JP2006073709A - Multilayered antireflection coating - Google Patents

Multilayered antireflection coating Download PDF

Info

Publication number
JP2006073709A
JP2006073709A JP2004254055A JP2004254055A JP2006073709A JP 2006073709 A JP2006073709 A JP 2006073709A JP 2004254055 A JP2004254055 A JP 2004254055A JP 2004254055 A JP2004254055 A JP 2004254055A JP 2006073709 A JP2006073709 A JP 2006073709A
Authority
JP
Japan
Prior art keywords
resist layer
exposure light
antireflection film
layer
ave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004254055A
Other languages
Japanese (ja)
Inventor
Thunnakart Boontarika
ブンタリカ トゥンナカート
Nanami Hori
七波 堀
Mitsuo Yabuta
光男 藪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004254055A priority Critical patent/JP2006073709A/en
Publication of JP2006073709A publication Critical patent/JP2006073709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide antireflection coating capable of fully restraining standing wave effect, even when the angle of incidence θ<SB>I</SB>for the exposure light incident on a resist layer has been enlarged. <P>SOLUTION: The multilayered antireflection coating film is employed upon exposing the resist layer in a liquid immersion exposing system, having a number of opening of more than 0.85 and provided with a multilayered structure of more than two layers. The film satisfies relations R<SB>S</SB>≤0.5%, R<SB>P</SB>≤0.5% and R<SB>ave</SB>≤0.5% within the range of 0≤n<SB>0</SB>×sin(θ<SB>I</SB>)≤1.2, when the angle of incidence of exposure light incident on the resist layer θ<SB>I</SB>, the refractory index of atmosphere, through which the exposure light has passed before incident on the resist layer, is n<SB>0</SB>, the reflection factor of S-polarization component of exposure light reflected by the object to be irradiated is R<SB>S</SB>(unit:%), the reflection factor of P-polarization component of exposure light, reflected by the object to be irradiated, is R<SB>P</SB>(unit:%) and the average reflection factor of exposure light reflected by the object to be irradiated is R<SB>ave</SB>(unit:%). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置の製造工程においてレジスト層を露光する際に用いられる多層反射防止膜に関する。   The present invention relates to a multilayer antireflection film used when a resist layer is exposed in a manufacturing process of a semiconductor device.

例えば、フォトリソグラフィ工程においては、通常、パターニングすべき被エッチング物(以下、被照射物と呼ぶ)上にレジスト層を形成する。そして、レジスト層を露光するための露光光をレジスト層に照射するが、レジスト層に入射した露光光(入射露光光と呼ぶ)は、被照射物にて反射され、再びレジスト層中に侵入する。尚、このような露光光を反射露光光と呼ぶ。   For example, in a photolithography process, a resist layer is usually formed on an object to be etched (hereinafter referred to as an object to be irradiated) to be patterned. Then, the exposure light for exposing the resist layer is irradiated to the resist layer, but the exposure light incident on the resist layer (referred to as incident exposure light) is reflected by the irradiated object and enters the resist layer again. . Such exposure light is called reflection exposure light.

被照射物の厚さに変動が生じた場合、被照射物中での多重干渉の度合いが変わるため、反射露光光の強度にバラツキが生じる。また、反射露光光の強度が一定であっても、反射露光光と入射露光光との干渉によって生じる定在波に起因して、レジスト層に吸収される露光光の光量がレジスト層の膜厚に依存して変動するといった現象(定在波効果と呼ぶ)が生じる。更には、被照射物に存在する段差等によって、レジスト層の膜厚に変動が生じる。ところで、定在波効果はレジスト層の膜厚により異なるので、定在波効果に起因してレジスト層に吸収される露光光の光量も変化し、その結果、露光、現像後に得られるレジストパターン寸法が、被照射物に存在する段差の上部と下部とで相違してしまう。   When the thickness of the irradiated object varies, the degree of multiple interference in the irradiated object changes, resulting in variations in the intensity of the reflected exposure light. In addition, even if the intensity of the reflected exposure light is constant, the amount of exposure light absorbed by the resist layer is caused by the standing wave generated by the interference between the reflected exposure light and the incident exposure light. A phenomenon (called standing wave effect) that varies depending on the frequency occurs. Further, the film thickness of the resist layer varies due to a step or the like existing in the irradiated object. By the way, since the standing wave effect varies depending on the film thickness of the resist layer, the amount of exposure light absorbed by the resist layer also changes due to the standing wave effect. As a result, the resist pattern dimensions obtained after exposure and development However, there is a difference between the upper part and the lower part of the step existing in the irradiated object.

このような被照射物からの反射を低減させる技術の1つとして、レジスト層と被照射物との間に反射防止膜(Anti-Reflection Coating )を形成する技術が、例えば、特許第2897569号や特開平10−270329から周知である。反射防止膜として、レジスト層を通過して被照射物へと進行する露光光を吸収する吸収型反射防止膜、反射防止膜の上下の各界面で反射する露光光を干渉させて打ち消し合う干渉型反射防止膜があるが、いずれの場合にあっても、反射率低減効果を得るには、反射防止膜の複素屈折率(=光学定数)及び反射防止膜の膜厚を最適化することが必須である。   As one of the techniques for reducing the reflection from the irradiated object, a technique for forming an anti-reflection coating between the resist layer and the irradiated object is disclosed in, for example, Japanese Patent No. 2897569, It is known from JP 10-270329 A. As an antireflection film, an absorption type antireflection film that absorbs the exposure light that passes through the resist layer and travels to the irradiated object, and an interference type that cancels out the exposure light reflected by the upper and lower interfaces of the antireflection film. Although there is an antireflection film, in any case, it is essential to optimize the complex refractive index (= optical constant) of the antireflection film and the film thickness of the antireflection film in order to obtain the effect of reducing the reflectance. It is.

被照射物によって反射された露光光のS偏光成分の反射率をRS(単位:%)、被照射物によって反射された露光光のP偏光成分の反射率をRP(単位:%)、被照射物によって反射された露光光の平均反射率をRave(単位:%)とする。レジスト層へ入射する露光光の入射角度θIを変化させたときの反射率RS,RP,Raveのシミュレーション結果を、図6の(A)に示す。ここで、図5の(A)に模式的な一部断面図を示すように、被照射物31はシリコン半導体基板から成り、被照射物31とレジスト層35との間に単層の反射防止膜(32/K)が形成されていると想定した。また、露光系の投影レンズとレジスト層35との間には水層36が形成されていると想定した。即ち、液浸法にてレジスト層35を露光するとした。云い換えれば、レジスト層35へ入射する前に露光光が通過する入射媒質の屈折率n0は水の屈折率である。尚、図5の(A)に模式的な一部断面図を示す構成は後述する比較例1Aの構成であり、図6の(A)のシミュレーション結果は、後述する比較例1Aから得られたシミュレーション結果である。図6の(A)から、露光光の入射角度θIが大きくなると、反射率RS,RP,Raveの値が急激に大きくなることが判る。各層の屈折率を、表2の「比較例1A」に示す。表2において、屈折率を(n,k)の形式で表現している場合がある。この表現形式における屈折率は複素屈折率(光学定数とも呼ばれる)であり、nは普通の意味の屈折率、kは消衰係数である。複素屈折率をn*としたとき、n*は以下の式(1)で表される。また、S偏光成分、P偏光成分のそれぞれの屈折率をnS,nPとしたとき、屈折率nS,nPと屈折率n、各層内における屈折角θとの関係は、以下の式(2)及び式(3)のとおりである。 R S (unit:%) is the reflectance of the S-polarized component of the exposure light reflected by the object, and R P (unit:%) is the reflectance of the P-polarized component of the exposure light reflected by the object. Let R ave (unit:%) be the average reflectance of the exposure light reflected by the irradiated object. FIG. 6A shows the simulation results of the reflectances R S , R P , and R ave when the incident angle θ I of the exposure light incident on the resist layer is changed. Here, as shown in the schematic partial cross-sectional view of FIG. 5A, the irradiated object 31 is made of a silicon semiconductor substrate, and a single layer of antireflection is provided between the irradiated object 31 and the resist layer 35. It was assumed that a film (32 / K) was formed. Further, it was assumed that a water layer 36 was formed between the projection lens of the exposure system and the resist layer 35. That is, the resist layer 35 is exposed by a liquid immersion method. In other words, the refractive index n 0 of the incident medium through which the exposure light passes before entering the resist layer 35 is the refractive index of water. 5A is a configuration of a comparative example 1A described later, and the simulation result of FIG. 6A was obtained from comparative example 1A described later. It is a simulation result. 6 from (A), the incident angle theta I of the exposure light is increased, the reflectivity R S, R P, it is understood that the values of R ave increases sharply. The refractive index of each layer is shown in “Comparative Example 1A” in Table 2. In Table 2, the refractive index may be expressed in the form of (n, k). The refractive index in this expression form is a complex refractive index (also called an optical constant), n is a refractive index in a normal meaning, and k is an extinction coefficient. When the complex refractive index is n * , n * is represented by the following formula (1). When the refractive indexes of the S-polarized component and the P-polarized component are n S and n P , the relationship between the refractive indexes n S and n P and the refractive index n and the refractive angle θ in each layer is expressed by the following equation: (2) and formula (3).

*=n−i・k (1)
S=n・cos(θ) (2)
P=n/cos(θ) (3)
n * = ni−k (1)
n S = n · cos (θ) (2)
n P = n / cos (θ) (3)

特許第2897569号Japanese Patent No. 2897569 特開平10−270329JP 10-270329 A

このように、従来の反射防止膜にあっては、レジスト層へ入射する露光光の入射角度θIが大きくなると、反射率RS,RP,Raveの値が急激に大きくなる。その結果、反射防止膜によって定在波効果を十分に抑制することが困難となり、レジスト層におけるコントラスト低減等、レジスト層の露光に大きな影響が生じる。特に、S偏光成分の反射率RSは、レジスト層におけるコントラストに大きな影響を与える。そして、従来の反射防止膜では、レジスト層へ入射する露光光の入射角度θIが大きくなった場合、反射露光光の反射を十分に防止することができなくなる結果、定在波効果を十分に抑制することができなくなり、また、レジスト層におけるコントラスト低下を防止することができなくなるといった問題が生じる。 Thus, in the conventional anti-reflection film, the incident angle theta I of the exposure light incident on the resist layer increases, the reflectivity R S, R P, the value of R ave increases sharply. As a result, it is difficult to sufficiently suppress the standing wave effect by the antireflection film, and the exposure of the resist layer, such as the contrast reduction in the resist layer, is greatly affected. In particular, the reflectance R S of the S-polarized component greatly affects the contrast in the resist layer. Then, in the conventional anti-reflection film, when the incident angle theta I of the exposure light incident on the resist layer is increased, the results can not be sufficiently prevent reflection of the reflected exposure light, thoroughly standing wave effect There arises a problem that it cannot be suppressed, and a contrast reduction in the resist layer cannot be prevented.

従って、本発明の目的は、レジスト層へ入射する露光光の入射角度θIが大きくなったときであっても、定在波効果を十分に抑制することができ、レジスト層におけるコントラスト低下を防止することを可能とする反射防止膜を提供することにある。 Accordingly, an object of the present invention, even when the incident angle theta I of the exposure light incident on the resist layer is increased, it is possible to sufficiently suppress the standing wave effect, prevent contrast reduction in the resist layer An object of the present invention is to provide an antireflection film that can be used.

上記の目的を達成するための本発明の第1の態様に係る多層反射防止膜は、
半導体装置の製造工程において、開口数NAが0.85以上の液浸露光系(照明系)にてレジスト層を露光する際に用いられる、レジスト層と被照射物表面との間に形成された2層以上の多層構造を有する多層反射防止膜であって、
レジスト層へ入射する露光光の入射角度をθI、レジスト層へ入射する前に露光光が通過する入射媒質の屈折率をn0、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦n0・sin(θI)≦1.2の範囲において、RS≦0.5%、好ましくはRS≦0.3%、RP≦0.5%、好ましくはRP≦0.3%、Rave≦0.5%、好ましくはRave≦0.3%を満足することを特徴とする。
In order to achieve the above object, the multilayer antireflection film according to the first aspect of the present invention comprises:
In the manufacturing process of a semiconductor device, it was formed between the resist layer and the surface of the irradiated object used when exposing the resist layer in an immersion exposure system (illumination system) having a numerical aperture NA of 0.85 or more. A multilayer antireflection film having a multilayer structure of two or more layers,
The incident angle of the exposure light incident on the resist layer is θ I , the refractive index of the incident medium through which the exposure light passes before entering the resist layer is n 0 , and the reflection of the S-polarized light component of the exposure light reflected by the irradiated object When the rate is R S , the reflectance of the P-polarized component of the exposure light reflected by the irradiated object is R P , and the average reflectance of the exposure light reflected by the irradiated object is R ave , 0 ≦ n 0. In the range of sin (θ I ) ≦ 1.2, R S ≦ 0.5%, preferably R S ≦ 0.3%, R P ≦ 0.5%, preferably R P ≦ 0.3%, R It is characterized by satisfying ave ≦ 0.5%, preferably R ave ≦ 0.3%.

あるいは又、上記の目的を達成するための本発明の第2の態様に係る多層反射防止膜は、
半導体装置の製造工程において、開口数NAが0.85以上の液浸露光系(照明系)にてレジスト層を露光する際に用いられる、レジスト層と被照射物表面との間に形成された2層以上の多層構造を有する多層反射防止膜であって、
レジスト層へ入射する前に露光光が通過する入射媒質は、屈折率n0=1.44の水であり、
レジスト層へ入射する露光光の入射角度をθI、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦θI≦56(度)の範囲において、RS≦0.5%、好ましくはRS≦0.3%、RP≦0.5%、好ましくはRP≦0.3%、Rave≦0.5%好ましくは、Rave≦0.3%を満足することを特徴とする。
Alternatively, the multilayer antireflection film according to the second aspect of the present invention for achieving the above object is
In the manufacturing process of a semiconductor device, it was formed between the resist layer and the surface of the irradiated object used when exposing the resist layer in an immersion exposure system (illumination system) having a numerical aperture NA of 0.85 or more. A multilayer antireflection film having a multilayer structure of two or more layers,
The incident medium through which the exposure light passes before entering the resist layer is water having a refractive index n 0 = 1.44,
The incident angle of the exposure light incident on the resist layer is θ I , the reflectance of the S polarization component of the exposure light reflected by the irradiated object is R S , and the reflectance of the P polarization component of the exposure light reflected by the irradiated object the R P, when the average reflectivity of the exposure light reflected by the object to be irradiated was set to R ave, in the range of 0 ≦ θ I ≦ 56 (degrees), R S ≦ 0.5%, preferably R S ≦ 0.3%, R P ≦ 0.5%, preferably R P ≦ 0.3%, R ave ≦ 0.5%, preferably R ave ≦ 0.3%.

本発明の第1の態様あるいは第2の態様に係る多層反射防止膜(以下、これらを総称して、単に、本発明の多層反射防止膜と呼ぶ場合がある)にあっては、露光光の波長λとして、限定するものではないが、1.5×10-7m乃至3.0×10-7mを挙げることができる。より具体的には、露光光の光源として、ArFエキシマレーザ(波長λ=193nm)、F2レーザ(波長λ=157nm)、ArFレーザ(波長λ=193nm)、KrFレーザ(波長λ=248nm)を例示することができる。 In the multilayer antireflection film according to the first aspect or the second aspect of the present invention (hereinafter, these may be collectively referred to simply as the multilayer antireflection film of the present invention), the exposure light Examples of the wavelength λ include, but are not limited to, 1.5 × 10 −7 m to 3.0 × 10 −7 m. More specifically, an ArF excimer laser (wavelength λ = 193 nm), an F 2 laser (wavelength λ = 157 nm), an ArF laser (wavelength λ = 193 nm), and a KrF laser (wavelength λ = 248 nm) are used as exposure light sources. It can be illustrated.

本発明の多層反射防止膜にあっては、多層反射防止膜の層数は2層以上であればよく、実用的には、2層の反射防止膜、3層の反射防止膜とすることが好ましい。   In the multilayer antireflection film of the present invention, the number of layers of the multilayer antireflection film may be two or more, and practically, it is a two-layer antireflection film or a three-layer antireflection film. preferable.

本発明の多層反射防止膜にあっては、反射率RS,RP,Raveが上述した範囲を満足するためには、多層反射防止膜を構成する各層の膜厚及び各層の複素屈折率(=光学定数)の最適化を図る必要がある。具体的には、多層反射防止膜を構成する各層の膜厚及び各層の材料特性、物性(例えば、各層の複素屈折率)をパラメータとして、シミュレーションを行い、反射率RS,RP,Raveの値を求めるといった作業を繰り返し、反射率RS,RP,Raveの値が上述した範囲を満足するような多層反射防止膜を構成する各層の膜厚及び材料(云い換えれば、各層の複素屈折率)を決定すればよい。 In the multilayer antireflection film of the present invention, in order for the reflectances R S , R P , and R ave to satisfy the above-described ranges, the thickness of each layer constituting the multilayer antireflection film and the complex refractive index of each layer It is necessary to optimize (= optical constant). Specifically, a simulation is performed using the film thickness of each layer constituting the multilayer antireflection film, the material characteristics and physical properties of each layer (for example, the complex refractive index of each layer) as parameters, and the reflectivity R S , R P , R ave Is repeated, and the film thicknesses and materials of the respective layers constituting the multilayer antireflection film in which the reflectances R S , R P , and R ave satisfy the above-described ranges (in other words, the respective layers (Complex refractive index) may be determined.

本発明の第1の態様に係る多層反射防止膜にあっては、開口数NAが0.85以上の液浸露光系(照明系)として、具体的には、レジスト層へ入射する前に露光光が通過する入射媒質(雰囲気)が、例えば水層であり、係る入射媒質(雰囲気)の屈折率n0を水の屈折率とする系を挙げることができる。このような露光方法にあっては、光源から射出された露光光は、光学系を通って入射媒質へ侵入し、更に、レジスト層へ入射するが、通常のドライ露光における入射媒質である空気(屈折率=1.00)から、液浸露光系では、入射媒質が、例えば水(屈折率n0=1.44)に変えられている。本発明の多層反射防止膜にあっては、レジスト層の露光方法(照明方法)は、周知の露光方法(照明方法)とすればよい。 In the multilayer antireflection film according to the first aspect of the present invention, as an immersion exposure system (illumination system) having a numerical aperture NA of 0.85 or more, specifically, exposure is performed before entering the resist layer. An incident medium (atmosphere) through which light passes is, for example, a water layer, and a system in which the refractive index n 0 of the incident medium (atmosphere) is the refractive index of water can be mentioned. In such an exposure method, the exposure light emitted from the light source enters the incident medium through the optical system, and further enters the resist layer. However, air (which is the incident medium in normal dry exposure) In the immersion exposure system, the incident medium is changed to, for example, water (refractive index n 0 = 1.44) from the refractive index = 1.00). In the multilayer antireflection film of the present invention, the resist layer exposure method (illumination method) may be a known exposure method (illumination method).

被照射物として、ポリシリコン、アモルファスシリコン、単結晶シリコン、酸化ケイ素系材料、窒化ケイ素(SiNY)、SiCN、Al23といった金属酸化物高誘電絶縁膜にて例示される無機系絶縁材料、各種化合物半導体基板、各種化合物半導体層、アルミニウム(Al)、白金(Pt)、金(Au)、パラジウム(Pd)、クロム(Cr)、ニッケル(Ni)、モリブデン(Mo)、ニオブ(Nb)、ネオジム(Nd)、銀(Ag)、タンタル(Ta)、タングステン(W)、銅(Cu)、ルビジウム(Rb)、ロジウム(Rh)、チタン(Ti)、インジウム(In)、錫(Sn)等の金属、あるいは、これらの金属元素を含む合金、これらの金属から成る導電性粒子、これらの金属を含む合金の導電性粒子、錫酸化物、酸化インジウム、インジウム・錫酸化物(ITO)を例示することができる。尚、酸化ケイ素系材料として、二酸化シリコン(SiOX)、BPSG、PSG、BSG、AsSG、PbSG、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、NSG、低誘電率SiO2系材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー及びベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、有機SOG)を例示することができる。 Inorganic insulating materials exemplified by metal oxide high dielectric insulating films such as polysilicon, amorphous silicon, single crystal silicon, silicon oxide materials, silicon nitride (SiN Y ), SiCN, Al 2 O 3 as irradiated objects , Various compound semiconductor substrates, various compound semiconductor layers, aluminum (Al), platinum (Pt), gold (Au), palladium (Pd), chromium (Cr), nickel (Ni), molybdenum (Mo), niobium (Nb) , Neodymium (Nd), silver (Ag), tantalum (Ta), tungsten (W), copper (Cu), rubidium (Rb), rhodium (Rh), titanium (Ti), indium (In), tin (Sn) Or alloys containing these metal elements, conductive particles made of these metals, conductive particles of alloys containing these metals, tin oxide, oxide Can be exemplified indium, indium tin oxide (ITO). As silicon oxide-based materials, silicon dioxide (SiO x ), BPSG, PSG, BSG, AsSG, PbSG, silicon oxynitride (SiON), SOG (spin-on-glass), NSG, low dielectric constant SiO 2 -based materials (for example, Examples thereof include polyaryl ether, cycloperfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, fluorinated aryl ether, fluorinated polyimide, amorphous carbon, and organic SOG).

本発明の多層反射防止膜にあっては、所定範囲のn0・sin(θI)あるいはθIにおいて、反射率RS,RP,Raveを所定の値以内とすることで、広い入射角度θIに亙り、定在波効果を十分に抑制することができ、レジスト層におけるコントラスト低下を防止することが可能となる。 In the multilayer antireflection film of the present invention, the reflectance R S , R P , R ave is within a predetermined value within a predetermined range of n 0 · sin (θ I ) or θ I , thereby allowing wide incidence. Over the angle θ I , the standing wave effect can be sufficiently suppressed, and the contrast in the resist layer can be prevented from being lowered.

以下、図面を参照して、実施例に基づき本発明を説明する。   Hereinafter, the present invention will be described based on examples with reference to the drawings.

実施例1A〜実施例1Dは、本発明の第1の態様及び第2の態様に係る多層反射防止膜に関する。実施例1A〜実施例1Dの多層反射防止膜は、半導体装置の製造工程において、開口数NAが0.85以上の液浸露光系(照明系)にてレジスト層を露光する際に用いられる、レジスト層と被照射物(より具体的には、実施例1A〜1Dにおいては被エッチング物)の表面との間に形成された2層以上の多層構造を有する多層反射防止膜である。そして、レジスト層へ入射する露光光の入射角度をθI、レジスト層へ入射する前に露光光が通過する入射媒質(雰囲気)の屈折率をn0、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦n0・sin(θI)≦1.2の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5を満足している。あるいは又、レジスト層へ入射する前に露光光が通過する入射媒質は屈折率n0=1.44の水であり、レジスト層へ入射する露光光の入射角度をθI、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦θI≦56(度)の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足している。 Examples 1A to 1D relate to a multilayer antireflection film according to the first and second aspects of the present invention. The multilayer antireflection films of Example 1A to Example 1D are used when a resist layer is exposed in an immersion exposure system (illumination system) having a numerical aperture NA of 0.85 or more in a manufacturing process of a semiconductor device. This is a multilayer antireflection film having a multilayer structure of two or more layers formed between the resist layer and the surface of the irradiated object (more specifically, the etched object in Examples 1A to 1D). The incident angle of the exposure light incident on the resist layer is θ I , the refractive index of the incident medium (atmosphere) through which the exposure light passes before entering the resist layer is n 0 , and the exposure light reflected by the irradiated object When the reflectance of the S-polarized component is R S , the reflectance of the P-polarized component of the exposure light reflected by the irradiated object is R P , and the average reflectance of the exposure light reflected by the irradiated object is R ave , In the range of 0 ≦ n 0 · sin (θ I ) ≦ 1.2, R S ≦ 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5 are satisfied. Alternatively, the incident medium through which the exposure light passes before entering the resist layer is water having a refractive index n 0 = 1.44, and the incident angle of the exposure light incident on the resist layer is θ I and reflected by the irradiated object. The reflectance of the S-polarized light component of the exposure light is R S , the reflectance of the P-polarized light component of the exposure light reflected by the irradiated object is R P , and the average reflectance of the exposure light reflected by the irradiated object is R When ave is satisfied, R S ≦ 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5% are satisfied in the range of 0 ≦ θ I ≦ 56 (degrees).

尚、露光光の光源としてArFエキシマレーザを用いる。即ち、露光光の波長λは193nmである。また、被照射物(被エッチング物)は、シリコン半導体基板である。実施例1A〜実施例1D、比較例1A〜比較例1Dにて使用したレジスト層等の屈折率及び層構成を、以下の表1及び表2に示す。尚、以下の説明においては、「レジスト層の表面は水層で覆われている」と表現するが、この表現は、露光系の投影レンズとレジスト層との間に水層が形成されていることを意味する。   An ArF excimer laser is used as a light source for exposure light. That is, the wavelength λ of the exposure light is 193 nm. The irradiated object (etched object) is a silicon semiconductor substrate. Tables 1 and 2 below show the refractive indexes and layer configurations of the resist layers and the like used in Examples 1A to 1D and Comparative Examples 1A to 1D. In the following description, the expression “the surface of the resist layer is covered with an aqueous layer” is used, but this expression means that an aqueous layer is formed between the projection lens of the exposure system and the resist layer. Means that.

Figure 2006073709
Figure 2006073709

Figure 2006073709
Figure 2006073709

実施例1Aにおいては、図1の(A)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(11)の上に、厚さ70nmの反射防止膜−A(12/A)、厚さ30nmの反射防止膜−B(13/B)、厚さ100nmのレジスト層(15)が形成され、レジスト層(15)の表面は水層(16)で覆われている。   In Example 1A, as shown in a schematic partial cross-sectional view in FIG. 1A, an antireflection film-A (70 nm thick) is formed on an object to be irradiated (11) made of a silicon semiconductor substrate. 12 / A), an antireflection film-B (13 / B) having a thickness of 30 nm and a resist layer (15) having a thickness of 100 nm are formed, and the surface of the resist layer (15) is covered with an aqueous layer (16). Yes.

一方、実施例1Bにおいては、図1の(B)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(21)の上に、厚さ15nmの反射防止膜−C(22/C)、厚さ45nmの反射防止膜−A(23/A)、厚さ30nmの反射防止膜−B(24/B)、厚さ100nmのレジスト層(25)が形成され、レジスト層(25)の表面は水層(26)で覆われている。   On the other hand, in Example 1B, as shown in the schematic partial cross-sectional view of FIG. 1B, an antireflection film having a thickness of 15 nm is formed on an irradiation object (21) made of a silicon semiconductor substrate. C (22 / C), an antireflection film-A (23 / A) having a thickness of 45 nm, an antireflection film-B (24 / B) having a thickness of 30 nm, and a resist layer (25) having a thickness of 100 nm are formed, The surface of the resist layer (25) is covered with an aqueous layer (26).

また、実施例1Cにおいては、図1の(C)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(21)の上に、厚さ78nmの反射防止膜−D(22/D)、厚さ23nmの反射防止膜−E(23/E)、厚さ36nmの反射防止膜−F(24/F)、厚さ100nmのレジスト層(25)が形成され、レジスト層(25)の表面は水層(26)で覆われている。   In Example 1C, as shown in the schematic partial cross-sectional view of FIG. 1C, an antireflection film having a thickness of 78 nm is formed on the irradiated object 21 made of a silicon semiconductor substrate. D (22 / D), an antireflection film with a thickness of 23 nm-E (23 / E), an antireflection film with a thickness of 36 nm-F (24 / F), and a resist layer (25) with a thickness of 100 nm are formed, The surface of the resist layer (25) is covered with an aqueous layer (26).

更には、実施例1Dにおいては、図1の(D)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(21)の上に、厚さ99nmの反射防止膜−G(22/G)、厚さ23nmの反射防止膜−H(23/H)、厚さ35nmの反射防止膜−J(24/J)、厚さ100nmのレジスト層(25)が形成され、レジスト層(25)の表面は水層(26)で覆われている。   Furthermore, in Example 1D, as shown in the schematic partial cross-sectional view of FIG. 1D, an antireflection film having a thickness of 99 nm is formed on the irradiation object 21 made of a silicon semiconductor substrate. -G (22 / G), antireflection film with a thickness of 23 nm-H (23 / H), antireflection film with a thickness of 35 nm-J (24 / J), resist layer (25) with a thickness of 100 nm are formed The surface of the resist layer (25) is covered with an aqueous layer (26).

ここで、実施例1A〜実施例1Dにおける具体的な作業は、以下のとおりである。即ち、図4のフローチャートに示すように、先ず、露光系における照明の偏光状態を入力し、次いで、多層反射防止膜を構成する各層の膜厚及び各層の材料特性、物性(例えば、各層の複素屈折率)をパラメータとして入力し、シミュレーションを行い、反射率RS,RP,Raveの値を求めるといった作業を繰り返し、反射率RS,RP,Raveの値が上述した範囲を満足するような多層反射防止膜を構成する各層の膜厚及び材料特性、物性(例えば、各層の複素屈折率)を決定している。 Here, the specific work in Example 1A to Example 1D is as follows. That is, as shown in the flowchart of FIG. 4, first, the polarization state of the illumination in the exposure system is input, and then the film thickness of each layer constituting the multilayer antireflection film, the material properties and physical properties of each layer (for example, the complex of each layer). enter the refractive index) as a parameter, a simulation, the reflectance R S, R P, repeated operations such as determining the values of R ave, within the ranges of reflectivity R S, R P, the value of R ave is above The thickness, material characteristics, and physical properties (for example, complex refractive index of each layer) of each layer constituting the multilayer antireflection film are determined.

また、比較例1Aにおいては、図5の(A)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(31)の上に、厚さ200nmの反射防止膜−K(32/K)、厚さ100nmのレジスト層(35)が形成され、レジスト層(35)の表面は水層(36)で覆われている。   Further, in Comparative Example 1A, as shown in a schematic partial sectional view in FIG. 5A, an antireflection film having a thickness of 200 nm is formed on an irradiation object (31) made of a silicon semiconductor substrate. A resist layer (35) having a thickness of K (32 / K) and a thickness of 100 nm is formed, and the surface of the resist layer (35) is covered with an aqueous layer (36).

更には、比較例1Bにおいては、図5の(B)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(41)の上に、厚さ80nmの反射防止膜−C(42/C)、厚さ100nmのレジスト層(45)が形成され、レジスト層(45)の表面は水層(46)で覆われている。   Furthermore, in Comparative Example 1B, as shown in a schematic partial cross-sectional view in FIG. 5B, an antireflection film having a thickness of 80 nm is formed on an irradiation object (41) made of a silicon semiconductor substrate. A resist layer (45) having a thickness of −C (42 / C) and 100 nm is formed, and the surface of the resist layer (45) is covered with an aqueous layer (46).

また、比較例1Cにおいては、図5の(C)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(51)の上に、厚さ100nmの反射防止膜−C(52/C)、厚さ100nmのレジスト層(55)が形成され、レジスト層(55)の表面は水層(56)で覆われている。   Further, in Comparative Example 1C, as shown in a schematic partial cross-sectional view in FIG. 5C, an antireflection film having a thickness of 100 nm is formed on an irradiation object (51) made of a silicon semiconductor substrate. A resist layer (55) having a thickness of C (52 / C) and a thickness of 100 nm is formed, and the surface of the resist layer (55) is covered with an aqueous layer (56).

更には、比較例1Dにおいては、図5の(D)に模式的な一部断面図を示すように、シリコン半導体基板から成る被照射物(61)の上に、厚さ25nmの反射防止膜−A(62/A)、厚さ25nmの反射防止膜−K(63/K)、厚さ100nmのレジスト層(65)が形成され、レジスト層(65)の表面は水層(66)で覆われている。   Furthermore, in Comparative Example 1D, as shown in a schematic partial cross-sectional view in FIG. 5D, an antireflection film having a thickness of 25 nm is formed on the irradiation object 61 made of a silicon semiconductor substrate. -A (62 / A), 25 nm thick antireflection film -K (63 / K), 100 nm thick resist layer (65) is formed, and the surface of the resist layer (65) is an aqueous layer (66) Covered.

比較例1A及び比較例1Bは、従来の単層の反射防止膜を用いた例である。比較例1A及び比較例1Bにおいては、反射防止膜の膜厚及び材料(云い換えれば、反射防止膜を構成する材料の複素屈折率)をパラメータとして、シミュレーションを行い、反射率RS,RP,Raveの値を求めるといった作業を繰り返し、0≦n0・sin(θI)≦1.2の範囲内で、云い換えれば、0≦θI≦56(度)の範囲内で、反射率RS,RP,Raveの値が最も小さくなるような反射防止膜の膜厚及び材料(云い換えれば、反射防止膜を構成する材料の複素屈折率)を決定している。また、比較例1Cは、単層の反射防止膜であるが、n0・sin(θI)=1.2(具体的にはθI=56度)において、反射率RS,RP,Raveが最低となるように、使用する反射防止膜の複素屈折率及び膜厚の最適化を図った例である。更には、比較例1Dは、2層の反射防止膜であるが、n0・sin(θI)=1.2(具体的にはθI=56度)において、反射率RS,RP,Raveが最低となるように、使用する反射防止膜の複素屈折率及び膜厚の最適化を図った例である。 Comparative Example 1A and Comparative Example 1B are examples using a conventional single-layer antireflection film. In Comparative Example 1A and Comparative Example 1B, simulation is performed using the film thickness and material of the antireflection film (in other words, the complex refractive index of the material constituting the antireflection film) as parameters, and the reflectances R S and R P , Rave values are repeatedly calculated and reflected within a range of 0 ≦ n 0 · sin (θ I ) ≦ 1.2, in other words, within a range of 0 ≦ θ I ≦ 56 (degrees). rate R S, R P, the thickness of the values of R ave is smallest antireflection film and the material (495. in other words, the complex refractive index of the material constituting the anti-reflection film) is determined. In addition, Comparative Example 1C is a single-layer antireflection film, but the reflectivity R S , R P , and N 0 · sin (θ I ) = 1.2 (specifically θ I = 56 degrees). In this example, the complex refractive index and the film thickness of the antireflection film to be used are optimized so that R ave is minimized . Further, Comparative Example 1D is a two-layer antireflection film, but the reflectivity R S , R P at n 0 · sin (θ I ) = 1.2 (specifically θ I = 56 °). , Rave is an example of optimizing the complex refractive index and film thickness of the antireflection film used so that Rave is minimized .

レジスト層へ入射する露光光の入射角度θIを変化させたときの実施例1A〜実施例1D、比較例1A〜比較例1Dの層構成における反射率RS,RP,Raveのシミュレーション結果を、それぞれ、図2の(A)、図2の(B)、図3の(A)、図3の(B)、図6の(A)、図6の(B)、図7の(A)、図7の(B)に示す。 Simulation results of reflectances R S , R P , and R ave in the layer configurations of Example 1A to Example 1D and Comparative Example 1A to Comparative Example 1D when the incident angle θ I of the exposure light incident on the resist layer is changed 2 (A), FIG. 2 (B), FIG. 3 (A), FIG. 3 (B), FIG. 6 (A), FIG. 6 (B), and FIG. A) and shown in FIG.

図2の(A)、図2の(B)、図3の(A)、及び、図3の(B)から、実施例1A〜実施例1Dの多層反射防止膜にあっては、0≦n0・sin(θI)≦1.2あるいは0≦θI≦56(度)の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足していることが判る。即ち、上述のn0・sin(θI)あるいはθIの所定の範囲内において、実施例1A〜実施例1Dにおける反射率RS,RP,Raveの値は、反射防止膜の機能が十二分に発揮されていることを示している。 From FIG. 2A, FIG. 2B, FIG. 3A, and FIG. 3B, the multilayer antireflection coatings of Examples 1A to 1D satisfy 0 ≦ In the range of n 0 · sin (θ I ) ≦ 1.2 or 0 ≦ θ I ≦ 56 (degrees), R S ≦ 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5% You can see that you are satisfied. That is, within the predetermined range of n 0 · sin (θ I ) or θ I described above, the values of the reflectances R S , R P , and R ave in Examples 1A to 1D are the functions of the antireflection film. It shows that it is being fully demonstrated.

一方、比較例1A及び比較例1Bにおいては、n0・sin(θI)あるいはθIの値が大きくなるに従い、反射率RS,RP,Raveの値が増加している。また、比較例1C及び比較例1Dにおいては、n0・sin(θI)の値が1.0〜1.2(θIが45度乃至56度)において、反射率RS,RP,Raveの値は低いが、n0・sin(θI)の値が1.0(θIが45度)未満では、反射率RS,RP,Raveは高い値となっている。比較例1A〜比較例1Dにおける反射率RS,RP,Raveの値は、反射防止膜の機能が十分に発揮されてはいないことを示している。 On the other hand, in Comparative Example 1A and Comparative Example 1B, the values of reflectivity R S , R P , and R ave increase as the value of n 0 · sin (θ I ) or θ I increases. Further, in Comparative Example 1C and Comparative Example 1D, when the value of n 0 · sin (θ I ) is 1.0 to 1.2 (θ I is 45 degrees to 56 degrees), the reflectances R S , R P , Although the value of R ave is low, the reflectances R S , R P , and R ave are high when the value of n 0 · sin (θ I ) is less than 1.0 (θ I is 45 degrees). The values of the reflectances R S , R P , and R ave in Comparative Examples 1A to 1D indicate that the function of the antireflection film is not sufficiently exhibited.

以下、本発明の2層以上の多層構造を有する多層反射防止膜を用いた半導体装置の製造方法の概要を説明する。尚、露光用マスクとして位相シフトマスクを使用し、露光光の光源としてArFエキシマレーザ(波長λ:193nm)を使用し、輪帯照明法を採用し、レジスト層へ入射する露光光の入射角度をθI、レジスト層へ入射する前に露光光が通過する入射媒質(具体的には、水)の屈折率をn0(=1.44)としたとき、n0・sin(θI)=1.2の条件としている。尚、レジスト層の表面は水層で覆われている。そして、所望のパターンが、線幅や形状の変動無しで、レジスト層に形成できるかを検証した。その結果、いずれの場合においても、所望のパターンが、線幅や形状の変動無しで、レジスト層に形成できることが判った。しかも、いずれの場合においても、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足していた。 Hereinafter, an outline of a method for manufacturing a semiconductor device using a multilayer antireflection film having a multilayer structure of two or more layers according to the present invention will be described. A phase shift mask is used as an exposure mask, an ArF excimer laser (wavelength λ: 193 nm) is used as a light source for exposure light, an annular illumination method is employed, and the incident angle of exposure light incident on the resist layer is set. θ I , where n 0 · sin (θ I ) = when the refractive index of the incident medium (specifically, water) through which the exposure light passes before entering the resist layer is n 0 (= 1.44) The condition is 1.2. Note that the surface of the resist layer is covered with an aqueous layer. And it verified whether a desired pattern could be formed in a resist layer, without the fluctuation | variation of line | wire width or a shape. As a result, it has been found that in any case, a desired pattern can be formed on the resist layer without variation in line width or shape. Moreover, in any case, R S ≦ 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5% were satisfied.

トレンチ構造を有する素子分離領域の形成を行った。即ち、被照射物を、下から、シリコン半導体基板、0.5μm厚のBSG層、0.2μm厚のアモルファス・シリコン層から構成した。そして、最上層のアモルファス・シリコン層の上に2層あるいは3層の多層構造を有する多層反射防止膜を形成し、その上にレジスト層を形成し、レジスト層を露光・現像して、パターニングされたレジスト層を得た。次いで、このパターニングされたレジスト層をエッチング用マスクとして、RIE法にてアモルファス・シリコン層、BSG層をパターニングした。BSG層のパターニング時、その上に形成されたアモルファス・シリコン層及びレジスト層は除去された。次いで、パターニングされたBSG層をエッチング用マスクとして、RIE法にてシリコン半導体基板を所定の深さまでエッチングし、シリコン半導体基板にトレンチを形成した。その後、トレンチを含むシリコン半導体基板の全面に絶縁膜を形成し、シリコン半導体基板表面上の絶縁膜及びBSG層を除去することで、シリコン半導体基板に形成されたトレンチに絶縁膜が埋め込まれたトレンチ構造を有する素子分離領域を得ることができた。   An element isolation region having a trench structure was formed. That is, the irradiated object was composed of a silicon semiconductor substrate, a 0.5 μm thick BSG layer, and a 0.2 μm thick amorphous silicon layer from the bottom. Then, a multilayer antireflection film having a multilayer structure of two or three layers is formed on the uppermost amorphous silicon layer, a resist layer is formed thereon, the resist layer is exposed and developed, and then patterned. A resist layer was obtained. Next, the amorphous silicon layer and the BSG layer were patterned by the RIE method using the patterned resist layer as an etching mask. During the patterning of the BSG layer, the amorphous silicon layer and the resist layer formed thereon were removed. Next, using the patterned BSG layer as an etching mask, the silicon semiconductor substrate was etched to a predetermined depth by RIE to form a trench in the silicon semiconductor substrate. Thereafter, an insulating film is formed on the entire surface of the silicon semiconductor substrate including the trench, and the insulating film and the BSG layer on the surface of the silicon semiconductor substrate are removed, whereby the insulating film is embedded in the trench formed in the silicon semiconductor substrate. An element isolation region having a structure could be obtained.

また、ゲート電極の形成を行った。即ち、シリコン半導体基板の表面に形成されたゲート絶縁膜の上に被照射物を形成した。具体的には、被照射物を、下から、0.2μm厚の不純物をドーピングされたポリシリコン層、0.1μm厚のSiN層から構成した。SiN層はハードマスクとしての機能を有する。そして、最上層のSiN層の上に2層あるいは3層の多層構造を有する多層反射防止膜を形成し、その上にレジスト層を形成し、レジスト層を露光・現像して、パターニングされたレジスト層を得た。次いで、このパターニングされたレジスト層をエッチング用マスクとして、RIE法にてSiN層をパターニングした後、レジスト層を除去した。その後、パターニングされたSiN層をエッチング用マスクとして、RIE法にてポリシリコン層及びゲート絶縁膜をパターニングすることで、ゲート電極を得ることができた。   In addition, a gate electrode was formed. That is, the irradiated object was formed on the gate insulating film formed on the surface of the silicon semiconductor substrate. Specifically, the irradiated object was composed of a polysilicon layer doped with 0.2 μm thick impurities and a 0.1 μm thick SiN layer from the bottom. The SiN layer has a function as a hard mask. Then, a multilayer antireflection film having a multilayer structure of two or three layers is formed on the uppermost SiN layer, a resist layer is formed thereon, the resist layer is exposed and developed, and a patterned resist is formed. A layer was obtained. Next, the patterned resist layer was used as an etching mask, the SiN layer was patterned by the RIE method, and then the resist layer was removed. Thereafter, the polysilicon layer and the gate insulating film were patterned by the RIE method using the patterned SiN layer as an etching mask, whereby a gate electrode could be obtained.

また、コンタクトプラグの形成を行った。即ち、シリコン半導体基板に形成されたFETを構成するソース/ドレイン領域の上に被照射物を形成した。被照射物を、下から、0.3μm厚のNSG層、0.3μm厚のTEOS法にて形成されたSiO2層から構成した。尚、TEOS法にて形成されたSiO2層を、便宜上、TEOS層と呼ぶ。そして、最上層のTEOS層の上に2層あるいは3層の多層構造を有する多層反射防止膜を形成し、その上にレジスト層を形成し、レジスト層を露光・現像して、パターニングされたレジスト層を得た。次いで、このパターニングされたレジスト層をエッチング用マスクとして、ソース/ドレイン領域の上方に位置するTEOS層及びNSG層の部分にRIE法にて開口部を形成した後、レジスト層を除去した。その後、開口部に導電材料をスパッタリング法やCVD法にて埋め込み、コンタクトプラグを得ることができた。 In addition, contact plugs were formed. That is, the irradiated object was formed on the source / drain regions constituting the FET formed on the silicon semiconductor substrate. The irradiated object was composed of an NSG layer having a thickness of 0.3 μm and a SiO 2 layer formed by a TEOS method having a thickness of 0.3 μm from the bottom. For convenience, the SiO 2 layer formed by the TEOS method is referred to as a TEOS layer. Then, a multilayer antireflection film having a multilayer structure of two or three layers is formed on the uppermost TEOS layer, a resist layer is formed thereon, the resist layer is exposed and developed, and a patterned resist is formed. A layer was obtained. Next, using this patterned resist layer as an etching mask, openings were formed by RIE in the TEOS layer and NSG layer located above the source / drain regions, and then the resist layer was removed. Thereafter, a conductive material was buried in the opening by sputtering or CVD, and a contact plug could be obtained.

また、所謂ダマシン構造を有する配線の形成を行った。即ち、絶縁層から成る基体上に形成された0.3μm厚のNSG層の上に被照射物を形成した。被照射物を、下から、0.3μm厚のTEOS法にて形成されたSiO2層(TEOS層)、0.1μm厚のSiCOH層、0.15μm厚のSiO2層から構成した。そして、最上層のSiO2層の上に2層あるいは3層の多層構造を有する多層反射防止膜を形成し、その上にレジスト層を形成し、レジスト層を露光・現像して、パターニングされたレジスト層を得た。次いで、このパターニングされたレジスト層をエッチング用マスクとして、RIE法にてSiO2層、SiCOH層、TEOS層に溝部を形成した後、レジスト層を除去した。その後、溝部にメッキ法にて導電材料である銅を埋め込み、ダマシン構造を有する配線を得ることができた。 In addition, a wiring having a so-called damascene structure was formed. That is, the irradiated object was formed on the 0.3 μm thick NSG layer formed on the base made of the insulating layer. The irradiated object was composed of an SiO 2 layer (TEOS layer) formed by a TEOS method having a thickness of 0.3 μm, a SiCOH layer having a thickness of 0.1 μm, and an SiO 2 layer having a thickness of 0.15 μm from the bottom. Then, a multilayer antireflection film having a multilayer structure of two or three layers was formed on the uppermost SiO 2 layer, a resist layer was formed thereon, and the resist layer was exposed and developed to be patterned. A resist layer was obtained. Next, using this patterned resist layer as an etching mask, grooves were formed in the SiO 2 layer, SiCOH layer, and TEOS layer by RIE, and then the resist layer was removed. Thereafter, copper, which is a conductive material, was buried in the groove by a plating method to obtain a wiring having a damascene structure.

また、ビヤホールの形成を行った。即ち、絶縁膜に下層銅配線が形成された基体上に被照射物を形成した。被照射物を、下から、0.035μm厚のSiCN層、0.25μm厚のSiCOH層、0.15μm厚のSiO2から構成した。そして、最上層のSiO2層の上に2層あるいは3層の多層構造を有する多層反射防止膜を形成し、その上にレジスト層を形成し、レジスト層を露光・現像して、パターニングされたレジスト層を得た。次いで、このパターニングされたレジスト層をエッチング用マスクとして、下層銅配線の上方に位置するSiO2層、SiCOH層、SiCN層の部分にRIE法にて開口部を形成した後、レジスト層を除去した。その後、開口部にスパッタリング法にて導電材料を埋め込み、ビヤホールを得ることができた。 In addition, a via hole was formed. That is, the irradiated object was formed on the base having the lower layer copper wiring formed on the insulating film. The irradiated object was composed of a 0.035 μm thick SiCN layer, a 0.25 μm thick SiCOH layer, and a 0.15 μm thick SiO 2 from the bottom. Then, a multilayer antireflection film having a multilayer structure of two or three layers is formed on the uppermost SiO 2 layer, a resist layer is formed thereon, and the resist layer is exposed and developed to be patterned. A resist layer was obtained. Next, using this patterned resist layer as an etching mask, openings were formed by RIE in the SiO 2 layer, SiCOH layer, and SiCN layer located above the lower copper wiring, and then the resist layer was removed. . Thereafter, a conductive material was buried in the opening by a sputtering method to obtain a via hole.

以上、本発明を好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定されるものではない。実施例における多層反射防止膜の構成、多層反射防止膜を構成する各層の膜厚や複素屈折率は例示であり、適宜、変更することができる。   As mentioned above, although this invention was demonstrated based on the preferable Example, this invention is not limited to these Examples. The configuration of the multilayer antireflection film and the film thickness and complex refractive index of each layer constituting the multilayer antireflection film in the examples are examples, and can be appropriately changed.

本発明の多層反射防止膜を、被照射物側から第1の反射防止膜及び第2の反射防止膜から成る2層構造を有する多層反射防止膜として、シミュレーションを行い、反射率RS,RP,Raveの値を求めるといった作業を行った。尚、第2の反射防止膜の上には、実施例1Aと同じレジスト層が形成されている。また、レジスト層の表面は水層で覆われている。シミュレーションの結果、第1の反射防止膜及び第2の反射防止膜の膜厚及び複素屈折率が、以下に示す範囲にあるとき、レジスト層へ入射する露光光の入射角度をθI、レジスト層へ入射する前に露光光が通過する入射媒質の屈折率をn0、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦n0・sin(θI)≦1.2の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足していた。尚、第1の反射防止膜の膜厚をt1、第1の反射防止膜の複素屈折率n1 *を(n1−i・k1)、第2の反射防止膜の膜厚をt2、第2の反射防止膜の複素屈折率n2 *を(n2−i・k3)、後述する第3の反射防止膜の膜厚をt3、第3の反射防止膜の複素屈折率n3 *を(n3−i・k3)で表す。 The multilayer antireflection film of the present invention is simulated as a multilayer antireflection film having a two-layer structure including a first antireflection film and a second antireflection film from the irradiated object side, and the reflectivity R S , R Work such as obtaining the values of P and R ave was performed. The same resist layer as in Example 1A is formed on the second antireflection film. The surface of the resist layer is covered with an aqueous layer. As a result of the simulation, when the film thickness and complex refractive index of the first antireflection film and the second antireflection film are in the ranges shown below, the incident angle of the exposure light incident on the resist layer is θ I , and the resist layer N 0 , the refractive index of the incident medium through which the exposure light passes before entering the light source, R S , the reflectance of the S-polarized component of the exposure light reflected by the irradiated object, and P of the exposure light reflected by the irradiated object When the reflectance of the polarization component is R P and the average reflectance of the exposure light reflected by the irradiated object is R ave , R S ≦ within a range of 0 ≦ n 0 · sin (θ I ) ≦ 1.2. 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5% were satisfied. The film thickness of the first antireflection film is t 1 , the complex refractive index n 1 * of the first antireflection film is (n 1 −i · k 1 ), and the film thickness of the second antireflection film is t. 2 , the complex refractive index n 2 * of the second antireflection film is (n 2 −i · k 3 ), the film thickness of the third antireflection film to be described later is t 3 , and the complex refraction of the third antireflection film The rate n 3 * is represented by (n 3 -i · k 3 ).

1:5×10-9m乃至1.5×10-7
1:1.34乃至1.54
1:0.3乃至0.5
2:5×10-9m乃至1.0×10-7
2:1.57乃至1.77
2:0.1乃至0.3
t 1 : 5 × 10 −9 m to 1.5 × 10 −7 m
n 1 : 1.34 to 1.54
k 1 : 0.3 to 0.5
t 2 : 5 × 10 −9 m to 1.0 × 10 −7 m
n 2 : 1.57 to 1.77
k 2 : 0.1 to 0.3

更には、本発明の多層反射防止膜を、被照射物側から第1の反射防止膜、第2の反射防止膜及び第3の反射防止膜から成る3層構造を有する多層反射防止膜として、シミュレーションを行い、反射率RS,RP,Raveの値を求めるといった作業を行った。尚、第3の反射防止膜の上には、実施例1Aと同じレジスト層が形成されている。また、レジスト層の表面は水層で覆われている。シミュレーションの結果、第1の反射防止膜第2の反射防止膜及び第3の反射防止膜の膜厚及び複素屈折率が、以下に示す範囲にあるとき、レジスト層へ入射する露光光の入射角度をθI、レジスト層へ入射する前に露光光が通過する入射媒質の屈折率をn0、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦n0・sin(θI)≦1.2の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足していた。 Furthermore, the multilayer antireflection film of the present invention is used as a multilayer antireflection film having a three-layer structure comprising a first antireflection film, a second antireflection film, and a third antireflection film from the irradiated object side. A simulation was performed to obtain values of the reflectances R S , R P , and R ave . The same resist layer as in Example 1A is formed on the third antireflection film. The surface of the resist layer is covered with an aqueous layer. As a result of the simulation, when the film thickness and complex refractive index of the first antireflection film, the second antireflection film, and the third antireflection film are in the ranges shown below, the incident angle of the exposure light incident on the resist layer Θ I , the refractive index of the incident medium through which the exposure light passes before entering the resist layer is n 0 , the reflectance of the S-polarized component of the exposure light reflected by the irradiated object is R S , and the reflected light is reflected by the irradiated object When the reflectance of the P-polarized light component of the exposure light is R P and the average reflectance of the exposure light reflected by the irradiated object is R ave , 0 ≦ n 0 · sin (θ I ) ≦ 1.2 In the range, R S ≦ 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5% were satisfied.

1:5×10-9m乃至1.0×10-7
1:1.72乃至1.92
1:0.3乃至0.6
2:5×10-9m乃至1.5×10-7
2:1.34乃至2.00
2:0.2乃至0.5
3:5×10-9m乃至1.5×10-7
3:1.57乃至1.80
3:0乃至0.3
t 1 : 5 × 10 −9 m to 1.0 × 10 −7 m
n 1 : 1.72 to 1.92
k 1 : 0.3 to 0.6
t 2 : 5 × 10 −9 m to 1.5 × 10 −7 m
n 2 : 1.34 to 2.00
k 2 : 0.2 to 0.5
t 3 : 5 × 10 −9 m to 1.5 × 10 −7 m
n 3 : 1.57 to 1.80
k 3 : 0 to 0.3

図1の(A)〜(D)は、実施例1A、実施例1B、実施例1C、実施例1Dにおける層構成を示す模式的な一部断面図である。FIGS. 1A to 1D are schematic partial cross-sectional views illustrating the layer configurations in Example 1A, Example 1B, Example 1C, and Example 1D. 図2の(A)及び(B)は、それぞれ、レジスト層へ入射する露光光の入射角度θIを変化させたときの実施例1A及び実施例1Bにおける反射率RS,RP,Raveのシミュレーション結果を示すグラフである。2A and 2B show the reflectances R S , R P , and R ave in Example 1A and Example 1B, respectively, when the incident angle θ I of the exposure light incident on the resist layer is changed. It is a graph which shows the simulation result of. 図3の(A)及び(B)は、それぞれ、レジスト層へ入射する露光光の入射角度θIを変化させたときの実施例1C及び実施例1Dにおける反射率RS,RP,Raveのシミュレーション結果を示すグラフである。3A and 3B show the reflectances R S , R P , and R ave in Example 1C and Example 1D, respectively, when the incident angle θ I of the exposure light incident on the resist layer is changed. It is a graph which shows the simulation result of. 図4は、実施例1A〜実施例1Dにおける具体的な作業を示すフローチャートである。FIG. 4 is a flowchart showing a specific operation in the embodiment 1A to the embodiment 1D. 図5の(A)〜(D)は、比較例1A〜比較例1Dにおける層構成を示す模式的な一部断面図である。5A to 5D are schematic partial cross-sectional views illustrating the layer structures in Comparative Examples 1A to 1D. 図6の(A)及び(B)は、レジスト層へ入射する露光光の入射角度θIを変化させたときの比較例1A及び比較例1Bにおける反射率RS,RP,Raveのシミュレーション結果を示すグラフである。6A and 6B show simulations of the reflectances R S , R P , and R ave in Comparative Example 1A and Comparative Example 1B when the incident angle θ I of the exposure light incident on the resist layer is changed. It is a graph which shows a result. 図7の(A)及び(B)は、レジスト層へ入射する露光光の入射角度θIを変化させたときの比較例1C及び比較例1Dにおける反射率RS,RP,Raveのシミュレーション結果を示すグラフである。FIGS. 7A and 7B show simulations of the reflectances R S , R P , and R ave in Comparative Example 1C and Comparative Example 1D when the incident angle θ I of the exposure light incident on the resist layer is changed. It is a graph which shows a result.

符号の説明Explanation of symbols

11,21・・・被照射物(被エッチング物)、12/A,13/B,22/C,22/D,22/G,23/A,23/E,23/H,24/B,24/F,24/J,32/K,42/C,52/C,62/A,63/K・・・・・・多層反射防止膜を構成する反射防止膜、15,25・・・レジスト層、16,26・・・水層
11, 21... Irradiated object (etched object), 12 / A, 13 / B, 22 / C, 22 / D, 22 / G, 23 / A, 23 / E, 23 / H, 24 / B , 24 / F, 24 / J, 32 / K, 42 / C, 52 / C, 62 / A, 63 / K,... Antireflection film constituting a multilayer antireflection film, 15, 25,. .Resist layer, 16, 26 ... water layer

Claims (3)

半導体装置の製造工程において、開口数が0.85以上の液浸露光系にてレジスト層を露光する際に用いられる、レジスト層と被照射物表面との間に形成された2層以上の多層構造を有する多層反射防止膜であって、
レジスト層へ入射する露光光の入射角度をθI、レジスト層へ入射する前に露光光が通過する入射媒質の屈折率をn0、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦n0・sin(θI)≦1.2の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足することを特徴とする多層反射防止膜。
Two or more multilayers formed between the resist layer and the surface of the object to be used for exposing the resist layer in an immersion exposure system having a numerical aperture of 0.85 or more in the manufacturing process of the semiconductor device A multilayer antireflection film having a structure,
The incident angle of the exposure light incident on the resist layer is θ I , the refractive index of the incident medium through which the exposure light passes before entering the resist layer is n 0 , and the reflection of the S-polarized light component of the exposure light reflected by the irradiated object When the rate is R S , the reflectance of the P-polarized component of the exposure light reflected by the irradiated object is R P , and the average reflectance of the exposure light reflected by the irradiated object is R ave , 0 ≦ n 0. A multilayer antireflection film satisfying R S ≦ 0.5%, R P ≦ 0.5%, and R ave ≦ 0.5% in a range of sin (θ I ) ≦ 1.2.
半導体装置の製造工程において、開口数が0.85以上の液浸露光系にてレジスト層を露光する際に用いられる、レジスト層と被照射物表面との間に形成された2層以上の多層構造を有する多層反射防止膜であって、
レジスト層へ入射する前に露光光が通過する入射媒質は、屈折率n0=1.44の水であり、
レジスト層へ入射する露光光の入射角度をθI、被照射物によって反射された露光光のS偏光成分の反射率をRS、被照射物によって反射された露光光のP偏光成分の反射率をRP、被照射物によって反射された露光光の平均反射率をRaveとしたとき、0≦θI≦56(度)の範囲において、RS≦0.5%、RP≦0.5%、Rave≦0.5%を満足することを特徴とする多層反射防止膜。
Two or more multilayers formed between the resist layer and the surface of the object to be used for exposing the resist layer in an immersion exposure system having a numerical aperture of 0.85 or more in the manufacturing process of the semiconductor device A multilayer antireflection film having a structure,
The incident medium through which the exposure light passes before entering the resist layer is water having a refractive index n 0 = 1.44,
The incident angle of the exposure light incident on the resist layer is θ I , the reflectance of the S polarization component of the exposure light reflected by the irradiated object is R S , and the reflectance of the P polarization component of the exposure light reflected by the irradiated object the R P, when the average reflectivity of the exposure light reflected by the object to be irradiated was set to R ave, in the range of 0 ≦ θ I ≦ 56 (degrees), R S ≦ 0.5%, R P ≦ 0. A multilayer antireflection film satisfying 5% and R ave ≦ 0.5%.
露光光の波長は、1.5×10-7m乃至3.0×10-7mであることを特徴とする請求項1又は請求項2に記載の多層反射防止膜。
The multilayer antireflection film according to claim 1, wherein the wavelength of the exposure light is 1.5 × 10 −7 m to 3.0 × 10 −7 m.
JP2004254055A 2004-09-01 2004-09-01 Multilayered antireflection coating Pending JP2006073709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254055A JP2006073709A (en) 2004-09-01 2004-09-01 Multilayered antireflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254055A JP2006073709A (en) 2004-09-01 2004-09-01 Multilayered antireflection coating

Publications (1)

Publication Number Publication Date
JP2006073709A true JP2006073709A (en) 2006-03-16

Family

ID=36154018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254055A Pending JP2006073709A (en) 2004-09-01 2004-09-01 Multilayered antireflection coating

Country Status (1)

Country Link
JP (1) JP2006073709A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103899A (en) * 2005-09-06 2007-04-19 Sony Corp Antireflection coating and exposure method
JP2007288108A (en) * 2006-04-20 2007-11-01 Nikon Corp Method of manufacturing device
WO2007143353A1 (en) * 2006-05-31 2007-12-13 Hewlett-Packard Development Company, L.P. Structure and method for optical coating
JP2010040968A (en) * 2008-08-08 2010-02-18 Toshiba Corp Exposure method, semiconductor device manufacturing method, and mask data producing method
US8163448B2 (en) 2009-01-15 2012-04-24 Canon Kabushiki Kaisha Determination method, exposure method, device fabrication method, and storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232315A (en) * 1992-02-18 1993-09-10 Asahi Optical Co Ltd Optical multi-layered thin film and beam splitter
JPH05264802A (en) * 1992-01-21 1993-10-15 Asahi Optical Co Ltd Multilayered antireflection film
JPH05264801A (en) * 1992-01-21 1993-10-15 Asahi Optical Co Ltd Multilayered antireflection film
JPH0978031A (en) * 1995-09-11 1997-03-25 Shin Etsu Chem Co Ltd Reflection-protecting film material
JPH1090502A (en) * 1996-09-17 1998-04-10 Nec Corp Antireflection structure and formation of pattern
JPH10189426A (en) * 1996-12-27 1998-07-21 Sony Corp Formation of resist pattern
JP2002515142A (en) * 1998-04-24 2002-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical system with non-reflective coating
JP2002189101A (en) * 2000-12-21 2002-07-05 Nikon Corp Antireflection film, optical element and exposure device
JP2002214793A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Antireflection film and method for producing semiconductor device
JP2002311206A (en) * 2001-04-17 2002-10-23 Nikon Corp Antireflection film, optical element and aligner mounting the same
JP2004134674A (en) * 2002-10-11 2004-04-30 Toshiba Corp Substrate treatment method, heating treatment apparatus, and pattern forming method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264802A (en) * 1992-01-21 1993-10-15 Asahi Optical Co Ltd Multilayered antireflection film
JPH05264801A (en) * 1992-01-21 1993-10-15 Asahi Optical Co Ltd Multilayered antireflection film
JPH05232315A (en) * 1992-02-18 1993-09-10 Asahi Optical Co Ltd Optical multi-layered thin film and beam splitter
JPH0978031A (en) * 1995-09-11 1997-03-25 Shin Etsu Chem Co Ltd Reflection-protecting film material
JPH1090502A (en) * 1996-09-17 1998-04-10 Nec Corp Antireflection structure and formation of pattern
JPH10189426A (en) * 1996-12-27 1998-07-21 Sony Corp Formation of resist pattern
JP2002515142A (en) * 1998-04-24 2002-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical system with non-reflective coating
JP2002189101A (en) * 2000-12-21 2002-07-05 Nikon Corp Antireflection film, optical element and exposure device
JP2002214793A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Antireflection film and method for producing semiconductor device
JP2002311206A (en) * 2001-04-17 2002-10-23 Nikon Corp Antireflection film, optical element and aligner mounting the same
JP2004134674A (en) * 2002-10-11 2004-04-30 Toshiba Corp Substrate treatment method, heating treatment apparatus, and pattern forming method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103899A (en) * 2005-09-06 2007-04-19 Sony Corp Antireflection coating and exposure method
JP2007288108A (en) * 2006-04-20 2007-11-01 Nikon Corp Method of manufacturing device
WO2007143353A1 (en) * 2006-05-31 2007-12-13 Hewlett-Packard Development Company, L.P. Structure and method for optical coating
JP2010040968A (en) * 2008-08-08 2010-02-18 Toshiba Corp Exposure method, semiconductor device manufacturing method, and mask data producing method
JP4703693B2 (en) * 2008-08-08 2011-06-15 株式会社東芝 Exposure method, semiconductor device manufacturing method, and mask data creation method
US8142960B2 (en) 2008-08-08 2012-03-27 Kabushiki Kaisha Toshiba Exposure method, mask data producing method, and semiconductor device manufacturing method
US8163448B2 (en) 2009-01-15 2012-04-24 Canon Kabushiki Kaisha Determination method, exposure method, device fabrication method, and storage medium

Similar Documents

Publication Publication Date Title
CN107452602B (en) High durability extreme ultraviolet photomask
TWI229780B (en) Blank photomask, photomask and method of pattern transferring using photomask
TW521318B (en) Phase-shift masks and methods of fabrication
JP2007043167A (en) Semiconductor structure comprising bottom anti-reflective coating, method for forming pr pattern using same structure, and method for forming semiconductor device pattern
TWI525386B (en) Reflective-type mask and method for forming integrated circuit
KR102402659B1 (en) Mask blanks, phase shift mask, and method for manufacturing semiconductor device
US6410421B1 (en) Semiconductor device with anti-reflective structure and methods of manufacture
US11086215B2 (en) Extreme ultraviolet mask with reduced mask shadowing effect and method of manufacturing the same
JP2000150644A (en) Manufacture of semiconductor device
JP6743505B2 (en) Reflective mask blank and reflective mask
KR20190126725A (en) EUV lithography mask, and fabricating method of the same
JP2000195791A (en) Method of reducing resist reflectance in lithography
JPH06302539A (en) Manufacture of semiconductor device
KR20210136114A (en) Mask blank, transfer mask manufacturing method, and semiconductor device manufacturing method
KR20210118885A (en) Mask blank, transfer mask manufacturing method, and semiconductor device manufacturing method
JP5073286B2 (en) Manufacturing method of semiconductor device
JP2006073709A (en) Multilayered antireflection coating
US5403781A (en) Method of forming multilayered wiring
JP2006519420A (en) Method for patterning photoresist on wafer using attenuated phase shift mask
JP2000299282A (en) Arc for improved cd control
JPH07201990A (en) Pattern forming method
KR102109865B1 (en) Blankmask, Phase Shift Photomask and method for fabricating the same
JP6284369B2 (en) Manufacturing method of semiconductor integrated circuit device
KR19990060897A (en) Manufacturing Method of Semiconductor Device
Hwang et al. Improvement of alignment and overlay accuracy on amorphous carbon layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510