JP2006082187A - Thin blade grinding wheel - Google Patents

Thin blade grinding wheel Download PDF

Info

Publication number
JP2006082187A
JP2006082187A JP2004270176A JP2004270176A JP2006082187A JP 2006082187 A JP2006082187 A JP 2006082187A JP 2004270176 A JP2004270176 A JP 2004270176A JP 2004270176 A JP2004270176 A JP 2004270176A JP 2006082187 A JP2006082187 A JP 2006082187A
Authority
JP
Japan
Prior art keywords
layer
metal
abrasive
abrasive grain
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270176A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ikeda
吉隆 池田
Hidenori Nogi
秀則 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004270176A priority Critical patent/JP2006082187A/en
Publication of JP2006082187A publication Critical patent/JP2006082187A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin blade grinding wheel capable of surely suppressing generation of burrs from a corner part or the like when cutting a tape type device especially such as a TBGA (Tape Ball Grid Array). <P>SOLUTION: The thin blade grinding wheel is equipped with a thin blade abrasive layer 1 where a metal abrasive layer 3 holding super abrasive 3B in a metal bonding agent phase 3A is laminated on both side surface of a resin abrasive layer 2 holding super abrasive 2B in a resin bonding agent phase 2A. The grain diameter 3B of the super abrasive held on the metal abrasive layer 3 is made to be smaller than the grain diameter of the super abrasive 2B held on the resin abrasive layer 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特にTBGA(Tape Ball Grid Array)のような、基材にポリイミド樹脂等のテープを使用するテープタイプデバイスを切断して個片化するのに用いて好適な薄刃砥石に関するものである。   The present invention relates to a thin blade whetstone suitable for cutting and separating a tape type device using a tape such as polyimide resin as a base material, such as TBGA (Tape Ball Grid Array). .

半導体装置の切断に用いられる薄刃砥石としては、例えば特許文献1に、シリコン半導体材料のような硬脆材料の精密切断に適したものとして、合成樹脂ボンド材からなる基板の表面に、電着あるいは無電解メッキによってメッキ砥材層からなる表面砥材層を設けてサンドイッチ構造を形成したものが提案されている。また、特許文献2には、例えばQFN(Quad Flat Non−leaded Package)のように、特に複数個の半導体チップをマトリックス状に配設し、隣接する半導体チップを複数の電極によって接続するとともに、マトリックス状に配設した複数個の半導体チップを樹脂モールディングした半導体プレートを、上記電極の中間部を通して形成された切断ラインに沿って切断するのに適したものとして、砥粒をメッキで固定した電鋳砥粒層によって構成された環状の切れ刃部を有し、この環状切れ刃部を、集中度の低い中央電着砥粒層と、この中央電鋳砥粒層の両側に、ダイヤモンド砥粒を混入したメッキ液中でニッケルメッキすることによりそれぞれ形成された、中央電鋳砥粒層よりも集中度の高い外側電鋳砥粒層とから構成したものが提案されている。
特開平1−183371号公報 特開2002−331464号公報
As a thin blade grindstone used for cutting a semiconductor device, for example, in Patent Document 1, it is suitable for precision cutting of a hard and brittle material such as a silicon semiconductor material. A structure in which a sandwich structure is formed by providing a surface abrasive layer made of a plated abrasive layer by electroless plating has been proposed. Further, in Patent Document 2, for example, a plurality of semiconductor chips are arranged in a matrix shape, such as a QFN (Quad Flat Non-Leaded Package), and adjacent semiconductor chips are connected by a plurality of electrodes. An electroforming in which abrasive grains are fixed by plating as suitable for cutting a semiconductor plate formed by resin molding of a plurality of semiconductor chips arranged in a line along a cutting line formed through the intermediate portion of the electrode. It has an annular cutting edge portion constituted by an abrasive layer, and this annular cutting edge portion is divided into a central electro-deposited abrasive grain layer with low concentration and diamond abrasive grains on both sides of the central electroformed abrasive grain layer. The outer electroformed abrasive layer is formed by nickel plating in the mixed plating solution and has a higher concentration than the central electroformed abrasive layer. It has been proposed those.
Japanese Patent Laid-Open No. 1-183371 JP 2002-331464 A

ところで、近年このような半導体装置として、ポリイミド樹脂等のテープよりなる基材の表面に金属配線が形成されるとともに半導体素子が接着されて上記金属配線とワイヤボンディングされ、さらにこれらがエポキシ樹脂等のモールディングにより被覆される一方、基材の裏面には上記金属配線に接続されるはんだボールが格子状に配列された、上述のTBGAと称されるものが、入出力ピン数の多ピン化が可能であることなどから多用されるようになってきている。そして、このようなTBGAを個片化する際にも上記特許文献1、2に記載のような薄刃砥石が用いられるが、TBGAでは基材が軟質で薄肉のポリイミド樹脂等のテープによって形成されているため、このような従来の薄刃砥石による切断では個片化されたTBGAの切断面が交差するコーナ部からバリが発生してしまい、当該半導体装置を電子機器に装着する際の位置決め等に支障を来すおそれがある。   By the way, in recent years, as such a semiconductor device, a metal wiring is formed on the surface of a base material made of a tape such as polyimide resin, and a semiconductor element is bonded and wire-bonded to the metal wiring. While being covered by molding, on the back side of the base material, solder balls connected to the above metal wirings are arranged in a grid, and what is called TBGA above can increase the number of input / output pins Because of this, it has come to be used frequently. And when cutting such TBGA into individual pieces, the thin blade grindstone as described in Patent Documents 1 and 2 is used. In TBGA, the base material is formed of a soft and thin polyimide resin tape or the like. Therefore, in the conventional cutting with a thin blade grindstone, burrs are generated from the corner portion where the cut surfaces of the separated TBGA intersect, which hinders positioning and the like when the semiconductor device is mounted on an electronic device. May come.

すなわち、特許文献1に記載の薄刃砥石では、上述のように硬脆材料であるシリコン半導体材料自体の切断時の砥石(ブレード)の折れに対しての強度、曲げ強度を改善することを目的として合成樹脂ボンド材の基板表面をメッキ砥材層により補強したものであり、TBGAの基材のような軟質な樹脂材料を切断する際のバリを抑制することは困難である。また、特許文献2に記載の薄刃砥石は、中央電鋳砥粒層の集中度を外側電鋳砥粒層より低くすることにより、上記環状切れ刃部の外周をドレッシングした際にその幅方向中央部に環状凹部が形成されるようにしたものであって、上述のようにQFNを上記切断ラインに沿って切断する際に生じる切粉をこの環状凹部に取り込むことで、銅のような柔らかく粘りのある材料からなる電極が切れ刃部の両側に押し出されることによる金属バリの発生を防止するようにしたものであるが、より軟質なポリイミド樹脂等のテープを基材として含むTBGAを切断する場合には、上記環状凹部に取り込まれた切屑が排出されずに詰まりを生じて、バリの抑制どころか切断自体が不可能となるおそれもある。   That is, in the thin-blade grindstone described in Patent Document 1, for the purpose of improving the strength against bending of the grindstone (blade) and the bending strength when the silicon semiconductor material itself, which is a hard and brittle material, is cut as described above. The substrate surface of the synthetic resin bond material is reinforced with a plating abrasive layer, and it is difficult to suppress burrs when cutting a soft resin material such as a TBGA base material. Moreover, the thin blade grindstone of patent document 2 makes the center of the width direction when dressing the outer periphery of the said annular cutting edge part by making the concentration degree of a center electroformed abrasive grain layer lower than an outer electroformed abrasive grain layer. An annular recess is formed in the part, and as described above, the chip generated when cutting the QFN along the cutting line is taken into this annular recess, so that it becomes soft and sticky like copper. This is intended to prevent the occurrence of metal burrs caused by the electrodes made of a certain material being pushed out on both sides of the cutting edge, but when cutting TBGA containing a softer tape such as polyimide resin as the base material In some cases, the chips taken into the annular recess are not discharged but become clogged, and it is possible that cutting itself is impossible as well as suppressing burr.

本発明は、このような背景の下になされたもので、特にTBGAのようなテープタイプデバイスを切断する際に、コーナ部等からのバリの発生を確実に抑制することが可能な薄刃砥石を提供することを目的としている。   The present invention has been made under such a background, and in particular, when cutting a tape type device such as TBGA, a thin blade grindstone capable of reliably suppressing the occurrence of burrs from a corner portion or the like. It is intended to provide.

上記課題を解決して、このような目的を達成するために、本発明は、樹脂結合剤相中に超砥粒が保持されてなる樹脂砥粒層の両側面に、金属結合剤相中に超砥粒が保持されてなる金属砥粒層が積層された薄刃砥粒層を備え、上記金属砥粒層に保持された超砥粒の粒径を、上記樹脂砥粒層に保持された超砥粒の粒径よりも小さくしたことを特徴とするものである。   In order to solve the above problems and achieve such an object, the present invention provides a metal binder phase with both sides of a resin abrasive layer in which superabrasive grains are held in a resin binder phase. A thin-blade abrasive layer having a metal abrasive layer on which superabrasive particles are held is laminated, and the superabrasive particle size held in the metal abrasive layer is set to a super-abrasive size held in the resin abrasive layer. It is characterized by being smaller than the grain size of the abrasive grains.

このように構成された薄刃砥石では、上記薄刃砥粒層が樹脂砥粒層の両側面に金属砥粒層を積層した構成とされており、この金属砥粒層によって薄刃砥粒層の剛性が向上するために直進性に優れ、また長寿命の薄刃砥石を得ることができる。そして、この金属砥粒層における超砥粒の粒径が上記樹脂砥粒層における超砥粒の粒径よりも小さくされているので、加工物の切断面を形成することとなるこの金属砥粒層に鋭い切れ味を確保することができ、上述のTBGAにおけるポリイミド樹脂テープのような軟質な基材に対してもバリの発生を抑制して高品位の加工を行うことが可能となる。また、こうして両側面の金属砥粒層に鋭い切れ味が与えられることにより、切断面の品位の向上を図ることもでき、より効率的な切断を促すことが可能となる。   In the thin blade grindstone configured as described above, the thin blade abrasive layer is configured by laminating metal abrasive layers on both sides of the resin abrasive layer, and the rigidity of the thin blade abrasive layer is increased by the metal abrasive layer. In order to improve, it is possible to obtain a thin blade whetstone that is excellent in straightness and has a long life. And since the particle size of the superabrasive grain in this metal abrasive grain layer is made smaller than the grain size of the superabrasive grain in the resin abrasive grain layer, this metal abrasive grain that will form the cut surface of the workpiece A sharp sharpness can be ensured in the layer, and high-quality processing can be performed while suppressing the generation of burrs even on a soft substrate such as the polyimide resin tape in TBGA described above. In addition, the sharpness is imparted to the metal abrasive grain layers on both sides in this way, so that the quality of the cut surface can be improved, and more efficient cutting can be promoted.

ただし、上記金属砥粒層に保持された超砥粒の粒径が、上記樹脂砥粒層に保持された超砥粒の粒径に対して小さくなりすぎると、この金属砥粒層の摩耗が大きくなって該金属砥粒層における超砥粒の脱落が著しくなり、上述のような鋭い切れ味を維持することが困難となるおそれがある。その一方で、この金属砥粒層に保持された超砥粒の粒径が樹脂砥粒層の超砥粒の粒径と変わらない程度に大きいと、十分なバリの抑制効果が得られなくなるおそれがあるので、金属砥粒層に保持された超砥粒の粒径は、樹脂砥粒層に保持された超砥粒の粒径に対して30%〜70%の範囲とされるのが望ましい。   However, if the particle size of the superabrasive particles held in the metal abrasive layer becomes too small relative to the particle size of the superabrasive particles held in the resin abrasive layer, the wear of the metal abrasive layer is reduced. It becomes large and the superabrasive grains fall off in the metal abrasive layer, and it may be difficult to maintain the sharpness as described above. On the other hand, if the particle size of the superabrasive particles held in the metal abrasive layer is large enough to be the same as the particle size of the superabrasive particles in the resin abrasive layer, there is a risk that a sufficient burr suppression effect cannot be obtained. Therefore, it is desirable that the superabrasive grain size held in the metal abrasive layer is in the range of 30% to 70% with respect to the superabrasive grain size held in the resin abrasive layer. .

また、この金属砥粒層の厚さが薄刃砥粒層全体の厚さに対して厚くなりすぎると、金属砥粒層の摩耗が抑制されるために相対的に中央の樹脂砥粒層の摩耗が進行して薄刃砥粒層の外周が厚さ方向に沿って中凹型に変形し、特許文献2記載の薄刃砥石と同様に切屑の詰まりを生じて、バリの発生を抑制して上述のような高品位の加工を持続することができなくなるおそれがある。また、こうして金属砥粒層の摩耗が抑制されすぎると、良好な超砥粒の脱落とこれに伴う新たな超砥粒切れ刃の自生とが阻害され、やはりこの金属砥粒層による鋭い切れ味を維持することができなくなるおそれも生じるので、樹脂砥粒層の両側面の個々の金属砥粒層の厚さは、薄刃砥粒層全体の厚さの1/4以下とされるのが望ましい。ただし、この金属砥粒層には、これに保持される超砥粒の粒径以上の厚さが確保されることは勿論である。   In addition, if the thickness of the metal abrasive layer becomes too thick relative to the entire thickness of the thin-blade abrasive layer, the wear of the metal abrasive layer is suppressed because the wear of the metal abrasive layer is suppressed. Progresses and the outer periphery of the thin-blade abrasive grain layer is deformed into a concave shape along the thickness direction, causing clogging of chips as in the thin-blade grindstone described in Patent Document 2, and suppressing the generation of burrs as described above. There is a risk that it will be impossible to maintain high-quality processing. In addition, if wear of the metal abrasive layer is suppressed too much in this way, good superabrasive drop-off and self-generation of a new superabrasive cutting edge are hindered, and the sharpness of the metal abrasive layer is also reduced. Since there is a possibility that it cannot be maintained, the thickness of each metal abrasive grain layer on both side surfaces of the resin abrasive grain layer is desirably set to ¼ or less of the total thickness of the thin blade abrasive grain layer. However, it is a matter of course that the metal abrasive grain layer has a thickness that is equal to or greater than the grain diameter of the superabrasive grains held by the metal abrasive grain layer.

一方、この金属砥粒層としては、例えばCu、Sn等のメタルボンド剤と超砥粒とを焼結することによって形成された、メタルボンド相によって超砥粒が保持されてなる砥粒層であってもよいが、超砥粒を分散したNiめっき液等のめっき液によって金属めっきすることにより形成される、金属めっき相によって超砥粒が保持されてなる砥粒層であってもよい。ところで、このように金属めっき相によって超砥粒を保持する場合には、特許文献1記載の薄刃砥石のように上記樹脂砥粒層の両側面に電着あるいは無電解めっきによって直接的に金属めっき相を析出させることにより超砥粒を保持した上記金属砥粒層を形成するようにしてもよいが、この場合には樹脂砥粒層の側面の凹凸によって金属砥粒層の表面も凹凸してしまい、上述のような厚さの金属砥粒層を確実に形成することが困難となったり、切断面の品位が損なわれたりするおそれがある。   On the other hand, the metal abrasive grain layer is an abrasive grain layer formed by sintering a metal bond agent such as Cu or Sn and superabrasive grains, wherein the superabrasive grains are held by a metal bond phase. However, it may be an abrasive grain layer formed by metal plating with a plating solution such as a Ni plating solution in which superabrasive particles are dispersed, wherein the superabrasive particles are held by a metal plating phase. By the way, when the superabrasive grains are held by the metal plating phase as described above, metal plating is directly performed on both side surfaces of the resin abrasive grain layer by electrodeposition or electroless plating as in the thin blade grinding stone described in Patent Document 1. The metal abrasive layer holding the superabrasive grains may be formed by precipitating the phase, but in this case, the surface of the metal abrasive layer is also uneven by the unevenness of the side surface of the resin abrasive layer. Therefore, it may be difficult to reliably form the metal abrasive layer having the thickness as described above, or the quality of the cut surface may be impaired.

そこで、このような場合には、この金属砥粒層を、金属めっき相によって超砥粒が保持されてなる電鋳砥粒層とし、すなわち超砥粒を分散しためっき液中に浸漬された台金上に層状に形成して剥離したものとして、かかる電鋳砥粒層を上記樹脂砥粒層の両側面に貼着して積層することにより、厚さの均一な金属砥粒層(電鋳砥粒層)を形成して樹脂砥粒層側面の凹凸に関わらずにより高品位の加工が可能な薄刃砥粒層を形成することが可能となる。なお、このように形成した電鋳砥粒層を樹脂砥粒層の両側面に貼着するには、適当な接着剤によって電鋳砥粒層を樹脂砥粒層側面に接着するようにしてもよいが、例えば樹脂結合剤と超砥粒とを混合した混合物にホットプレスを施して樹脂結合剤相中に超砥粒が保持された樹脂砥粒層を形成する際に、そのプレス型に予め形成したおいた一対の電鋳砥粒層を上記混合物を挟み込むように配置して一体に焼結することにより、成形された樹脂砥粒層の両側面に電鋳砥粒層が貼り着けられた薄刃砥粒層を形成するようにしてもよい。   Therefore, in such a case, this metal abrasive grain layer is an electroformed abrasive grain layer in which superabrasive grains are held by a metal plating phase, that is, a table immersed in a plating solution in which superabrasive grains are dispersed. As a layer formed on gold and exfoliated, the electroformed abrasive layer is adhered to both side surfaces of the resin abrasive layer and laminated to form a uniform metal abrasive layer (electroformed layer). It is possible to form a thin-blade abrasive layer that can be processed with high quality regardless of the irregularities on the side surface of the resin abrasive layer. In addition, in order to adhere the electroformed abrasive layer formed in this way to both sides of the resin abrasive layer, the electroformed abrasive layer may be adhered to the side surface of the resin abrasive layer with an appropriate adhesive. For example, when a resin abrasive grain layer in which superabrasive grains are held in a resin binder phase is formed by hot pressing a mixture of a resin binder and superabrasive grains, The pair of formed electroformed abrasive layers were arranged so as to sandwich the above mixture and sintered together, so that the electroformed abrasive layers were adhered to both side surfaces of the molded resin abrasive layer. You may make it form a thin blade abrasive grain layer.

そして、さらにこのように超砥粒を分散しためっき液中に浸漬された台金上に層状に形成して剥離した電鋳砥粒層を樹脂砥粒層の両側面に貼着して積層する場合、この電鋳砥粒層の上記台金からの剥離面では、超砥粒が台金面に接地して金属めっき相が析出するために超砥粒の突き出し量を小さく均一にすることができるとともに平坦な面を得ることができるので、この台金からの剥離面を薄刃砥粒層の外側に向けて当該電鋳砥粒層を上記樹脂砥粒層の両側面に貼着することにより、薄刃砥粒層の両側面を超砥粒の突き出し量が小さな範囲で揃った平滑な面とすることができて一層高品位かつ高精度の切断を行うことができる。しかも、こうして薄刃砥粒層の両側面が平滑とされることにより、特に当該薄刃砥石において切れ刃として作用するこの両側面と薄刃砥粒層外周面とのエッジ部を鋭利な断面形状とすることができ、このエッジ部が金属砥粒層に形成されて樹脂砥粒層よりも小径の超砥粒が保持されることとも相俟って、さらに鋭い切れ味を確保して一層確実なバリの抑制を図ることが可能となる。   Further, the electroformed abrasive layer formed and peeled in layers on the base metal immersed in the plating solution in which the superabrasive particles are dispersed in this manner is attached to both sides of the resin abrasive layer and laminated. In this case, on the surface of the electroformed abrasive layer peeled from the base metal, the superabrasive grains are grounded to the base metal surface, and the metal plating phase is precipitated. Since a flat surface can be obtained, the electroformed abrasive layer is adhered to both side surfaces of the resin abrasive layer with the peeling surface from the base metal facing the outside of the thin blade abrasive layer. In addition, both side surfaces of the thin-blade abrasive grain layer can be made smooth surfaces with the protruding amount of superabrasive grains being small, and cutting with higher quality and higher accuracy can be performed. In addition, by smoothing the both side surfaces of the thin-blade abrasive layer in this way, the edge portion between the both side surfaces acting as a cutting edge in the thin-blade grindstone and the outer peripheral surface of the thin-blade abrasive layer is made a sharp cross-sectional shape. Combined with the fact that this edge part is formed in the metal abrasive layer and the superabrasive grains smaller in diameter than the resin abrasive layer are retained, a sharper sharpness is ensured to further suppress burr. Can be achieved.

図1および図2は、本発明の一実施形態を示すものである。本実施形態の薄刃砥石は図1に示すように軸線Oを中心とした円環形で厚さ0.05〜0.5mm程度の薄肉板状をなし、それ自体が図2に示すような薄刃砥粒層1によって形成されていて、その内径部が切断装置の主軸に取り付けられて上記軸線O回りに回転されつつ該軸線Oに垂直な方向に送り出されることにより、この薄刃砥粒層1の外周縁部、すなわち上記厚さと等しい極小さな幅の外周面1Aと、両側面1Bの外周側、およびこれら外周面1Aと両側面1Bとが交差する円周状の両エッジ部1Cとによって、上述したTBGAのようなポリイミド樹脂テープ等の軟質な基材を有するテープタイプデバイスの切断に使用される。   1 and 2 show an embodiment of the present invention. As shown in FIG. 1, the thin blade grindstone of the present embodiment is an annular shape centering on the axis O and has a thin plate shape with a thickness of about 0.05 to 0.5 mm. The thin blade grind itself is as shown in FIG. It is formed by the grain layer 1 and its inner diameter portion is attached to the main shaft of the cutting device and rotated around the axis O while being sent out in a direction perpendicular to the axis O. The peripheral portion, that is, the outer peripheral surface 1A having a very small width equal to the above-described thickness, the outer peripheral side of both side surfaces 1B, and both circumferential edge portions 1C where these outer peripheral surfaces 1A and both side surfaces 1B intersect are described above. It is used for cutting tape type devices having a soft base material such as polyimide resin tape such as TBGA.

この薄刃砥粒層1は、図2に示すようにその厚さ方向(図2における左右方向)中央の樹脂砥粒層2と、この樹脂砥粒層2の両側面に積層されるようにして設けられた一対の金属砥粒層3とから構成されている。樹脂砥粒層2は、フェノール樹脂やポリイミド樹脂等の耐熱樹脂よりなる樹脂結合剤相2Aに、ダイヤモンドやcBN等の超砥粒2Bが略均一に分散されて保持された構成とされており、必要に応じて図2に示すようにセラミックスやガラスビーズ等のフィラー2Cを分散させるようにしてもよい。一方、金属砥粒層3は金属結合剤相3AにやはりダイヤモンドやcBN等の超砥粒3Bが略均一に分散されて保持された構成とされていて、本実施形態ではこの金属結合剤相3AはNi等の金属を含むめっき液から析出させられた金属めっき相3Cによって形成されている。   As shown in FIG. 2, the thin-blade abrasive grain layer 1 is laminated on the resin abrasive grain layer 2 in the center in the thickness direction (left-right direction in FIG. 2) and on both side surfaces of the resin abrasive grain layer 2. It comprises a pair of provided metal abrasive grain layers 3. The resin abrasive layer 2 is configured such that superabrasive grains 2B such as diamond and cBN are dispersed and held substantially uniformly in a resin binder phase 2A made of a heat-resistant resin such as a phenol resin or a polyimide resin. If necessary, a filler 2C such as ceramics or glass beads may be dispersed as shown in FIG. On the other hand, the metal abrasive grain layer 3 is configured such that superabrasive grains 3B such as diamond and cBN are substantially uniformly dispersed and held in the metal binder phase 3A. In this embodiment, this metal binder phase 3A is retained. Is formed by a metal plating phase 3C deposited from a plating solution containing a metal such as Ni.

そして、この金属砥粒層3に保持された超砥粒3Bは、その粒径が、上記樹脂砥粒層2に保持された超砥粒2Bの粒径よりも小さくされており、本実施形態ではこの樹脂砥粒層2の超砥粒2Aの粒径の30%〜70%の範囲とされている。また、個々の金属砥粒層3の厚さtは、薄刃砥粒層1全体の厚さTの1/4以下とされており、従って中央の樹脂砥粒層2はこの薄刃砥粒層1全体の厚さTの1/2よりも大きな厚さを占めることとなる。ただし、上記金属砥粒層3の厚さtは、この金属砥粒層3に保持される超砥粒3Bの粒径よりも小さくなることはない。なお、本実施形態では一対の金属砥粒層3同士でその厚さtは互いに略等しくされている。また、超砥粒2B、3Bの集中度は樹脂砥粒層2と一対の金属砥粒層3とで略等しくされている。   The superabrasive grain 3B held in the metal abrasive grain layer 3 has a particle size smaller than that of the superabrasive grain 2B held in the resin abrasive grain layer 2, and this embodiment In this case, the particle size of the superabrasive grains 2A of the resin abrasive grain layer 2 is in the range of 30% to 70%. Further, the thickness t of each metal abrasive grain layer 3 is set to 1/4 or less of the total thickness T of the thin-blade abrasive grain layer 1, so that the central resin abrasive grain layer 2 is the thin-blade abrasive grain layer 1. It occupies a thickness larger than ½ of the total thickness T. However, the thickness t of the metal abrasive grain layer 3 is never smaller than the grain diameter of the superabrasive grains 3B held in the metal abrasive grain layer 3. In the present embodiment, the thickness t of the pair of metal abrasive grain layers 3 is substantially equal to each other. Further, the degree of concentration of the superabrasive grains 2B and 3B is substantially equal between the resin abrasive grain layer 2 and the pair of metal abrasive grain layers 3.

このような構成の薄刃砥石は、例えば樹脂結合剤相2Aに超砥粒2Bやフィラー2Cが保持された上記樹脂砥粒層2となる所定の厚さの薄肉円環板状のレジンボンド砥石を製造しておき、これを超砥粒3Bが分散されたNi等の金属を含むめっき液に浸漬して、片面ずつ電着または無電解めっきを施すことにより、超砥粒3Bを保持しつつ金属めっき相3Cを析出させて所定の厚さtの金属砥粒層3を形成することによっても製造可能であるが、本実施形態に係わる薄刃砥石の製造方法では逆に、予め所定の厚さtの金属砥粒層3となる一対の極薄肉円環状の電鋳薄刃砥石を製造しておき、これらを樹脂砥粒層2の両側面に貼着することにより上述のような構成の薄刃砥石を製造するようにしている。   The thin blade whetstone having such a structure is, for example, a resin ring grindstone having a thin annular plate shape having a predetermined thickness to be the resin abrasive grain layer 2 in which the superabrasive grains 2B and the filler 2C are held in the resin binder phase 2A. It is manufactured and immersed in a plating solution containing a metal such as Ni in which superabrasive grains 3B are dispersed, and subjected to electrodeposition or electroless plating one side at a time, thereby maintaining the superabrasive grains 3B while holding the superabrasive grains 3B. It can also be produced by depositing the plating phase 3C to form the metal abrasive grain layer 3 having a predetermined thickness t, but the thin blade grindstone manufacturing method according to the present embodiment, on the contrary, has a predetermined thickness t in advance. A pair of ultra-thin annular electroformed thin blade whetstones to be used as the metal abrasive layer 3 is manufactured, and these are attached to both side surfaces of the resin abrasive layer 2 to obtain a thin blade whetstone having the above-described configuration. I try to manufacture.

すなわち、本実施形態に係わる製造方法では、まず超砥粒3Bが分散されたNi等の金属を含むめっき液中に平坦な上面を有する台金を浸漬して通電することにより、この台金上に超砥粒3Bを保持しつつ金属めっき相3Cを金属結合剤相3Aとして析出させて円環状の金属砥粒層3を形成し、この金属砥粒層3が所定の厚さtに達したなら、台金をめっき液から引き上げてその上面から金属砥粒層3を剥離することにより、極薄肉円環状の電鋳砥粒層4すなわち電鋳砥石を一対製造する。そして、このうち一方の電鋳砥粒層4を、レジンボンド砥石を製造する際のホットプレスのプレス型に敷設し、次いでその上に、上記樹脂結合剤相2Aを形成する樹脂結合剤と超砥粒2Bおよび必要に応じてフィラー2Cとを混合した混合物を所定の厚さの樹脂砥粒層2が形成されるように充填し、さらにその上に他方の電鋳砥粒層4を配置して所定の温度、圧力で加熱、加圧することにより、上記厚さ方向の中央部に樹脂砥粒層2を形成するとともに、その両側面に電鋳砥粒層4を貼り着けるようにして、薄刃砥粒層1すなわち本実施形態の薄刃砥石を製造する。   That is, in the manufacturing method according to the present embodiment, first, a base metal having a flat upper surface is immersed in a plating solution containing a metal such as Ni in which superabrasive grains 3B are dispersed, and the base metal is energized. While holding the superabrasive grains 3B, the metal plating phase 3C was deposited as a metal binder phase 3A to form an annular metal abrasive grain layer 3, which reached a predetermined thickness t. Then, the base metal is lifted from the plating solution and the metal abrasive grain layer 3 is peeled off from the upper surface thereof, thereby producing a pair of ultrathin annular electroformed abrasive grain layers 4, that is, electroformed grinding wheels. Then, one of the electroformed abrasive grain layers 4 is laid on a press die of a hot press for producing a resin bond grindstone, and then a resin binder and a super-form forming the resin binder phase 2A thereon. A mixture obtained by mixing the abrasive grains 2B and, if necessary, the filler 2C is filled so that a resin abrasive grain layer 2 having a predetermined thickness is formed, and the other electroformed abrasive grain layer 4 is disposed thereon. By heating and pressurizing at a predetermined temperature and pressure, the resin abrasive grain layer 2 is formed at the central portion in the thickness direction, and the electroformed abrasive grain layer 4 is adhered to both side surfaces thereof. The abrasive layer 1, that is, the thin blade grindstone of this embodiment is manufactured.

なお、この本実施形態に係わる製造方法において、上記プレス型に一方の電着砥粒層4を敷設し、また充填された上記混合物の上に他方の電鋳砥粒層4を配置する際には、これらの電鋳砥粒層4は、その上記台金から剥離された側の面すなわち剥離面4Aを、両電鋳砥粒層4の間に充填される上記混合物とは反対側に向けるようにしてそれぞれ敷設、配置される。従って、このように製造された薄刃砥石において、一対の金属砥粒層3すなわち電鋳砥粒層4は、その上記剥離面4Aが互いに薄刃砥粒層1の上記厚さ方向外側を向くようにして樹脂砥粒層2の両側面に貼着されることとなる。   In the manufacturing method according to this embodiment, when one electrodeposited abrasive grain layer 4 is laid on the press die and the other electroformed abrasive grain layer 4 is disposed on the filled mixture, These electroformed abrasive layers 4 have their surfaces peeled from the base metal, that is, the release surfaces 4A, facing the opposite side of the mixture filled between the two electroformed abrasive layers 4. In this way, each is laid and arranged. Therefore, in the thin blade grindstone manufactured in this way, the pair of metal abrasive grain layers 3, that is, the electroformed abrasive grain layer 4, is arranged such that the peeling surface 4A faces the outside of the thin blade abrasive grain layer 1 in the thickness direction. Thus, it is adhered to both side surfaces of the resin abrasive layer 2.

このように製造された上記薄刃砥石においては、その薄刃砥粒層1が、樹脂砥粒層2の両側面に金属砥粒層3が積層された構造とされているため、上記TBGAのようなテープタイプデバイスを切断したときの切断面は、これら金属砥粒層3によって形成されることとなる。そして、この金属砥粒層3に保持される超砥粒3Bの粒径は、樹脂砥粒層2に保持される超砥粒2Bの粒径よりも小さくされており、すなわちより細かな超砥粒3Bによって上記切断面が形成されることとなるので、該金属砥粒層3に鋭い切れ味を確保することが可能となる。従って、上記構成の薄刃砥石によれば、TBGAにおけるポリイミド樹脂テープのような軟質な基材を有した加工物に対しても、その切断面が交差するコーナ部などにバリが発生するのを抑えて高品位の加工を行うことができ、切断されて個片化されたTBGAを電子機器に装着する場合などにおける位置決め精度を維持して円滑な取り付け作業を促すことが可能となる。   In the thin blade grindstone manufactured in this way, the thin blade abrasive grain layer 1 has a structure in which the metal abrasive grain layers 3 are laminated on both side surfaces of the resin abrasive grain layer 2, so that the above-mentioned TBGA is used. The cut surface when the tape type device is cut is formed by these metal abrasive grain layers 3. The particle diameter of the superabrasive grains 3B held in the metal abrasive grain layer 3 is smaller than that of the superabrasive grains 2B held in the resin abrasive grain layer 2, that is, a finer superabrasive. Since the cut surface is formed by the grains 3B, it is possible to ensure a sharp sharpness in the metal abrasive grain layer 3. Therefore, according to the thin-blade grindstone having the above-described configuration, it is possible to suppress the occurrence of burrs at the corners where the cut surfaces intersect even with a workpiece having a soft base material such as a polyimide resin tape in TBGA. Thus, high-quality processing can be performed, and it is possible to promote a smooth mounting operation while maintaining positioning accuracy when the cut and separated TBGA is mounted on an electronic device.

また、このように薄刃砥粒層1両側の加工物切断面と接触する面積の大きい金属砥粒層3において鋭い切れ味が確保されることにより、上記構成の薄刃砥石によれば切断面の品位の向上を図ることもできる。その一方で、加工物への切込みは金属砥粒層3の間の樹脂砥粒層2に保持された粒径の大きい超砥粒2Bによって行われるので、切断効率が損なわれたりすることはない。また、この樹脂砥粒層2はその両側面が金属砥粒層3によって挟み込まれて保持された状態とされているため、樹脂砥粒層2のみの場合と比べて摩耗を抑えて薄刃砥粒層1の寿命の延長を図ることができるとともに、この薄刃砥粒層1の剛性を向上させることもできて、これにより直進性に優れた薄刃砥石を提供することができ、一層高品位で効率的な切断加工を促すことが可能となる。   In addition, the sharpness is ensured in the metal abrasive layer 3 having a large area in contact with the workpiece cutting surfaces on both sides of the thin-blade abrasive layer 1 as described above. Improvements can also be made. On the other hand, the cutting into the workpiece is performed by the superabrasive grains 2B having a large particle diameter held in the resin abrasive grain layer 2 between the metal abrasive grain layers 3, so that the cutting efficiency is not impaired. . Further, since the resin abrasive grain layer 2 is in a state where both side surfaces are sandwiched and held by the metal abrasive grain layer 3, wear is suppressed as compared with the case of only the resin abrasive grain layer 2, and the thin blade abrasive grains The life of the layer 1 can be extended, and the rigidity of the thin-blade abrasive grain layer 1 can be improved, whereby a thin-blade grindstone excellent in straightness can be provided, and the efficiency can be further improved. It is possible to promote efficient cutting.

なお、上記金属砥粒層3に保持される超砥粒3Bの粒径は、樹脂砥粒層2に保持される超砥粒2Bの粒径と変わらない程度にまで大きいと、上述のような鋭い切れ味によるバリの抑制効果が十分に奏功されなくなるおそれがある。その一方で、この金属砥粒層3の超砥粒3Bの粒径が樹脂砥粒層2の超砥粒2Bの粒径に対して小さくなりすぎても、粒径が大きい場合に比べて金属砥粒層3の摩耗が大きくなって超砥粒3Bが脱落しやすくなり、やはり上述の鋭い切れ味を維持することができなくなってバリの抑制効果が損なわれるおそれが生じる。このため、上記金属砥粒層3に保持された超砥粒3Bの粒径は、本実施形態のように樹脂砥粒層2に保持された超砥粒2Bの粒径に対して30%〜70%の範囲とされるのが望ましい。   In addition, when the particle diameter of the superabrasive grains 3B held in the metal abrasive grain layer 3 is large enough to be the same as that of the superabrasive grains 2B held in the resin abrasive grain layer 2, There is a risk that the burr suppression effect due to the sharpness will not be fully achieved. On the other hand, even if the particle diameter of the superabrasive grain 3B of the metal abrasive grain layer 3 is too small relative to the grain diameter of the superabrasive grain 2B of the resin abrasive grain layer 2, the metal grain size is larger than that when the grain size is large. The wear of the abrasive grain layer 3 is increased and the superabrasive grains 3B are likely to fall off, so that the sharpness described above cannot be maintained and the burr suppression effect may be impaired. For this reason, the particle diameter of the superabrasive grains 3B held in the metal abrasive grain layer 3 is 30% to the grain diameter of the superabrasive grains 2B held in the resin abrasive grain layer 2 as in this embodiment. A range of 70% is desirable.

また、この金属砥粒層3の厚さtについても、これが薄刃砥粒層1全体の厚さTに占める割合が大きくなりすぎると、逆に中央の樹脂砥粒層2の厚さが小さくなってその超砥粒2Bによる切断効率が損なわれるおそれがあるのは勿論、この樹脂砥粒層2の摩耗が金属砥粒層3に対して相対的に大きくなって薄刃砥粒層1外周が中凹型に変形してしまい、特許文献2に記載の薄刃砥石と同様に切屑詰まりを生じて高品位の加工を持続することができなくなるおそれがある。また、こうして金属砥粒層3の厚さtが厚くなりすぎると超砥粒3Bが脱落し難くなりすぎて新たな超砥粒3Bの露出による切れ刃の自生作用が阻害され、却ってその鋭い切れ味を維持することができなくなるおそれも生じる。このため、個々の金属砥粒層3の厚さtも本実施形態のように薄刃砥粒層T全体の厚さの1/4以下とされるのが望ましい。   In addition, regarding the thickness t of the metal abrasive grain layer 3, if the ratio of the thickness t to the entire thickness T of the thin blade abrasive grain layer 1 becomes too large, the thickness of the central resin abrasive grain layer 2 is conversely reduced. Of course, the cutting efficiency by the superabrasive grain 2B may be impaired, and the wear of the resin abrasive grain layer 2 becomes relatively large with respect to the metal abrasive grain layer 3, so that the outer periphery of the thin-blade abrasive grain layer 1 is medium. It may be deformed into a concave shape, resulting in chip clogging as in the case of the thin blade grindstone described in Patent Document 2, and it may not be possible to continue high-quality processing. Further, when the thickness t of the metal abrasive grain layer 3 becomes too thick, the superabrasive grain 3B becomes difficult to fall off, and the self-generated action of the cutting edge due to the exposure of the new superabrasive grain 3B is hindered. There is also a risk that it will not be possible to maintain. For this reason, it is desirable that the thickness t of each metal abrasive grain layer 3 is also ¼ or less of the entire thickness of the thin blade abrasive grain layer T as in this embodiment.

一方、このような薄刃砥石を製造するのに際して、本実施形態に係わる上記製造方法では、まず上述のような粒径の小さな超砥粒3Bを分散しためっき液中に台金を浸漬して通電することにより、電解めっきによってこの台金上面に超砥粒3Bを保持させつつ金属めっき相3Cを上記金属結合剤相3Aとして析出させ、これを台金から剥離して電鋳砥粒層4を製造するようにしている。そして、こうして製造された電鋳砥粒層4を一対、樹脂砥粒層2の両側面に貼着して積層することにより、これらの電鋳砥粒層4を上記金属砥粒層3として薄刃砥粒層1を形成するようにしており、このため該金属砥粒層3を均一な厚さtの平板状とすることが可能となって、樹脂砥粒層2の側面に凹凸があっても薄刃砥粒層1としては均一な厚さTを有する薄刃砥石を提供することが可能となる。   On the other hand, when manufacturing such a thin-blade grindstone, in the manufacturing method according to the present embodiment, first, a base metal is immersed in a plating solution in which superabrasive grains 3B having a small particle diameter as described above are dispersed. By doing so, the metal plating phase 3C is precipitated as the metal binder phase 3A while holding the superabrasive grains 3B on the upper surface of the base metal by electrolytic plating. I try to manufacture. Then, a pair of electroformed abrasive grain layers 4 manufactured in this way are laminated on both side surfaces of the resin abrasive grain layer 2 to laminate these electroformed abrasive grain layers 4 as the metal abrasive grain layers 3. The abrasive grain layer 1 is formed. For this reason, the metal abrasive grain layer 3 can be formed into a flat plate having a uniform thickness t, and the side surface of the resin abrasive grain layer 2 has irregularities. As the thin blade abrasive grain layer 1, it is possible to provide a thin blade grindstone having a uniform thickness T.

また、上記製造方法ではこうして電鋳砥粒層4を金属砥粒層3として樹脂砥粒層2両側面に貼着するのに、この樹脂砥粒層2を焼結成形するときのホットプレスの際に、該樹脂砥粒層2の原料となる樹脂結合剤および超砥粒2Bと必要に応じてフィラー2Cとの混合物を挟み込むように上記一対の電鋳砥粒層4を配置し、樹脂砥粒層2を焼成するのと同時にその両側面にこれら電鋳砥粒層4が貼着されて一体に積層されるようになされている。このため、これら電鋳砥粒層4を十分な強度で樹脂砥粒層2の両側面に貼着することが可能となるとともに、樹脂砥粒層2自体もその厚さが均一となるように成形することができるので、製造された薄刃砥石において薄刃砥粒層1の厚さTの均一化を図ることも可能となる。   Further, in the above manufacturing method, the electroformed abrasive grain layer 4 is attached as a metal abrasive grain layer 3 to both sides of the resin abrasive grain layer 2, and the hot press when the resin abrasive grain layer 2 is sintered and molded is used. At this time, the pair of electroformed abrasive grain layers 4 is disposed so as to sandwich a mixture of the resin binder and the superabrasive grains 2B as raw materials of the resin abrasive grain layer 2 and, if necessary, the filler 2C. At the same time when the grain layer 2 is fired, these electroformed abrasive grain layers 4 are adhered to both sides thereof and are laminated together. For this reason, it is possible to attach these electroformed abrasive grain layers 4 to both side surfaces of the resin abrasive grain layer 2 with sufficient strength, and the resin abrasive grain layer 2 itself also has a uniform thickness. Since it can be formed, the thickness T of the thin blade abrasive grain layer 1 can be made uniform in the manufactured thin blade grindstone.

しかも、こうして電鋳砥粒層4を金属砥粒層3として樹脂砥粒層2の両側面に貼着する際に、本実施形態ではこの電着砥粒層4がその上記台金からの剥離面4Aを薄刃砥粒層1の外側に向けて貼着されるようになされている。しかるに、上述のように台金上面に超砥粒3Bを保持させつつ金属めっき相3Cを析出させて形成された電鋳砥粒層4においては、平坦な台金上面と接していた上記剥離面4Aでは超砥粒3Bの突き出し量も均一かつ例えば4μm以下と小さく抑えられて平滑な面が得られるので、この剥離面4Aを外側に向けて電鋳砥粒層4を樹脂砥粒層2の両側面に貼着することにより、加工物の切断面を一層高品位に成形することができるとともに、この剥離面4Aが薄刃砥粒層1の側面1Bとなるためにこの側面1Bと外周面1Aとの上記エッジ部1Cを略直角の鋭利な断面形状とすることができ、このようなエッジ部4Cに粒径の小さな超砥粒3Bが金属結合剤相3A(金属めっき相3C)によって保持されるため、本実施形態の薄刃砥石によれば、さらに鋭い切れ味をより長期に亙って維持することができて、一層確実なバリの発生抑制を図ることが可能となる。   Moreover, in this embodiment, when the electroformed abrasive layer 4 is adhered to both side surfaces of the resin abrasive layer 2 as the metal abrasive layer 3, the electrodeposited abrasive layer 4 is peeled from the base metal in the present embodiment. The surface 4 </ b> A is adhered to the outside of the thin blade abrasive grain layer 1. However, in the electroformed abrasive grain layer 4 formed by depositing the metal plating phase 3C while holding the superabrasive grains 3B on the upper surface of the base metal as described above, the release surface that is in contact with the flat upper surface of the base metal. In 4A, the protruding amount of the superabrasive grains 3B is uniform and is suppressed to be as small as, for example, 4 μm or less, and a smooth surface is obtained. Therefore, the electroformed abrasive grain layer 4 is made of the resin abrasive grain layer 2 with the release surface 4A facing outward. By sticking to both side surfaces, the cut surface of the workpiece can be formed with higher quality, and since this peeling surface 4A becomes the side surface 1B of the thin-blade abrasive grain layer 1, this side surface 1B and the outer peripheral surface 1A. The edge portion 1C can be made into a sharp cross-sectional shape having a substantially right angle, and superabrasive grains 3B having a small particle size are held on the edge portion 4C by the metal binder phase 3A (metal plating phase 3C). Therefore, according to the thin blade grindstone of this embodiment Able to maintain further over a sharp sharpness to longer, it becomes possible to achieve a more reliable generation suppression of burrs.

また、その一方で、薄刃砥粒層1の内側を向いて樹脂砥粒層2の側面に貼り合わされることとなる電鋳砥粒層4の上記剥離面4Aとは反対側の面は、この剥離面4Aと比べて超砥粒3Bの突き出し量のばらつきが大きな粗面とされる。そして、本実施形態の薄刃砥石では、このような面が樹脂砥粒層2の両側面に貼り合わされることとなるので、該面側の超砥粒3Bのうち突き出し量の大きな超砥粒3Bが樹脂砥粒層2側に食い込むことにより、電鋳砥粒層4(金属砥粒層3)にさらに十分な貼着強度を確保することができるという利点も得ることができる。   On the other hand, the surface opposite to the peeling surface 4A of the electroformed abrasive grain layer 4 facing the inside of the thin-blade abrasive grain layer 1 and bonded to the side face of the resin abrasive grain layer 2 is Compared with the peeling surface 4A, the variation in the protruding amount of the superabrasive grains 3B is a rough surface. And in the thin blade grindstone of this embodiment, since such a surface will be bonded by the both sides | surfaces of the resin abrasive grain layer 2, superabrasive grain 3B with a large protrusion amount among the superabrasive grains 3B of this surface side. However, by biting into the resin abrasive grain layer 2 side, it is possible to obtain an advantage that a sufficient sufficient bonding strength can be secured to the electroformed abrasive grain layer 4 (metal abrasive grain layer 3).

ただし、本実施形態ではこのように金属砥粒層3を電鋳砥粒層4によって形成して樹脂砥粒層2の焼成の際にその両側面に一体に貼着されるようにしているが、例えば電鋳砥粒層4とは別体に樹脂砥粒層2を製造しておいて、その両側面に、十分な耐熱性と接合強度とを有する適当な接着剤により金属砥粒層3を接合して貼着するようにしてもよい。また、この金属砥粒層3としても、上述のような電鋳砥粒層4のようにNi等の金属めっき相3Cを金属結合剤相3Aとして超砥粒3Bを保持したもの以外に、例えばCu、Sn、あるいはCo等のメタルボンド剤を超砥粒3Bと混合して焼結することにより形成されたメタルボンド相を金属結合剤相として該超砥粒3Bを保持するものであってもよい。   However, in the present embodiment, the metal abrasive grain layer 3 is thus formed by the electroformed abrasive grain layer 4 and is integrally attached to both side surfaces when the resin abrasive grain layer 2 is fired. For example, the resin abrasive grain layer 2 is manufactured separately from the electroformed abrasive grain layer 4, and the metal abrasive grain layer 3 is formed on both sides thereof with an appropriate adhesive having sufficient heat resistance and bonding strength. May be bonded and adhered. Also, as the metal abrasive grain layer 3, in addition to the electrocast abrasive grain layer 4 as described above, a metal plating phase 3 C such as Ni is used as the metal binder phase 3 A to hold the superabrasive grains 3 B, for example, Even if it holds the superabrasive grains 3B with a metal bond phase formed by mixing and sintering a metal bond agent such as Cu, Sn, or Co with the superabrasive grains 3B as a metal binder phase Good.

以下、より具体的な実施例を挙げて、本発明の効果について説明する。本実施例では、まず上記実施形態において、樹脂砥粒層2における超砥粒2Bの粒径を40/60μm、厚さを150μmとし、これに対して金属砥粒層3における超砥粒3Bの粒径を4段階に小さくして個々の金属砥粒層3の厚さtを75μmとした、外径58mm、内径40mm、厚さT0.3mmの円環薄肉板状の薄刃砥粒層1よりなる4種の薄刃砥石を、当該実施形態に係わる上記製造方法によって製造した。具体的には、各粒径の超砥粒3Bを含有する上記厚さtの一対の電鋳砥粒層4をそれぞれ製造する一方で、樹脂結合剤(レジン粉末)と超砥粒2B、およびフィラー2Cをターブラにて1時間混合し、その混合粉末を、実施例ごとに一方の上記電鋳砥粒層4を敷設したプレス金型に充填してその上に他方の電鋳砥粒層4を被せた上でパンチを挿入し、200℃、5×10Pa〜3.5×10Paで1時間ホットプレスすることにより、樹脂砥粒層2を焼成するとともにその両側面に電鋳砥粒層4を金属砥粒層3として貼着して薄刃砥粒層1の原板を得、これを機械加工して上述のような寸法、形状に成形した。これらを実施例1〜4とする。また、これに対する比較例として、金属砥粒層3における超砥粒3Bの粒径を樹脂砥粒層2と等しく40/60μmとした以外は実施例1〜4と同様の薄刃砥石も製造した。なお、これら実施例1〜4および比較例の薄刃砥石において、樹脂砥粒層2は、樹脂結合剤がフェノール樹脂、フィラー2Cとして粒径10μmのAlを25vol%含み、また金属砥粒層3は金属めっき相3CがNiめっき相であり、樹脂、金属砥粒層2、3ともに超砥粒2B,3Bはダイヤモンド砥粒であって集中度は75であった。これら実施例1〜4および比較例の超砥粒2B,3Bの粒径を表1に示す。 Hereinafter, the effects of the present invention will be described with reference to more specific examples. In this example, first, in the above embodiment, the particle size of the superabrasive grain 2B in the resin abrasive grain layer 2 is 40/60 μm and the thickness is 150 μm, whereas the superabrasive grain 3B in the metal abrasive grain layer 3 is From an annular thin plate-shaped thin blade abrasive grain layer 1 having an outer diameter of 58 mm, an inner diameter of 40 mm, and a thickness of T0.3 mm, in which the particle diameter is reduced to four stages and the thickness t of each metal abrasive grain layer 3 is 75 μm. Four kinds of thin blade whetstones were manufactured by the manufacturing method according to the embodiment. Specifically, while producing a pair of electroformed abrasive grain layers 4 having the above-mentioned thickness t containing superabrasive grains 3B of each grain size, resin binder (resin powder) and superabrasive grains 2B, and The filler 2C is mixed for 1 hour with a tumbler, and the mixed powder is filled in a press mold in which one electroformed abrasive grain layer 4 is laid for each example, and the other electroformed abrasive grain layer 4 is placed thereon. And then hot pressing at 200 ° C. and 5 × 10 6 Pa to 3.5 × 10 7 Pa for 1 hour to sinter the resin abrasive layer 2 and to electrocast both sides thereof The abrasive grain layer 4 was stuck as the metal abrasive grain layer 3 to obtain an original plate of the thin-blade abrasive grain layer 1, which was machined and formed into the above-described dimensions and shape. Let these be Examples 1-4. Further, as a comparative example to this, a thin blade whetstone similar to that of Examples 1 to 4 was also manufactured except that the particle size of the superabrasive grain 3B in the metal abrasive grain layer 3 was set to 40/60 μm, which was the same as that of the resin abrasive grain layer 2. In the thin blade grindstones of Examples 1 to 4 and Comparative Example, the resin abrasive layer 2 includes 25 vol% of Al 2 O 3 having a particle diameter of 10 μm as a resin binder as a phenol resin and a filler 2C, and metal abrasive grains. In the layer 3, the metal plating phase 3C was a Ni plating phase, and the superabrasive grains 2B and 3B were diamond abrasive grains in both the resin and metal abrasive grain layers 2 and 3, and the degree of concentration was 75. Table 1 shows the particle diameters of the superabrasive grains 2B and 3B of Examples 1 to 4 and the comparative example.

Figure 2006082187
Figure 2006082187

そして、これら実施例1〜4および比較例の薄刃砥石により、東京精密株式会社製ダイサー(A−WD−10A)を用いて、幅100mm、長さ100mm、厚さ0.7mmのエポキシモールドに厚さ0.1mmのポリイミド樹脂テープが固定されたワークをこのポリイミド樹脂テープに沿って、主軸回転数30000(1/min)、送り速度300(mm/sec)、切込みフルカットで切断し、その切断初期と300m切断後とで切断面を観察して、薄刃砥石の回転方向に発生したバリ(Z方向バリと称する。)の大きさと、切断されたワークのコーナ部から薄刃砥石の送り方向に発生したバリ(コーナバリと称する。)の大きさ、および切断抵抗(切断装置の主軸を回転させるモーターの負荷電流)とを測定した。また、300m切断後には1m切断中の薄刃砥粒層1の摩耗量も測定した。これらの結果を、切断初期については表2に、300m切断後については表3にそれぞれ示す。   Then, using the thin blade grindstones of Examples 1 to 4 and the comparative example, using a dicer (A-WD-10A) manufactured by Tokyo Seimitsu Co., Ltd., the epoxy mold having a width of 100 mm, a length of 100 mm, and a thickness of 0.7 mm was thickened. A workpiece on which a 0.1 mm thick polyimide resin tape is fixed is cut along this polyimide resin tape with a spindle speed of 30000 (1 / min), a feed speed of 300 (mm / sec), and a full cut. Observe the cutting surface at the initial stage and after cutting 300 m, and generate it in the direction of thin blade grinding wheel in the rotation direction of the thin blade grinding wheel (referred to as Z direction burr) and in the feeding direction of the thin blade grinding stone from the corner of the cut workpiece The size of the burrs (called corner burrs) and the cutting resistance (load current of the motor that rotates the spindle of the cutting device) were measured. Moreover, after 300 m cutting | disconnection, the abrasion loss of the thin blade abrasive grain layer 1 in 1 m cutting | disconnection was also measured. These results are shown in Table 2 for the initial stage of cutting and in Table 3 after 300 m of cutting.

Figure 2006082187
Figure 2006082187

Figure 2006082187
Figure 2006082187

これら表2、3の結果より、実施例1〜4の薄刃砥石では、樹脂砥粒層2と金属砥粒層3とで超砥粒2B,3Bの粒径が等しくされた比較例の薄刃砥石に比べ、切断初期から300m切断後に亙ってZ方向バリ、コーナバリとも小さく抑えられていて、TBGAのようなテープタイプデバイスに対しても高品位の切断加工が可能であることが分かる。また、実施例1〜4のうちでも、金属砥粒層3の超砥粒3Bの粒径が樹脂砥粒層2の超砥粒2Bの粒径の30%〜70%とされた実施例1、2の薄刃砥石では、これよりも超砥粒3Bの粒径が小さくされた実施例3、4と比べて特に300m切断後のコーナバリが切断初期と変わらない程度に小さく抑制されており、上述のような高品位の切断を長期に亙って維持することが可能であることが分かる。なお、比較例において300m切断後の砥石摩耗量が小さいのは、金属砥粒層3において超砥粒3Bの良好な脱落が促されずに超砥粒3B自体が摩滅したためと考えられ、これに伴い切れ刃の自生が図られずに切れ味が鈍化したことも、この比較例において300m切断後に大きなバリが発生した一因と考えられる。   From the results of Tables 2 and 3, in the thin blade grindstones of Examples 1 to 4, the thin blade grindstone of the comparative example in which the particle sizes of the superabrasive grains 2B and 3B are made equal in the resin abrasive grain layer 2 and the metal abrasive grain layer 3 Compared to the above, both the Z-direction burr and the corner burr are kept small after 300 m from the beginning of cutting, and it can be seen that high-quality cutting can be performed even for a tape type device such as TBGA. Further, among Examples 1 to 4, Example 1 in which the particle size of the superabrasive grains 3B of the metal abrasive grain layer 3 is 30% to 70% of the grain size of the superabrasive grains 2B of the resin abrasive grain layer 2 In the thin-blade grindstone of No. 2, the corner burr after cutting 300 m is suppressed to a level that is not different from the initial cutting, as compared with Examples 3 and 4 in which the particle diameter of the superabrasive grain 3B is smaller than this. It can be seen that it is possible to maintain such high-quality cutting for a long time. In the comparative example, the reason why the wear amount of the grindstone after cutting 300 m is small is thought to be that the superabrasive grains 3B themselves were worn out without being promoted to drop off the superabrasive grains 3B in the metal abrasive grain layer 3. Accompanied with this, the fact that the cutting edge was not self-generated and the sharpness dulled is considered to be one of the reasons why a large burr was generated after cutting 300 m in this comparative example.

次に、上記実施例1〜4および比較例と同じく樹脂砥粒層2における超砥粒2Bの粒径を40/60μmとするとともに、金属砥粒層3における超砥粒3Bの粒径は8/20μmとし、外径58mm、内径40mm、厚さT0.3mmの円環薄肉板状の薄刃砥粒層1においてこれら樹脂砥粒層2の厚さと個々の金属砥粒層3の厚さtとを変化させた5種の薄刃砥石を、やはり上記製造方法によって製造した。これらを実施例5〜9として、表4に樹脂砥粒層2の厚さと個々の金属砥粒層3の厚さtを示すとともに、実施例1〜4および上記比較例と同様の切断条件で同様のワークを切断し、その切断初期と300m切断後とでZ方向バリの大きさと、コーナバリの大きさ、および切断抵抗と、300m切断後の摩耗量とを測定した結果を、切断初期については表5に、300m切断後については表6にそれぞれ示す。   Next, the particle diameter of the superabrasive grain 2B in the resin abrasive grain layer 2 is set to 40/60 μm, and the grain diameter of the superabrasive grain 3B in the metal abrasive grain layer 3 is 8 as in Examples 1 to 4 and the comparative example. The thickness of the resin abrasive grain layer 2 and the thickness t of each metal abrasive grain layer 3 in an annular thin plate-like thin blade abrasive grain layer 1 having an outer diameter of 58 mm, an inner diameter of 40 mm, and a thickness T of 0.3 mm. Five types of thin blade whetstones with different diameters were also produced by the above production method. Table 4 shows the thickness of the resin abrasive grain layer 2 and the thickness t of each metal abrasive grain layer 3 as Examples 5 to 9, and the same cutting conditions as in Examples 1 to 4 and the above comparative example. The same workpiece was cut, and the results of measuring the size of the burr in the Z direction, the size of the corner burr, the cutting resistance, and the amount of wear after cutting 300 m after the initial cutting and after 300 m cutting. Table 5 shows the results after cutting 300 m in Table 6.

Figure 2006082187
Figure 2006082187

Figure 2006082187
Figure 2006082187

Figure 2006082187
Figure 2006082187

これら表5、6の結果より、個々の金属砥粒層3の厚さtが薄刃砥粒層1全体の厚さTの1/4(75μm)よりも厚くされた実施例5、6の薄刃砥石では、それ以外の実施例5〜7に比べて特にコーナバリが切断初期から大きく、その傾向は300m切断後で一層顕著となった。また、これに伴って切断抵抗も大きくなっているのが分かる。これに対して、金属砥粒層3の厚さtが薄刃砥粒層1の厚さTの1/4以下とされた実施例7〜9では、切断初期から300m切断後でもZ方向バリおよびコーナバリとも小さく抑えられており、より高品位の切断が可能であることが分かる。ただし、金属砥粒層3の厚さtが薄刃砥粒層1の厚さTの1/12とされた実施例9では砥石の摩耗量が大きく、寿命が短縮されることが懸念されるため、個々の金属砥粒層3の厚さtは薄刃砥粒層1の厚さTに対して1/10〜1/4の範囲とされるのがより望ましいといえる。   From the results shown in Tables 5 and 6, the thin blades of Examples 5 and 6 in which the thickness t of each metal abrasive grain layer 3 is thicker than ¼ (75 μm) of the total thickness T of the thin abrasive grain layer 1. In the grindstone, the corner burr was particularly large from the beginning of cutting as compared with the other Examples 5 to 7, and the tendency became more remarkable after 300 m cutting. In addition, it can be seen that the cutting resistance increases accordingly. On the other hand, in Examples 7 to 9 in which the thickness t of the metal abrasive grain layer 3 was ¼ or less of the thickness T of the thin-blade abrasive grain layer 1, the Z-direction burrs and It can be seen that both corner burrs are kept small and higher quality cutting is possible. However, in Example 9 in which the thickness t of the metal abrasive grain layer 3 was set to 1/12 of the thickness T of the thin-blade abrasive grain layer 1, the wear amount of the grindstone is large, and there is a concern that the service life may be shortened. It can be said that the thickness t of each metal abrasive grain layer 3 is more preferably in the range of 1/10 to 1/4 with respect to the thickness T of the thin-blade abrasive grain layer 1.

本発明の一実施形態を示す薄刃砥石の側面図である。It is a side view of the thin blade grindstone which shows one Embodiment of this invention. 図1に示す実施形態の薄刃砥石における薄刃砥粒層1の外周縁部の拡大断面図である。It is an expanded sectional view of the outer periphery part of the thin blade abrasive grain layer 1 in the thin blade grindstone of embodiment shown in FIG.

符号の説明Explanation of symbols

1 薄刃砥粒層
1C エッジ部
2 樹脂砥粒層
2A 樹脂結合剤相
2B 樹脂砥粒層2に保持された超砥粒
2C フィラー
3 金属砥粒層
3A 金属結合剤相
3B 金属砥粒層3に保持された超砥粒
3C 金属めっき相(金属結合剤相)
4 電鋳砥粒層(金属砥粒層)
4A 電鋳砥粒層4の剥離面
T 薄刃砥粒層1の厚さ
t 個々の金属砥粒層3の厚さ
DESCRIPTION OF SYMBOLS 1 Thin blade abrasive grain layer 1C Edge part 2 Resin abrasive grain layer 2A Resin binder phase 2B Super abrasive grain hold | maintained at the resin abrasive grain layer 2 C Filler 3 Metal abrasive grain layer 3A Metal binder phase 3B Metal abrasive grain layer 3 Superabrasive grains retained 3C Metal plating phase (metal binder phase)
4 Electroformed abrasive layer (metal abrasive layer)
4A Release surface of electroformed abrasive layer 4 T Thickness of thin blade abrasive layer 1 t Thickness of individual metal abrasive layer 3

Claims (5)

樹脂結合剤相中に超砥粒が保持されてなる樹脂砥粒層の両側面に、金属結合剤相中に超砥粒が保持されてなる金属砥粒層が積層された薄刃砥粒層を備え、上記金属砥粒層に保持された超砥粒の粒径が、上記樹脂砥粒層に保持された超砥粒の粒径よりも小さくされていることを特徴とする薄刃砥石。   A thin blade abrasive layer in which a metal abrasive layer in which superabrasive particles are held in a metal binder phase is laminated on both sides of a resin abrasive layer in which superabrasive particles are held in a resin binder phase. A thin blade grindstone, characterized in that the particle size of the superabrasive particles held in the metal abrasive layer is smaller than the particle size of the superabrasive particles held in the resin abrasive layer. 上記金属砥粒層に保持された超砥粒の粒径が、上記樹脂砥粒層に保持された超砥粒の粒径の30%〜70%の範囲とされていることを特徴とする請求項1に記載の薄刃砥石。   The particle size of the superabrasive particles held in the metal abrasive layer is in the range of 30% to 70% of the particle size of the superabrasive particles held in the resin abrasive layer. Item 2. The thin blade grindstone according to Item 1. 個々の上記金属砥粒層の厚さが、上記薄刃砥粒層の厚さの1/4以下とされていることを特徴とする請求項1または請求項2に記載の薄刃砥石。   The thin blade grindstone according to claim 1 or 2, wherein the thickness of each of the metal abrasive grain layers is ¼ or less of the thickness of the thin blade abrasive grain layer. 上記金属砥粒層は、金属めっき相によって超砥粒が保持されてなる電鋳砥粒層であって、超砥粒を分散しためっき液中に浸漬された台金上に層状に形成されて剥離され、上記樹脂砥粒層の両側面に貼着されて積層されていることを特徴とする請求項1ないし請求項3のいずれかに記載の薄刃砥石。   The metal abrasive grain layer is an electroformed abrasive grain layer in which superabrasive grains are held by a metal plating phase, and is formed in layers on a base metal immersed in a plating solution in which superabrasive grains are dispersed. The thin-blade grindstone according to any one of claims 1 to 3, wherein the thin-blade grindstone is peeled and stuck to and laminated on both side surfaces of the resin abrasive grain layer. 上記電鋳砥粒層は、上記台金からの剥離面を上記薄刃砥粒層の外側に向けて上記樹脂砥粒層の両側面に貼着されていることを特徴とする請求項4に記載の薄刃砥石。
5. The electroformed abrasive layer is attached to both side surfaces of the resin abrasive layer with a peeling surface from the base metal facing the outside of the thin blade abrasive layer. 6. Thin blade whetstone.
JP2004270176A 2004-09-16 2004-09-16 Thin blade grinding wheel Pending JP2006082187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270176A JP2006082187A (en) 2004-09-16 2004-09-16 Thin blade grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270176A JP2006082187A (en) 2004-09-16 2004-09-16 Thin blade grinding wheel

Publications (1)

Publication Number Publication Date
JP2006082187A true JP2006082187A (en) 2006-03-30

Family

ID=36161100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270176A Pending JP2006082187A (en) 2004-09-16 2004-09-16 Thin blade grinding wheel

Country Status (1)

Country Link
JP (1) JP2006082187A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238369A (en) * 2007-03-28 2008-10-09 Noritake Super Abrasive:Kk Cutting blade
JP2011222698A (en) * 2010-04-08 2011-11-04 Disco Abrasive Syst Ltd Method of processing optical device wafer
JP2011245559A (en) * 2010-05-21 2011-12-08 Mitsubishi Materials Corp Cutting blade
JP2012192488A (en) * 2011-03-16 2012-10-11 Mitsubishi Materials Corp Resin bond grinding wheel
JP2013536764A (en) * 2010-09-03 2013-09-26 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and method of forming
US9102039B2 (en) 2012-12-31 2015-08-11 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9266219B2 (en) 2012-12-31 2016-02-23 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9278431B2 (en) 2012-12-31 2016-03-08 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
EP3278927A1 (en) * 2016-08-04 2018-02-07 Tyrolit - Schleifmittelwerke Swarovski K.G. Cutting disk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334076A (en) * 1986-07-29 1988-02-13 Mitsubishi Metal Corp Electroplating thin edge grindstone
JPS63174877A (en) * 1987-01-10 1988-07-19 Mitsubishi Metal Corp Electroformed thin blade grinding stone
JPH01183371A (en) * 1988-01-11 1989-07-21 Noritake Dia Kk Extremely thin cutting blade
JPH0691547A (en) * 1991-05-23 1994-04-05 Mitsubishi Materials Corp Flexible disk grinding wheel
JP2001341076A (en) * 2000-05-31 2001-12-11 Nippon Plastic Seito Kk Grinding wheel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334076A (en) * 1986-07-29 1988-02-13 Mitsubishi Metal Corp Electroplating thin edge grindstone
JPS63174877A (en) * 1987-01-10 1988-07-19 Mitsubishi Metal Corp Electroformed thin blade grinding stone
JPH01183371A (en) * 1988-01-11 1989-07-21 Noritake Dia Kk Extremely thin cutting blade
JPH0691547A (en) * 1991-05-23 1994-04-05 Mitsubishi Materials Corp Flexible disk grinding wheel
JP2001341076A (en) * 2000-05-31 2001-12-11 Nippon Plastic Seito Kk Grinding wheel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238369A (en) * 2007-03-28 2008-10-09 Noritake Super Abrasive:Kk Cutting blade
JP2011222698A (en) * 2010-04-08 2011-11-04 Disco Abrasive Syst Ltd Method of processing optical device wafer
JP2011245559A (en) * 2010-05-21 2011-12-08 Mitsubishi Materials Corp Cutting blade
US9676077B2 (en) 2010-09-03 2017-06-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
JP2013536764A (en) * 2010-09-03 2013-09-26 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and method of forming
US9254553B2 (en) 2010-09-03 2016-02-09 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US10377017B2 (en) 2010-09-03 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
JP2012192488A (en) * 2011-03-16 2012-10-11 Mitsubishi Materials Corp Resin bond grinding wheel
US9102039B2 (en) 2012-12-31 2015-08-11 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9266219B2 (en) 2012-12-31 2016-02-23 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9278431B2 (en) 2012-12-31 2016-03-08 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10377016B2 (en) 2012-12-31 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10946499B2 (en) 2013-03-31 2021-03-16 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
EP3278927A1 (en) * 2016-08-04 2018-02-07 Tyrolit - Schleifmittelwerke Swarovski K.G. Cutting disk

Similar Documents

Publication Publication Date Title
TW201343977A (en) Composite wire saw having electroplating and method for fabricating the same
JP4779580B2 (en) Electroformed thin blade whetstone
JP2006082187A (en) Thin blade grinding wheel
JP5701211B2 (en) Electroformed thin cutting saw and core drill impregnated with abrasive
US20180354095A1 (en) Grinding Tool and Method of Fabricating the Same
KR101151051B1 (en) Sharp-edge grinding wheel
JP5841437B2 (en) Cutting blade and method for manufacturing the same
US7086394B2 (en) Grindable self-cleaning singulation saw blade and method
KR102229135B1 (en) CMP pad conditioner with individually attached tips and method for producing the same
KR100628018B1 (en) Beveling wheel for processing outer circumference part of silicone wafer and manufacturing method of the same
JP2002127017A (en) Dresser for polishing cloth and its manufacture
JP2004136431A (en) Electroforming thin edge whetstone and its manufacturing method
JP5651045B2 (en) Cutting blade
JP5528064B2 (en) Cutting blade
TWI286097B (en) Polishing tool and method for making the same
JP3823830B2 (en) Electroformed thin blade whetstone
JP3086670B2 (en) Super abrasive whetstone
JP4661025B2 (en) Metal bond grindstone and manufacturing method thereof
JP5676324B2 (en) Resin bond grindstone
JP3006458B2 (en) Inner circumference grinding wheel
JP5729809B2 (en) Agglomerated abrasive
JP2003048163A (en) Electrodeposition grinding wheel
JP7012440B2 (en) Hub type blade
JP3969024B2 (en) Electroformed thin blade whetstone
JP4419652B2 (en) Grinding wheel and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A521 Written amendment

Effective date: 20100215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02