JP2006081483A - Biomass ethanol using waste mushroom bed of mushroom as raw material - Google Patents

Biomass ethanol using waste mushroom bed of mushroom as raw material Download PDF

Info

Publication number
JP2006081483A
JP2006081483A JP2004270797A JP2004270797A JP2006081483A JP 2006081483 A JP2006081483 A JP 2006081483A JP 2004270797 A JP2004270797 A JP 2004270797A JP 2004270797 A JP2004270797 A JP 2004270797A JP 2006081483 A JP2006081483 A JP 2006081483A
Authority
JP
Japan
Prior art keywords
bed
mushroom
waste
ethanol
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004270797A
Other languages
Japanese (ja)
Other versions
JP4637536B2 (en
Inventor
Takashi Shimoda
隆史 下田
Kozo Nishibori
耕三 西堀
Takashi Shirouchi
隆志 城内
Yasuo Ohira
安夫 大平
Yasushi Morikawa
康 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yukiguni Maitake Co Ltd
Nagaoka University of Technology NUC
Original Assignee
Yukiguni Maitake Co Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukiguni Maitake Co Ltd, Nagaoka University of Technology NUC filed Critical Yukiguni Maitake Co Ltd
Priority to JP2004270797A priority Critical patent/JP4637536B2/en
Publication of JP2006081483A publication Critical patent/JP2006081483A/en
Application granted granted Critical
Publication of JP4637536B2 publication Critical patent/JP4637536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a method for readily obtaining ethanol in good yield by utilizing a waste mushroom bed of a mushroom. <P>SOLUTION: The ethanol is obtained by pulverizing the waste mushroom bed of the mushroom with a pulverizer, saccharifying the resultant powder with an enzyme and carrying out alcohol fermentation of the saccharified material with a microorganism or carrying out combined fermentation by combined use of saccharification with the enzyme and alcohol fermentation with the microorganism. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はキノコ栽培後に廃棄物として残る廃菌床中の、エネルギー資源として利用可能な、木質バイオマスを利用してエタノールへ変換する方法に関するものである。   The present invention relates to a method of converting woody biomass, which can be used as an energy resource, into ethanol using waste biomass that remains as waste after mushroom cultivation.

木材成分の約半分を占めるセルロースはグルコースが多数直鎖状に連なったもので、そのままでも紙などに利用できるが、グルコースまで分解する(糖化)ことによりその利用法は広がる。特に注目されているのはグルコースをエタノールに変換することによる液体燃料としての利用である。   Cellulose, which occupies about half of the wood component, is a series of many glucoses in a straight chain, and can be used as it is for paper or the like, but its utilization is expanded by breaking down to glucose (saccharification). Of particular interest is the use as a liquid fuel by converting glucose into ethanol.

しかしながら木材のセルロースはリグニンなどに囲まれており単離し難く、セルロース自身も難分解性であるという点でその利用が制限されていた。そのため古くは第二次世界大戦前より様々な分解(糖化)法が考えられ、試みられてきた(非特許文献1)。   However, the use of cellulose in wood has been limited in that it is surrounded by lignin and is difficult to isolate, and cellulose itself is also hardly degradable. Therefore, in the past, various decomposition (saccharification) methods have been considered and tried since before the Second World War (Non-patent Document 1).

古くから木材を糖化する方法として知られているのは濃硫酸若しくは希硫酸糖化法である。これは濃硫酸や希硫酸と木材を高温下で反応させることにより、セルロースを加水分解してグルコースを取り出す方法である。この方法でよく知られているのが、濃硫酸法では北海道法、希硫酸法ではショーラー法である(非特許文献2)。またそれが改良された方法として短時間の濃硫酸処理の後に30%程度まで硫酸を希釈して熱をかけて糖化するアルケノール社の方法(非特許文献3、4)などが存在する。   It is concentrated sulfuric acid or dilute sulfuric acid saccharification method that has long been known as a method for saccharifying wood. This is a method in which concentrated sulfuric acid or dilute sulfuric acid is reacted with wood at high temperature to hydrolyze cellulose and take out glucose. Well-known in this method are the Hokkaido method in the concentrated sulfuric acid method and the Scholler method in the dilute sulfuric acid method (Non-Patent Document 2). Moreover, as an improved method, there is an Alkenol method (Non-patent Documents 3 and 4) in which sulfuric acid is diluted to about 30% after a short time of concentrated sulfuric acid treatment and saccharified by heating.

これらの方法は最も簡単に木材からグルコースを取り出すことができる方法として知られているが、反面濃硫酸を用いるため装置の腐食を考慮する必要があり、その素材にかける費用やメンテナンスの費用が大きくなるという問題がある(非特許文献2、5)。   These methods are known as the simplest methods for extracting glucose from wood, but on the other hand, since concentrated sulfuric acid is used, it is necessary to consider the corrosion of the equipment, which increases the cost of the material and the cost of maintenance. (Non-Patent Documents 2 and 5).

濃硫酸糖化法に代わる方法として考えられているのは、酵素糖化法である。これはセルロースを分解する酵素セルラーゼを用いて濃硫酸糖化法よりも温和な条件でグルコースを得ることを目的としている(非特許文献2、5)。また、セルラーゼ糖化と酵母によるエタノール発酵を同時併用による併行複発酵を行うことで、セルラーゼ類の活性が生じた糖により阻害されることが防がれ、エタノール変換効率が上昇する(非特許文献6)。さらにひとつの容器で二つの反応を同時に行うことができるので、工程を簡略化することができる。しかし、木材中セルロースは前述の通りリグニンなどに囲まれているため、そのままではセルラーゼと反応させても糖化し難い。従って木材に何らかの前処理が必要となる(非特許文献2、5、6)。   An enzyme saccharification method is considered as an alternative to the concentrated sulfuric acid saccharification method. This is intended to obtain glucose under milder conditions than the concentrated sulfate saccharification method using an enzyme cellulase that decomposes cellulose (Non-patent Documents 2 and 5). In addition, by performing simultaneous double fermentation using cellulase saccharification and ethanol fermentation with yeast simultaneously, it is prevented from being inhibited by the sugar in which the activity of cellulases is generated, and the ethanol conversion efficiency is increased (Non-Patent Document 6) ). Furthermore, since two reactions can be performed simultaneously in one container, the process can be simplified. However, since cellulose in wood is surrounded by lignin and the like as described above, it is difficult to saccharify if it is reacted with cellulase as it is. Therefore, some kind of pretreatment is required for the wood (Non-Patent Documents 2, 5, and 6).

酵素糖化法の前処理として考えられている方法にアルカリ法や希硫酸法などが存在する(非特許文献5、7)。アルカリ処理は草本系植物では実績があるものの、木質系植物ではあまり報告がない。一方の希硫酸処理は1%未満の硫酸で木材を処理するものであり、酵素糖化法の前処理としては最も用いられている方法である。しかしながら、高温高圧化での反応を必要としており、またやはり硫酸を用いるということで濃硫酸糖化法と同様に装置の腐食の問題が生じてしまう(非特許文献7)。   Alkaline methods, dilute sulfuric acid methods, and the like exist as methods considered as pretreatments for enzymatic saccharification methods (Non-Patent Documents 5 and 7). Alkaline treatment has a track record in herbaceous plants, but there are few reports on woody plants. On the other hand, dilute sulfuric acid treatment treats wood with less than 1% sulfuric acid, and is the most widely used pretreatment for enzymatic saccharification. However, the reaction at high temperature and high pressure is required, and the use of sulfuric acid also causes the problem of corrosion of the apparatus as in the concentrated sulfuric acid saccharification method (Non-patent Document 7).

薬品を用いない、物理的前処理法として考えられている方法に、蒸煮・爆砕法、電子線照射や粉砕法などがある。蒸煮・爆砕法は木材に高熱の蒸気を吹きかけつつ高圧とし、適当な時間の後、圧を一気に開放することにより木材の組織・細胞を破壊する方法である。この方法は濃硫酸法と並んで実用化が進んでいるが、ヘミセルロース分の回収率(キシロースで回収率65%未満)が低く、将来的にヘミセルロース分も用いるエタノール製造を行う際の障害になると考えられている(非特許文献7)。   Methods considered as physical pretreatment methods that do not use chemicals include steaming / explosion methods, electron beam irradiation and grinding methods. The steaming / explosion method is a method of destroying the tissues and cells of wood by applying high pressure steam to the wood to increase the pressure and releasing the pressure at once after an appropriate time. This method is being put to practical use along with the concentrated sulfuric acid method, but the recovery rate of hemicellulose (xylose is less than 65%) is low, and it will be an obstacle to ethanol production that also uses hemicellulose in the future. It is considered (Non-Patent Document 7).

電子線照射は実験室での検討が行われているに留まっており、実用化には程遠い。   Electron beam irradiation has only been studied in the laboratory and is far from practical.

粉砕法は種々の検討がなされているが、時間やエネルギーがかかり過ぎるという点で木材の前処理として有効ではないとの見解が取られている。現在、粉砕処理は他の前処理(硫酸など)の効率を上げるための粗粉砕(粒径1〜3cm以下)として利用することが多い(非特許文献7)。   Various studies have been made on the pulverization method, but the view is that it is not effective as a pretreatment of wood because it takes too much time and energy. Currently, pulverization is often used as coarse pulverization (particle size of 1 to 3 cm or less) for increasing the efficiency of other pretreatments (such as sulfuric acid) (Non-patent Document 7).

一方、マイタケを含むキノコ類の人工栽培では周年空調菌床栽培が一般的となりつつある。菌床栽培では細かく砕いたオガコとキノコの栄養分を混ぜ合わせ、含水率を適宜調節して袋やビンに詰めた培地を作成する。これを滅菌してからキノコ菌糸を植えて適当な条件下で数ヶ月培養し、キノコ菌糸を培地内外に蔓延させた(この状態を菌床と呼ぶ)後、キノコ子実体を形成させる。自然界ではキノコ類が含まれる担子菌類は他の生物と競合せざるを得ずその結果として難分解性の木材を資化しているが、菌床栽培ではその競合が無いためより資化しやすい木材以外の栄養分を使って成長していると考えられている。   On the other hand, year-round air-conditioning fungus bed cultivation is becoming common in artificial cultivation of mushrooms including maitake. In fungus bed cultivation, the nutrients of finely crushed saw and mushrooms are mixed together, and the water content is appropriately adjusted to create a medium packed in bags and bottles. After sterilizing this, mushroom mycelium is planted and cultured under appropriate conditions for several months. The mushroom mycelium is spread inside and outside the medium (this state is called the mycelium), and then mushroom fruiting bodies are formed. In nature, basidiomycetes containing mushrooms must compete with other organisms, resulting in assimilation of indegradable wood, but there is no competition in fungus bed cultivation, and other than wood that is easier to assimilate It is thought that it grows using the nutrients.

実際、マイタケでは木材のβ-グルカン(セルロース)よりも栄養分由来のα-グルカン(TFA可容性グルカン)を優先的に消化することが知られている(非特許文献8)。よって、菌床栽培でキノコを収穫した後に残る菌床(廃菌床)には未利用のオガコ中セルロース分がほとんど無傷のまま残っていると推察される。さらに、培地成分中オガコ重量の割合(水を除く)は、ブナシメジなどが40%程度であるのに対して、マイタケなど一部のキノコでは50〜90%(主に広葉樹)と大部分がオガコである。かかる観点から廃菌床、特にマイタケ等培地成分の大部分がオガコであるキノコの廃菌床は木質系バイオマス資源として有望である。さらにマイタケなどは工場での大規模栽培が行われており、大量にまとめて廃菌床を得ることができる。しかしながら、現在のところ廃菌床の利用はボイラーの熱源などごく一部に限られている。   In fact, maitake is known to preferentially digest nutrient-derived α-glucan (TFA-capable glucan) over wood β-glucan (cellulose) (Non-patent Document 8). Therefore, it is surmised that the unused cellulose content in sawdust remains almost intact in the fungus bed (waste fungus bed) remaining after harvesting mushrooms in fungus bed cultivation. Furthermore, the proportion of sawdust in medium components (excluding water) is about 40% for beech shimeji mushrooms, etc., while some mushrooms such as maitake are 50-90% (mainly hardwood) and most are sawfish. It is. From this point of view, the waste fungus bed, especially the mushroom waste bed in which most of the medium components such as maitake are sawdust is promising as a woody biomass resource. Furthermore, maitake is cultivated on a large scale in factories, and waste bacteria beds can be obtained in large quantities. However, at present, the use of the waste microbial bed is limited to only a part such as the heat source of the boiler.

大内健二(2002)、バイオマスエネルギーの特性とエネルギー変換・利用技術、NTS、p253-279Ouchi Kenji (2002), Biomass energy characteristics and energy conversion and utilization technology, NTS, p253-279 坂士朗ら(2001)、バイオマス・エネルギー・環境、IPC、p251-260Shiro Saka et al. (2001), Biomass / Energy / Environment, IPC, p251-260 鈴木宏之(2000)、バイオマス 科学的転換利用エンジニアリングアプローチ、武田書店、p352Hiroyuki Suzuki (2000), Biomass Scientific Conversion Utilization Engineering Approach, Takeda Shoten, p352 斉木隆(2001)、バイオマス・エネルギー・環境、IPC、p380-397Takashi Saiki (2001), Biomass / Energy / Environment, IPC, p380-397 杉浦純(2002)、バイオマスエネルギーの特性とエネルギー変換・利用技術、NTS、p283-312Sugiura Jun (2002), Biomass energy characteristics and energy conversion and utilization technology, NTS, p283-312 George P. Philippidis (1996), Handbook on Bioethanol, Taylor & Francis, p253-285George P. Philippidis (1996), Handbook on Bioethanol, Taylor & Francis, p253-285 The-An Hsu (1996), Handbook on Bioethanol, Taylor & Francis, p183-212The-An Hsu (1996), Handbook on Bioethanol, Taylor & Francis, p183-212 橋本由紀ら(2003)、日本応用きのこ学会第7回大会講演要旨集、日本応用きのこ学会第7回大会、p67Yuki Hashimoto et al. (2003), Abstracts of the 7th Annual Meeting of the Japan Society of Applied Mushrooms, 7th Annual Meeting of the Japan Society of Applied Mushrooms, p67

本発明は、キノコ廃菌床を利用してエタノールを容易にかつ収率よく得る方法の開発を課題とする。   This invention makes it a subject to develop the method of obtaining ethanol easily and with high yield using a mushroom waste microbial bed.

本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、キノコの工場栽培で大量に排出され、限定的な利用しかできない廃菌床に残っているセルロースを酵素処理により糖、さらにエタノールに変換する際、キノコ廃菌床が木材等に比較して粉砕化し易いこと及び粉砕処理のみによる前処理効果が高いことを知見して本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have released a large amount of mushrooms in the plant cultivation, and the remaining cellulose in the waste fungus bed that can be used only limitedly by sugar treatment, When converting to ethanol, the present invention was completed based on the knowledge that the mushroom waste fungus bed was more easily pulverized than wood or the like, and the pretreatment effect by only the pulverization treatment was high.

すなわち、本発明は、キノコ廃菌床を粉砕機で粉砕し、酵素による糖化の後微生物によるアルコール発酵を行うか又は酵素による糖化と微生物によるアルコール発酵の併用による併行複発酵を行い、エタノールを得るもので、以下詳述する。   That is, the present invention pulverizes a mushroom waste fungus bed with a pulverizer, and performs saccharification with an enzyme, followed by alcoholic fermentation by a microorganism, or by performing simultaneous double fermentation by a combination of enzymatic saccharification and alcoholic fermentation by a microorganism to obtain ethanol. The details will be described below.

本発明は、
(1)キノコ廃菌床を乾燥機で乾燥させた後、粉砕機を用いて粉砕し、次いで得られた粉砕処理済みキノコ廃菌床を、セルラーゼ糖化によりグルコースを生成させた後グルコースの微生物によるエタノール発酵を行うことを特徴とするキノコ廃菌床のエタノールへの変換方法、
(2)キノコ廃菌床を乾燥機で乾燥させた後、粉砕機を用いて粉砕し、次いで得られた粉砕処理済みキノコ廃菌床を、セルラーゼ糖化と微生物の併用による同時併行複発酵を行うことを特徴とするキノコ廃菌床のエタノールへの変換方法、
(3)粉砕処理済みキノコ廃菌床の70%以上が粒子径90μm以下であることを特徴とする上記(1)又は(2)に記載の変換方法、
(4)粉砕処理済みキノコ廃菌床の90%以上が粒子径90μm以下であることを特徴とする上記(1)又は(2)に記載の変換方法、
(5)キノコ廃菌床がマイタケ廃菌床であることを特徴とする上記(1)乃至(4)に記載の変換方法
に関する。
The present invention
(1) The mushroom waste fungus bed is dried with a drier and then pulverized with a pulverizer, and then the pulverized mushroom waste fungus bed obtained is produced with glucose by cellulase saccharification and then with glucose microorganisms. A method for converting mushroom waste fungus bed to ethanol, characterized by performing ethanol fermentation,
(2) The mushroom waste fungus bed is dried with a drier and then pulverized with a pulverizer, and the resulting pulverized mushroom waste fungus bed is subjected to simultaneous double fermentation using cellulase saccharification and microorganisms in combination. A method for converting mushroom waste fungus bed to ethanol,
(3) The conversion method according to (1) or (2) above, wherein 70% or more of the pulverized mushroom waste fungus bed has a particle size of 90 μm or less,
(4) The conversion method according to (1) or (2) above, wherein 90% or more of the pulverized mushroom waste fungus bed has a particle size of 90 μm or less,
(5) The present invention relates to the conversion method as described in (1) to (4) above, wherein the mushroom waste fungus bed is a maitake waste fungus bed.

まず、キノコ廃菌床(ここで言うキノコ廃菌床とは、マイタケ、ブナシメジ、ナメコ、エリンギ及びシイタケなどオガコを含有する培地で袋栽培若しくはビン栽培したキノコの子実体を収穫した後の菌床を指す)を乾燥させる。廃菌床中のオガコの樹種については針葉樹と広葉樹どちらでもかまわないが、広葉樹の方が良い結果が得られる。袋栽培の場合、キノコ廃菌床は通常ブロック状で排出される。まずこれを崩してから乾燥させる。ビン栽培の場合はビン内部の廃菌床を掻き出してから乾燥させる。この時キノコ菌糸体は混入しても良い。   First, the mushroom waste bed (the mushroom waste bed mentioned here is the fungus bed after harvesting the fruit bodies of mushrooms grown in bags or bottled in a medium containing sawdust such as maitake, beech shimeji, nameko, eringi and shiitake. Dry). As for the species of sawdust in the waste fungus bed, either conifers or broadleaf trees can be used, but broadleaf trees give better results. In the case of bag cultivation, waste mushroom beds are usually discharged in blocks. First, break it down and let it dry. In the case of bottle cultivation, the waste bacteria bed inside the bottle is scraped and dried. At this time, mushroom mycelium may be mixed.

乾燥方法は廃菌床の水分を無くすることができ得る方法であればどのような方法を採っても良いが、送風乾燥機や真空乾燥機などを用いると簡便である。   Any drying method can be used as long as it can remove water from the waste microbial bed, but it is convenient to use a blower dryer or a vacuum dryer.

乾燥させた廃菌床は粉砕機にて粉砕する。本発明者等は種々研究の結果廃菌床を粉砕処理することによりグルコースへの糖化率が向上し、その結果エタノール変換率が向上することを知見した。   The dried waste bed is pulverized with a pulverizer. As a result of various studies, the present inventors have found that the saccharification rate to glucose is improved by pulverizing the waste microbial bed, and as a result, the ethanol conversion rate is improved.

そして更に具体的に検討したところ、粉砕後の廃菌床の粒径が90μm以下で、特に、粉砕後の廃菌床の90%以上が90μm以下である場合にグルコースへの糖化率が高まり、その後更なる検討の結果、粉砕後の廃菌床の70%以上が90μm以下である場合でもグルコースへの糖化率は、粉砕しない場合に比べて、向上することを見出した。   And more specifically, when the particle size of the waste bacterial bed after pulverization is 90 μm or less, particularly when 90% or more of the waste bacterial bed after pulverization is 90 μm or less, the saccharification rate to glucose increases, As a result of further studies, it was found that the saccharification rate to glucose was improved as compared with the case of not pulverizing even when 70% or more of the waste bacterial bed after pulverization was 90 μm or less.

廃菌床を粉砕化するに当たってはジェットミル、ローターミル、ボールミル及び揺動ミルその他どの様な粉砕機でも使用可能であるが、粉砕後の廃菌床の70%以上、好ましくは90%以上が粒径90μm以下に出来るものが好ましい。   In pulverizing the waste bacteria bed, any pulverizer such as a jet mill, a rotor mill, a ball mill and a rocking mill can be used, but 70% or more, preferably 90% or more of the waste bacteria bed after pulverization is used. Those having a particle size of 90 μm or less are preferred.

勿論、粒径が90μm以上にかなり分布する状態に粉砕して、篩を使用して90μm以下に揃えることも可能であり、斯かる場合も本願に包含される。   Of course, it is also possible to pulverize into a state in which the particle size is significantly distributed to 90 μm or more and to use a sieve to make the particle size 90 μm or less, and such a case is also included in the present application.

揺動ミルを使用した場合、効果的であり以下にその例を示す。すなわち、ミル用の容器に容器の1/3容ほどの乾燥廃菌床を入れる。容器としては粉砕機にセットできる大きさの市販のビンなどを用いて良い。材質としてはプロピレンなどのプラスチックでも良いが、最適なものはガラスである。そこに乾燥廃菌床とほぼ同量のメディアを入れる。このメディアはボールミル用のボールを用いる。ボールの材質としてはアルミナやジルコニアなどを用いるが、ジルコニアが適度な硬度を持ち最も有効である。ボール径はなるべく大きなものを用いるのが効果的ではあるが、5mmで良い効果が得られる。   When a rocking mill is used, it is effective and an example is shown below. In other words, about 1/3 volume of dry waste bacteria bed is placed in a container for the mill. As the container, a commercially available bottle of a size that can be set in a pulverizer may be used. The material may be a plastic such as propylene, but the most suitable is glass. Put almost the same amount of media into the dry waste bed. This media uses a ball mill ball. Alumina, zirconia, or the like is used as the ball material, and zirconia has the appropriate hardness and is most effective. Although it is effective to use as large a ball diameter as possible, a good effect can be obtained at 5 mm.

粉砕は振動数、500-700rpmで2時間行う。振動数は機械の性能にもよるができるだけ大きな振動で行うと良い結果が得られる。粉砕時間は2時間以上行っても問題は無いが、2時間粉砕でほぼ求める効果を得ることができる。粉砕処理済み廃菌床の粒径はその90%以上が90μm以下まで小さくなるとその後の糖(やエタノール)への変換が容易となるが、可能な限り粒径を小さくすると良い。   Grinding is performed at a frequency of 500-700 rpm for 2 hours. Although the frequency depends on the performance of the machine, good results can be obtained if it is performed with as much vibration as possible. There is no problem even if the pulverization time is 2 hours or longer, but the desired effect can be obtained by pulverization for 2 hours. When 90% or more of the pulverized waste bed is reduced to 90 μm or less, the subsequent conversion to sugar (or ethanol) is facilitated, but it is preferable to make the particle size as small as possible.

本発明におけるキノコ廃菌床の粉砕処理は、木材等の粉砕処理に比べ、短時間で、しかもエネルギーも少なく簡便に出来経済的である。   The pulverization treatment of the mushroom waste microbial bed in the present invention is simpler and more economical than a pulverization treatment of wood, etc., in a short time and with less energy.

粉砕終了後、メディアのボール径より小さな穴の開いた篩やざるなどにミル用容器から粉砕した廃菌床とメディアの混合物を入れ、振るうことで粉砕した廃菌床とメディアを分離する。次の操作で水等の液体に懸濁する場合は、その液体をミル用容器に注ぎ込み、粉砕した廃菌床とメディアの混合物を液体に懸濁してから、篩やざるなどに注ぎ込むと、粉末の飛散が抑えられるために操作が簡便である。   After the pulverization is completed, the mixture of pulverized waste bacteria bed and media from a mill container is put into a sieve or a sieve having a hole smaller than the ball diameter of the media, and the pulverized waste bacteria bed and media are separated by shaking. When suspending in a liquid such as water in the next operation, pour the liquid into a mill container, suspend the pulverized waste bed and media mixture in the liquid, and then pour it into a sieve or a sieve. The operation is simple because the scattering of the water is suppressed.

粉砕処理済みキノコ廃菌床はセルラーゼ糖化によるグルコースを生成させた後グルコースの微生物によるエタノール発酵を行なうか、又はセルラーゼ糖化と微生物によるエタノール発酵を併行して同時に行う併行複発酵を行うことによりエタノールに変換する。   The waste mushroom bed after the pulverization treatment generates glucose by cellulase saccharification, followed by ethanol fermentation by microorganisms of glucose, or by simultaneous cellulase saccharification and ethanol fermentation by microorganisms, and by performing parallel double fermentation in which simultaneous fermentation is performed. Convert.

特に本発明による粉砕処理済み廃菌床の使用は、セルラーゼ若しくはセルラーゼを主体とする酵素及び酵母とともに培養することにより、セルラーゼによる廃菌床中セルロースのグルコースへの糖化と、そのグルコースを用いて酵母によるエタノール発酵を同時に行う併行複発酵において、グルコースによるセルラーゼ活性阻害が少なくなり、より効果的に発酵が進むことになる。   In particular, the use of the waste microbial bed after pulverization according to the present invention is carried out by culturing with cellulase or an enzyme mainly composed of cellulase and yeast, so that saccharification of cellulose in the waste microbial bed into cellulose by cellulase and yeast using the glucose In parallel double fermentation in which ethanol fermentation is simultaneously performed, cellulase activity inhibition by glucose is reduced, and fermentation proceeds more effectively.

発酵に用いる酵素は市販品であっても、糸状菌を培養した培養液やそれから精製したものであっても、セルロースをグルコースへ分解できるものであれば良い。酵素の量は廃菌床当り12.5−50FPU(Filter Paper Unit、ろ紙分解活性)となるように加える。酵素の形態が粉末状である場合はpH5.0付近のバッファーに懸濁すると使用しやすい。酵素液は0.45μm以下のフィルターを通して雑菌を除いておくと発酵系への雑菌のコンタミネーションを防ぐことができる。   Even if the enzyme used for fermentation is a commercial item, the culture solution which culture | cultivated the filamentous fungus, and what was refine | purified from it should just be a thing which can decompose | disassemble cellulose into glucose. The amount of the enzyme is added so as to be 12.5-50 FPU (Filter Paper Unit, filter paper decomposition activity) per waste microbial bed. If the enzyme is in powder form, it is easy to use if suspended in a buffer around pH 5.0. If the bacteria are removed from the enzyme solution through a filter of 0.45 μm or less, contamination of the bacteria into the fermentation system can be prevented.

同じく使用する微生物については、酵母ではSaccharomyces cereviciaeを用いるのが簡便であるので有効であるが、条件に応じて耐塩性のShizosaccharomyces pombeやペントース発酵が可能であるPichia stipitisを用いることができ、また酵母以外ではエタノール発酵が可能な細菌であるZymomonas mobilisなどエタノール発酵が可能である生物ならば、遺伝子組み換えをされたものも含めて何でも使用できる。S. cereviciaeを用いる場合、スラントや凍結などで保存されているものを使用して良いが、市販のパン酵母を用いても良い。パン酵母を用いる場合はその形態が乾燥であれ、生であれ、そのまま発酵系に投入することにより、発酵初期から酵母が高濃度で存在することとなるため効率が良い。スラント等で保存してある状態の酵母を用いる場合は、併行複発酵に用いる前に液体培地を用いて前培養すると酵母の量や活性を上げることができるので望ましい。 For microorganisms to be used, it is effective to use Saccharomyces cereviciae in yeast because it is convenient, but depending on the conditions, salt-resistant Shizosaccharomyces pombe and Pichia stipitis that allows pentose fermentation can be used. Except for the organisms that can be ethanol-fermented, such as Zymomonas mobilis, which is a bacterium capable of ethanol-fermenting, anything including genetically modified organisms can be used. When using S. cereviciae , what is preserve | saved by slant or freezing may be used, but commercially available baker's yeast may be used. When using baker's yeast, whether it is dry or raw, it is efficient because it is present in the fermentation system as it is, since the yeast is present at a high concentration from the beginning of fermentation. When yeast in a state preserved in slant or the like is used, it is desirable that the amount and activity of the yeast can be increased by pre-culturing using a liquid medium before using in parallel double fermentation.

前培養に用いる液体培地は1%酵母エキス、2%ペプトン、3%グルコース、pH5.0のような、酵母の培養に適しているものであれば何でも良い。前培養終了後に集菌して使用する。酵母の投入量は終濃度0.1g/l以上であれば問題なく発酵できるが、多ければ前述のように発酵効率が良いとともにコンタミネーションを防ぐことができる。   The liquid medium used for the pre-culture may be anything as long as it is suitable for yeast culture, such as 1% yeast extract, 2% peptone, 3% glucose, pH 5.0. Collect and use after completion of pre-culture. The yeast can be fermented without problems if the final concentration is 0.1 g / l or more, but if it is large, the fermentation efficiency is good and contamination can be prevented as described above.

粉砕処理済みキノコ廃菌床は発酵量に対して適当量加えて良いが、該廃菌床が高濃度になると高粘度となるので発酵初期の攪拌が困難になる。よって、投入する粉砕処理済みキノコ廃菌床の量は攪拌機の能力を考慮してよく攪拌できる量に調整すると良い。   An appropriate amount of the pulverized mushroom waste microbial bed may be added to the fermentation amount, but if the waste microbial bed has a high concentration, the viscosity becomes high and stirring at the beginning of fermentation becomes difficult. Therefore, the amount of the pulverized mushroom waste fungus bed to be added is preferably adjusted to an amount capable of being stirred in consideration of the ability of the stirrer.

粉砕済みキノコ廃菌床や酵母成長に必要な栄養源を加えた発酵液はオートクレーブにて滅菌する(121℃、15分以上)。滅菌後37℃程度まで冷却し、先に述べた酵素や酵母を投入し、37℃で発酵を開始する。発酵中は嫌気状態にし、攪拌を行うと効率が上がる。こうして1−3日培養を行うことにより、廃菌床中のセルロース分をエタノールに変換することができる。   Sterilize the fermented liquor containing nutrients necessary for pulverized mushroom waste and yeast growth in an autoclave (121 ° C, 15 min or longer). After sterilization, cool to about 37 ° C, add the enzymes and yeast described above, and start fermentation at 37 ° C. During fermentation, the efficiency is increased by stirring anaerobically. By carrying out the culture for 1 to 3 days in this way, the cellulose content in the waste microbial bed can be converted into ethanol.

粉砕処理済みキノコ廃菌床にはキシランなどのヘミセルロース分も失われることなく残っているので、ヘミセルラーゼによるヘミセルロースの分解によりキシロースなどのペントースを中心としたヘミセルロース構成糖類を得ることが可能である。さらにこれらの糖からエタノール発酵ができる微生物(前述のZ. mobilisなど)を利用することにより、エタノール収率を大幅に向上させることも可能である。 Since the hemicellulose content such as xylan remains without being lost in the pulverized mushroom waste fungus bed, it is possible to obtain hemicellulose-constituting saccharides centering on pentose such as xylose by decomposition of hemicellulose with hemicellulase. Furthermore, the ethanol yield can be significantly improved by utilizing a microorganism (such as the aforementioned Z. mobilis ) capable of ethanol fermentation from these sugars.

本発明のように、キノコ栽培後の廃菌床を再利用することにより、木材を利用する場合に比較して、粉砕処理が短時間で、エネルギーも少なく簡便に出来、経済的であり、しかも緩和な製造条件で、より高い収率でエタノールが得られる。   As in the present invention, by reusing the waste fungus bed after mushroom cultivation, compared to the case of using wood, the pulverization process can be performed in a short time, with less energy, and economical, and Ethanol is obtained in higher yields under mild production conditions.

本発明をより具体的に説明するために、以下に実施例を示すが本発明はこれに限定されるものではない。   In order to describe the present invention more specifically, examples are shown below, but the present invention is not limited thereto.

(1)マイタケ廃菌床の粉砕処理
ブナオガコとコーンブランを体積比9:1で混合し、含水率を65%に調整したものをマイタケ栽培培地として作成した。水を除いた重量比はブナオガコが80%、コーンブランが20%となる。それを2.5kgマイタケ栽培用袋に詰めて105℃、2時間滅菌した。冷却後マイタケ菌を植菌して25℃程度で2.5ヶ月培養後16℃程度の部屋に移し、栽培袋上部を切りマイタケ子実体を発生させた。子実体の収穫適期になったら収穫し、廃菌床を得た。
(1) Grinding treatment of maitake mushroom bed Bunaogako and corn bran were mixed at a volume ratio of 9: 1, and a water content adjusted to 65% was prepared as a maitake cultivation medium. The weight ratio excluding water is 80% for Bunaogako and 20% for Corn Blanc. This was packed in a 2.5 kg maitake cultivation bag and sterilized at 105 ° C. for 2 hours. After cooling, maitake fungi were inoculated, cultured at about 25 ° C. for 2.5 months, transferred to a room at about 16 ° C., and the upper part of the cultivation bag was cut to generate maitake fruit bodies. When the fruit body was suitable for harvesting, it was harvested to obtain a waste fungus bed.

マイタケ廃菌床上部の菌糸塊を取り除いた後、マイタケ廃菌床を崩してよく混ぜた。Drying Ovenを用いて60℃、一晩乾燥させた。   After removing the mycelium from the upper part of the maitake mushroom bed, the mushroom mushroom bed was broken and mixed well. It dried at 60 degreeC overnight using Drying Oven.

乾燥させたマイタケ廃菌床を100mlのねじ口ビンに40mlほど入れ、さらにメディアとしてほぼ等容の直径5mmのジルコニア製ボール又は直径6mmのアルミナ製ボールを入れた。これを2セット用意し、蓋をしっかりと閉めてから、揺動型ミルにセットした。振動数を67.5Hzに設定し、粉砕を開始した。粉砕時間は2時間とした。粉砕終了後にビンから粉砕廃菌床とメディアの混合物を目開き4.0mmの篩にあけ、振るうことにより、粉砕した廃菌床をメディアから分離した。このようにして粉砕処理済みマイタケ廃菌床を調製した。   About 40 ml of the dried maitake mushroom waste bed was placed in a 100 ml screw bottle, and an approximately equal volume of 5 mm diameter zirconia balls or 6 mm diameter alumina balls were placed as media. Two sets of these were prepared, and after closing the lid firmly, they were set on a rocking mill. The frequency was set to 67.5 Hz and grinding was started. The grinding time was 2 hours. After the pulverization, the mixture of the pulverized waste bacteria bed and the media was opened from a bottle through a sieve having an opening of 4.0 mm and shaken to separate the pulverized waste bacteria bed from the media. In this way, a crushed maitake waste fungus bed was prepared.

(2)マイタケ廃菌床のグルコース変換
50mMクエン酸バッファー中に60FPU/g-バイオマスのセルラーゼ及び1mMアジ化ナトリウムが含まれた酵素液を作成し、10mlを100mgの上記(1)で得た粉砕処理済みマイタケ廃菌床を入れた50ml三角フラスコに分注した。水分が蒸発しないように蓋をし、50℃にて120rpmで振盪をしながら3日間反応させた。反応終了後、必要量をサンプリングし、沸騰湯浴中で5分保持することによりセルラーゼを失活させた。遠心にて不溶分を除いた後に、グルコースセンサーを用いて溶液中のグルコース濃度を求めた。
(2) Glucose conversion of maitake waste beds
Prepare an enzyme solution containing 60 FPU / g-biomass cellulase and 1 mM sodium azide in 50 mM citrate buffer, and then add 10 ml of 100 mg of the crushed maitake waste microbial bed obtained in (1) above to 50 ml Dispense into Erlenmeyer flasks. The lid was closed so that the water did not evaporate, and the reaction was carried out for 3 days while shaking at 120 rpm at 50 ° C. After completion of the reaction, the required amount was sampled, and the cellulase was inactivated by holding it in a boiling water bath for 5 minutes. After removing insolubles by centrifugation, the glucose concentration in the solution was determined using a glucose sensor.

対照としてマイタケ栽培に用いていないブナオガコを同様に粉砕処理したもの並びに未粉砕のマイタケ廃菌床、オガコを用意し、上記と同様条件による糖化によりできたグルコース収率を比較した。グルコース収率は廃菌床中セルロース含有量を45%、ブナオガコ中セルロース含有量を57%として計算した。その結果を表1に示す。なお、廃菌床1および2はマイタケの収穫日が異なっている。   As a control, beech shellfish not used for maitake cultivation were similarly ground, as well as unground ground maitake mushroom beds and sawdust, and the glucose yields obtained by saccharification under the same conditions as described above were compared. The glucose yield was calculated by assuming that the cellulose content in the waste microbial bed was 45% and the cellulose content in beech was 57%. The results are shown in Table 1. The waste microbial beds 1 and 2 have different maitake harvest dates.

(3)マイタケ廃菌床のエタノールへの変換(併行複発酵)
エタノール変換は発酵液40mlの系で行った。すなわち、100mlの三角フラスコに30mlの50mMクエン酸−燐酸バッファー(pH5.0)をいれ、そこに4.8g(終濃度12%)の粉砕処理済み廃菌床を混合し、濃燐酸を用いてpHを5.0に調整した。別に10倍濃の0.1%酵母エキス、0.2%ペプトンからなる栄養溶液を作成した。それぞれ121℃、15分オートクレーブし、室温まで冷却した。滅菌した50mMクエン酸−燐酸バッファー(pH5.0)に乾燥酵母を10g/lとなるように加えてよく攪拌し、酵母液とした。また、60FPU分のセルラーゼ粉末を2mlのバッファーに懸濁しセルラーゼ溶液とし、それを0.42μmのフィルターを用いてフィルター滅菌した。
(3) Conversion of maitake mushroom beds to ethanol (parallel double fermentation)
Ethanol conversion was performed in a 40 ml fermentation broth system. That is, add 30 ml of 50 mM citrate-phosphate buffer (pH 5.0) to a 100 ml Erlenmeyer flask, mix 4.8 g (final concentration: 12%) of the crushed waste bed, and use concentrated phosphoric acid to adjust the pH. Was adjusted to 5.0. Separately, a nutrient solution consisting of 10% concentrated 0.1% yeast extract and 0.2% peptone was prepared. Each was autoclaved at 121 ° C. for 15 minutes and cooled to room temperature. Dry yeast was added to sterilized 50 mM citrate-phosphate buffer (pH 5.0) to a concentration of 10 g / l, and the mixture was stirred well to obtain a yeast solution. In addition, cellulase powder for 60 FPU was suspended in 2 ml of buffer to prepare a cellulase solution, which was filter sterilized using a 0.42 μm filter.

クリーンベンチ内で無菌的に30mlの廃菌床液に4mlの栄養溶液及び酵母液、及び2mlのセルラーゼ溶液を添加して40mlとした。三角フラスコにエタノールで滅菌した発酵栓でふたをし、隙間をパラフィルムでふさいだ。こうして調整したフラスコを37℃のインキュベーターに入れ、120往復の振盪をしながら7日間発酵(培養)させた。   Aseptically in a clean bench, 4 ml of nutrient solution and yeast solution and 2 ml of cellulase solution were added to 30 ml of waste bacterial bed solution to make 40 ml. The Erlenmeyer flask was capped with a fermentation stopper sterilized with ethanol, and the gap was sealed with parafilm. The flask thus prepared was placed in a 37 ° C. incubator and fermented (cultured) for 7 days while shaking 120 times.

対照として未粉砕のマイタケ廃菌床及びブナオガコについても上記と同様条件でエタノールへの変換を行った。結果を表2に示す。   As a control, unground maitake mushroom waste beds and beech wood were also converted to ethanol under the same conditions as described above. The results are shown in Table 2.

Figure 2006081483
Figure 2006081483

Figure 2006081483
Figure 2006081483

表1から明らかなように、廃菌床を利用することにより前処理を行わなくても得られたグルコース収率(26.6±2.34%、35.2±4.72%)は前処理をしていないブナオガコ(2.0±0.50%)よりも極端に高くなる。廃菌床を粉砕処理することにより更にグルコース収率が高くなり、得られたグルコース収率は粉砕処理をしない場合と比較して約2.5〜2.7倍となった。ブナオガコも粉砕処理によりグルコース収率が高くなるが、廃菌床ほど多くのグルコースは得られなかった。   As is apparent from Table 1, the glucose yield (26.6 ± 2.34%, 35.2 ± 4.72%) obtained without using the pretreatment by using the waste microbial bed is the beech tree that has not been pretreated (2.0 It becomes extremely higher than ± 0.50%). By crushing the waste microbial bed, the glucose yield was further increased, and the obtained glucose yield was about 2.5 to 2.7 times that in the case of not crushing. The yield of beech was also increased by the pulverization treatment, but as much glucose was not obtained as the waste fungus bed.

また、表2に表したようにエタノール変換においても表1と同様、粉末処理済みマイタケ廃菌床が高い変換率を示した。   Further, as shown in Table 2, also in the ethanol conversion, as in Table 1, the powder-treated maitake waste microbial bed showed a high conversion rate.

(4)粉砕処理済み廃菌床の粒度分布
廃菌床の粒度分布は目開き90、63、32μmの篩を用いて粉砕廃菌床を振り分けた後に、それぞれの重量を測定することにより調べた。
(4) Particle size distribution of the crushed waste bed The particle size distribution of the shed bed was examined by measuring the weight of each crushed bed using 90, 63, and 32 μm sieves. .

粉砕時間の検討では上記(1)の粉砕条件で、粉砕時間を0.25、0.5、1.0、2.0または4.0時間と変えて粉砕を行い、それぞれを糖化して、グルコース濃度から収率を計算し、比較した。図1にその結果を示す。   In the examination of the grinding time, the grinding time was changed to 0.25, 0.5, 1.0, 2.0, or 4.0 hours under the grinding conditions described in (1) above, saccharified, and the yield was calculated from the glucose concentration. did. The result is shown in FIG.

図1から分かるように粉砕時間は2時間行うと十分であった。   As can be seen from FIG. 1, it was sufficient that the grinding time was 2 hours.

次に粒度分布と糖化率との関係を検討したところ、粉砕処理前のマイタケ廃菌床では250μm以下の粒度に分布は見られないが、粉砕処理することにより90μm以下が90%以上を占めるようになった。つまり、ここまでの粉砕を行うとグルコースやエタノールへの変換が容易となる。   Next, when the relationship between the particle size distribution and the saccharification rate was examined, no distribution was seen in the particle size of 250 μm or less in the maitake mushroom bed before pulverization treatment, but 90 μm or less seems to account for 90% or more by pulverization treatment. Became. That is, when the pulverization is performed up to here, conversion to glucose or ethanol becomes easy.

しかし、図2及び表3から分かるように粒度90μm以下が71%であってもグルコース収率が41.4%であるから、粉砕効果が認められる。   However, as can be seen from FIG. 2 and Table 3, even if the particle size of 90 μm or less is 71%, the glucose yield is 41.4%, so that the grinding effect is recognized.

Figure 2006081483
Figure 2006081483

粉砕時間の検討結果を示す図。The figure which shows the examination result of a grinding | pulverization time. 粉砕処理済廃菌床の粒度分布が糖化率に及ぼす影響を示す図。The figure which shows the influence which the particle size distribution of the pulverized waste microbial bed has on the saccharification rate.

Claims (5)

キノコ廃菌床を乾燥機で乾燥させた後、粉砕機を用いて粉砕し、次いで得られた粉砕処理済みキノコ廃菌床を、セルラーゼ糖化によりグルコースを生成させた後グルコースの微生物によるエタノール発酵を行うことを特徴とするキノコ廃菌床のエタノールへの変換方法。   After the mushroom waste fungus bed is dried with a dryer, it is pulverized using a pulverizer, and then the pulverized mushroom waste fungus bed obtained is generated by cellulase saccharification followed by ethanol fermentation by glucose microorganisms. A method for converting a mushroom waste fungus bed to ethanol, which is characterized in that it is performed. キノコ廃菌床を乾燥機で乾燥させた後、粉砕機を用いて粉砕し、次いで得られた粉砕処理済みキノコ廃菌床を、セルラーゼ糖化と微生物の併用による同時併行複発酵を行うことを特徴とするキノコ廃菌床のエタノールへの変換方法。   The mushroom waste fungus bed is dried with a drier, pulverized with a pulverizer, and then the pulverized mushroom waste fungus bed obtained is subjected to simultaneous double fermentation using cellulase saccharification and microorganisms in combination. A method for converting the waste mushroom bed to ethanol. 粉砕処理済みキノコ廃菌床の70%以上が粒子径90μm以下であることを特徴とする請求項1又は2に記載の変換方法。   The conversion method according to claim 1 or 2, wherein 70% or more of the pulverized mushroom waste fungus bed has a particle size of 90 µm or less. 粉砕処理済みキノコ廃菌床の90%以上が粒子径90μm以下であることを特徴とする請求項1又は2に記載の変換方法。   The conversion method according to claim 1 or 2, wherein 90% or more of the pulverized mushroom waste fungus bed has a particle size of 90 µm or less. キノコ廃菌床がマイタケ廃菌床であることを特徴とする請求項1乃至4に記載の変換方法。   5. The conversion method according to claim 1, wherein the mushroom waste fungus bed is a maitake waste fungus bed.
JP2004270797A 2004-09-17 2004-09-17 Biomass ethanol from mushroom waste bed Expired - Fee Related JP4637536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270797A JP4637536B2 (en) 2004-09-17 2004-09-17 Biomass ethanol from mushroom waste bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270797A JP4637536B2 (en) 2004-09-17 2004-09-17 Biomass ethanol from mushroom waste bed

Publications (2)

Publication Number Publication Date
JP2006081483A true JP2006081483A (en) 2006-03-30
JP4637536B2 JP4637536B2 (en) 2011-02-23

Family

ID=36160458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270797A Expired - Fee Related JP4637536B2 (en) 2004-09-17 2004-09-17 Biomass ethanol from mushroom waste bed

Country Status (1)

Country Link
JP (1) JP4637536B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142024A (en) * 2006-12-11 2008-06-26 Katsuyama Technos:Kk Method for producing alcohol by using sheath of bamboo shoot
JP2009022165A (en) * 2007-07-17 2009-02-05 Akita Prefecture Method for producing ethanol
WO2009048042A1 (en) * 2007-10-10 2009-04-16 Yukiguni Maitake Co., Ltd. Material conversion method using cellulose-based biomass
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
JP2009178712A (en) * 2007-12-31 2009-08-13 Shinyodo:Kk Container apparatus for fermenting/drying work and method for drying wet organic matter
JP2009291154A (en) * 2008-06-06 2009-12-17 Yuzo Tsuchida Method for producing bio-ethanol
WO2010016536A1 (en) * 2008-08-07 2010-02-11 株式会社雪国まいたけ Method for treating lignocellulose material
JP2010081826A (en) * 2008-09-30 2010-04-15 Kansai Electric Power Co Inc:The Medium for cellulase-producing bacterium, method for culturing cellulase-producing bacterium and method for saccharifying cellulose
JP5237492B1 (en) * 2012-09-03 2013-07-17 明日香 安達 Shiitake mushroom bed
CN107746860A (en) * 2017-11-30 2018-03-02 江西理工大学 A kind of method that bio-ethanol is prepared using mushroom bran as raw material
JP2021137673A (en) * 2020-03-02 2021-09-16 プロスペックAz株式会社 Pretreatment method of mushroom abandoning/culturing medium
WO2022043685A1 (en) 2020-08-26 2022-03-03 Xeros Limited Enzymatic degradation of cellulosic substrates in the presence of lignocellulose milling particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020603A (en) * 2004-07-09 2006-01-26 Yukiguni Maitake Co Ltd Method for converting waste mushroom bed as raw material to ethanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020603A (en) * 2004-07-09 2006-01-26 Yukiguni Maitake Co Ltd Method for converting waste mushroom bed as raw material to ethanol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010024579, 朝日新聞(東京朝刊)、2001年1月31日、第9頁 *
JPN6010044575, 日本生物工学会大会講演要旨集, 200408, Vol.2004th, p.83, #1pE15−4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142024A (en) * 2006-12-11 2008-06-26 Katsuyama Technos:Kk Method for producing alcohol by using sheath of bamboo shoot
JP2009022165A (en) * 2007-07-17 2009-02-05 Akita Prefecture Method for producing ethanol
WO2009048042A1 (en) * 2007-10-10 2009-04-16 Yukiguni Maitake Co., Ltd. Material conversion method using cellulose-based biomass
JP2009089662A (en) * 2007-10-10 2009-04-30 Yukiguni Maitake Co Ltd Material conversion method for cellulosic biomass
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
JP2009178712A (en) * 2007-12-31 2009-08-13 Shinyodo:Kk Container apparatus for fermenting/drying work and method for drying wet organic matter
JP2009291154A (en) * 2008-06-06 2009-12-17 Yuzo Tsuchida Method for producing bio-ethanol
WO2010016536A1 (en) * 2008-08-07 2010-02-11 株式会社雪国まいたけ Method for treating lignocellulose material
JP2010081826A (en) * 2008-09-30 2010-04-15 Kansai Electric Power Co Inc:The Medium for cellulase-producing bacterium, method for culturing cellulase-producing bacterium and method for saccharifying cellulose
JP5237492B1 (en) * 2012-09-03 2013-07-17 明日香 安達 Shiitake mushroom bed
JP2014045771A (en) * 2012-09-03 2014-03-17 Asuka Adachi Mushroom bed for shiitake (lentinula edodes)
CN107746860A (en) * 2017-11-30 2018-03-02 江西理工大学 A kind of method that bio-ethanol is prepared using mushroom bran as raw material
JP2021137673A (en) * 2020-03-02 2021-09-16 プロスペックAz株式会社 Pretreatment method of mushroom abandoning/culturing medium
WO2022043685A1 (en) 2020-08-26 2022-03-03 Xeros Limited Enzymatic degradation of cellulosic substrates in the presence of lignocellulose milling particles

Also Published As

Publication number Publication date
JP4637536B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4697858B2 (en) Pretreatment of mushroom waste bed and conversion to sugar and ethanol by using it
RU2678806C1 (en) Biomass treatment
US8765430B2 (en) Enhancing fermentation of starch- and sugar-based feedstocks
US4338399A (en) Process for recovering hydrocarbons from hydrocarbon-containing biomass
ES2543909T3 (en) Method to produce ethanol from biomass
CN102985550A (en) Compositions and methods for fermentation of biomass
JP4637536B2 (en) Biomass ethanol from mushroom waste bed
CN101200712A (en) Method for producing ferulic acid esterase by solid fermentation
KR101075602B1 (en) Mutant Strain of Brettanomyces custersii and Method of Ethanol Production Using the Same
JP6579534B2 (en) Biogas production method
CN108949842A (en) A kind of resource utilization method of lignocellulosic acid system pretreatment waste liquid
JP5604613B2 (en) Ethanol production method
JP2009089662A (en) Material conversion method for cellulosic biomass
JP5007998B2 (en) Saccharification method using lignocellulosic plant material decay
CN108203693A (en) Utilize the method for tobacco waste production high concentration L-type lactic acid
JPWO2010093047A1 (en) Biotreatment saccharification pretreatment method and saccharification method using the pretreatment method
CN104372062A (en) Method for producing fatty acid by mixing and fermenting oil-producing yeast and bacillus to degrade lignocellulose
JP5984195B2 (en) Apparatus and method for producing biogas from plant biomass using fungi
JP2006020603A (en) Method for converting waste mushroom bed as raw material to ethanol
Olagunju et al. Effect of Lachnocladium spp. fermentation on nutritive value of pretreated sugarcane bagasse
Vichitraka et al. Application of baby corn husk as a biological sustainable feedstock for the production of cellulase and xylanase by Lentinus squarrosulus Mont.
JP2010081826A (en) Medium for cellulase-producing bacterium, method for culturing cellulase-producing bacterium and method for saccharifying cellulose
CN110438172B (en) Method for producing grease by co-utilizing starch and lignocellulose raw materials
KR20110063952A (en) Method for producing plant extract using cellulose breakdown microorganism
KR101213989B1 (en) The pretreating method of sea algae and by-product of crop for producing glucose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees