value G<SB>SIS</SB>of the acceleration symbol G<SB>SIS</SB>, and calculates a speed change ΔV<SB>P</SB>in the time section (tp-n≤t≤tp) of the prescribed time width n to the present time tp. A ΔV<SB>P</SB>comparison part 26 judges whether the speed change ΔV<SB>P</SB>is larger than a prescribed ΔV<SB>P</SB>threshold or not, and outputs the determination result to the AND circuit 27. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両の衝突を判定して、例えばエアバック装置やシートベルト・プリテンショナ等の乗員保護装置を作動させる車両用衝突判定装置に関する。   The present invention relates to a vehicle collision determination device that determines a vehicle collision and activates an occupant protection device such as an air bag device or a seat belt pretensioner.

従来、例えば車両に加わる加速度(或いは減速度)を検出する複数の加速度センサを異なる位置に配置し、各加速度センサから出力される加速度信号を時間について1次積分して得た各積分値同士の比較結果に応じて、例えばエアバック装置やシートベルト・プリテンショナ等の乗員保護装置を起動させる車両用衝突判定装置が知られている(例えば、特許文献1参照)。
この車両用衝突判定装置では、車体が大きく変形して乗員保護装置を起動させた方が望ましい衝突と、車両の各部に配置された加速度センサの出力の区間積分値は相対的に大きな変化を示すが車両の変形はほとんど起こらず、車両が変形したとしても乗員に向かう変位は小さいため、エアバックやシートベルト・プリテンショナ等の乗員保護装置を起動させる必要は無いと判断できる衝突(例えば、相対的に剛性が高い部分での衝突等)とを判別するために、複数の加速度センサ同士の加速度信号に対する区間積分値の差を車両の変形度合いを示すパラメータとして設定している。
特開2001−277994号公報
Conventionally, for example, a plurality of acceleration sensors that detect acceleration (or deceleration) applied to a vehicle are arranged at different positions, and acceleration signals output from the respective acceleration sensors are integrated with each other with respect to time. A vehicle collision determination device that activates an occupant protection device such as an air bag device or a seat belt pretensioner according to a comparison result is known (see, for example, Patent Document 1).
In this vehicle collision determination device, it is desirable to start the occupant protection device when the vehicle body is greatly deformed, and the interval integral value of the output of the acceleration sensor arranged in each part of the vehicle shows a relatively large change. However, there is almost no deformation of the vehicle, and even if the vehicle is deformed, the displacement toward the occupant is small, so it is possible to determine that there is no need to activate an occupant protection device such as an airbag or a seat belt pretensioner (for example, relative In order to discriminate such as a collision at a portion having a particularly high rigidity, the difference between the interval integral values for the acceleration signals of the plurality of acceleration sensors is set as a parameter indicating the degree of deformation of the vehicle.
JP 2001-277994 A

ところで、上述したような車両用衝突判定装置では、単純かつ安価な構成で、衝突の状況に応じた適正な衝突判定を短時間で行うことが望まれている。
しかしながら、上記従来技術の一例に係る車両用衝突判定装置では、複数の加速度センサ同士の加速度信号に対する区間積分値の差を算出することから、加速度センサの搭載数が増大すると算出処理に要する時間が増大すると共に、車両の変形度合いを判定する処理が複雑化する虞がある。また、例えば発生した衝突状況および各加速度センサの配置位置等に応じて、各加速度センサの加速度信号の区間積分値が最大となるタイミングに相対的に大きなずれが生じる場合があり、車両の変形度合いを適切に判定することが困難となる虞がある。
本発明は上記事情に鑑みてなされたもので、単純かつ安価な構成で、衝突の状況に応じた適正な衝突判定を短時間で行うことが可能な車両用衝突判定装置を提供することを目的とする。
By the way, in the vehicle collision determination apparatus as described above, it is desired to perform an appropriate collision determination in a short time with a simple and inexpensive configuration according to the situation of the collision.
However, in the vehicle collision determination device according to the above-described prior art, the difference in the interval integral value with respect to the acceleration signals of the plurality of acceleration sensors is calculated, so that the time required for the calculation process increases as the number of mounted acceleration sensors increases. While increasing, there exists a possibility that the process which determines the deformation degree of a vehicle may become complicated. In addition, for example, there may be a relatively large deviation in the timing at which the interval integral value of the acceleration signal of each acceleration sensor is maximized depending on the collision situation that has occurred, the arrangement position of each acceleration sensor, etc., and the degree of deformation of the vehicle It may be difficult to appropriately determine the above.
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a vehicle collision determination device that can perform appropriate collision determination in a short time according to a collision situation with a simple and inexpensive configuration. And

上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の車両用衝突判定装置は、車両に作用する加速度を検出する加速度検出手段(例えば、実施の形態でのサイドインパクトセンサ(L−SIS,R−SIS)12)と、前記加速度検出手段にて検出された加速度信号を一次積分して速度変化を算出する速度変化算出手段(例えば、実施の形態でのΔV算出部21)と、前記加速度検出手段にて検出された加速度信号の絶対値を一次積分して加速度積分値を算出する加速度積分値算出手段(例えば、実施の形態でのΔV算出部24)と、前記加速度積分値算出手段にて算出された前記加速度積分値が所定の第1衝突判定閾値を超えたか否かを判定する第1衝突判定手段(例えば、実施の形態でのΔV比較部26)と、前記速度変化算出手段にて算出された前記速度変化が所定の第2衝突判定閾値を超えたか否かを判定する第2衝突判定手段(例えば、実施の形態でのΔV比較部23)と、前記第1衝突判定手段にて前記加速度積分値が前記第1衝突判定閾値を超えたと判定され、かつ、前記第2衝突判定手段にて前記速度変化が前記第2衝突判定閾値を超えたと判定された場合に、乗員保護装置の作動を指示する制御信号を発生する制御信号発生手段(例えば、実施の形態での起動信号発生部28)とを備えることを特徴としている。 In order to solve the above-described problems and achieve the object, the vehicle collision determination device according to the first aspect of the present invention includes an acceleration detection unit that detects acceleration acting on the vehicle (for example, the side in the embodiment). Speed change calculation means (for example, ΔV calculation in the embodiment) for calculating a speed change by linear integration of the acceleration signal detected by the impact sensor (L-SIS, R-SIS) 12) and the acceleration detection means. and part 21), the acceleration detecting means absolute value of the acceleration signal which primary integrated to at acceleration integral value calculating means for calculating an acceleration integral value (e.g., [Delta] V P calculation unit 24 in the embodiment) first collision determination unit that determines whether the acceleration integral value calculated by the acceleration integration value calculation means exceeds a predetermined first collision determining threshold value (e.g., [Delta] V P comparison unit 26 in the embodiment )When, Second collision determination means (for example, ΔV comparison unit 23 in the embodiment) for determining whether or not the speed change calculated by the speed change calculation means exceeds a predetermined second collision determination threshold; It is determined by the first collision determination means that the integrated acceleration value has exceeded the first collision determination threshold, and the second collision determination means has determined that the speed change has exceeded the second collision determination threshold. In some cases, the apparatus includes control signal generation means (for example, the activation signal generation unit 28 in the embodiment) that generates a control signal instructing the operation of the occupant protection device.

上記構成の車両用衝突判定装置によれば、車体が大きく変形してエアバックやシートベルト・プリテンショナ等の乗員保護装置の起動を要する衝突では、車両本体に相対的に大きな振動が発生し、加速度センサから得られる加速度の信号成分には振動成分が重畳される。このため、同等の時間区間での加速度信号の一次積分によって算出される速度変化と加速度積分値とでは、加速度積分値算出手段にて算出される加速度積分値が速度変化算出手段に算出される速度変化よりも振動成分の寄与分だけ大きな値となる。
一方、例えば相対的に剛性が高い部分での衝突等のように、車両の各部に配置された加速度センサの出力の区間積分値は相対的に大きな変化を示すが車両の変形はほとんど起こらず、車両が変形したとしても乗員に向かう変位は小さいため、乗員保護装置を起動させる必要は無いと判断できる衝突では、車両本体には相対的に僅かな振動が発生するだけである。このため、同等の時間区間での加速度信号の一次積分によって算出される速度変化と加速度積分値とでは、加速度積分値算出手段にて算出される加速度積分値と速度変化算出手段に算出される速度変化とが、ほぼ同等の値となる。
したがって、加速度積分値に対する第1衝突判定閾値として、車体変形が相対的に小さな衝突つまり衝突時に相対的に小さな振動しか発生しない衝突を排除することができる程度の相対的に大きな閾値を設定しておくことで、乗員保護装置の作動を要する衝突と、乗員保護装置の作動を不要とする衝突とを明確に判別することができる。
これに伴い、速度変化に対する第2衝突判定閾値として、乗員保護装置の作動が不要となる衝突を排除することができる程度の相対的に小さな値を設定しておくことで、衝突判定の安定性を向上させることができる。
According to the vehicle collision determination device having the above-described configuration, in a collision that requires a significant deformation of the vehicle body and activation of an occupant protection device such as an airbag or a seat belt / pretensioner, relatively large vibrations are generated in the vehicle body. A vibration component is superimposed on the acceleration signal component obtained from the acceleration sensor. For this reason, the speed change calculated by the primary integration of the acceleration signal and the acceleration integrated value in the equivalent time interval are the speed at which the acceleration integrated value calculated by the acceleration integrated value calculating means is calculated by the speed change calculating means. The value is larger than the change by the contribution of the vibration component.
On the other hand, the interval integral value of the output of the acceleration sensor arranged in each part of the vehicle shows a relatively large change, such as a collision at a relatively high rigidity portion, but the vehicle hardly deforms. Even if the vehicle is deformed, the displacement toward the occupant is small, so that a relatively slight vibration is generated in the vehicle main body in a collision in which it can be determined that there is no need to activate the occupant protection device. For this reason, the speed change calculated by the primary integration of the acceleration signal and the acceleration integrated value in the equivalent time interval are the acceleration integrated value calculated by the acceleration integrated value calculating means and the speed calculated by the speed change calculating means. The change is almost the same value.
Therefore, as the first collision determination threshold for the acceleration integral value, a relatively large threshold that can eliminate a collision with a relatively small vehicle body deformation, that is, a collision that generates only a relatively small vibration at the time of the collision is set. Thus, it is possible to clearly discriminate between a collision that requires the operation of the occupant protection device and a collision that does not require the operation of the occupant protection device.
Along with this, by setting a relatively small value as a second collision determination threshold for a speed change that can eliminate a collision that does not require operation of the occupant protection device, the stability of the collision determination Can be improved.

また、請求項2に記載の本発明の車両用衝突判定装置は、車両に作用する加速度を検出する加速度検出手段(例えば、実施の形態でのサイドインパクトセンサ(L−SIS,R−SIS)12)と、前記加速度検出手段にて検出された加速度信号を一次積分して速度変化を算出する速度変化算出手段(例えば、実施の形態でのΔV算出部21)と、前記加速度検出手段にて検出された加速度信号の絶対値を一次積分して加速度積分値を算出する加速度積分値算出手段(例えば、実施の形態でのΔV算出部24)と、前記加速度積分値算出手段にて算出された前記加速度積分値が所定の第1衝突判定閾値を超えたか否かを判定する第1衝突判定手段(例えば、実施の形態でのΔV比較部26)と、前記第1衝突判定手段での判定結果に応じて第2衝突判定閾値を設定する第2衝突判定閾値設定手段(例えば、実施の形態でのΔV閾値切替部30)と、前記速度変化算出手段にて算出された前記速度変化が前記第2衝突判定閾値設定手段にて設定された前記第2衝突判定閾値を超えたか否かを判定する第2衝突判定手段(例えば、実施の形態でのΔV比較部23)と、前記第2衝突判定手段にて前記速度変化が前記第2衝突判定閾値を超えたと判定された場合に、乗員保護装置の作動を指示する制御信号を発生する制御信号発生手段(例えば、実施の形態での起動信号発生部28)とを備えることを特徴としている。 According to a second aspect of the present invention, there is provided a vehicle collision determination apparatus according to the present invention, including an acceleration detection means (for example, a side impact sensor (L-SIS, R-SIS) 12 in the embodiment) that detects acceleration acting on the vehicle. ), A speed change calculating means (for example, ΔV calculating section 21 in the embodiment) for calculating a speed change by linearly integrating the acceleration signal detected by the acceleration detecting means, and detecting by the acceleration detecting means. is the acceleration integral value calculating means for calculating an acceleration integral value was the absolute value of the acceleration signal primary integrated to (e.g., [Delta] V P calculation unit 24 in the embodiment) and was calculated by the acceleration integration value calculation means determination in the acceleration integral value first collision determining means determines whether or exceeds a predetermined first collision determining threshold value (e.g., [Delta] V P comparison unit 26 in the embodiment) and the first collision determining means Depending on the result The second collision determination threshold setting means for setting the second collision determination threshold (for example, the ΔV threshold switching unit 30 in the embodiment), and the speed change calculated by the speed change calculation means is the second collision determination. In the second collision determination means (for example, ΔV comparison unit 23 in the embodiment) for determining whether or not the second collision determination threshold set by the threshold setting means has been exceeded, and in the second collision determination means Control signal generating means for generating a control signal for instructing the operation of the occupant protection device when it is determined that the speed change exceeds the second collision determination threshold (for example, the start signal generating unit 28 in the embodiment) It is characterized by comprising.

上記構成の車両用衝突判定装置によれば、車体が大きく変形してエアバックやシートベルト・プリテンショナ等の乗員保護装置の起動を要する衝突では、車両本体に相対的に大きな振動が発生し、加速度センサから得られる加速度の信号成分には振動成分が重畳される。このため、同等の時間区間での加速度信号の一次積分によって算出される速度変化と加速度積分値とでは、加速度積分値算出手段にて算出される加速度積分値が速度変化算出手段に算出される速度変化よりも振動成分の寄与分だけ大きな値となる。
一方、例えば相対的に剛性が高い部分での衝突等のように、車両の各部に配置された加速度センサの出力の区間積分値は相対的に大きな変化を示すが車両の変形はほとんど起こらず、車両が変形したとしても乗員に向かう変位は小さいため、乗員保護装置を起動させる必要は無いと判断できる衝突では、車両本体には相対的に僅かな振動が発生するだけである。このため、同等の時間区間での加速度信号の一次積分によって算出される速度変化と加速度積分値とでは、加速度積分値算出手段にて算出される加速度積分値と速度変化算出手段に算出される速度変化とが、ほぼ同等の値となる。
したがって、加速度積分値に対する第1衝突判定閾値として、車体変形が相対的に小さな衝突つまり衝突時に相対的に小さな振動しか発生しない衝突を排除することができる程度の相対的に大きな閾値を設定しておくことで、乗員保護装置の作動を要する衝突と、乗員保護装置の作動を不要とする衝突とを明確に判別することができる。
これに伴い、第1衝突判定手段での判定結果に応じて、例えば、加速度積分値が第1衝突判定閾値を超えたと判定された場合には、加速度積分値が第1衝突判定閾値を超えないと判定された場合に比べて、速度変化に対する第2衝突判定閾値をより小さな値、例えば乗員保護装置の作動が不要となる衝突を排除することができる程度の相対的に小さな値に設定することで、衝突判定の安定性を向上させることができる。
According to the vehicle collision determination device having the above-described configuration, in a collision that requires a significant deformation of the vehicle body and activation of an occupant protection device such as an airbag or a seat belt / pretensioner, relatively large vibrations are generated in the vehicle body. A vibration component is superimposed on the acceleration signal component obtained from the acceleration sensor. For this reason, the speed change calculated by the primary integration of the acceleration signal and the acceleration integrated value in the equivalent time interval are the speed at which the acceleration integrated value calculated by the acceleration integrated value calculating means is calculated by the speed change calculating means. The value is larger than the change by the contribution of the vibration component.
On the other hand, the interval integral value of the output of the acceleration sensor arranged in each part of the vehicle shows a relatively large change, such as a collision at a relatively high rigidity portion, but the vehicle hardly deforms. Even if the vehicle is deformed, the displacement toward the occupant is small, so that a relatively slight vibration is generated in the vehicle main body in a collision in which it can be determined that there is no need to activate the occupant protection device. For this reason, the speed change calculated by the primary integration of the acceleration signal and the acceleration integrated value in the equivalent time interval are the acceleration integrated value calculated by the acceleration integrated value calculating means and the speed calculated by the speed change calculating means. The change is almost the same value.
Therefore, as the first collision determination threshold for the acceleration integral value, a relatively large threshold that can eliminate a collision with a relatively small vehicle body deformation, that is, a collision that generates only a relatively small vibration at the time of the collision is set. Thus, it is possible to clearly discriminate between a collision that requires the operation of the occupant protection device and a collision that does not require the operation of the occupant protection device.
Accordingly, for example, when it is determined that the acceleration integral value exceeds the first collision determination threshold value according to the determination result in the first collision determination means, the acceleration integral value does not exceed the first collision determination threshold value. The second collision determination threshold for speed change is set to a smaller value, for example, a relatively small value that can eliminate a collision that does not require the operation of the occupant protection device. Thus, the stability of the collision determination can be improved.

以上説明したように、請求項1に記載の本発明の車両用衝突判定装置によれば、加速度積分値に対する第1衝突判定閾値として、車体変形が相対的に小さな衝突つまり衝突時に相対的に小さな振動しか発生しない衝突を排除することができる程度の相対的に大きな閾値を設定しておくことで、乗員保護装置の作動を要する衝突と、乗員保護装置の作動を不要とする衝突とを明確に判別することができる。
これに伴い、速度変化に対する第2衝突判定閾値として、乗員保護装置の作動が不要となる衝突を排除することができる程度の相対的に小さな値を設定しておくことで、衝突判定の安定性を向上させることができる。
さらに、請求項2に記載の本発明の車両用衝突判定装置によれば、加速度積分値に対する第1衝突判定閾値として、車体変形が相対的に小さな衝突つまり衝突時に相対的に小さな振動しか発生しない衝突を排除することができる程度の相対的に大きな閾値を設定しておくことで、乗員保護装置の作動を要する衝突と、乗員保護装置の作動を不要とする衝突とを明確に判別することができる。
これに伴い、第1衝突判定手段での判定結果に応じて、例えば、加速度積分値が第1衝突判定閾値を超えたと判定された場合には、加速度積分値が第1衝突判定閾値を超えないと判定された場合に比べて、速度変化に対する第2衝突判定閾値をより小さな値、例えば乗員保護装置の作動が不要となる衝突を排除することができる程度の相対的に小さな値に設定することで、衝突判定の安定性を向上させることができる。
As described above, according to the vehicle collision determination device of the first aspect of the present invention, the vehicle body deformation is relatively small at the time of the collision, that is, the collision is relatively small as the first collision determination threshold for the acceleration integral value. By setting a relatively large threshold that can eliminate collisions that generate only vibrations, it is possible to clearly distinguish between collisions that require the occupant protection device to operate and those that do not require the occupant protection device to operate. Can be determined.
Along with this, by setting a relatively small value as a second collision determination threshold for a speed change that can eliminate a collision that does not require operation of the occupant protection device, the stability of the collision determination Can be improved.
Furthermore, according to the vehicle collision determination apparatus of the present invention as set forth in claim 2, as the first collision determination threshold for the acceleration integral value, only a relatively small vibration is generated at the time of a collision with a relatively small vehicle body deformation, that is, a collision. By setting a relatively large threshold value that can eliminate the collision, it is possible to clearly discriminate between a collision that requires the operation of the occupant protection device and a collision that does not require the operation of the occupant protection device. it can.
Accordingly, for example, when it is determined that the acceleration integral value exceeds the first collision determination threshold value according to the determination result in the first collision determination means, the acceleration integral value does not exceed the first collision determination threshold value. The second collision determination threshold for speed change is set to a smaller value, for example, a relatively small value that can eliminate a collision that does not require the operation of the occupant protection device. Thus, the stability of the collision determination can be improved.

以下、本発明の一実施形態に係る車両用衝突判定装置について添付図面を参照しながら説明する。
本実施の形態による車両用衝突判定装置10は、例えば図1に示すように、複数の加速度センサ、例えば車両の右前部と左前部に配置された2つのフロントクラッシュセンサ(L−FCS,R−FCS)11,11および車両の右側部と左側部に配置された2つのサイドインパクトセンサ(L−SIS,R−SIS)12,12からなる複数のサテライトセンサと、車両央部に配置された電子制御ユニット(ECU)20とを備えて構成され、各サテライトセンサから出力される加速度信号は電子制御ユニット20に入力されている。
Hereinafter, a vehicle collision determination device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, for example, the vehicle collision determination apparatus 10 according to the present embodiment includes a plurality of acceleration sensors, for example, two front crash sensors (L-FCS, R-) arranged at the right front portion and the left front portion of the vehicle. FCS) 11 and 11 and a plurality of satellite sensors comprising two side impact sensors (L-SIS, R-SIS) 12 and 12 arranged on the right and left sides of the vehicle, and an electron arranged in the center of the vehicle. The acceleration signal output from each satellite sensor is input to the electronic control unit 20.

そして、電子制御ユニット20は、例えば図2に示すように、ΔV算出部21と、ΔV閾値設定部22と、ΔV比較部23と、ΔV算出部24と、ΔV閾値設定部25と、ΔV比較部26と、論理積回路27と、起動信号発生部28を備えて構成されている。 Then, the electronic control unit 20, for example, as shown in FIG. 2, and [Delta] V calculation unit 21, a [Delta] V threshold setting unit 22, and the [Delta] V comparison unit 23, and the [Delta] V P calculation unit 24, and the [Delta] V P threshold setting unit 25, and [Delta] V P comparison unit 26, an aND circuit 27 is configured to include a start signal generating device 28.

ΔV算出部21は、サイドインパクトセンサ(L−SISまたはR−SIS)12から出力される加速度信号GSISを時間について一次積分して、例えば下記数式(1)に示すように、現在時刻tpに対する所定の時間幅nの時間区間(tp−n≦t≦tp)での乗員移動速度変化ΔVを算出し、ΔV比較部23に出力する。
ΔV比較部23は、ΔV算出部21から入力される乗員移動速度変化ΔVが、ΔV閾値設定部22から入力される所定のΔV閾値よりも大きいか否かを判定して、この判定結果を論理積回路27に出力する。つまり、乗員移動速度変化ΔVが所定のΔV閾値よりも大きい場合には真値「1」を、一方、乗員移動速度変化ΔVが所定のΔV閾値未満の場合には偽値「0」を、判定値として論理積回路27に出力する。
The ΔV calculating unit 21 linearly integrates the acceleration signal GSIS output from the side impact sensor (L-SIS or R-SIS) 12 with respect to time, and for example, as shown in the following formula (1), An occupant movement speed change ΔV in a time interval (tp−n ≦ t ≦ tp) with a predetermined time width n is calculated and output to the ΔV comparison unit 23.
The ΔV comparison unit 23 determines whether or not the occupant movement speed change ΔV input from the ΔV calculation unit 21 is larger than a predetermined ΔV threshold input from the ΔV threshold setting unit 22, and the determination result is logically determined. Output to the product circuit 27. That is, the true value “1” is determined when the occupant movement speed change ΔV is larger than the predetermined ΔV threshold, and the false value “0” is determined when the occupant movement speed change ΔV is less than the predetermined ΔV threshold. The value is output to the logical product circuit 27.

Figure 2006088918
Figure 2006088918

ΔV算出部24は、サイドインパクトセンサ(L−SISまたはR−SIS)12から出力される加速度信号GSISの絶対値|GSIS|を時間について一次積分して、例えば下記数式(2)に示すように、現在時刻tpに対する所定の時間幅nの時間区間(tp−n≦t≦tp)での速度変化ΔVを算出し、ΔV比較部26に出力する。
ΔV比較部26は、ΔV算出部26から入力される速度変化ΔVが、ΔV閾値設定部25から入力される所定のΔV閾値よりも大きいか否かを判定して、この判定結果を論理積回路27に出力する。つまり、速度変化ΔVが所定のΔV閾値よりも大きい場合には真値「1」を、一方、速度変化ΔVが所定のΔV閾値未満の場合には偽値「0」を、判定値として論理積回路27に出力する
The ΔV P calculating unit 24 first integrates the absolute value | G SIS | of the acceleration signal G SIS output from the side impact sensor (L-SIS or R-SIS) 12 with respect to time. as shown, to calculate the velocity change [Delta] V P at time interval (tp-n ≦ t ≦ tp ) of predetermined time width n relative to the current time tp, and outputs the [Delta] V P comparison unit 26.
[Delta] V P comparison unit 26, the speed change [Delta] V P which is input from the [Delta] V P calculation unit 26 determines whether or not greater than a predetermined [Delta] V P threshold inputted from the [Delta] V P threshold setting unit 25, the determination The result is output to the logical product circuit 27. That is, the true value "1" when the speed change [Delta] V P is greater than a predetermined [Delta] V P threshold, while the false value "0" when the velocity change [Delta] V P is less than the predetermined [Delta] V P threshold, determination Output to the AND circuit 27 as a value

Figure 2006088918
Figure 2006088918

論理積回路27は、ΔV比較部23から出力される判定値と、ΔV比較部26から出力される判定値との論理積により得られる信号を起動信号発生部28に出力する。
起動信号発生部28は、論理積回路27から出力される信号に応じて、例えばエアバック装置やシートベルト・プリテンショナ等の乗員保護装置を作動させるため指令信号を出力する。
AND circuit 27 outputs a decision value output from the [Delta] V comparator 23, a signal obtained by the logical product of a determination value that is output from the [Delta] V P comparator unit 26 to the start signal generating unit 28.
In response to the signal output from the AND circuit 27, the activation signal generator 28 outputs a command signal for operating an occupant protection device such as an airbag device or a seat belt pretensioner.

本実施の形態による車両用衝突判定装置10は上記構成を備えており、次に、この車両用衝突判定装置10の動作について説明する。   The vehicle collision determination apparatus 10 according to the present embodiment has the above-described configuration. Next, the operation of the vehicle collision determination apparatus 10 will be described.

先ず、図3に示すステップS01においては、上記数式(2)に示すように、加速度信号GSISの絶対値|GSIS|を時間について一次積分して、現在時刻tpに対する所定の時間幅nの時間区間(tp−n≦t≦tp)での速度変化ΔVを算出する。
次に、ステップS02においては、上記数式(1)に示すように、加速度信号GSISを時間について一次積分して、現在時刻tpに対する所定の時間幅nの時間区間(tp−n≦t≦tp)での乗員移動速度変化ΔVを算出する。
次に、ステップS03においては、速度変化ΔVが所定のΔV閾値以上か否かを判定する。
この判定結果が「NO」の場合には、上述したステップS01に戻る。
一方、この判定結果が「YES」の場合には、ステップS04に進む。
First, in step S01 shown in FIG. 3, the absolute value | G SIS | of the acceleration signal G SIS is linearly integrated with respect to time, as shown in the equation (2), and a predetermined time width n with respect to the current time tp is obtained. calculate the velocity change [Delta] V P at time interval (tp-n ≦ t ≦ tp ).
Next, in step S02, as shown in the above formula (1), the acceleration signal GSIS is linearly integrated with respect to time, and a time interval (tp−n ≦ t ≦ tp) with a predetermined time width n with respect to the current time tp. ) To calculate the passenger movement speed change ΔV.
Next, in step S03, it is determined whether or not the speed change ΔV P is equal to or greater than a predetermined ΔV P threshold value.
If this determination is “NO”, the flow returns to step S 01 described above.
On the other hand, if this determination is “YES”, the flow proceeds to step S 04.

次に、ステップS04においては、乗員移動速度変化ΔVが所定のΔV閾値以上か否かを判定する。
この判定結果が「NO」の場合には、上述したステップS01に戻る。
一方、この判定結果が「YES」の場合には、ステップS05に進み、乗員保護装置、例えばエアバック装置の点火作動を要求する指令信号を出力し、一連の処理を終了する。
Next, in step S04, it is determined whether or not the passenger movement speed change ΔV is equal to or greater than a predetermined ΔV threshold.
If this determination is “NO”, the flow returns to step S 01 described above.
On the other hand, if this determination is “YES”, the flow proceeds to step S 05, a command signal requesting ignition operation of the occupant protection device, for example, the air bag device, is output, and the series of processing is ended.

これにより、例えば図4に示すように、車体が大きく変形してエアバックやシートベルト・プリテンショナ等の乗員保護装置の起動を要する衝突では、車両本体に相対的に大きな振動が発生し、加速度信号GSISには振動成分が重畳される。このため、同等の時間区間での加速度信号GSISの一次積分によって算出される乗員移動速度変化ΔVと、加速度信号GSISの絶対値|GSIS|の一次積分によって算出される速度変化ΔVとでは、速度変化ΔVが乗員移動速度変化ΔVよりも振動成分の寄与分だけ大きな値となる。
これに対して、例えば相対的に剛性が高い部分での縁石の跳ね返り(wheel impact)や衝突等のように、加速度信号GSISの積分値は相対的に大きな変化を示すが車両の変形はほとんど起こらず、車両が変形したとしても乗員に向かう変位は小さいため、乗員保護装置を起動させる必要は無いと判断できる衝突では、車両本体には相対的に僅かな振動が発生するだけである。このため、速度変化ΔVと乗員移動速度変化ΔVとは、ほぼ同等の値となる。
As a result, for example, as shown in FIG. 4, in a collision that requires significant activation of an occupant protection device such as an air bag or a seat belt / pretensioner due to a large deformation of the vehicle body, a relatively large vibration is generated in the vehicle body, and the acceleration A vibration component is superimposed on the signal GSIS . Therefore, a change in movement speed of an occupant [Delta] V, which is calculated by the primary integration of the acceleration signal G SIS at equal time intervals, the absolute value of the acceleration signal G SIS | and speed change [Delta] V P calculated by the primary integration | G SIS Then, the speed change ΔV P is larger than the occupant movement speed change ΔV by the contribution of the vibration component.
On the other hand, for example, the integral value of the acceleration signal GSIS shows a relatively large change, such as a curb rebound or collision in a relatively high rigidity portion, but the vehicle is hardly deformed. Even if the vehicle is deformed, the displacement toward the occupant is small, so that a relatively small vibration is generated in the vehicle body in a collision in which it can be determined that there is no need to activate the occupant protection device. For this reason, the speed change ΔV P and the occupant movement speed change ΔV are substantially equal values.

したがって、速度変化ΔVに対する所定のΔV閾値として、車体変形が相対的に小さな衝突つまり衝突時に相対的に小さな振動しか発生しない衝突を排除することができる程度の相対的に大きな閾値を設定しておくことで、乗員保護装置の作動を要する衝突と、乗員保護装置の作動を不要とする衝突とを明確に判別することができる。
これに伴い、乗員移動速度変化ΔVに対する所定のΔV閾値として、乗員保護装置の作動が不要となる衝突を排除することができる程度の相対的に小さな値を設定しておくことで、衝突判定の信頼性および安定性を向上させることができる。
Therefore, as the predetermined [Delta] V P threshold for the speed change [Delta] V P, and sets a relatively large threshold value to the extent that it is possible to eliminate the relatively small vibration only occur collide during vehicle body deformation is relatively small collision that is collisions Thus, it is possible to clearly discriminate between a collision that requires the operation of the occupant protection device and a collision that does not require the operation of the occupant protection device.
Accordingly, as a predetermined ΔV threshold for the occupant movement speed change ΔV, a relatively small value that can eliminate a collision that does not require the operation of the occupant protection device is set. Reliability and stability can be improved.

上述したように、本実施の形態による車両用衝突判定装置10によれば、加速度信号GSISの絶対値|GSIS|の一次積分によって算出される速度変化ΔVに基づく、衝突発生時に振動成分として所定エネルギー以上の相対的に大きなエネルギーが発生しているか否かの判定結果と、加速度信号GSISの一次積分によって算出される乗員移動速度変化ΔVに基づく、所定速度変化以上の相対的に大きな速度変化が発生しているか否かの判定結果とに基づき、乗員保護装置の作動を要する衝突と、乗員保護装置の作動を不要とする衝突とを明確に判別することができ、衝突判定の信頼性および安定性を向上させることができる。 As described above, according to the vehicle collision determination device 10 according to the present embodiment, the vibration component at the time of occurrence of the collision is based on the speed change ΔV P calculated by the primary integration of the acceleration signal G SIS | G SIS |. As a result, it is determined based on the determination result whether or not relatively large energy equal to or greater than the predetermined energy is generated and the occupant movement speed variation ΔV calculated by the primary integration of the acceleration signal GSIS. Based on the determination result of whether or not a speed change has occurred, it is possible to clearly distinguish between a collision that requires operation of the occupant protection device and a collision that does not require operation of the occupant protection device. And stability can be improved.

なお、上述した実施形態においては、単に、乗員移動速度変化ΔVが所定のΔV閾値以上か否かを判定したが、これに限定されず、例えば図5および図6に示す本実施形態の変形例のように、速度変化ΔVが所定のΔV閾値以上か否かの判定結果に応じてΔV閾値を変更してもよい。
この変形例において、電子制御ユニット20は、例えば図5に示すように、ΔV算出部21と、ハイ側ΔV閾値設定部22aと、ロー側ΔV閾値設定部22bと、ΔV比較部23と、ΔV算出部24と、ΔV閾値設定部25と、ΔV比較部26と、起動信号発生部28と、ΔV閾値切替部30とを備えて構成され、上述した実施の形態と異なる主要な点は、論理積回路27が省略されると共にΔV閾値切替部30が備えられ、ΔV比較部26の判定結果がΔV閾値切替部30に入力される点である。
In the above-described embodiment, it is simply determined whether or not the occupant movement speed change ΔV is equal to or greater than a predetermined ΔV threshold. However, the present invention is not limited to this. For example, a modification of the present embodiment shown in FIGS. As described above, the ΔV threshold value may be changed according to the determination result as to whether or not the speed change ΔV P is equal to or greater than a predetermined ΔV P threshold value.
In this modification, the electronic control unit 20 includes, for example, as shown in FIG. 5, a ΔV calculation unit 21, a high side ΔV threshold setting unit 22a, a low side ΔV threshold setting unit 22b, a ΔV comparison unit 23, and a ΔV. The P calculation unit 24, the ΔV P threshold setting unit 25, the ΔV P comparison unit 26, the activation signal generation unit 28, and the ΔV threshold switching unit 30 are configured to be different from the above-described embodiment. is, [Delta] V threshold switching portion 30 is provided with the aND circuit 27 is omitted, is that the determination result of the [Delta] V P comparison section 26 is input to the [Delta] V threshold switching portion 30.

つまり、ΔV閾値切替部30は、速度変化ΔVが所定のΔV閾値よりも大きいか否かの判定結果に応じて、所定のハイ側ΔV閾値(hi)またはロー側ΔV閾値(low)を選択し、ΔV比較部23での判定にて参照される閾値として設定する。
そして、ΔV比較部23は、ΔV算出部21から入力される乗員移動速度変化ΔVが、ΔV閾値切替部30にて選択される所定のハイ側ΔV閾値(hi)またはロー側ΔV閾値(low)よりも大きいか否かを判定して、この判定結果が「YES」の場合には真値「1」の指令信号を、一方、この判定結果が「NO」の場合には偽値「0」の指令信号を起動信号発生部28に出力する。
That, [Delta] V threshold switching portion 30 in response to the greater of determining whether results than the speed change [Delta] V P is given [Delta] V P threshold, a predetermined high side [Delta] V threshold (hi) or low side [Delta] V threshold (low) The threshold value is selected and set as a threshold value that is referred to in the determination by the ΔV comparison unit 23.
Then, the ΔV comparison unit 23 determines whether the occupant movement speed change ΔV input from the ΔV calculation unit 21 is a predetermined high side ΔV threshold (hi) or low side ΔV threshold (low) selected by the ΔV threshold switching unit 30. If the determination result is “YES”, a command signal having a true value “1” is obtained. On the other hand, if the determination result is “NO”, a false value “0” is obtained. Is output to the activation signal generator 28.

以下に、この車両用衝突判定装置10の動作について説明する。
例えば、図6に示すステップS11においては、上記数式(2)に示すように、加速度信号GSISの絶対値|GSIS|を時間について一次積分して、現在時刻tpに対する所定の時間幅nの時間区間(tp−n≦t≦tp)での速度変化ΔVを算出する。
次に、ステップS12においては、上記数式(1)に示すように、加速度信号GSISを時間について一次積分して、現在時刻tpに対する所定の時間幅nの時間区間(tp−n≦t≦tp)での乗員移動速度変化ΔVを算出する。
次に、ステップS13においては、速度変化ΔVが所定のΔV閾値以上か否かを判定する。
この判定結果が「NO」の場合には、後述するステップS16に進む。
一方、この判定結果が「YES」の場合には、ステップS14に進む。
Below, operation | movement of this vehicle collision determination apparatus 10 is demonstrated.
For example, in step S11 shown in FIG. 6, the absolute value | G SIS | of the acceleration signal G SIS is linearly integrated with respect to time, as shown in the above equation (2), and a predetermined time width n with respect to the current time tp is obtained. calculate the velocity change [Delta] V P at time interval (tp-n ≦ t ≦ tp ).
Next, in step S12, as shown in the above equation (1), the acceleration signal GSIS is linearly integrated with respect to time, and a time interval (tp−n ≦ t ≦ tp) with a predetermined time width n with respect to the current time tp. ) To calculate the passenger movement speed change ΔV.
Next, in step S13, it is determined whether or not the speed change ΔV P is equal to or greater than a predetermined ΔV P threshold value.
If this determination is “NO”, the flow proceeds to step S 16 described later.
On the other hand, if the determination is “YES”, the flow proceeds to step S14.

次に、ステップS14においては、乗員移動速度変化ΔVが所定のロー側ΔV閾値(low)以上か否かを判定する。
この判定結果が「NO」の場合には、上述したステップS11に戻る。
一方、この判定結果が「YES」の場合には、ステップS15に進み、乗員保護装置、例えばエアバック装置の点火作動を要求する指令信号を出力し、一連の処理を終了する。
また、ステップS16においては、乗員移動速度変化ΔVが所定のハイ側ΔV閾値(hi)以上か否かを判定する。
この判定結果が「NO」の場合には、上述したステップS11に戻る。
一方、この判定結果が「YES」の場合には、ステップS15に進む。
Next, in step S14, it is determined whether or not the occupant movement speed change ΔV is equal to or greater than a predetermined low-side ΔV threshold (low).
If this determination is “NO”, the flow returns to step S 11 described above.
On the other hand, if this determination is “YES”, the flow proceeds to step S 15, a command signal for requesting the ignition operation of the occupant protection device, for example, the air bag device, is output, and the series of processing ends.
In step S16, it is determined whether or not the occupant movement speed change ΔV is greater than or equal to a predetermined high side ΔV threshold (hi).
If this determination is “NO”, the flow returns to step S 11 described above.
On the other hand, if the determination is “YES”, the flow proceeds to step S15.

この変形例においては、速度変化ΔVが所定のΔV閾値以上か否かの判定結果に応じて、例えば、速度変化ΔVが所定のΔV閾値以上であると判定された場合には、速度変化ΔVが所定のΔV閾値未満であると判定された場合に比べて、乗員移動速度変化ΔVに対する判定閾値として、ハイ側ΔV閾値(hi)よりも小さなロー側ΔV閾値(low)を設定することで、衝突判定の信頼性および安定性を向上させることができる。 In this modification, for example, when it is determined that the speed change ΔV P is equal to or greater than a predetermined ΔV P threshold according to the determination result of whether the speed change ΔV P is equal to or greater than the predetermined ΔV P threshold, Compared to the case where the speed change ΔV P is determined to be less than the predetermined ΔV P threshold, the low side ΔV threshold (low) smaller than the high side ΔV threshold (hi) is set as the determination threshold for the occupant movement speed change ΔV. By setting, the reliability and stability of collision determination can be improved.

なお、上述した実施形態においては、乗員保護装置として、エアバック装置およびシートベルト・プリテンショナを駆動制御するとしたが、これに限定されず、さらに、シートの位置状態や形状等を変更可能なシートデバイスを駆動制御してもよい。   In the above-described embodiment, the air bag device and the seat belt pretensioner are driven and controlled as the occupant protection device. However, the present invention is not limited to this, and the seat position and shape can be changed. The device may be driven and controlled.

本発明の一実施形態に係る車両用衝突判定装置を搭載した車両の構成図である。It is a lineblock diagram of vehicles carrying a collision judging device for vehicles concerning one embodiment of the present invention. 本発明の一実施形態に係る車両用衝突判定装置の構成図である。It is a lineblock diagram of the collision judging device for vehicles concerning one embodiment of the present invention. 車両用衝突判定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the collision determination apparatus for vehicles. 乗員移動速度変化ΔVおよび速度変化ΔVの時間変化の一例を示す図である。Is a diagram illustrating an example of a time variation of the change in movement speed of an occupant [Delta] V and a speed change [Delta] V P. 本実施形態の変形例に係る車両用衝突判定装置の構成図である。It is a block diagram of the collision determination apparatus for vehicles which concerns on the modification of this embodiment. 本実施形態の変形例に係る車両用衝突判定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the collision determination apparatus for vehicles which concerns on the modification of this embodiment.

符号の説明Explanation of symbols

10 車両用衝突判定装置
12 サイドインパクトセンサ(加速度検出手段)
21 ΔV算出部(速度変化算出手段)
23 ΔV比較部(第2衝突判定手段)
24 ΔV算出部(加速度積分値算出手段)
26 ΔV比較部(第1衝突判定手段)
28 起動信号発生部(制御信号発生手段)
30 ΔV閾値切替部(第2衝突判定閾値設定手段)

10 Vehicle collision determination device 12 Side impact sensor (acceleration detection means)
21 ΔV calculation unit (speed change calculation means)
23 ΔV comparison unit (second collision determination means)
24 ΔV P calculation unit (acceleration integral value calculation means)
26 [Delta] V P comparison section (first collision determining means)
28 Start signal generator (control signal generator)
30 ΔV threshold switching unit (second collision determination threshold setting means)

Claims (2)

車両に作用する加速度を検出する加速度検出手段と、
前記加速度検出手段にて検出された加速度信号を一次積分して速度変化を算出する速度変化算出手段と、
前記加速度検出手段にて検出された加速度信号の絶対値を一次積分して加速度積分値を算出する加速度積分値算出手段と、
前記加速度積分値算出手段にて算出された前記加速度積分値が所定の第1衝突判定閾値を超えたか否かを判定する第1衝突判定手段と、
前記速度変化算出手段にて算出された前記速度変化が所定の第2衝突判定閾値を超えたか否かを判定する第2衝突判定手段と、
前記第1衝突判定手段にて前記加速度積分値が前記第1衝突判定閾値を超えたと判定され、かつ、前記第2衝突判定手段にて前記速度変化が前記第2衝突判定閾値を超えたと判定された場合に、乗員保護装置の作動を指示する制御信号を発生する制御信号発生手段と
を備えることを特徴とする車両用衝突判定装置。
Acceleration detecting means for detecting acceleration acting on the vehicle;
A speed change calculating means for calculating a speed change by first integrating the acceleration signal detected by the acceleration detecting means;
Acceleration integrated value calculating means for calculating an integral value of acceleration by linearly integrating the absolute value of the acceleration signal detected by the acceleration detecting means;
First collision determination means for determining whether or not the acceleration integral value calculated by the acceleration integral value calculation means exceeds a predetermined first collision determination threshold;
Second collision determination means for determining whether or not the speed change calculated by the speed change calculation means exceeds a predetermined second collision determination threshold;
The first collision determination means determines that the integrated acceleration value has exceeded the first collision determination threshold, and the second collision determination means determines that the speed change has exceeded the second collision determination threshold. And a control signal generating means for generating a control signal for instructing the operation of the occupant protection device.
車両に作用する加速度を検出する加速度検出手段と、
前記加速度検出手段にて検出された加速度信号を一次積分して速度変化を算出する速度変化算出手段と、
前記加速度検出手段にて検出された加速度信号の絶対値を一次積分して加速度積分値を算出する加速度積分値算出手段と、
前記加速度積分値算出手段にて算出された前記加速度積分値が所定の第1衝突判定閾値を超えたか否かを判定する第1衝突判定手段と、
前記第1衝突判定手段での判定結果に応じて第2衝突判定閾値を設定する第2衝突判定閾値設定手段と、
前記速度変化算出手段にて算出された前記速度変化が前記第2衝突判定閾値設定手段にて設定された前記第2衝突判定閾値を超えたか否かを判定する第2衝突判定手段と、
前記第2衝突判定手段にて前記速度変化が前記第2衝突判定閾値を超えたと判定された場合に、乗員保護装置の作動を指示する制御信号を発生する制御信号発生手段と
を備えることを特徴とする車両用衝突判定装置。

Acceleration detecting means for detecting acceleration acting on the vehicle;
A speed change calculating means for calculating a speed change by first integrating the acceleration signal detected by the acceleration detecting means;
Acceleration integrated value calculating means for calculating an integral value of acceleration by linearly integrating the absolute value of the acceleration signal detected by the acceleration detecting means;
First collision determination means for determining whether or not the acceleration integral value calculated by the acceleration integral value calculation means exceeds a predetermined first collision determination threshold;
A second collision determination threshold value setting means for setting a second collision determination threshold value according to the determination result in the first collision determination means;
Second collision determination means for determining whether or not the speed change calculated by the speed change calculation means exceeds the second collision determination threshold set by the second collision determination threshold setting means;
Control signal generating means for generating a control signal for instructing the operation of the occupant protection device when the second collision determination means determines that the speed change exceeds the second collision determination threshold value. A vehicle collision determination device.

JP2004277698A 2004-09-24 2004-09-24 Collision determination apparatus for vehicle Pending JP2006088918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277698A JP2006088918A (en) 2004-09-24 2004-09-24 Collision determination apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277698A JP2006088918A (en) 2004-09-24 2004-09-24 Collision determination apparatus for vehicle

Publications (1)

Publication Number Publication Date
JP2006088918A true JP2006088918A (en) 2006-04-06

Family

ID=36230288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277698A Pending JP2006088918A (en) 2004-09-24 2004-09-24 Collision determination apparatus for vehicle

Country Status (1)

Country Link
JP (1) JP2006088918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214689A (en) * 2008-03-10 2009-09-24 Keihin Corp Vehicle side collision determining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214689A (en) * 2008-03-10 2009-09-24 Keihin Corp Vehicle side collision determining device

Similar Documents

Publication Publication Date Title
EP1550029B1 (en) Vehicle occupant safety system
US10131307B2 (en) Activation control device for occupant protection device
EP1761412B1 (en) Arrangement for triggering a vehicle safety device
EP1640219B1 (en) Collision determining apparatus for a vehicle
EP1642782B1 (en) Collision determinig apparatus for a vehicle
US7896392B2 (en) Airbag deployment controller and passenger protection device including the same
JP4720918B2 (en) Occupant protection device starter
JPH061199A (en) Air bag controller
US7321817B2 (en) Automobile frontal collision location detection for coordinated activation of safety systems
KR100749172B1 (en) Activation control apparatus for occupant protection apparatus
JP2006088918A (en) Collision determination apparatus for vehicle
JP4704480B2 (en) Vehicle collision determination device
JP4141999B2 (en) Vehicle collision determination device
KR20220087835A (en) Air bag deployment apparatus and method
JP4098295B2 (en) Vehicle collision determination device
JP4602038B2 (en) Vehicle collision determination device
JP2006088913A (en) Collision judging device for vehicle
JP2006088914A (en) Collision judging device for vehicle
JP4593330B2 (en) Airbag deployment control device
JPH0585298A (en) Action control device for occupant protecting apparatus
KR20170008380A (en) Method for protecting vehicle passenger
JP2001277999A (en) Vehicular collision judging device
JP5162415B2 (en) Inclination detection device and occupant protection system
KR20060033824A (en) Air-bag&#39;s control method
JP2001278000A (en) Vehicular collision judging device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212