JP2006071438A - Biosensor calibration method - Google Patents

Biosensor calibration method Download PDF

Info

Publication number
JP2006071438A
JP2006071438A JP2004254930A JP2004254930A JP2006071438A JP 2006071438 A JP2006071438 A JP 2006071438A JP 2004254930 A JP2004254930 A JP 2004254930A JP 2004254930 A JP2004254930 A JP 2004254930A JP 2006071438 A JP2006071438 A JP 2006071438A
Authority
JP
Japan
Prior art keywords
water
biosensor
temperature
value
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004254930A
Other languages
Japanese (ja)
Other versions
JP4406792B2 (en
Inventor
Katsuji Yokoyama
勝治 横山
Takashi Inui
貴誌 乾
Yoshiharu Tanaka
良春 田中
Nobuhisa Kato
修久 加藤
Hideo Horiike
秀生 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004254930A priority Critical patent/JP4406792B2/en
Publication of JP2006071438A publication Critical patent/JP2006071438A/en
Application granted granted Critical
Publication of JP4406792B2 publication Critical patent/JP4406792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for stably performing zero-point calibration and full-scale (span) calibration in a short period of time in a biosensor for detecting hazardous substances in environmental water, and also to provide a technique for performing zero-point calibration and full-scale (span) calibration in the normal state of water monitoring. <P>SOLUTION: The temperature of a mixture of water to be inspected and a substrate for the biosensor is held within a temperature range maintaining the correlation between oxygen consumption rates of the water to be inspected and liquid temperatures and reversibility. An output value of a dissolved oxygen sensor when the oxygen consumption rate is in a maximum state is stored. The stored output value is taken as a zero-point calibration value of the biosensor. On the basis of a measured value when the water to be inspected is in a state held at a low temperature, a differential value between a value computed from the value and the zero-point calibration value is computed. The differential value is taken as a range of measurement to determine the size of a span. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バイオセンサ応用水質計測器の新規な校正方法に関する。とくに上下水道の各プロセスの水や河川水、湖沼水などの環境水(以下、試料水ということがある)を対象として、水中の有害物質をモニタリングすることを目的としたバイオセンサ応用水質計測器の新規で簡便な校正方法に関する。 The present invention relates to a novel calibration method for a biosensor applied water quality measuring instrument. A biosensor-applied water quality measuring instrument for monitoring harmful substances in water, especially for environmental waters (hereinafter sometimes referred to as sample water) such as water in each process of water and sewage, river water, and lake water. The present invention relates to a new and simple calibration method.

バイオセンサは試料水中の測定対象化学物質を認識する分子識別素子ということができ、酵素や抗体などの生体機能性材料や微生物、細胞など生体そのものを利用し、これらの生物材料を多孔性高分子膜に化学的に包括または共有結合させることにより固定化した膜と、電気化学的検出器などのトランスデューサと組合せて前記生物材料の分子識別信号を電気信号に変換して試料水中の化学物質の測定を行うセンサである。
バイオセンサは試料水を前記生体材料の固定化膜に接触させ、これによって生ずる生化学反応により生成または消費される物質の濃度変化を検出器で電流や電圧などの電気的な出力(以下、センサ出力と記載する)の変化に変換して測定する。
A biosensor can be called a molecular identification element that recognizes a chemical substance to be measured in sample water. It uses biological functional materials such as enzymes and antibodies, living organisms such as microorganisms and cells, and these biological materials are made of porous polymers. Measurement of chemical substances in sample water by converting the molecular identification signal of the biological material into an electrical signal in combination with a membrane immobilized by chemical inclusion or covalent bonding to the membrane and a transducer such as an electrochemical detector It is a sensor which performs.
A biosensor is a method in which sample water is brought into contact with an immobilized membrane of the biomaterial, and a concentration change of a substance generated or consumed by a biochemical reaction caused thereby is detected by an electrical output (hereinafter referred to as a sensor). Measured in terms of changes in output).

そのバイオセンサを使用した有害物質検出のための測定にあたっては、固定化した生体材料が安定に機能するように温度とpH条件を一定にすることが必要である。そのため、バイオセンサ応用計測器では、温度を一定に保つために試料水を一定温度に加温する熱交換器とセンサ温度を一定にする恒温槽が備えられ、また、pH条件を一定とするために緩衝溶液が用いられている。 When measuring for detection of harmful substances using the biosensor, it is necessary to make the temperature and pH conditions constant so that the immobilized biomaterial functions stably. Therefore, biosensor applied measuring instruments are equipped with a heat exchanger that warms the sample water to a constant temperature and a constant temperature bath that keeps the sensor temperature constant in order to keep the temperature constant, and to maintain a constant pH condition. A buffer solution is used.

すでに、水中の有害物質検出用バイオセンサが開発され(たとえば特許文献1を参照)、実用化されている。このバイオセンサは、生体材料と検出器とから構成される。前記生体材料としては有害物質に極めて弱い微生物を用い、この微生物を生きたまま固定化して、たとえば高分子多孔膜で封じ込めた微生物膜が多用される。前記検出器としては溶存酸素電極が多用される。この微生物膜と溶存酸素電極が組合せられた呼吸活性検知型バイオセンサが好適である。
バイオセンサの一例を図5に基づいて説明する。
冷蔵保存した微生物膜1をフローセル4内に入れ、その上に溶存酸素電極2を取り付けて微生物膜1と密着させ、有害物質検出用微生物センサを構成する。センサ出力値はリード線3から情報記録装置(図示されていない)などの制御装置(図示されていない)に送られる。
このバイオセンサに、そのセンサに用いられている微生物の基質および微量栄養成分を一定濃度含む緩衝溶液と試料水を、普通は基質を1に対して5〜15(容量比)の比率となるように混合した後、連続的に流すことにより、試料水での有害物質混入の連続監視を行う。ここでバイオセンサの生体材料としては有害物質に極めて弱い微生物である硝化細菌を用いる場合が多い。
Biosensors for detecting harmful substances in water have already been developed (see, for example, Patent Document 1) and put into practical use. This biosensor is composed of a biomaterial and a detector. As the biomaterial, microorganisms that are extremely weak against harmful substances are used, and microorganisms that are immobilized with these microorganisms alive and encapsulated with, for example, a polymer porous membrane are often used. As the detector, a dissolved oxygen electrode is frequently used. A respiratory activity detection type biosensor in which this microbial membrane and dissolved oxygen electrode are combined is suitable.
An example of a biosensor will be described with reference to FIG.
The microbial membrane 1 that has been refrigerated is placed in the flow cell 4, and the dissolved oxygen electrode 2 is attached on the microbial membrane 1 to be in close contact with the microbial membrane 1 to constitute a microbial sensor for detecting harmful substances. The sensor output value is sent from the lead wire 3 to a control device (not shown) such as an information recording device (not shown).
In this biosensor, a buffer solution containing a certain concentration of a microbial substrate and a micronutrient used in the sensor and a sample water are usually used, and the ratio of the substrate to 1 is usually 5 to 15 (volume ratio). After mixing, the sample water is continuously monitored for contamination with harmful substances. Here, as biomaterials for biosensors, nitrifying bacteria, which are microorganisms that are extremely vulnerable to harmful substances, are often used.

ここで、図6の左図に基づいて、試料水中に存在する酸素の測定法を説明する。
試料水中に存在する酸素は、試料水に接触する微生物固定膜内にて、その膜内の微生物により消費される。消費されない該固定膜内の酸素は、固定膜と密着されている溶存酸素センサの電極にて水酸イオンに還元され、その反応による電流は変換器を介して、適宜出力される。前記試料水に微生物の栄養源である基質が存在すると消費酸素量は増えることなり、やがては全ての酸素が消費されることなる。
通常、前記のような硝化細菌を使用するバイオセンサ応用計測器では、微生物膜内の硝化細菌の数や活性をできるだけ長い期間安定に維持するために、硝化細菌の生育至適温度(30℃)、生育至適pH(9.0)等の至適条件を維持し、成育に必要な微量栄養成分を含む緩衝溶液を用いて測定を行っている。しかし、このような条件下でも試料水の水質や微生物膜内での硝化細菌の増殖サイクルに伴い、微生物膜の活性(硝化細菌の数や活性)は変動する。
Here, based on the left figure of FIG. 6, the measuring method of the oxygen which exists in sample water is demonstrated.
Oxygen present in the sample water is consumed by microorganisms in the membrane in the microorganism-fixed membrane in contact with the sample water. Oxygen in the fixed membrane that is not consumed is reduced to hydroxide ions by an electrode of a dissolved oxygen sensor that is in close contact with the fixed membrane, and a current resulting from the reaction is appropriately output via a converter. If the substrate, which is a nutrient source for microorganisms, is present in the sample water, the amount of oxygen consumed will increase, and eventually all the oxygen will be consumed.
Usually, in the biosensor application measuring instrument using nitrifying bacteria as described above, the optimum temperature for growth of nitrifying bacteria (30 ° C) in order to stably maintain the number and activity of nitrifying bacteria in the microbial membrane for as long as possible. Measurement is performed using a buffer solution containing trace nutrients necessary for growth while maintaining optimum conditions such as optimum pH (9.0) for growth. However, even under such conditions, the activity of the microbial membrane (number and activity of nitrifying bacteria) varies with the quality of the sample water and the growth cycle of nitrifying bacteria in the microbial membrane.

バイオセンサに用いられる溶存酸素センサはガルバニ電池が多用され、そのセンサの構成の一例を図7に基づいて説明する。溶存酸素センサは少なくともその先端が、検査水(試料水)と酸素を透過させる隔膜(例えば四フッ化エチレン樹脂などの高分子膜)31を介して接触されている。この膜31と接触する試料水と反対側には、電解液33が充填され、この電解液に浸漬されるようにアノード電極29、カソード電極30が、絶縁ガラス32を介して設けられている。試料水中に溶存している酸素は、膜31、電解液33を拡散してカソード電極30に達する。そして、このカソード電極30において、酸素は下記(1)式に示す反応により水素イオン(OH- )に還元される。
2 +2H2 O+4e- →4OH- (1)
上記反応による電流は、たとえば電流計(図示してない)により検出され、その出力は演算部(図示していない)に入力され、ここで適宜演算処理することにより、試料水中に溶存している酸素の濃度が得られる。
A galvanic battery is frequently used as the dissolved oxygen sensor used in the biosensor, and an example of the configuration of the sensor will be described with reference to FIG. At least the tip of the dissolved oxygen sensor is in contact with a test water (sample water) and a diaphragm (for example, a polymer film such as a tetrafluoroethylene resin) 31 that allows oxygen to pass therethrough. The side opposite to the sample water that contacts the membrane 31 is filled with an electrolytic solution 33, and an anode electrode 29 and a cathode electrode 30 are provided via an insulating glass 32 so as to be immersed in the electrolytic solution. Oxygen dissolved in the sample water diffuses through the membrane 31 and the electrolytic solution 33 and reaches the cathode electrode 30. In this cathode electrode 30, oxygen is reduced to hydrogen ions (OH ) by the reaction shown in the following formula (1).
O 2 + 2H 2 O + 4e → 4OH (1)
The current due to the above reaction is detected by, for example, an ammeter (not shown), and the output is input to a calculation unit (not shown), where it is dissolved in the sample water by appropriate calculation processing. An oxygen concentration is obtained.

前記溶存酸素センサを長期間連続運転している間に、一般的には化学反応により、析出物が発生する。これら析出物がたとえば前記アノード電極29と酸素透過膜31間に入り込むと、ゼロ点が不安定になったり、スパン巾が狭くなる。また、絶縁ガラス32に微少なクラックが入るとゼロ点が不安定になる。センサ日常運転中にも、微生物膜1の表面に気泡が付着するとスパン巾が狭くなる。
そのため、日常運転で、一日一回程度、溶存酸素センサの校正を行うのが普通である。代表的な校正方法は、溶存酸素センサを校正するための標準溶液を使用して行う。
すなわち、センサの温度を30℃の状態に調整し、それを基準とし、
まず、純水と微生物の栄養源である基質をバイオセンサの試料流路に流し、微生物が完全に酸素を消費する前提で、ゼロ点校正を行う。
次に、基質を含まない緩衝液と純水のみを、バイオセンサの試料流路に流し、微生物がほぼ酸素を消費できなくなる前提で、フルスケール(スパン)校正を行う。
During the continuous operation of the dissolved oxygen sensor for a long period of time, precipitates are generally generated by a chemical reaction. If these precipitates enter between the anode electrode 29 and the oxygen permeable film 31, for example, the zero point becomes unstable or the span width becomes narrow. In addition, when a minute crack enters the insulating glass 32, the zero point becomes unstable. Even during daily operation of the sensor, if air bubbles adhere to the surface of the microbial membrane 1, the span width becomes narrower.
Therefore, it is usual to calibrate the dissolved oxygen sensor once a day in daily operation. A typical calibration method is performed using a standard solution for calibrating the dissolved oxygen sensor.
That is, the temperature of the sensor is adjusted to a state of 30 ° C., and that is used as a reference.
First, pure water and a substrate that is a nutrient source for microorganisms are passed through the sample flow path of the biosensor, and zero calibration is performed on the assumption that the microorganisms consume oxygen completely.
Next, a full scale (span) calibration is performed on the premise that only a buffer solution containing no substrate and pure water are allowed to flow through the sample flow path of the biosensor, and the microorganisms can hardly consume oxygen.

特公平7−85072号公報Japanese Patent Publication No. 7-85072

前記校正方法における問題点としては、
(1)水質監視する検査水から緩衝液と純水に切り替えた後、純水と基質を含む緩衝液を試料流路に流し、ゼロ点校正を行い、次に、基質を含まない緩衝液と純水のみを、試料流路に流し、フルスケール(スパン)校正を安定的に行うとすると、そのために必要な時間はおよそ1時間半にも及んでしまう。その校正を行っている間は検査水を供給するバルブは閉じた状態とする必要があるため、水質監視ができない、という問題点がある。
(2) また、微生物の活性状態は常に変動するために検査水と基質を与えても、例えば、図6の4の状態で示すように、微生物による酸素消費率が100%に至らず、溶存酸素センサの出力がゼロにならない場合があり、バイオセンサの校正時に、純水と基質を試料流路に流し、微生物が完全に酸素を消費する前提でのゼロ点校正ができない場合がある、という問題点もある。
前者の問題点は、バイオセンサ2台を並列運転することにより解決できるのであるが、そうすると、全てのコストが倍になるという新たな不都合さが生じてしまう。
後者の問題点に対する解決策は、現在までとくに報告されていない。
そこで、前記問題点を解決することが本発明の課題である。とくに、水質監視する検査水から緩衝液と純水に切り替えることなく、簡便にゼロ点校正とフルスケール(スパン)校正を行うことができるバイオセンサの校正方法を提供することが本発明の課題である。
As problems in the calibration method,
(1) After switching from test water to water quality monitoring to buffer solution and pure water, a buffer solution containing pure water and substrate is flowed into the sample flow path, zero point calibration is performed, and then a buffer solution containing no substrate If only pure water is allowed to flow through the sample flow path and full-scale (span) calibration is performed stably, the time required for this will be approximately one and a half hours. Since the valve for supplying the inspection water needs to be closed during the calibration, there is a problem that the water quality cannot be monitored.
(2) Moreover, since the activity state of microorganisms always fluctuates, even if test water and a substrate are given, for example, as shown in the state of 4 in FIG. 6, the oxygen consumption rate by microorganisms does not reach 100% and dissolved. The output of the oxygen sensor may not be zero, and when calibrating the biosensor, pure water and the substrate are allowed to flow through the sample flow path, and the zero point calibration may not be performed on the premise that the microorganism completely consumes oxygen. There are also problems.
The former problem can be solved by operating two biosensors in parallel. However, this causes a new inconvenience that all costs are doubled.
A solution to the latter problem has not been reported so far.
Accordingly, it is an object of the present invention to solve the above problems. In particular, it is an object of the present invention to provide a biosensor calibration method capable of easily performing zero-point calibration and full-scale (span) calibration without switching from test water for water quality monitoring to buffer solution and pure water. is there.

本発明者らは前記課題を解決するために、研究を重ねた結果、バイオセンサと接触する検査水の酸素消費率に着目し、前記酸素消費率とバイオセンサにて有害物質の有無を検査される試料水の液温との関係は、特定の温度範囲では相関関係および可逆性があるという知見を得、この関係の程度(傾き)は微生物の活性に依存していることにも気づいた。また、検査水を低温(5℃以下)に保持した状態での酸素消費率は微生物の活性に関係なくおよそ20%であることにも気づいた。それらの関係を利用すると共に、あらかじめ試験して得られた基本データ、たとえば溶存酸素センサ単体での液温に対するセンサ出力特性、を利用すれば、ゼロ点校正およびフルスケール(スパン)校正を従来方法よりも簡単に行うことができ、しかも従来方法とほぼ同じような正確さで行うことができることに気づいた。すなわち、従来の校正方法では必須であった「検査水」から「緩衝溶液と純水との混合物」に切り替える操作を省くことができ、検査水の温度を制御することによりゼロ点校正およびフルスケール(スパン)校正を簡単に行うことができることに気づいた。本発明者らは、さらに検討を重ね、遂に本発明に到達した。 As a result of repeated research to solve the above problems, the present inventors have paid attention to the oxygen consumption rate of test water in contact with the biosensor, and the oxygen consumption rate and the biosensor have been inspected for the presence of harmful substances. The relationship between the temperature of the sample water and the temperature of the sample water was found to be correlated and reversible in a specific temperature range, and the degree (slope) of this relationship also depended on the activity of the microorganism. It was also noticed that the oxygen consumption rate when the test water was kept at a low temperature (5 ° C. or lower) was about 20% regardless of the activity of the microorganism. Using these relationships and using basic data obtained by testing in advance, for example, sensor output characteristics with respect to the liquid temperature of a dissolved oxygen sensor alone, zero-point calibration and full-scale (span) calibration can be performed in the conventional method. It has been found that it can be performed more easily and with almost the same accuracy as the conventional method. In other words, the operation to switch from “test water” to “mixture of buffer solution and pure water”, which was essential in the conventional calibration method, can be omitted. I noticed that (span) calibration can be done easily. The inventors have further studied and finally arrived at the present invention.

すなわち、本発明の請求項1に係る発明は、環境水中の有害物質を検知するバイオセンサにおいて、前記環境水の一部である検査水を水質監視している状態のまま、その検査水の酸素消費が最大、すなわち100%となるときの溶存酸素センサの出力値、および酸素消費率が最小、すなわち通常では20%となるときの溶存酸素センサの出力値を知り、それら二つの値を基にしてスパン巾の大きさを決定することを特徴とするバイオセンサの校正方法である。
本発明の請求項2に係る発明は、前記環境水の一部である検査水の温度を5〜35℃に保持し、その温度範囲内で酸素消費が最大となるときの温度を探索し、その温度での溶存酸素センサの第一の出力値を記憶し、記憶した前記第一の出力値を前記バイオセンサのゼロ点校正値とすることを特徴とするバイオセンサの校正方法である。
本発明の請求項3に係る発明は、前記請求項2に係る発明において、検査水の温度をその検査水の酸素消費率と液温との間に相関関係および可逆性が保たれる温度の範囲内に保持することを特徴とする。
That is, the invention according to claim 1 of the present invention is a biosensor for detecting harmful substances in environmental water, wherein the inspection water, which is a part of the environmental water, is in a state where the quality of the inspection water is being monitored. Know the output value of the dissolved oxygen sensor when the consumption is maximum, that is, 100%, and the output value of the dissolved oxygen sensor when the oxygen consumption rate is the minimum, that is, normally 20%, and based on these two values The biosensor calibration method is characterized in that the span width is determined.
The invention according to claim 2 of the present invention maintains the temperature of the test water, which is a part of the environmental water, at 5 to 35 ° C., and searches for the temperature when the oxygen consumption is maximum within the temperature range, The biosensor calibration method is characterized in that the first output value of the dissolved oxygen sensor at the temperature is stored, and the stored first output value is used as the zero point calibration value of the biosensor.
The invention according to claim 3 of the present invention is the invention according to claim 2, wherein the temperature of the test water is a temperature at which the correlation and reversibility are maintained between the oxygen consumption rate of the test water and the liquid temperature. It is characterized by being held within the range.

本発明の請求項4に係る発明は、環境水中の有害物質を検出するバイオセンサにおいて、前記環境水の一部である検査水を低温に保持した状態での溶存酸素センサの第二の出力値と、請求項2記載の溶存酸素センサの第一の出力値との二種類の出力値を基にしてスパン巾の大きさを決定することを特徴とする発明である。
本発明の請求項5に係る発明は、前記請求項4に係る発明において、検査水を低温に保持する温度が5℃以下であり、検査水をその検査水の酸素消費率と液温との間に相関関係および可逆性が保たれる温度の範囲内に保持する温度が5〜35℃であることを特徴とする。
本発明の請求項6に係る発明は、バイオセンサにおける呼吸阻害率がその閾値を越えたときに、溶存酸素センサの保守アラームを出力することを特徴とする請求項4または5記載のバイオセンサの校正方法である。
The invention according to claim 4 of the present invention is the second output value of the dissolved oxygen sensor in a state where the test water which is a part of the environmental water is kept at a low temperature in the biosensor for detecting harmful substances in the environmental water. And the first output value of the dissolved oxygen sensor according to claim 2, the span width is determined based on two types of output values.
The invention according to claim 5 of the present invention is the invention according to claim 4, wherein the temperature at which the test water is kept at a low temperature is 5 ° C. or less, and the test water is defined by the oxygen consumption rate and the liquid temperature of the test water. The temperature maintained within the temperature range in which the correlation and the reversibility are maintained is 5 to 35 ° C.
The invention according to claim 6 of the present invention outputs a maintenance alarm of the dissolved oxygen sensor when the respiratory inhibition rate in the biosensor exceeds the threshold value. Calibration method.

以下、本発明を詳細に説明する。
本発明では、酸素消費率(%)は次のようにして算出される。
酸素消費率(%)がどの程度であるか知りたい液体を、微生物として硝化細菌を用いたバイオセンサの試料流路に流し、その酸素消費率は、下記(2)式から求めることができる。
酸素消費率(%)=[(A−B)/A]×100 (2)
式中、Aは前記液体を流したときに硝化細菌が溶存酸素を消費しないとき、あるいは前記液体の酸素消費率が0%のときのバイオセンサにおける溶存酸素センサ出力値を意味し、Bは任意の時点での溶存酸素センサ出力値を意味する。すなわち、「A」の値が分かっているときには、任意の時点での溶存酸素センサ出力値を測定すれば、そのときの液体の酸素消費率の値を算出することができることになる。
前記液体としては、緩衝溶液と純水との混合物、検査水などを例示できる。ここで、基質とは微生物センサに用いられる微生物の栄養源となるものであり、一般的に用いられる基質を用いればよい。緩衝溶液とは試料水のpHを一定範囲に保持することを主目的とし、一般的に使用される緩衝溶液を使用できる。
Hereinafter, the present invention will be described in detail.
In the present invention, the oxygen consumption rate (%) is calculated as follows.
A liquid desired to know how much the oxygen consumption rate (%) is is flowed into the sample flow path of the biosensor using nitrifying bacteria as a microorganism, and the oxygen consumption rate can be obtained from the following equation (2).
Oxygen consumption rate (%) = [(A−B) / A] × 100 (2)
In the formula, A means the dissolved oxygen sensor output value in the biosensor when the nitrifying bacteria do not consume dissolved oxygen when the liquid is flowed, or when the oxygen consumption rate of the liquid is 0%, and B is optional This means the dissolved oxygen sensor output value at the time of. That is, when the value of “A” is known, the value of the oxygen consumption rate of the liquid at that time can be calculated by measuring the dissolved oxygen sensor output value at an arbitrary time.
Examples of the liquid include a mixture of a buffer solution and pure water, and inspection water. Here, the substrate is a nutrient source for microorganisms used in the microorganism sensor, and a commonly used substrate may be used. The buffer solution is mainly intended to maintain the pH of the sample water within a certain range, and a commonly used buffer solution can be used.

本発明では、環境水に有害物質が存在するか、の点をモニタリングするのであるが、環境水中に硝化細菌の呼吸を阻害するような有害物質が存在すると、バイオセンサの微生物膜内の微生物が呼吸阻害され、環境水の一部について検査した試料水中の溶存酸素濃度が上昇して、センサ出力が増加する。このときのセンサ出力値(Z)とセンサ校正値を用いて、(3)式から呼吸阻害率を求めることができる。
呼吸阻害率(%)=[(Z−Y)/(A−Y)]×100 (3)
式中、Yは基質を含む緩衝用液と純水を流した(硝化細菌が溶存酸素を消費する)時のセンサ出力値を意味し、センサ校正値は、(A−Y)を意味する。ここで、Yでの基質の含有量は基質を1に対して緩衝用液と純水を5〜15(容量比)の比率となるようにする。
In the present invention, whether or not harmful substances are present in the environmental water is monitored. If there are harmful substances that inhibit the respiration of nitrifying bacteria in the environmental water, microorganisms in the microbial membrane of the biosensor Respiration is inhibited, the dissolved oxygen concentration in the sample water examined for part of the environmental water increases, and the sensor output increases. Using the sensor output value (Z) and the sensor calibration value at this time, the respiratory inhibition rate can be obtained from equation (3).
Respiration inhibition rate (%) = [(Z−Y) / (A−Y)] × 100 (3)
In the formula, Y means a sensor output value when a buffer solution containing a substrate and pure water are flowed (the nitrifying bacteria consume dissolved oxygen), and the sensor calibration value means (A−Y). Here, the content of the substrate at Y is set to a ratio of 5 to 15 (volume ratio) of the buffer solution and pure water to 1 of the substrate.

本発明では、前記環境水の一部である検査水の温度を5〜35℃に保持し、その温度範囲内で酸素消費が最大となるときの温度を探索する。その中でもとくに前記酸素消費率とバイオセンサにて有害物質の有無を検査される試料水の液温とが相関関係および可逆性がある温度の範囲内に保持し、その温度範囲内で酸素消費が最大となるときの温度を探索する。
検査される試料水の液温が、前記酸素消費率と液温との間に相関関係および可逆性が保たれる(以下、相関関係および可逆性が保たれる、ということがある)範囲では、検査される試料水の液温を高くすれば、前記酸素消費率も増加し、検査される試料水の液温を低くすれば、前記酸素消費率も減少することを意味する。
そこで、本発明はその性質を利用するバイオセンサの新規な校正方法であり、バイオセンサの校正を、検査水(環境水)を水質監視している最中に行うことを特徴とする。すなわち、本発明のゼロ点校正方法はつぎのとおりである。
通常の検査水を水質監視している状態において、その検査水の温度を5〜35℃に保持し、微生物膜と接触した試料水の酸素消費率が100%になるとき(すなわち、酸素消費が最大となるとき)の温度領域を探索し、そのときの溶存酸素センサの第一の出力値を記憶させ、該記憶した第一の出力値が0Vを示すようにゼロ点校正を行う。ここで、溶存酸素センサの出力値を記憶させる方法およびその記憶した出力値が0Vを示すようにゼロ点校正を行う方法は、一般的な方法を適用すればよい。
In the present invention, the temperature of the inspection water, which is a part of the environmental water, is maintained at 5 to 35 ° C., and the temperature at which the oxygen consumption becomes maximum within the temperature range is searched. In particular, the oxygen consumption rate and the temperature of the sample water to be examined for the presence or absence of harmful substances by the biosensor are kept within a range of correlation and reversibility, and oxygen consumption is within that temperature range. Search for the maximum temperature.
In the range where the liquid temperature of the sample water to be examined maintains the correlation and reversibility between the oxygen consumption rate and the liquid temperature (hereinafter, the correlation and reversibility may be maintained). If the liquid temperature of the sample water to be inspected is increased, the oxygen consumption rate is increased, and if the liquid temperature of the sample water to be inspected is decreased, the oxygen consumption rate is also decreased.
Therefore, the present invention is a novel calibration method for a biosensor that uses this property, and the calibration of the biosensor is performed while the quality of the test water (environmental water) is being monitored. That is, the zero point calibration method of the present invention is as follows.
When the water quality of normal test water is monitored, the temperature of the test water is kept at 5 to 35 ° C., and the oxygen consumption rate of the sample water in contact with the microbial membrane becomes 100% (that is, the oxygen consumption is The temperature range at the time of maximum) is searched, the first output value of the dissolved oxygen sensor at that time is stored, and zero point calibration is performed so that the stored first output value indicates 0V. Here, a general method may be applied to the method of storing the output value of the dissolved oxygen sensor and the method of performing the zero point calibration so that the stored output value indicates 0V.

前記検査水の温度を変更する温度の範囲は相関関係および可逆性が保たれる温度の範囲内であればさらに好ましい。具体的には5〜25℃、とくに5〜20℃の範囲内とすると好ましい結果をもたらす。
本発明でのゼロ点校正方法において、より具体的には、検査水と基質との混合物の温度を徐々に低下させ、一定の温度に到達したら、検査水と基質との混合物の温度を徐々に上げていき、バイオセンサの微生物膜と接触した試料水の酸素消費率が100%になるとき(すなわち、酸素消費が最大となるとき)の温度領域を探索し、そのときの溶存酸素センサの第一の出力値を記憶させ、該記憶した第一の出力値が0Vを示すようにゼロ点校正を行う方法を、例示できる。
前記一定の温度としては、検査水の温度が、溶存酸素センサの出力が0V以上になるときの温度とすることが好ましい。
More preferably, the temperature range for changing the temperature of the test water is within the temperature range in which the correlation and reversibility are maintained. Specifically, a preferable result is obtained when the temperature is in the range of 5 to 25 ° C, particularly 5 to 20 ° C.
More specifically, in the zero point calibration method of the present invention, the temperature of the mixture of the test water and the substrate is gradually decreased, and when the temperature reaches a certain temperature, the temperature of the mixture of the test water and the substrate is gradually increased. The temperature range when the oxygen consumption rate of the sample water in contact with the microbial membrane of the biosensor becomes 100% (that is, when the oxygen consumption becomes maximum) is searched, and the dissolved oxygen sensor at that time An example is a method of storing one output value and performing zero point calibration so that the stored first output value indicates 0V.
The constant temperature is preferably the temperature at which the output of the dissolved oxygen sensor is 0 V or higher.

次に、本発明のスパン調整するスパン校正の方法について説明する。本発明では、検査水を水質監視している最中にスパン校正を行うことを特徴とする。ここで、好まし
いスパン校正法を説明する。すなわち、水質監視し続ける中で、水質監視する水の一部を検査水として前記フローセルに導く。その検査水を低温(5℃以下)に下げ、所定時間経過したときの状態を観察すれば、バイオセンサと接触する検査水中の酸素消費率は微生物膜の活性に関係なく、ほぼ20%付近で一定になることを見出した(図2)。
すなわち、同じ微生物を用いるが、その微生物の数を変えた3種の微生物から成るバイオセンサを作製し、それぞれのバイオセンサを用いて基質を含む検査水の液温と酸素消費率との関係を調べた結果、図2のような結果が得られた。なお、図2の中で、活性高とは微生物の数が多いバイオセンサを意味し、活性低とは微生物の数が少ないバイオセンサを意味し、活性高中とは微生物の数が両者の間のバイオセンサを意味する。
そこで、検査水を低温に保持した状態での溶存酸素センサの第二の出力値と、前記ゼロ点校正値である溶存酸素センサの第一の出力値との二種類の出力値を基にしてスパン調整することができる。より詳しく説明すると、前記第一の出力値を記憶させ、その第一の出力値とデータベースから読み出された数値とから計算値を得、その計算値をデータベースに格納されている標準値と照合して溶存酸素センサの出力値の低下分を算出し、その低下分だけ補正した基準値と上記第一の出力値との差分値を算出し、スパン測定することができる。
ここで、データベースから読み出された数値の一例は、液温が約3℃の時には酸素消費率が20%であるというデータであり、このデータと前記第一の出力値を前記式(2)に代入して、前記計算値を得ることができる。
すなわち、先ず微生物膜が存在しない、溶存酸素センサ単体での液温に対するセンサ出力特性を取得する。この特性を溶存酸素センサ単体の基準特性として、データべースとして持つておくが、この特性は、電極に汚れ等の外的要因が付加されると、センサ出力値が低下方向へシフトする。
次に、溶存酸素センサに微生物を担持した微生物膜を組み合わせ、液温を変化させて微生物膜を通して得られる溶存酸素センサ出力は、出力値が最大の時に溶存酸素濃度値が最大であるため、微生物の活性が無く酸素消費率0%であり、逆に出力値がゼロの時に、微生物の活性が最大で酸素をすべて消費するため、溶存酸素濃度値がゼロを検出したことになるので、酸素消費率としては100%を意味する。
実際に、微生物膜を組み合わせた溶存酸素センサの出力値は、液温を変化させると、液温が低いときにはセンサ出力が高く、液温が高いときにはセンサ出力は低くなる。ここで、発明者が得た知見、すなわち、微生物膜の活性の違いに関係無く、液温が約3℃を境にして、それ以下の液温にしても酸素消費率が約20%一定となること、および液温が約20℃を境に、それ以上の液温に対して酸素消費率が100%と一定となること、を利用する。
詳しく説明すると、前記 (2)式のBが、液温が3℃のときに計測したセンサ出力値であると、酸素消費率が20%となるAの値を計算することができる。この算出したA値を、初期の微生物が存在しない溶存酸素センサ単体の基準特性での3℃の時の値(以下、A(0)ということがある)と比較し、その低下率を計算して、データべ-スの基準特性全体にその低下率を掛けて補正すれば、補正後の液温に対する前記(2)式のA値が取得できる。
そして、ゼロ点は、液温を20℃に上昇させ、微生物が酸素をすべて消費する状態にすれば、その時が酸素消費率100%の時に溶存酸素センサ出力値として記憶すれば、ゼロ点調整は完了する。かくして、このゼロ点調整値と上記液温3℃でのB値とを基にしてスパンの大きさを求めることができる。
Next, the span calibration method for adjusting the span according to the present invention will be described. The present invention is characterized in that span calibration is performed while the quality of the test water is being monitored. Here, a preferred span calibration method will be described. That is, while continuing to monitor the water quality, a part of the water to be monitored is led to the flow cell as test water. If the test water is lowered to a low temperature (5 ° C or lower) and the state when a predetermined time has elapsed is observed, the oxygen consumption rate in the test water that contacts the biosensor is approximately 20% regardless of the activity of the microbial membrane. It was found to be constant (FIG. 2).
That is, biosensors composed of three types of microorganisms using the same microorganism but with different numbers of microorganisms were prepared, and the relationship between the temperature of the test water containing the substrate and the oxygen consumption rate was determined using each biosensor. As a result of the examination, a result as shown in FIG. 2 was obtained. In FIG. 2, high activity means a biosensor with a large number of microorganisms, low activity means a biosensor with a small number of microorganisms, and high activity means that the number of microorganisms is between them. Means biosensor.
Therefore, based on two types of output values, the second output value of the dissolved oxygen sensor in a state where the test water is kept at a low temperature and the first output value of the dissolved oxygen sensor which is the zero point calibration value. The span can be adjusted. More specifically, the first output value is stored, a calculated value is obtained from the first output value and a numerical value read from the database, and the calculated value is collated with a standard value stored in the database. Then, a decrease in the output value of the dissolved oxygen sensor is calculated, and a difference value between the reference value corrected by the decrease and the first output value can be calculated, and span measurement can be performed.
Here, an example of the numerical value read out from the database is data that the oxygen consumption rate is 20% when the liquid temperature is about 3 ° C., and this data and the first output value are expressed by the equation (2). And the calculated value can be obtained.
That is, first, the sensor output characteristic with respect to the liquid temperature of the dissolved oxygen sensor alone without the microbial membrane is acquired. This characteristic is held as a database as a reference characteristic of the dissolved oxygen sensor alone. This characteristic causes the sensor output value to shift downward when an external factor such as dirt is added to the electrode.
Next, the dissolved oxygen sensor output obtained by combining the dissolved oxygen sensor with a microorganism membrane carrying microorganisms and changing the liquid temperature through the microorganism membrane has the maximum dissolved oxygen concentration value when the output value is maximum. When the oxygen consumption rate is 0% and the output value is zero, the microbial activity is maximum and all the oxygen is consumed. Therefore, the dissolved oxygen concentration value is detected as zero. The rate means 100%.
Actually, as for the output value of the dissolved oxygen sensor combined with the microbial membrane, when the liquid temperature is changed, the sensor output is high when the liquid temperature is low, and the sensor output is low when the liquid temperature is high. Here, the knowledge obtained by the inventor, that is, regardless of the difference in the activity of the microbial membrane, the oxygen consumption rate is about 20% constant even when the liquid temperature is about 3 ° C. And that the oxygen consumption rate is constant at 100% with respect to the liquid temperature higher than that at a temperature of about 20 ° C.
More specifically, when B in the equation (2) is a sensor output value measured when the liquid temperature is 3 ° C., the value of A at which the oxygen consumption rate becomes 20% can be calculated. The calculated A value is compared with the value at 3 ° C (hereinafter also referred to as A (0)) in the standard characteristics of the dissolved oxygen sensor alone without the initial microorganism, and the rate of decrease is calculated. Thus, if correction is made by multiplying the entire reference characteristics of the database by the rate of decrease, the A value in the equation (2) with respect to the corrected liquid temperature can be obtained.
The zero point can be adjusted by increasing the liquid temperature to 20 ° C. and allowing the microorganisms to consume all oxygen. If the oxygen consumption rate is 100% and then storing it as the dissolved oxygen sensor output value, Complete. Thus, the size of the span can be obtained based on the zero point adjustment value and the B value at the liquid temperature of 3 ° C.

本発明では、前記バイオセンサにおいて、あらかじめ呼吸阻害率の閾値を設定しておき、その呼吸阻害率の閾値を超えた場合に、試料水中の有害物質検知の警報を出力するようにすることが望ましい。前記呼吸阻害率の閾値としては、約10%以上が望ましい。
本発明では、呼吸阻害率の閾値を超えた場合には、センサが感知し、信号を出力するようにしておき、警報を出力するようにしておくことが望ましい。前記閾値を超えた場合における感知方法、感知した情報に基づき信号を出力する方法、警報を出力する方法、およびそれらの手段・装置はこの技術分野で一般的に使用する方法を採用すればよい。
In the present invention, in the biosensor, it is desirable to set a threshold value of a respiratory inhibition rate in advance, and to output an alarm for detecting harmful substances in sample water when the threshold value of the respiratory inhibition rate is exceeded. . The threshold value of the respiratory inhibition rate is preferably about 10% or more.
In the present invention, when the threshold value of the respiratory inhibition rate is exceeded, it is desirable that the sensor senses and outputs a signal and outputs an alarm. As a sensing method when the threshold value is exceeded, a method for outputting a signal based on the sensed information, a method for outputting an alarm, and a means and apparatus thereof, a method generally used in this technical field may be adopted.

なお、本発明においては、使用する電解液、酸素透過膜、溶存酸素電極など、あるいは微生物センサや検査水の加熱・恒温装置、微生物センサに備える溶存酸素センサからの出力値の検出、校正、制御装置など、本発明を実施するための各種機器・装置類はとくに制限されるものではなく、この技術分野で一般的に使用される各種機器・装置類を使用することができる。 In the present invention, detection, calibration, and control of the output value from the dissolved oxygen sensor provided in the electrolytic solution, oxygen permeable membrane, dissolved oxygen electrode, etc. Various devices and apparatuses for carrying out the present invention such as an apparatus are not particularly limited, and various apparatuses and devices generally used in this technical field can be used.

(1)従来の校正では、純水と微生物の栄養源である基質を試料流路に流し、ゼロ点校正を行い、緩衝液と純水のみを試料流路に流し、フルスケール(スパン)校正を安定的に行うのに必要な時間はおよそ1時間半かかっていたが、本発明により、大幅に短縮することができるようになり、しかも検査水の水質監視している運転状態でできるようになったことから、従来連続水質監視のためには、バイオセンサ2台を並列運転していたものが、一台で連続監視が可能になり、大幅にコスト削減ができる。
また、(2)従来の校正では、微生物の活性状態は常に変動するために検査水と基質を与えても、例えば、微生物の酸素消費率が100%に至らず、溶存酸素センサの出力がゼロmVにならない場合があり、校正時に、純水と基質を試料流路に流し、微生物が完全に酸素を消費する前提でのゼロ点校正ができない場合があったが、本発明により、常に酸素消費率が100%に維持できるため、正確なゼロ点補正ができる。
さらに、(3)本発明では、温度を変化させて、微生物の活性の程度を知ることができる。それゆえ、微生物の活性度のチェックが常時できるので、微生物の品質管理の手段としても活用できる効果がある。
(1) In conventional calibration, pure water and a substrate that is a nutrient source for microorganisms are flowed to the sample flow path, zero point calibration is performed, and only buffer solution and pure water are flowed to the sample flow path, and full scale (span) calibration is performed. It took about an hour and a half to perform the test stably. However, according to the present invention, the time can be drastically shortened and the operation can be performed while monitoring the quality of the test water. As a result, for conventional continuous water quality monitoring, two biosensors that have been operated in parallel can be continuously monitored with a single unit, which greatly reduces costs.
Also, (2) in the conventional calibration, since the activity state of microorganisms always fluctuates, even if test water and a substrate are given, for example, the oxygen consumption rate of microorganisms does not reach 100% and the output of the dissolved oxygen sensor is zero In some cases, it may not be mV, and at the time of calibration, pure water and a substrate were allowed to flow through the sample flow path, and there was a case where zero point calibration could not be performed on the premise that microorganisms completely consumed oxygen. Since the rate can be maintained at 100%, accurate zero point correction can be performed.
Furthermore, (3) In the present invention, the degree of the activity of the microorganism can be known by changing the temperature. Therefore, since the activity of microorganisms can be always checked, there is an effect that can be utilized as a means for quality control of microorganisms.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態を図に基づき詳細に説明する。
(モニタリング)
図4に基づき、本発明の試料水に有害物質が存在するかどうかモニタリングするときの流れを説明する。
はじめにバイオセンサ6を図4に示すように30℃に設定された恒温槽7に取り付ける。
まず、ゼロ点校正のための基質34を含む緩衝溶液と純水9とをそれぞれ電磁弁7d、7bおよび送液ポンプ13b、13aを経て、熱交換器14で所定の温度に調整した後、恒温槽7に流し、バイオセンサ6の酸素消費率を100%まで達成させ、そのときの内生呼吸状態のセンサ出力値を表示部19、制御部20、記録計21などからなる制御部に送り、記憶させる。
次に、純水9および緩衝溶液11を上記と同様に流し、その酸素消費率が0%のときのセンサ出力値を前記制御部に送り、記憶させる。
この二つの数値を基にしてスパンを決める。
次いで、上記電磁弁を閉じて、検査水8を電磁弁7a、送液ポンプ13a、熱交換器14を経て、バイオセンサに送り、検査水中に有毒物質が存在するかどうか、モニタリングする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(monitoring)
Based on FIG. 4, the flow when monitoring whether or not harmful substances are present in the sample water of the present invention will be described.
First, the biosensor 6 is attached to a thermostatic chamber 7 set at 30 ° C. as shown in FIG.
First, the buffer solution containing the substrate 34 for zero point calibration and the pure water 9 are adjusted to a predetermined temperature by the heat exchanger 14 through the solenoid valves 7d and 7b and the liquid feed pumps 13b and 13a, respectively. The oxygen consumption rate of the biosensor 6 is achieved up to 100%, and the sensor output value of the endogenous breathing state at that time is sent to the control unit including the display unit 19, the control unit 20, the recorder 21, etc. Remember me.
Next, pure water 9 and buffer solution 11 are flowed in the same manner as described above, and the sensor output value when the oxygen consumption rate is 0% is sent to the control unit for storage.
The span is determined based on these two numbers.
Next, the electromagnetic valve is closed, and the inspection water 8 is sent to the biosensor via the electromagnetic valve 7a, the liquid feed pump 13a, and the heat exchanger 14 to monitor whether toxic substances are present in the inspection water.

(バイオセンサによる酸素消費率の温度依存性)
上記図4の装置を用いて、バイオセンサによる検査水中の酸素消費率の温度依存性を調べた。その結果を図2に示す。
すなわち、活性が高いバイオセンサ、活性が低いバイオセンサ、それらの間の活性のバイオセンサのいずれを用いても、検査水中の酸素消費率は温度に依存することが明らかになった。図2で、横軸が試料水の検査水の液温であり、縦軸はその試料水の酸素消費率である。
(Temperature dependence of oxygen consumption rate by biosensor)
The temperature dependency of the oxygen consumption rate in the test water by the biosensor was examined using the apparatus of FIG. The result is shown in FIG.
That is, it has been clarified that the oxygen consumption rate in the test water depends on the temperature regardless of whether the biosensor with high activity, the biosensor with low activity, or the biosensor between them is used. In FIG. 2, the horizontal axis represents the temperature of the test water for the sample water, and the vertical axis represents the oxygen consumption rate of the sample water.

(ゼロ校正の方法)
本発明のゼロ点校正の方法を図1に基づき詳しく説明する。
上記のように検査水中に有毒物質が存在するかどうか、試料水を水質監視を続けていると、やがてゼロ点が不安定になったり、スパン巾が狭くなったりする。その不都合さを解消するため、バイオセンサの溶存酸素センサの校正を行う。本発明では検査水から基質を含む緩衝溶液と純水との混合物に切り替えることでの検査水のモニタリングを中止せずに、溶存酸素センサの校正を行うことができる。
以下、水質監視をしている状態において、溶存酸素センサの校正を行う方法を説明する。
校正装置26からの情報に基づき、恒温槽温度制御回路24と恒温槽加熱冷却機23により、恒温槽の温度を30℃から徐々に低下させ、溶存酸素電極からの出力信号を検出回路25で検知し、試料水の酸素消費率が100%よりもやや下回る範囲の領域を探索し、次いで徐々に試料水の温度を上昇させて、約20℃に達しときに試料水の酸素消費率が100%になったことを知った。所定時間経過させ溶存酸素電極からの出力が一定になったことを確認すると共にそのときの溶存酸素センサの出力値を記憶させ、そのときの出力値を0Vとするゼロ校正を行う。なお、試料水の温度は温度計24bによりモニターし、恒温槽温度制御回路24にフィードバックする。
(Zero calibration method)
The zero point calibration method of the present invention will be described in detail with reference to FIG.
As described above, if the water quality of the sample water is continuously monitored to determine whether toxic substances are present in the test water, the zero point will become unstable and the span width will eventually become narrow. In order to eliminate the inconvenience, the dissolved oxygen sensor of the biosensor is calibrated. In the present invention, the dissolved oxygen sensor can be calibrated without stopping monitoring of test water by switching from test water to a mixture of a buffer solution containing a substrate and pure water.
Hereinafter, a method for calibrating the dissolved oxygen sensor in the state of monitoring the water quality will be described.
Based on the information from the calibration device 26, the temperature of the thermostat is gradually lowered from 30 ° C. by the thermostat temperature control circuit 24 and the thermostat heating / cooling device 23, and the output signal from the dissolved oxygen electrode is detected by the detection circuit 25. Then, a region where the oxygen consumption rate of the sample water is slightly lower than 100% is searched, and then the temperature of the sample water is gradually increased, and when the temperature reaches about 20 ° C., the oxygen consumption rate of the sample water is 100%. I knew that After confirming that the output from the dissolved oxygen electrode has become constant after a lapse of a predetermined time, the output value of the dissolved oxygen sensor at that time is stored, and zero calibration is performed with the output value at that time set to 0V. Note that the temperature of the sample water is monitored by the thermometer 24 b and fed back to the constant temperature bath temperature control circuit 24.

(スパン校正の方法)
本発明のスパン校正の方法を詳しく説明する。
本発明では検査水から基質を含まない緩衝溶液と純水との混合物に切り替えることでの検査水のモニタリングを中止せずに、溶存酸素センサのスパン校正を行うことができる。
以下、水質監視をしている状態において、溶存酸素センサのスパン校正を行う方法を説明する。
上記と同様に、試料水を水質監視している状態において、
校正装置26からの情報に基づき、恒温槽温度制御回路24と恒温槽加熱冷却機23により、恒温槽の温度を5℃以下まで徐々に低下させ、所定時間経過し、溶存酸素電極からの出力が一定になったことを確認すると共にそのときの温度(例えば3℃)を記憶する。
次に、基本データ集から必要な基本データを格納した溶存酸素センサ温度特性データベース27から、上記溶存酸素電極からの出力が一定になった温度(T)での溶存酸素センサのスパン基本データを取得する。基本データとしては、たとえば図3で示されるような、微生物膜が無く、温度(T)と基質を含まない緩衝溶液と純水との混合物の前記式(2)における「A」値である溶存酸素センサ単体で使用初期の出力値を示す基本データを例示できる。この基本データから、温度(T)での、前記「A」値である溶存酸素センサ出力値(c)を求めることができる。たとえば、T=3℃のときには、図3から「A」値=2.3mVであることが分かり、この値を記憶する。
上記T=3℃のときの検査水の酸素消費率は図2からも知ることができるが、20%であることがすでにわかっているので、液温が3℃のときの溶存酸素センサ出力値を上記式(2)における「B」値に代入し、酸素消費率が20%となるA値を求めればよい。すなわち、上記式(2)に、酸素消費率=20%、上記T=3℃のときの検査水の溶存酸素センサ出力値の実測値である1.80mVをBに代入すれば「A」値は、2.25mVであることが分かる。
この「A」の値と上記ゼロ点校正値との差をもってスパン巾とすることにより、バイオセンサの溶存酸素センサのスパン巾を決定できる。つまり、図3の3℃の溶存酸素センサ出力値である上記A値に相当する2.3mVが、ある時点で2.25mVに下がった(シフトした)ので、水質監視開始初期の値が97.8%になったことが分かる。したがって、特定データベース27に格納されている図3の特性全体を97.8%となるように下げればよいことになる。水質監視運転中に任意の時点で、ある液温でのB値を測定すれば、前記式(2)を用いてその液温でのA値を読み出し、酸素消費率を算出することができることになる。
(Span calibration method)
The span calibration method of the present invention will be described in detail.
In the present invention, span calibration of the dissolved oxygen sensor can be performed without stopping monitoring of the test water by switching from the test water to a mixture of a buffer solution containing no substrate and pure water.
Hereinafter, a method for performing span calibration of a dissolved oxygen sensor in a state where water quality is being monitored will be described.
Similar to the above, in the state of monitoring the quality of the sample water,
Based on the information from the calibration device 26, the temperature of the thermostatic chamber is gradually lowered to 5 ° C. or less by the thermostatic chamber temperature control circuit 24 and the thermostatic chamber heating / cooling device 23, and a predetermined time has elapsed, and the output from the dissolved oxygen electrode is It is confirmed that the temperature has become constant, and the temperature at that time (for example, 3 ° C.) is stored.
Next, the basic data of the dissolved oxygen sensor at the temperature (T) at which the output from the dissolved oxygen electrode becomes constant is acquired from the dissolved oxygen sensor temperature characteristic database 27 storing necessary basic data from the basic data collection. To do. As basic data, for example, as shown in FIG. 3, there is no microbial membrane, and the dissolved value that is the “A” value in the above formula (2) of a mixture of a buffer solution containing pure temperature (T), substrate, and pure water Basic data indicating an output value at the initial use of the oxygen sensor alone can be exemplified. From this basic data, the dissolved oxygen sensor output value (c) which is the “A” value at the temperature (T) can be obtained. For example, when T = 3 ° C., it can be seen from FIG. 3 that “A” value = 2.3 mV, and this value is stored.
The oxygen consumption rate of the test water when T = 3 ° C. can be seen from FIG. 2, but since it is already known that it is 20%, the dissolved oxygen sensor output value when the liquid temperature is 3 ° C. Is substituted into the “B” value in the above equation (2), and the A value at which the oxygen consumption rate is 20% may be obtained. That is, the value “A” is obtained by substituting 1.80 mV, which is an actual measurement value of the dissolved oxygen sensor output value of the test water, when the oxygen consumption rate = 20% and T = 3 ° C. Is found to be 2.25 mV.
The span width of the dissolved oxygen sensor of the biosensor can be determined by setting the span width by the difference between the value of “A” and the zero point calibration value. That is, 2.3 mV corresponding to the A value, which is the 3 ° C. dissolved oxygen sensor output value in FIG. 3, has dropped (shifted) to 2.25 mV at a certain point in time, so that the initial value of the water quality monitoring start is 97. It turns out that it became 8%. Therefore, the entire characteristic of FIG. 3 stored in the specific database 27 may be lowered to 97.8%. If the B value at a certain liquid temperature is measured at an arbitrary time during the water quality monitoring operation, the A value at the liquid temperature can be read using the above equation (2), and the oxygen consumption rate can be calculated. Become.

本発明でのバイオセンサに設置する呼吸阻害率の閾値を試料水中の有害物質検知方法およびその警報を出力する方法について説明する。
本発明での前記閾値を超えた場合における感知方法、感知した情報に基づき信号を出力する方法、警報を出力する方法、およびそれらの手段・装置はこの技術分野で一般的に使用する方法を採用すればよい。
図1に示されるように、一定の温度にて環境水をモニタリングする過程において、溶存酸素センサ出力値を常に監視することになるが、呼吸素材率を求める上記式(3)にその出力値を代入して、その出力値に相当する呼吸阻害率を算出する。その算出値が呼吸阻害率の閾値を超えるときには、警報出力を出すことになる。なお、呼吸阻害率を求める上記式(3)おいて、「A」の値は基本データ(図3)から求めることができる。Yは前記ゼロ点校正値であり、通常0〜0.01mVである。
A method for detecting a harmful substance in a sample water and a method for outputting an alarm for the threshold of the respiratory inhibition rate installed in the biosensor according to the present invention will be described.
The detection method when the threshold value is exceeded in the present invention, the method of outputting a signal based on the sensed information, the method of outputting an alarm, and the means / device thereof adopt a method generally used in this technical field. do it.
As shown in FIG. 1, in the process of monitoring the environmental water at a constant temperature, the dissolved oxygen sensor output value is always monitored, but the output value is expressed in the above equation (3) for obtaining the respiratory material rate. Substituting and calculating a respiratory inhibition rate corresponding to the output value. When the calculated value exceeds the threshold value of the respiratory inhibition rate, an alarm output is issued. In the above equation (3) for obtaining the respiratory inhibition rate, the value of “A” can be obtained from the basic data (FIG. 3). Y is the zero point calibration value, and is usually 0 to 0.01 mV.

今までの記載から本発明を次のように記載することもできる。
(1)環境水中の有害物質を検知するバイオセンサにおいて、前記環境水の一部である検査水の温度を水質監視をしている状態のまま制御してその検査水の酸素消費率と液温との間に相関関係および可逆性が保たれる温度、および低温に下げたときのそれぞれの溶存酸素センサの出力値を得、それら二つの出力値を基にしてバイオセンサをスパン調整することを特徴とするバイオセンサの校正方法。
(2)環境水中の有害物質を検出するバイオセンサの校正方法であって、前記環境水の一部を取分け、その一部の環境水の温度を調整して環境水の酸素消費率が100%となるときの溶存酸素センサの出力値を計測し、その計測値を前記溶存酸素センサのゼロ点校正値とすることを特徴とするバイオセンサの校正方法。
(3)前記一部の環境水の温度を酸素消費率と液温との間に相関関係および可逆性が保たれる温度の範囲内にて調整することを特徴とする上記(1)に記載されたバイオセンサの校正方法。
(4)環境水中の有害物質を検出するバイオセンサの校正方法であって、前記一部の環境水の酸素消費率を制御して前記溶存酸素センサのゼロ点校正値を決定すると共に、前記一部の環境水を低温に保持し、その温度での溶存酸素センサの出力値(a)を計測し、その出力値(a)を基にして得られた出力値と前記ゼロ点校正値とからスパン巾を決定することを特徴とするバイオセンサの校正方法。
(5)環境水中の有害物質を検出するバイオセンサの校正方法であって、前記一部の環境水の酸素消費率を制御して前記溶存酸素センサのゼロ点校正値を決定すると共に、前記一部の環境水を低温に保持し、その温度での溶存酸素センサの出力値(a)を計測し、その計測値を上記式2に代入して得られた環境水の酸素消費率が20%となるときの溶存酸素センサの出力値(e)を算出し、該算出された出力値(e)と前記ゼロ点校正値とからスパン巾を決定することを特徴とするバイオセンサの校正方法。
From the description so far, the present invention can also be described as follows.
(1) In a biosensor that detects harmful substances in environmental water, the temperature of the inspection water, which is a part of the environmental water, is controlled while monitoring the water quality, and the oxygen consumption rate and liquid temperature of the inspection water are controlled. It is necessary to obtain the output value of each dissolved oxygen sensor when the correlation and reversibility are maintained at low temperature, and when the temperature is lowered, and to adjust the span of the biosensor based on these two output values. A biosensor calibration method that is characterized.
(2) A biosensor calibration method for detecting harmful substances in environmental water, wherein a part of the environmental water is separated and the temperature of the environmental water is adjusted to 100% of the environmental water The biosensor calibration method is characterized in that the output value of the dissolved oxygen sensor is measured and the measured value is used as the zero point calibration value of the dissolved oxygen sensor.
(3) The temperature of the part of the environmental water is adjusted within a temperature range in which the correlation and reversibility are maintained between the oxygen consumption rate and the liquid temperature. Calibration method for a biosensor.
(4) A biosensor calibration method for detecting harmful substances in environmental water, wherein a zero-point calibration value of the dissolved oxygen sensor is determined by controlling an oxygen consumption rate of the part of the environmental water. The environmental water of the part is kept at a low temperature, the output value (a) of the dissolved oxygen sensor at that temperature is measured, and from the output value obtained based on the output value (a) and the zero point calibration value A method for calibrating a biosensor, characterized by determining a span width.
(5) A biosensor calibration method for detecting harmful substances in environmental water, wherein a zero-point calibration value of the dissolved oxygen sensor is determined by controlling an oxygen consumption rate of the part of the environmental water. The environmental water of the part is kept at a low temperature, the output value (a) of the dissolved oxygen sensor at that temperature is measured, and the oxygen consumption rate of the environmental water obtained by substituting the measured value into the above equation 2 is 20% A biosensor calibration method, comprising: calculating an output value (e) of a dissolved oxygen sensor at the time of the above and determining a span width from the calculated output value (e) and the zero point calibration value.

(6)前記環境水を低温に保持する温度が5℃以下であることを特徴とする上記(4)あるいは(5)に記載されたバイオセンサの校正方法。
(7)環境水中の有害物質を検出するバイオセンサを備えた水質監視モニタの運転方法であって、前記環境水の一部の温度を制御して環境水の酸素消費率が100%となるときの溶存酸素センサの出力値を計測し、その計測値を前記溶存酸素センサのゼロ点校正値とすることを特徴とするバイオセンサを備えた水質監視モニタの運転方法。
(8)環境水中の有害物質を検出するバイオセンサを備えた水質監視モニタの運転方法であって、前記環境水の一部の酸素消費率を制御して前記溶存酸素センサのゼロ点校正値を決定すると共に、前記一部の環境水を低温に保持し、その温度での溶存酸素センサの出力値(a)を上記式2に代入して、その環境水の酸素消費率が20%となるときの溶存酸素センサの出力値(e)を求め、求められた出力値(e)と前記ゼロ点校正値とからスパン巾を決定することを特徴とするバイオセンサを備えた水質監視モニタの運転方法。
(9)環境水中の有害物質を検出するバイオセンサの校正方法であって、環境水の一部である検査水の代わりに基質を含む緩衝溶液と純水との混合物をバイオセンサの試料流路に流し、酸素消費率が100%となるときの溶存酸素センサの出力値を計測し、その計測値を前記溶存酸素センサのゼロ点校正値とし、次いで前記基質と純水との混合物の代わりに検査水をバイオセンサの試料流路に流し、低温に保持し、その温度での溶存酸素センサの出力値(a)を上記式2に代入して、その環境水の酸素消費率が20%となるときの溶存酸素センサの出力値(e)を求め、求められた出力値(e)と前記ゼロ点校正値とからスパン巾を決定することを特徴とするバイオセンサの校正方法。
(6) The method for calibrating a biosensor as described in (4) or (5) above, wherein the temperature at which the environmental water is kept at a low temperature is 5 ° C. or less.
(7) A method for operating a water quality monitor equipped with a biosensor for detecting harmful substances in environmental water, wherein the temperature of a part of the environmental water is controlled and the oxygen consumption rate of the environmental water becomes 100% A method for operating a water quality monitor equipped with a biosensor, characterized in that an output value of the dissolved oxygen sensor is measured and the measured value is set as a zero point calibration value of the dissolved oxygen sensor.
(8) A method for operating a water quality monitor equipped with a biosensor for detecting harmful substances in environmental water, wherein a zero point calibration value of the dissolved oxygen sensor is obtained by controlling a partial oxygen consumption rate of the environmental water. At the same time, the part of the environmental water is kept at a low temperature, and the output value (a) of the dissolved oxygen sensor at that temperature is substituted into the above equation 2, so that the oxygen consumption rate of the environmental water becomes 20%. Operation of a water quality monitoring monitor equipped with a biosensor, wherein an output value (e) of a dissolved oxygen sensor is obtained and a span width is determined from the obtained output value (e) and the zero point calibration value Method.
(9) A biosensor calibration method for detecting harmful substances in environmental water, in which a mixture of a buffer solution containing a substrate and pure water is used instead of test water, which is part of environmental water, as a sample flow path of the biosensor The dissolved oxygen sensor output value when the oxygen consumption rate becomes 100% is measured, and the measured value is set as the zero point calibration value of the dissolved oxygen sensor, and then, instead of the mixture of the substrate and pure water. Flow test water through the sample channel of the biosensor, keep it at a low temperature, substitute the output value (a) of the dissolved oxygen sensor at that temperature into Equation 2 above, and the oxygen consumption rate of the environmental water is 20%. A biosensor calibration method comprising: obtaining an output value (e) of a dissolved oxygen sensor at a time and determining a span width from the obtained output value (e) and the zero point calibration value.

本発明で使用する溶存酸素センサの校正装置を説明する図The figure explaining the calibration apparatus of the dissolved oxygen sensor used by this invention バイオセンサによる酸素消費率の温度依存性を説明する図Diagram explaining temperature dependence of oxygen consumption rate by biosensor 溶存酸素センサの温度依存性を説明する図Diagram explaining temperature dependence of dissolved oxygen sensor バイオセンサ応用水質計の構成を示すフロー図Flow diagram showing the configuration of a biosensor applied water quality meter バイオセンサの構成を示す模式図Schematic diagram showing the configuration of the biosensor バイオセンサの原理と電極の構成を示す図Diagram showing biosensor principle and electrode configuration 溶存酸素センサの構成図Configuration diagram of dissolved oxygen sensor

符号の説明Explanation of symbols

1 微生物膜
2 溶存酸素センサ
3 リード線
4 フローセル
5 試料流路
6 微生物センサ
7 恒温槽
8 検査水
9 純水
10 酸洗浄水
11 緩衝液
12a〜12f 電磁弁
13a〜13b 送液ポンプ
14 熱交換器
15 エアポンプ
16 圧力センサ
17 ローラークランプ
18 二方切換三方弁
19 表示部
20 制御部
21 記録計
22 測定部
23 恒温槽加熱冷却機
24 恒温槽温度制御回路
24b 温度計
25 検出回路
26 校正装置
27 溶存酸素センサ温度特性データベース
29 アノード電極
30 カソード電極
31 酸素透過膜
32 絶縁ガラス
33 電解液
34 基質



1 Microbial membrane
2 Dissolved oxygen sensor
3 Lead wire
4 Flow cell
5 Sample flow path
6 Microorganism sensor
7 Thermostatic bath
8 Inspection water
9 Pure water
10 Acid wash water
11 Buffer
12a to 12f solenoid valve
13a-13b Liquid feed pump
14 Heat exchanger
15 Air pump
16 Pressure sensor
17 Roller clamp
18 Two-way switching three-way valve
19 Display
20 Control unit
21 Recorder
22 Measuring unit
23 Temperature chamber heating and cooling machine
24 Temperature chamber temperature control circuit
24b thermometer
25 Detection circuit
26 Calibration equipment
27 Temperature characteristics database of dissolved oxygen sensor
29 Anode electrode
30 Cathode electrode
31 Oxygen permeable membrane
32 Insulating glass
33 Electrolyte
34 Substrate



Claims (6)

環境水中の有害物質を検知するバイオセンサにおいて、前記環境水の一部である検査水を水質監視をしている状態のままで検査水の温度を変化させ、その検査水の酸素消費が最大となるときおよび酸素消費率が最小となるときの溶存酸素センサの出力値を知り、それら二つの値を基にしてスパンの大きさを求めることを特徴とするバイオセンサの校正方法。 In a biosensor that detects harmful substances in environmental water, the temperature of the inspection water is changed while the inspection water, which is a part of the environmental water, is monitored, and the oxygen consumption of the inspection water is maximized. A biosensor calibration method characterized by knowing the output value of the dissolved oxygen sensor when the oxygen consumption rate is at a minimum and when the oxygen consumption rate is minimum, and obtaining the span size based on these two values. 環境水中の有害物質を検知するバイオセンサにおいて、前記環境水の一部である検査水の温度を5〜35℃に保持し、その温度範囲内で酸素消費が最大となるときの温度を探索し、その温度での溶存酸素センサの第一の出力値を記憶し、記憶した前記第一の出力値を前記バイオセンサのゼロ点校正値とすることを特徴とするバイオセンサの校正方法。 In the biosensor that detects harmful substances in the environmental water, the temperature of the test water, which is a part of the environmental water, is maintained at 5 to 35 ° C., and the temperature at which the oxygen consumption becomes maximum within the temperature range is searched. A biosensor calibration method characterized by storing a first output value of a dissolved oxygen sensor at that temperature and using the stored first output value as a zero point calibration value of the biosensor. 検査水の温度をその検査水の酸素消費率と液温との間に相関関係および可逆性が保たれる温度の範囲内に保持することを特徴とする請求項2記載のバイオセンサの校正方法。 3. The method of calibrating a biosensor according to claim 2, wherein the temperature of the test water is maintained within a temperature range in which the correlation and reversibility are maintained between the oxygen consumption rate of the test water and the liquid temperature. . 環境水中の有害物質を検出するバイオセンサにおいて、前記環境水の一部である検査水を低温に保持した状態での溶存酸素センサの第二の出力値と、請求項2記載の溶存酸素センサの第一の出力値との二種類の出力値を基にしてスパンの大きさを求めることを特徴とするバイオセンサの校正方法。 A biosensor for detecting harmful substances in environmental water, wherein the second output value of the dissolved oxygen sensor in a state where the test water, which is a part of the environmental water, is kept at a low temperature, and the dissolved oxygen sensor according to claim 2. A biosensor calibration method characterized in that a span size is obtained based on two types of output values, the first output value. 検査水を低温に保持する温度が5℃以下であることを特徴とする請求項4記載のバイオセンサの校正方法。 The biosensor calibration method according to claim 4, wherein the temperature at which the test water is kept at a low temperature is 5 ° C. or less. バイオセンサにおける呼吸阻害率がその閾値を越えたときに、溶存酸素センサの保守アラームを出力することを特徴とする請求項4または5記載のバイオセンサの校正方法。
6. The biosensor calibration method according to claim 4, wherein a maintenance alarm for the dissolved oxygen sensor is output when the respiratory inhibition rate in the biosensor exceeds the threshold value.
JP2004254930A 2004-09-01 2004-09-01 Biosensor calibration method Active JP4406792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254930A JP4406792B2 (en) 2004-09-01 2004-09-01 Biosensor calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254930A JP4406792B2 (en) 2004-09-01 2004-09-01 Biosensor calibration method

Publications (2)

Publication Number Publication Date
JP2006071438A true JP2006071438A (en) 2006-03-16
JP4406792B2 JP4406792B2 (en) 2010-02-03

Family

ID=36152235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254930A Active JP4406792B2 (en) 2004-09-01 2004-09-01 Biosensor calibration method

Country Status (1)

Country Link
JP (1) JP4406792B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289004A (en) * 2006-04-20 2007-11-08 Nisshin Kagaku Kenkyusho:Kk Method for measuring viable cell number, apparatus for measuring viable cell number and slime monitoring apparatus and slime controlling agent addition system
JP2015152304A (en) * 2014-02-10 2015-08-24 メタウォーター株式会社 Water quality bio-monitoring apparatus, water quality monitoring system and water quality monitoring method
CN111670362A (en) * 2018-01-31 2020-09-15 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289004A (en) * 2006-04-20 2007-11-08 Nisshin Kagaku Kenkyusho:Kk Method for measuring viable cell number, apparatus for measuring viable cell number and slime monitoring apparatus and slime controlling agent addition system
JP2015152304A (en) * 2014-02-10 2015-08-24 メタウォーター株式会社 Water quality bio-monitoring apparatus, water quality monitoring system and water quality monitoring method
CN111670362A (en) * 2018-01-31 2020-09-15 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration
CN111670362B (en) * 2018-01-31 2022-04-05 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration

Also Published As

Publication number Publication date
JP4406792B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
CN102796660B (en) For proofing unit and the on-line water quality monitoring method of monitoring water quality on line
Quek et al. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions
EP1497451B1 (en) Method and device for detecting toxic material in water using microbial fuel cell
Krommenhoek et al. Lab‐scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration
EP3242352A1 (en) Method for determining the biological oxygen demand
Dhall et al. Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor
DK2939012T3 (en) ELECTROCHEMICAL SENSOR TO DETECT DINITROGEN OXIDE
Quek et al. In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor
JP3664888B2 (en) BOD biosensor measuring device
JP4406792B2 (en) Biosensor calibration method
JP4355560B2 (en) How to monitor hazardous substances
CN111443116A (en) Toxicity evaluation method based on microbial fuel cell
JPH0989839A (en) Water quality meter applied with biosensor
Liu et al. Biofilm reactor based real-time analysis of biochemical oxygendemand
Sachse et al. On the use of electrochemical multi-sensors in biologically charged media
JP4461457B2 (en) Method for adjusting the detection sensitivity of biosensors
JP4161111B2 (en) How to monitor hazardous substances in environmental water
Mitchell Luminescence based measurement of dissolved oxygen in natural waters
JP4461289B2 (en) Detection method of harmful substances in environmental water using biosensor
JP6259934B1 (en) Gas permeability measurement method and system
JP3678093B2 (en) Methods for detecting harmful substances in environmental water
JP2001228110A (en) Biosensor-applied water quality meter
CN111007132A (en) Integrated system for simultaneously measuring concentration and toxicity of organic matters in water by using electrochemical active bacteria through sensor signal mode analysis method
Ivanov Possibilities for application of sediment microbial fuel cells as biosensors for monitoring of recurrent water pollution with copper
JPH11153573A (en) Biosensor applied water quality meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4406792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250