JP2006083061A - Apparatus for manufacturing nano-material - Google Patents

Apparatus for manufacturing nano-material Download PDF

Info

Publication number
JP2006083061A
JP2006083061A JP2005311905A JP2005311905A JP2006083061A JP 2006083061 A JP2006083061 A JP 2006083061A JP 2005311905 A JP2005311905 A JP 2005311905A JP 2005311905 A JP2005311905 A JP 2005311905A JP 2006083061 A JP2006083061 A JP 2006083061A
Authority
JP
Japan
Prior art keywords
nano
steam
pressure vessel
raw material
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311905A
Other languages
Japanese (ja)
Inventor
Shigehiro Haruta
成裕 春田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHC CARBON KK
Original Assignee
OHC CARBON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHC CARBON KK filed Critical OHC CARBON KK
Priority to JP2005311905A priority Critical patent/JP2006083061A/en
Publication of JP2006083061A publication Critical patent/JP2006083061A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nano-material manufacturing apparatus for efficiently manufacturing a high added value carbon black or nano-material. <P>SOLUTION: The apparatus for manufacturing the nano-material is provided with steam supply valves 20 and 21 for supplying pressurized steam to a pressure vessel 6 in which a raw material to be a carbon source is arranged and an evacuation valve 15 for evacuating the inner pressure of the pressure vessel 6 and the nano-material is manufactured by heating the raw material with steam supplied from the steam supply valves 20 and 21, operating the evacuation valve 15 to induce steam explosion with the evacuation and repeating the steam explosion a plurality of times to form the nano-material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蒸気爆発を利用して、容易に高効率で高品質なナノ物質を製造することができるナノ物質の製造装置に関する。  The present invention relates to an apparatus for producing a nano material that can easily produce a high-quality and high-quality nano material using vapor explosion.

従来より、フラーレンやカーボン等ナノ物質を製造する方法としては、レーザ蒸発法と、アーク放電法と、CVD(化学的気相成長)法の三種が知られている。  Conventionally, three types of methods for producing nanomaterials such as fullerene and carbon are known: a laser evaporation method, an arc discharge method, and a CVD (chemical vapor deposition) method.

前記レーザ蒸発法は、炭酸ガスレーザやエキシマレーザを用い、電気炉中の1200℃に加熱したグラファイトにレーザビームを当てて蒸発させ、炉内壁にフラーレンやナノチューブが得られ、触媒金属を介在させると金属内包フラーレンが得られる。  The laser evaporation method uses a carbon dioxide laser or an excimer laser to evaporate the graphite heated in an electric furnace at 1200 ° C. by applying a laser beam to obtain fullerenes or nanotubes on the inner wall of the furnace. An endohedral fullerene is obtained.

前記アーク放電法は、グラファイト製電極間でアーク放電を発生させることにより、前記電極から炭素原子を蒸発させるものである。同様に、金属触媒の有無に応じて、フラーレンやナノチューブ、また金属内包フラーレン等が、炉内壁に付着して生成する。  The arc discharge method evaporates carbon atoms from the electrodes by generating an arc discharge between graphite electrodes. Similarly, fullerenes, nanotubes, metal-encapsulated fullerenes, and the like adhere to the inner wall of the furnace depending on the presence or absence of the metal catalyst.

前記CVD法は、触媒金属の微粒子を炭化水素ガスに混入し、これを600℃〜1000℃の電気炉中に導入し、炭素原子の集結によってナノチューブを得るというものである。  In the CVD method, fine particles of catalytic metal are mixed in a hydrocarbon gas and introduced into an electric furnace at 600 ° C. to 1000 ° C. to obtain nanotubes by concentrating carbon atoms.

関連する技術情報は、別冊日経サイエンス138号22〜27P(日本経済新聞社2002年10月9日発行)に示されている。  Related technical information is shown in the separate volume Nikkei Science No. 138 22-27P (issued October 9, 2002 by Nikkei Inc.).

特開平1−18455号公報(カーボン粉の粉砕方法)には、密閉容器中にカーボン粉を入れ、気体の存在下で加圧状態にし、これを瞬時に圧開放することにより、平均粒径1μm以下に粉砕できるカーボン粉の粉砕方法が示されている。その実施例としては、平均粒径100μmの人造黒煙粉末を、高圧によって破裂する膜を備えたオートクレーブに入れ、カーボン粉に対して20wt%の水を加えて密封して、210℃まで加温し、前記破裂膜の破裂によって圧を抜き、平均粒径0.8μmのカーボン粉を得た例が示されている。  In JP-A-1-18455 (carbon powder pulverization method), an average particle size of 1 μm is obtained by putting carbon powder in a sealed container, putting it in a pressurized state in the presence of gas, and instantaneously releasing the pressure. The following is a method for crushing carbon powder that can be crushed. As an example, artificial black smoke powder having an average particle size of 100 μm is placed in an autoclave having a film that bursts under high pressure, and 20 wt% of water is added to the carbon powder, sealed, and heated to 210 ° C. In this example, the pressure is released by rupturing the ruptured membrane to obtain carbon powder having an average particle size of 0.8 μm.

この特開平1−18455号公報記載のカーボン粉の粉砕方法は、カーボン粉を効率良く微粉砕できるが、生成されるカーボン粉の回収が面倒で、実験的粉砕方法に過ぎない。The method of pulverizing carbon powder described in JP-A-1-18455 can efficiently pulverize carbon powder, but is troublesome in recovering the generated carbon powder and is merely an experimental pulverization method.

特開昭55−65261号公報(廃タイヤ利用カーボンブラックの製造方法)には、回転部材を備えた燃焼室中で廃タイヤを不完全燃焼させて粉状炭化物とし、この粉状炭化物を熱分解して完全炭化し、さらにこれを粉砕機で粉砕し、最後にマグネットセパレータで金属粉を取り除きカーボンブラックを作る製造方法が示されている。  Japanese Patent Application Laid-Open No. 55-65261 (method for producing carbon black using waste tires) discloses incomplete combustion of waste tires in a combustion chamber equipped with a rotating member to form powdered carbides, which are pyrolyzed. In the production method, carbon black is completely carbonized, and further pulverized by a pulverizer, and finally the metal powder is removed by a magnetic separator to produce carbon black.

特開昭55−6526号公報記載の廃タイヤ利用カーボンブラックでは、廃タイヤから効率良くカーボンブラックを製造できることが示されているが、ゴムや樹脂に配合可能のカーボンブラックの製法の域は出ていない。
日本経済新聞社2002年10月9日発行、別冊日経サイエンス138号22〜27P 特開平1−18455号、第1頁、第2図 特開昭55−6526号、第1頁、第1図
It has been shown that carbon black used in waste tires described in Japanese Patent Application Laid-Open No. 55-6526 can be produced efficiently from waste tires, but there is a range of methods for producing carbon black that can be blended with rubber and resin. Absent.
Nikkei Inc., issued on October 9, 2002, separate volume Nikkei Science 138 22-27P JP-A-1-18455, page 1, FIG. JP 55-6526 A, page 1, Fig. 1

従来の前記ナノ物質の製造方法は、どれも実験室の段階で量産を考慮したものではない。
そこで、本発明は、付加価値の高いカーボンブラック又は及びナノ物質を効率良く製造するナノ物質の製造装置を提供することを課題とする。
None of the conventional methods for producing nanomaterials consider mass production at the laboratory stage.
Then, this invention makes it a subject to provide the manufacturing apparatus of the nanomaterial which manufactures carbon black with high added value or nanomaterial efficiently.

上記課題を解決するための本発明のナノ物質の製造装置は、請求項1に記載の構成では、炭素源となる原料を内部に配置する圧力容器6内に加圧蒸気を供給する蒸気供給弁20,21と圧力容器6の内圧を減圧する減圧排気弁15を設け、前記蒸気供給弁20,21から供給される蒸気で原料を加熱し、前記減圧排気弁15を作動して減圧に伴う蒸気爆発を誘発し、この蒸気爆発を複数回にわたって繰り返し、ナノ物質を生成するナノ物質の製造装置とした。  The apparatus for producing a nanomaterial of the present invention for solving the above-described problems is the steam supply valve for supplying pressurized steam into the pressure vessel 6 in which a raw material to be a carbon source is arranged. 20 and 21 and a pressure reducing exhaust valve 15 for reducing the internal pressure of the pressure vessel 6 are provided, the raw material is heated with the steam supplied from the steam supply valves 20 and 21, and the pressure reducing exhaust valve 15 is operated to reduce the steam accompanying the pressure reduction. An apparatus for producing a nano material that induces an explosion and repeats this vapor explosion several times to generate a nano material is obtained.

請求項2に記載の構成では、圧力容器6に減圧排気弁15を介して接続管4で接続し排気を受け入れてナノ物質を捕集する捕集装置3を設けてナノ物質の製造装置とした。  In the configuration of claim 2, a nanomaterial manufacturing apparatus is provided by providing a collection device 3 that is connected to the pressure vessel 6 via the pressure reducing exhaust valve 15 through the connection pipe 4 and receives exhaust gas to collect the nanomaterial. .

請求項3に記載の構成では、前記捕集装置3内で、接続管4の排気出口51に面してナノ捕集材29,30を設けてナノ物質の製造装置とした。  In the configuration of claim 3, the nano-collecting device 29, 30 is provided in the collection device 3 so as to face the exhaust outlet 51 of the connection pipe 4 to form a nano-material production device.

請求項4に記載の構成では、前記圧力容器6の内部には、原料配置位置から減圧排気弁15にかけて、大径粒子の飛散を防止する直接飛散防止部材10,11を配置してナノ物質の製造装置とした。  In the configuration according to claim 4, direct scattering prevention members 10 and 11 for preventing scattering of large-diameter particles are disposed inside the pressure vessel 6 from the raw material arrangement position to the decompression exhaust valve 15, thereby A manufacturing apparatus was used.

請求項5に記載の構成では、前記捕集装置3内のナノ捕集材29,30には、片側表面に多数の平板部材32を立設してなる多孔質の板体31で構成され、その裏面を前記捕集装置3内で前記接続管4の排気出口51側に向けて配置してナノ物質の製造装置とした。  In the configuration according to claim 5, the nano-collecting materials 29 and 30 in the collecting device 3 are configured by a porous plate body 31 in which a large number of flat plate members 32 are erected on one surface. The back surface thereof was arranged in the collection device 3 toward the exhaust outlet 51 side of the connection pipe 4 to obtain a nanomaterial production apparatus.

請求項6に記載の構成では、前記捕集材29,30は各種形態で複数配置され、各補修材29,30に製品分類が表記されるようにしてナノ物質の製造装置とした。  In the configuration according to claim 6, a plurality of the collecting materials 29 and 30 are arranged in various forms, and the product classification is indicated on each of the repair materials 29 and 30, thereby forming the nanomaterial manufacturing apparatus.

本発明の請求項1に記載の構成では、圧力容器6内への加圧蒸気の供給を蒸気供給弁20,21によって行うので、加熱と加圧が効率良く、素早く蒸気爆発に適した条件に出来て、減圧排気弁15を作動して減圧することで蒸気爆発を誘発しているので、蒸気爆発を複数回繰り返すことが容易に出来て、ナノ物質の生成割合を高くすることになる。  In the configuration according to the first aspect of the present invention, the supply of the pressurized steam into the pressure vessel 6 is performed by the steam supply valves 20 and 21, so that heating and pressurization are efficient and the conditions are suitable for quick steam explosion. Since the steam explosion is induced by operating the decompression exhaust valve 15 to reduce the pressure, the steam explosion can be easily repeated a plurality of times, and the generation rate of the nanomaterial is increased.

請求項2の構成では、減圧排気弁15の減圧操作に伴って排気と共に流出するナノ物質を捕集装置3で捕集でき、ナノ物質の回収を確実に行える。  In the configuration of claim 2, the nanomaterial flowing out together with the exhaust gas in accordance with the decompression operation of the decompression exhaust valve 15 can be collected by the collection device 3, and the nanomaterial can be reliably recovered.

請求項3の構成では、捕集装置3に排気と共に流入するナノ物質をナノ捕集材29,30で捕集できる。  In the configuration of the third aspect, the nano material flowing into the collection device 3 together with the exhaust gas can be collected by the nano collection materials 29 and 30.

請求項4の構成では、直接飛散防止部材10,11でナノ物質になってない大径原料粒子が排気と共に流出するのを防いで、残った大径原料粒子が度重なる蒸気爆発に曝されることで、ナノ物質化が進行する。  In the configuration of claim 4, the large-diameter raw material particles that are not nanomaterials are prevented from flowing out together with the exhaust by the direct scattering prevention members 10 and 11, and the remaining large-diameter raw material particles are exposed to repeated vapor explosions. As a result, nanomaterialization progresses.

請求項5の構成では、多孔質の板体31を通過した微細なナノ物質が平板部材32に捕集される。  In the configuration of claim 5, the fine nanomaterial that has passed through the porous plate 31 is collected by the flat plate member 32.

請求項6の構成では、ナノ捕集材29,30を見れば製品の分類が判別でき、製品化の回収が容易である。  In the configuration of claim 6, the classification of the product can be determined by looking at the nano-collecting materials 29 and 30, and the collection of the product is easy.

以下、添付図面を参照して本発明を実施するための最良の形態を説明する。図1は、本発明の一実施形態に係るナノ物質製造装置の断面説明図である。  The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional explanatory view of a nanomaterial manufacturing apparatus according to an embodiment of the present invention.

本発明の一実施形態に係るナノ物質製造装置1は、爆発装置2と、別置き補習装置3と、両者を結合する接続管4から成る。  A nanomaterial manufacturing apparatus 1 according to an embodiment of the present invention includes an explosive device 2, a separate supplementary training device 3, and a connecting pipe 4 that couples both.

爆発装置2は、フランジ5を境として開閉可能な圧力容器6(6Aは圧力容器本体、6Bは圧力容器蓋)と、これに接続される蒸気管7と、圧力容器本体6Aの内部に備えた2段の棚8,9とを有し、棚8,9には夫々円板状の中蓋10,11が配置されている。中蓋10,11は、例えば多数の孔の明いたパンチングメタルで構成されるが、これに限定されない。直接飛散防止部材の役目と、粗粒製品捕集材の役目を為す。  The explosion device 2 includes a pressure vessel 6 (6A is a pressure vessel main body, 6B is a pressure vessel lid) that can be opened and closed with a flange 5 as a boundary, a steam pipe 7 connected to the pressure vessel 6 and an inside of the pressure vessel main body 6A. Two shelves 8 and 9 are provided, and disk-shaped inner lids 10 and 11 are arranged on the shelves 8 and 9, respectively. The inner lids 10 and 11 are made of, for example, punched metal having a large number of holes, but are not limited thereto. It plays the role of a direct scattering prevention member and a coarse product collector.

さらに、前記圧力容器蓋6Bには、温度センサ12と、安全弁13と、圧力計14等の所要計器の他、減圧排気弁15と、水管16及び水弁17が設けられている。容器全体は200℃前後の高温になるので、全体を箱型保温箱18に収納してある。  Further, the pressure vessel lid 6B is provided with a temperature sensor 12, a safety valve 13, a required gauge such as a pressure gauge 14, a pressure reducing exhaust valve 15, a water pipe 16 and a water valve 17. Since the entire container becomes a high temperature of about 200 ° C., the entire container is stored in the box-type heat insulation box 18.

前記減圧排気弁15には、操作レバー19が設けられ、この操作レバー19をひくことにより、内部ガスを外部に接続された接続管4に排気することができる。  The decompression exhaust valve 15 is provided with an operation lever 19. By pulling the operation lever 19, the internal gas can be exhausted to the connection pipe 4 connected to the outside.

前記蒸気管7には、直列に2つの弁20,21が設けられ、管端には図示しない蒸気ボイラの蒸気出力口が接続されている。2つの弁20,21を用いるのは安全、安定のためである。両弁20,21の中間には炭酸ガス導入用のガス管22が設けられ、このガス管には、ガス弁23が設けられている。従って、ガス弁23を開き、蒸気弁20を開くことにより、炭酸ガスを圧力容器本体6A内に送ることができる。蒸気弁20は、高精度のものを用いるので、蒸気弁21又はガス弁23の漏れがあっても、圧力容器6Aの内部を撹乱するようなことはない。  The steam pipe 7 is provided with two valves 20 and 21 in series, and a steam output port of a steam boiler (not shown) is connected to the pipe end. The use of the two valves 20 and 21 is for safety and stability. A gas pipe 22 for introducing carbon dioxide gas is provided between the valves 20 and 21, and a gas valve 23 is provided in the gas pipe. Therefore, by opening the gas valve 23 and opening the steam valve 20, the carbon dioxide gas can be sent into the pressure vessel body 6A. Since the steam valve 20 is a highly accurate one, even if the steam valve 21 or the gas valve 23 leaks, the inside of the pressure vessel 6A is not disturbed.

前記接続管4の管端は、ナノ捕集装置3に接続されている。捕集装置3は、ドラム型の捕集容器24の上部に蓋25を備えて成り、蓋25には安全弁兼空気抜き弁26が設けられている。捕集容器24の内部には、接続管4の出口51の上下に一対の棚27,28が設けられ、各棚27,28には、捕集材29,30が設けられている。  The tube end of the connection tube 4 is connected to the nano collection device 3. The collection device 3 includes a lid 25 on an upper portion of a drum-type collection container 24, and a safety valve / air vent valve 26 is provided on the lid 25. Inside the collection container 24, a pair of shelves 27, 28 are provided above and below the outlet 51 of the connection pipe 4, and collection materials 29, 30 are provided on the shelves 27, 28.

図2に詳細に示すように、ナノ捕集材30は、多孔質の円板31の一表面に略等間隔で矩形の平板32を立設したものである。ナノ捕集材29も同様であり、板32を立設していない面を出口51側として、上下対象的に配置される。円板31を多孔質とするのは、ナノ物質の原料粒子のみを表面側へ通過させ、粗大材を裏面側で受け止めるためで、多孔質の各穴径は1mm以下とされる。この穴はレーザ加工機等で穿設できる。穴ピッチはランダムで良い。  As shown in detail in FIG. 2, the nano-collecting material 30 is obtained by erecting rectangular flat plates 32 at substantially equal intervals on one surface of a porous disc 31. The same applies to the nano-collecting material 29, and the surface on which the plate 32 is not erected is the outlet 51 side and is arranged in a vertical manner. The reason why the disk 31 is porous is to allow only the nanomaterial raw material particles to pass to the front side and to receive the coarse material on the back side, and the diameter of each porous hole is 1 mm or less. This hole can be drilled with a laser processing machine or the like. The hole pitch may be random.

以上の構成のナノ物質製造装置1は、圧力容器6(6A,6B)内にナノ原料33を配置した上で、以下の手順で作動される。  The nanomaterial manufacturing apparatus 1 having the above configuration is operated in the following procedure after the nano raw material 33 is disposed in the pressure vessel 6 (6A, 6B).

まず、ナノ原料33の水分調整を水管6より水を出して調整できるが、予め調節されているので、ほとんどその必要はない。次に、減圧排気弁15のレバー19を操作してその弁を解き、空気抜き弁26を開いた状態で、圧力容器6及びナノ捕集装置3の空気抜きを行う。置換は炭酸ガス及び蒸気で行うことができる。蒸気のみで行う場合は、蒸気弁20,21を開き、温度180℃、圧力1MPSを基準に行う。予め炭酸ガス置換を行っておく方法では、ナノ捕集装置3まで蒸気を送らなくても良い。  First, the moisture of the nano raw material 33 can be adjusted by removing water from the water pipe 6, but since it is adjusted in advance, there is almost no need for it. Next, the lever 19 of the decompression exhaust valve 15 is operated to release the valve, and the pressure vessel 6 and the nano collection device 3 are vented while the air vent valve 26 is opened. The replacement can be performed with carbon dioxide and steam. When using only steam, the steam valves 20 and 21 are opened and the temperature is 180 ° C. and the pressure is 1 MPS. In the method of performing carbon dioxide gas replacement in advance, it is not necessary to send vapor to the nano-collecting device 3.

これらのエアー抜き操作において、炭酸ガス置換をどのように行うか、次いで蒸気置換をどのように行うかは、細かなノウハウ技術が必要である。要するに、このようにしてエアー抜きまでが行われる。エアー抜きまでが完了すると、温度及び圧力の平衡を確認し、爆発手順に移る。この時点で、圧力容器6内のガス中に、体積比で炭酸ガス3〜10%を含める。これにより、爆発が調子よくなる。  In these air venting operations, detailed know-how technology is required for how carbon dioxide replacement is performed and then how steam replacement is performed. In short, the air is vented in this way. When the air venting is complete, check the temperature and pressure equilibrium and proceed to the explosion procedure. At this time, 3 to 10% of carbon dioxide gas is included in the gas in the pressure vessel 6 by volume ratio. This improves the explosion.

爆発させる時点で、捕集装置3の圧力は低圧(大気圧)とする。空気抜き弁26の圧力を大気圧又はそれより少し上の圧力に設定しておくと、レギュレータの役目を果たす。爆発は手動で行う。操作者がレバー19を引くと、圧力容器6の圧力が抜ける。  At the time of explosion, the pressure of the collection device 3 is set to a low pressure (atmospheric pressure). If the pressure of the air vent valve 26 is set to atmospheric pressure or a pressure slightly higher than that, it functions as a regulator. Explosion is done manually. When the operator pulls the lever 19, the pressure in the pressure vessel 6 is released.

しばらくすると、圧力容器6内でポンとはじける音がする。これが爆発である。爆発が終了すると少し時間が経ってからレバーから手を離し、蒸気弁20,21を開き、再度圧力調整する。このとき、炭酸ガスも少量導入し、炭酸ガス量3〜10%を保つ。  After a while, there will be a popping sound in the pressure vessel 6. This is an explosion. When the explosion ends, a little time passes and the lever is released, the steam valves 20 and 21 are opened, and the pressure is adjusted again. At this time, a small amount of carbon dioxide gas is also introduced, and the amount of carbon dioxide gas is maintained at 3 to 10%.

爆発は、同一ナノ原料33に対し数十分の間隔で数回、例えば5回行うことができる。その度にナノ原料33は減少し、ついには爆発せず、爆発音が聞こえなくなる。この時点で爆発作業を終了する。  The explosion can be performed several times, for example, five times at a tens of minutes with respect to the same nano raw material 33. Each time the nano raw material 33 decreases, it does not explode at all, and the explosion sound cannot be heard. At this point, the explosion work ends.

これら爆発作業の工程に伴って、圧力容器6中のナノ原料は爆発し、粒子混じりの気流33Aを発生し、この気流33Aは、中蓋10,11、減圧排気弁15、接続管4、捕集材30を通り、順次性質の異なる気流33B,33C,33D,33E,33F,33Gとなって捕集装置3内に拡散される。気流33Aには、爆発による大径粒子が多量に含まれている。33B,33Cでは、大径粒子が除かれている。気流33D,33Eでは、直径1μm以下となり、原子、分子サイズの粒子が含まれる。この気流を原子粒とも呼ぶ。原子粒33Eは、ナノ捕集材30の多孔質部分を通過して平板32の表面に付着してフラーレンやナノ物質を成長させる。  Along with these explosion work steps, the nano raw material in the pressure vessel 6 explodes and generates an air current 33A mixed with particles, and this air current 33A is generated by the inner lids 10 and 11, the pressure reducing exhaust valve 15, the connecting pipe 4, the trapping air. The airflow 33B, 33C, 33D, 33E, 33F, and 33G having different properties sequentially passes through the collecting member 30 and is diffused into the collecting device 3. The air flow 33A contains a large amount of large-diameter particles due to explosion. In 33B and 33C, large-diameter particles are removed. In the air currents 33D and 33E, the diameter is 1 μm or less, and particles of atomic and molecular sizes are included. This air flow is also called atomic particles. The atomic particles 33E pass through the porous portion of the nano-catalyst 30 and adhere to the surface of the flat plate 32 to grow fullerene and nanomaterials.

爆発及び捕集工程の終了後、爆発装置2及びナノ捕集装置3の蓋を開き、ナノ原料33を入れ換えると共に、ナノ捕集材29,30からナノ物質を捕集する。採集されたナノ物質は、捕集材毎に性質が異なるので次表の如く捕集材毎に分類して製品とする。
表中なの花は登録商標である。中蓋10,11に付着したカーボンも微粉砕されているので、これにナノ物質を付着させて取出し、次のナノ捕集材29,30をセットすることにより、爆発手順を続けて行うことができる。

Figure 2006083061
After completion of the explosion and collection process, the lids of the explosion device 2 and the nano collection device 3 are opened, the nano raw material 33 is replaced, and nano materials are collected from the nano collection materials 29 and 30. Since the collected nanomaterials have different properties for each collection material, they are classified into collection materials as shown in the following table.
The flowers in the table are registered trademarks. Since the carbon adhering to the inner lids 10 and 11 is also finely pulverized, it is possible to carry out the explosion procedure by setting the next nano-collecting materials 29 and 30 by attaching the nano-material to the carbon and taking it out. it can.
Figure 2006083061

爆発装置2の圧力容器蓋6Bは、横型に変更することもできる。中蓋10,11は水平配置でなく斜め配置でも良い。中蓋に加えて整流板を追加し、減圧排気弁15に爆発粒子が直接突進するのを防止することもできる。接続管4を分岐し、分岐管34,35を介し、2重、3重のナノ捕集装置3を組み合わせることもできる。さらにナノ捕集装置3のナノ捕集材29,30を各種変形することもでき、各捕集材毎に分類数を増すことができ、これら捕集方式ごとに種類の異なるナノ物質を製造することができる。  The pressure vessel lid 6B of the explosion device 2 can be changed to a horizontal type. The inner lids 10 and 11 may be arranged obliquely rather than horizontally. In addition to the inner lid, a rectifying plate may be added to prevent explosive particles from rushing directly to the vacuum exhaust valve 15. The connecting pipe 4 can be branched, and the double and triple nano collection devices 3 can be combined via the branch pipes 34 and 35. Further, the nano-collecting materials 29 and 30 of the nano-collecting device 3 can be variously modified, the number of classifications can be increased for each collecting material, and different types of nanomaterials are produced for each of these collecting methods. be able to.

次に、本発明に利用するナノ原料の製造方法を図3及び図4を参照して以下に説明する。これらの図中で、矢印Aは、工程の流れを示す。  Next, the manufacturing method of the nano raw material utilized for this invention is demonstrated below with reference to FIG.3 and FIG.4. In these drawings, an arrow A indicates a process flow.

粗原料は、廃タイヤ、中古ベルト、廃棄ゴム等の加硫ゴムである。前記粗原料としては、これら石油製品の廃棄物に限定されないが、石油製品の廃棄物を利用し得ることが1つの利点であって、環境保護の観点からも有意義である。前記粗原料は、乾留槽36を備えた真空乾留炉37に投入される。この真空乾留炉37では、前記粗原料を400℃程度で安全器38、熱交換器39を介して乾留槽36で真空熱分解させ、油回収器40で油類を除き、ワイヤー等の金属片と共に乾留物を回収する。残留カーボンは、60%に達する。副産物の油は良質なものであって30%程度である。残り10%は、金属である。副産物の油の回収率を30%に留め、残留カーボン量を多くするのが1つの特徴である。  Crude raw materials are vulcanized rubbers such as waste tires, used belts, and waste rubber. The raw material is not limited to these petroleum product wastes, but it is one advantage that the petroleum product wastes can be used, which is also meaningful from the viewpoint of environmental protection. The raw material is put into a vacuum dry distillation furnace 37 equipped with a dry distillation tank 36. In this vacuum dry distillation furnace 37, the crude material is subjected to vacuum pyrolysis in a dry distillation tank 36 through a safety device 38 and a heat exchanger 39 at about 400 ° C., oil is removed by an oil recovery device 40, and a metal piece such as a wire. At the same time, the distillate is recovered. The residual carbon reaches 60%. By-product oil is of good quality and is about 30%. The remaining 10% is metal. One characteristic is that the recovery rate of by-product oil is kept at 30% and the amount of residual carbon is increased.

次に、乾留炉37で製造したカーボンブラック41は、塊状の為、粗破砕機42で粗破砕を行い、マグネットロール43でワイヤー片を除去する。  Next, since the carbon black 41 manufactured in the dry distillation furnace 37 is in a lump shape, the carbon black 41 is roughly crushed by the coarse crusher 42 and the wire pieces are removed by the magnet roll 43.

金属片を除去したカーボンブラック44は、2重式ロータリーキルン45に投入し、熱変化を与える。この結果、不要な物質が酸化除去されて、前記カーボンブラック44は、それ以上の熱変化が生じにくいものへと変化する。ゴムの臭気等の不要物質は、除かれる。  The carbon black 44 from which the metal pieces have been removed is put into a double rotary kiln 45 to give a heat change. As a result, unnecessary substances are oxidized and removed, and the carbon black 44 is changed to a material in which further heat change does not easily occur. Unnecessary substances such as rubber odor are excluded.

前記ロータリーキルン45で処理したカーボンブラック46は、ホッパ47を介して微粉砕機48及び振動ふるい49にかけ、その粒度2mm以下に粒度調整し、粗原料50となる。  The carbon black 46 treated with the rotary kiln 45 is passed through a hopper 47 through a pulverizer 48 and a vibrating sieve 49, and the particle size is adjusted to 2 mm or less to become a raw material 50.

以上により、本発明のナノ原料の製造方法では、廃タイヤ、廃農業用ビニール等の石油製品の廃棄物より油、金属等を回収した後の残留カーボンを粗原料として、それを再処理し、カーボンブラックを生成することができる。粗原料のうち、残留硫黄分10〜30%ものを本発明のナノ原料33とする。本発明により、これまで決定的な再利用方法のなかった廃タイヤ当の石油精勤の産業廃棄物を、高い付加価値を有するナノ物質の製造に利用することができる。また、従来よりもはるかに安価に、ナノ物質を提供できる。  As described above, in the method for producing a nano raw material of the present invention, the residual carbon after recovering oil, metal, etc. from the waste of petroleum products such as waste tires and waste agricultural vinyl is used as a crude raw material, and it is reprocessed. Carbon black can be produced. Among the raw materials, those having a residual sulfur content of 10 to 30% are designated as nano raw materials 33 of the present invention. According to the present invention, it is possible to use petroleum-developed industrial waste, such as waste tires, which has not been decisively reused so far, for the production of nanomaterials having high added value. In addition, nanomaterials can be provided at a much lower cost than before.

従来の乾留は、より多くの油を回収するということに主眼を置いていたため、800℃程度の比較的高温で実施されていた。本発明では、これよりはるかに低温の350℃〜400℃で実施できるので、設備をより簡易にすることができる。また焼却による黒煙及びダイオキシン等の好ましからざるものの発生の懸念も少ない。  Conventional dry distillation has been carried out at a relatively high temperature of about 800 ° C. because it focuses on recovering more oil. In this invention, since it can implement at 350 to 400 degreeC far lower than this, an installation can be made simpler. Moreover, there is little concern about undesired generation of black smoke and dioxin due to incineration.

超微粉化されたカーボンクラスターを捕獲するには核が必要であるが、鉄粉や鋼粉などの金属粉を原料に添加することもできる。添加すべきか否かは、製造すべきナノ物質によって決定されるべきである。  A core is required to capture the ultrafine carbon cluster, but metal powder such as iron powder and steel powder can be added to the raw material. Whether to add or not should be determined by the nanomaterial to be manufactured.

以上、本発明の好適な実施例を記述したが、本発明は上記実施例に限定されるものではない。上記開示内容に基づき、該技術分野の通常の技術を有する者が、実施例の修正乃至変形により本発明を実施することが可能である。  As mentioned above, although the suitable Example of this invention was described, this invention is not limited to the said Example. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiments.

例えば、手動操作に代えて自動化することもできる。そのタイミングを適切化すべく、爆発装置2の内部音を拡張して示すスピーカ類を配置することもできる。  For example, it can be automated instead of manual operation. In order to make the timing appropriate, it is possible to arrange speakers that show the internal sound of the explosion device 2 in an expanded manner.

また、既に示したように、前述の各実施形態によるナノ物質製造装置のディメンジョンを変更することが可能である。特に、捕集装置の位置、形状、形態を種々変更すれば、それによって得られるナノ物質の種別が異なる。また、より効率的に製造することも可能となる。  Moreover, as already shown, it is possible to change the dimensions of the nanomaterial manufacturing apparatus according to the above-described embodiments. In particular, if the position, shape, and form of the collection device are changed variously, the types of nanomaterials obtained thereby will differ. Moreover, it becomes possible to manufacture more efficiently.

本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜設計的変更を加えることができ、各種態様で実施できる。  The present invention is not limited to the above embodiment, and can be appropriately modified in design without departing from the gist of the present invention, and can be implemented in various aspects.

以上より理解されるように、水蒸気爆発を利用することにより、100〜200℃程度の比較的低温でナノ物質を製造することができる。比較的低温でよいので、簡易な装置で、容易かつ高い効率で高品質のナノ物質を製造することができる。さらに原料として廃タイヤ、中古ベルト、廃棄ゴム当の石油製品の廃棄物を利用することができ、環境保護の観点から有意義である。  As can be understood from the above, nanomaterials can be produced at a relatively low temperature of about 100 to 200 ° C. by utilizing steam explosion. Since a relatively low temperature is sufficient, a high-quality nanomaterial can be produced easily and efficiently with a simple apparatus. Furthermore, waste tires, used belts, and waste rubber waste oil products can be used as raw materials, which is meaningful from the viewpoint of environmental protection.

本発明の一実施形態に係るナノ物質製造装置の断面説明図である。It is sectional explanatory drawing of the nanomaterial manufacturing apparatus which concerns on one Embodiment of this invention. 図1に示したナノ捕集材を拡大して示す斜視図である。It is a perspective view which expands and shows the nano collection material shown in FIG. 本発明に用いるナノ原料の製造方法に用いる工程の前段部を示す説明図である。It is explanatory drawing which shows the front | former stage part of the process used for the manufacturing method of the nano raw material used for this invention.

符号の説明Explanation of symbols

1 ナノ物質製造装置
2 爆発装置
3 ナノ捕集装置
4 接続管
5 フランジ
6 圧力容器
6A 圧力容器本体
6B 圧力容器蓋
7 蒸気導入管
8,7,27,28 棚
10,11 中蓋
12 温度センサ
13 安全弁
14 圧力計
15 減圧排気弁
16 水管
17 水弁
18 保温箱
19 レバー
20 蒸気
21 ガス管
22 ガス弁
24 捕集容器
25 蓋
26 空気抜き弁
29,30 ナノ捕集材
31 円板
32 平板
33 ナノ原料
33A,33B,33D,33E,33F 気流
34,35 分岐管
36 乾留槽
37 真空乾留炉
38 安全器
39 熱交換器
40 油回収器
42 粗破砕機
43 マグネットロール
44,46 カーボンブラック
45 ロータリーキルン
47 ホッパ
48 微粉砕機
49 振動ふるい
50 粗原料
51 排気出口
DESCRIPTION OF SYMBOLS 1 Nano material manufacturing apparatus 2 Explosion apparatus 3 Nano collection apparatus 4 Connection pipe 5 Flange 6 Pressure vessel 6A Pressure vessel main body 6B Pressure vessel lid 7 Steam introduction pipe 8, 7, 27, 28 Shelf 10, 11 Inner lid 12 Temperature sensor 13 Safety valve 14 Pressure gauge 15 Pressure reducing exhaust valve 16 Water pipe 17 Water valve 18 Insulation box 19 Lever 20 Steam 21 Gas pipe 22 Gas valve 24 Collection container 25 Lid 26 Air vent valve 29, 30 Nano collection material 31 Disc 32 Flat plate 33 Nano raw material 33A, 33B, 33D, 33E, 33F Airflow 34, 35 Branch pipe 36 Distillation tank 37 Vacuum distillation furnace 38 Safety device 39 Heat exchanger 40 Oil recovery unit 42 Coarse crusher 43 Magnet roll 44, 46 Carbon black 45 Rotary kiln 47 Hopper 48 Fine grinding machine 49 Vibrating sieve 50 Crude raw material 51 Exhaust outlet

Claims (6)

炭素源となる原料を内部に配置する圧力容器(6)内に加圧蒸気を供給する蒸気供給弁(20),(21)と圧力容器(6)の内圧を減圧する減圧排気弁(15)を設け、前記蒸気供給弁(20),(21)から供給される蒸気で原料を加熱し、前記減圧排気弁(15)を作動して減圧に伴う蒸気爆発を誘発し、この蒸気爆発を複数回にわたって繰り返し、ナノ物質を生成するナノ物質の製造装置。  Steam supply valves (20) and (21) for supplying pressurized steam into a pressure vessel (6) in which a raw material serving as a carbon source is disposed, and a vacuum exhaust valve (15) for reducing the internal pressure of the pressure vessel (6) The raw material is heated with the steam supplied from the steam supply valves (20) and (21), and the decompression exhaust valve (15) is operated to induce a steam explosion accompanying decompression. A nanomaterial manufacturing device that generates nanomaterials repeatedly. 圧力容器(6)に減圧排気弁(15)を介して接続管(4)で接続し排気を受け入れてナノ物質を捕集する捕集装置(3)を設けてなる請求項1に記載のナノ物質の製造装置。  2. The nano of claim 1, comprising a collector (3) connected to the pressure vessel (6) via a pressure reducing exhaust valve (15) through a connecting pipe (4) and receiving exhaust to collect nanomaterials. Substance production equipment. 捕集装置(3)内で、接続管(4)の排気出口(51)に面してナノ捕集材(29),(30)を設けたことを特徴とする請求項2に記載のナノ物質の製造装置。  Nano collection material (29) according to claim 2, characterized in that in the collection device (3), the nano collection material (29), (30) is provided facing the exhaust outlet (51) of the connecting pipe (4). Substance production equipment. 圧力容器(6)の内部には、原料配置位置から減圧排気弁(15)にかけて、大径粒子の飛散を防止する直接飛散防止部材(10),(11)を配置したことを特徴とする請求項1乃至3に記載のナノ物質の製造装置。  Direct scattering prevention members (10), (11) for preventing scattering of large-diameter particles are arranged inside the pressure vessel (6) from the raw material arrangement position to the vacuum exhaust valve (15). Item 4. The nanomaterial manufacturing apparatus according to Item 1 to 3. 捕集装置(3)内のナノ捕集材(29),(30)は、片側表面に多数の平板部材(32)を立設してなる多孔質の板体(31)で構成され、その裏面を前記捕集装置(3)内で前記接続管(4)の排気出口(51)側に向けて配置されることを特徴とする請求項1乃至4に記載のナノ物質の製造装置。  The nano-collecting material (29), (30) in the collection device (3) is composed of a porous plate (31) in which a large number of flat plate members (32) are erected on one surface. 5. The nanomaterial manufacturing apparatus according to claim 1, wherein the back surface is disposed in the collection device (3) toward the exhaust outlet (51) of the connection pipe (4). 捕集材(29)、(30)は各種形態で複数配置され、各補修材(29)、(30)毎に製品分類が表記されることを特徴とする請求項1乃至5に記載のナノ物質の製造装置。  The collection material (29), (30) is arranged in various forms, and the product classification is described for each repair material (29), (30). Substance production equipment.
JP2005311905A 2005-09-28 2005-09-28 Apparatus for manufacturing nano-material Pending JP2006083061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311905A JP2006083061A (en) 2005-09-28 2005-09-28 Apparatus for manufacturing nano-material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311905A JP2006083061A (en) 2005-09-28 2005-09-28 Apparatus for manufacturing nano-material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004143846A Division JP3870203B2 (en) 2004-05-13 2004-05-13 Nanocarbon production method and apparatus

Publications (1)

Publication Number Publication Date
JP2006083061A true JP2006083061A (en) 2006-03-30

Family

ID=36161868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311905A Pending JP2006083061A (en) 2005-09-28 2005-09-28 Apparatus for manufacturing nano-material

Country Status (1)

Country Link
JP (1) JP2006083061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105251511A (en) * 2015-09-30 2016-01-20 辽宁石油化工大学 Residual oil hydrogenation catalyst and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105251511A (en) * 2015-09-30 2016-01-20 辽宁石油化工大学 Residual oil hydrogenation catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
Martin et al. Giant fullerene formation through thermal treatment of fullerene soot
JP7090703B2 (en) Fractional separation of valuable substances from an aqueous multi-component mixture
EP2915600B1 (en) Disposal system
JP6966466B2 (en) Biomass raw material decomposition equipment and method for manufacturing biomass pellet fuel
JP2016117009A (en) Crushing method and crushing apparatus for battery
CN106362846A (en) Jet milling device for stripping graphene and production process thereof
JP3870203B2 (en) Nanocarbon production method and apparatus
JP2006083061A (en) Apparatus for manufacturing nano-material
TW200811034A (en) Method for producing hydrogen by using magnesium scrap and apparatus thereof
JP2008169459A (en) Method and device for recovering metal raw material from metal cut waste
US11316214B2 (en) Waste lithium battery recovery system
TWI244429B (en) Process for producing nano substance through vapor explosion, apparatus thereof and process for producing nano raw material
AU2011253788A1 (en) Integrated process for waste treatment by pyrolysis and related plant
JP2003320359A (en) Method and apparatus for pyrolyzing organic waste
Asimakopoulos et al. From Waste Tea to Carbon Rocket Fuels through a Piranha Solution-Mediated Carbonization Treatment
WO2004020119A1 (en) Waste disposal method and apparatus
CN1708455A (en) Process for producing nano substance through vapor explosion, apparatus therefor and process for producing nano raw material
Venna et al. Gate-to-Gate Life Cycle Assessment of Hydrothermal Carbonization Process for Food and Yard Waste
JPH10244237A (en) Solidifying method for material to be treated and solidified material
JP2005330117A (en) Method and apparatus for producing carbon particulate
JP2023548620A (en) Pelletization equipment for producing solid recovered fuel pellets and its use in torrefaction
JP2022115789A (en) hydrogen gas generator
WO2003008347A1 (en) Jet recycle system for oily waste
CN109092866A (en) A kind of life refuse processing method
JP2004243293A (en) Ultrafine pulverizing, classifying, and crystallizing apparatus utilizing gaseous pressure and temperature difference by compulsive destruction of hydrothermal membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222