JP2006070296A - 回転子用無方向性電磁鋼板およびその製造方法 - Google Patents

回転子用無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
JP2006070296A
JP2006070296A JP2004252395A JP2004252395A JP2006070296A JP 2006070296 A JP2006070296 A JP 2006070296A JP 2004252395 A JP2004252395 A JP 2004252395A JP 2004252395 A JP2004252395 A JP 2004252395A JP 2006070296 A JP2006070296 A JP 2006070296A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
steel
rotor
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004252395A
Other languages
English (en)
Other versions
JP4265508B2 (ja
Inventor
Ichiro Tanaka
一郎 田中
Hiroshi Fujimura
浩志 藤村
Hirokatsu Nitomi
洋克 仁富
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004252395A priority Critical patent/JP4265508B2/ja
Publication of JP2006070296A publication Critical patent/JP2006070296A/ja
Application granted granted Critical
Publication of JP4265508B2 publication Critical patent/JP4265508B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】 本発明は、高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備し、さらにカシメ性および表面性状にも優れる無方向性電磁鋼板およびその製造方法を提供することを主目的とする。
【解決手段】 本発明は、上記目的を達成するために、質量%で、C:0.04%以下、Si:1.0%以上3.5%以下、Mn:0.1%以上2.5%以下、Al:0.2%以上2.5%以下、Si+Al:2.0%以上5.0%以下、P:0.2%以下、S:0.03%以下、N:0.005%以下を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を、下記式(1)を満足する範囲で含有し、残部が実質的にFeおよび不純物からなり、再結晶部分の面積比率が25%未満、伸びが2%以上であることを特徴とする回転子用無方向性電磁鋼板を提供する。
0<Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)<5×10−3・・・(1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
【選択図】 無し

Description

本発明は、電気自動車、ハイブリッド自動車の駆動モータ、ロボット、工作機械などのサーボモータといった高効率モータの回転子に用いられる無方向性電磁鋼板およびその製造方法に関する。特に、高速回転する永久磁石埋め込み式モータの回転子として好適な優れた機械特性と磁気特性とを兼ね備え、さらにカシメ性と表面性状とに優れた無方向性電磁鋼板およびその製造方法に関する。
近年の地球環境問題の高まりから、多くの分野において省エネルギー、環境対策技術が進展している。自動車分野も例外ではなく、排ガス低減、燃費向上技術が急速に進歩している。電気自動車およびハイブリッド自動車はこれらの技術の集大成といっても過言ではなく、自動車駆動モータ(以下、単に「駆動モータ」ともいう。)の性能が自動車性能を大きく左右する。
駆動モータの多くは永久磁石を用いており、巻き線を施した固定子(ステータ)部分と永久磁石を配置した回転子(ロータ)部分とから構成される。最近では永久磁石を回転子内部に埋め込んだ形状(永久磁石埋め込み型モータ;IPMモータ)が主流となっている。また、パワーエレクトロニクス技術の進展により回転数は任意に制御可能であり、高速化傾向にある。したがって、鉄心素材は商用周波数(50〜60Hz)以上の高周波数域で励磁される割合が高まっており、商用周波数での磁気特性のみでなく、400Hz〜数kHzでの磁気特性改善が要求されるようになってきた。また、回転子は高速回転時の遠心力のみならず回転数変動にともなう応力変動を常時うけることから、回転子の鉄心素材には機械特性も要求されている。特に、IPMモータの場合には複雑な回転子形状を有することから、回転子用の鉄心材料には応力集中を考慮して遠心力ならびに応力変動に耐えうるだけの機械特性が必要となる。また、ロボット、工作機械用のサーボモータ分野でも、駆動モータと同様に回転数の高速化が今後進行していくと予測される。
従来、駆動モータの固定子は主に打ち抜き加工した無方向性電磁鋼板の積層により製造されていたが、回転子はロストワックス鋳造法あるいは焼結法などにより製造されることもあった。これは固定子には優れた磁気特性が、回転子には堅牢な機械特性が要求されることによる。しかしながら、モータ性能は回転子−固定子間のエアギャップに大きく影響されるため、上述の回転子では精密加工の必要性が生じ、鉄心製造コストが大幅に増加するという問題があった。コスト削減の観点からは、打ち抜き加工した電磁鋼板を使用すればよいが、回転子に必要な磁気特性と機械特性とを兼備した無方向性電磁鋼板は見出されていないのが現状であった。
さらに、打ち抜き加工した電磁鋼板を積層する際の作業効率の観点からはカシメ性に優れていることが要求され、鉄心における鋼板の占積率を増加するためには電磁鋼板の表面性状が極めて重要となる。そこで、上述した磁気特性や機械特性に加えて、カシメ性および表面性状への要請も満足する電磁鋼板が強く求められている。
優れた機械特性を有する電磁鋼板としては、例えば特許文献1に、3.5〜7%のSiに加えて、Ti,W,Mo,Mn,Ni,CoおよびAlのうちの1種または2種以上を20%を超えない範囲で含有する鋼板が提案されている。この方法では鋼の強化機構として固溶強化を利用している。しかしながら、固溶強化の場合には冷間圧延母材も同時に高強度化されるため冷間圧延が困難であり、またこの方法においては温間圧延という特殊工程が必須であることから、生産性向上や歩留まり向上など改善の余地がある。
また、特許文献2には、2.0〜3.5%のSi、0.1〜6.0%のMnに加えてBおよび多量のNiを含有し、結晶粒径が30μm以下である鋼板が提案されている。この方法では鋼の強化機構として固溶強化と結晶粒径微細化による強化とを利用している。しかしながら、結晶粒微細化による強化は比較的効果が小さいため、特許文献2の実施例に示されるようにSiを3.0%程度含有させた上に高価なNiを多量に含有させることが必須であり、冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。
さらに、特許文献3および特許文献4には、2.0〜4.0%のSiに加えてNb,Zr,B,TiまたはVなどを含有する鋼板が提案されている。これらの方法ではSiによる固溶強化に加えてNb,Zr,TiまたはVの析出物による析出強化を利用している。しかしながら、このような析出物による強化は比較的効果が小さいため、特許文献3および特許文献4の実施例に示されるようにSiを3.0%程度させる必要があり、特に特許文献3の方法では高価なNiを多量に含有させることも必要となる。そのため冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。
また、特許文献5および特許文献6には、SiおよびAlを0.03〜0.5%と制限した上でTi,NbおよびV、あるいはPおよびNiを含有する鋼板がそれぞれ提案されている。これらの方法では、Siによる固溶強化よりも炭化物の析出強化およびPの固溶強化を利用している。しかしながら、これらの方法では、後述する駆動モータの回転子として必要な強度レベルを確保することができないという問題や、特許文献5および特許文献6の実施例に示されているように2.0%以上のNi含有が必須であり、合金コストが高いという問題がある。
さらに、特許文献7には、Si:1.6〜2.8%であって、結晶粒径、内部酸化層厚み、および降伏点を限定した永久磁石埋め込み型モータ用無方向性電磁鋼板が提案されている。しかしながら、この方法による鋼板の降伏点では、高速回転する駆動モータの回転子としては強度不足である。
また、JIS C 2552に規定の無方向性電磁鋼板としては、いわゆる高グレード無方向性電磁鋼板(35A210,35A230など)が最も合金含有量が高く高強度であるが、機械特性レベルは上述の高張力電磁鋼板を下回っており高速回転する駆動モータの回転子としては強度不足である。
特開昭60-238421号公報 特開平1−162748号公報 特開平2−8346号公報 特開平6−330255号公報 特開2001−234302号公報 特開2002−146493号公報 特開2001−172752号公報
上述したように、無方向性電磁鋼板の高強度化手法として従来から提案されている固溶強化および析出強化では冷間圧延の母材も強化されてしまうことから冷間圧延時に割れが多発し、結晶粒微細化による高強度化ではその強化量が不十分であるため回転子用途として実用に耐える強度を実現することができない。また、本発明者らは変態強化についても検討を行ったが、変態強化ではマルテンサイト等の変態組織が鉄損を著しく増大させることが判明し、回転子用途として実用に耐える磁気特性を実現することができない。
本発明は、上記問題点に鑑みてなされたものであり、高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備し、さらにカシメ性および表面性状にも優れる無方向性電磁鋼板およびその製造方法を提供することを主目的とする。
本発明者らは、回転子に適した磁気特性と機械特性とを兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行い、従来全く検討されていなかった加工硬化による高強度化に着目した。そして、加工時に導入される転位は鉄損に及ぼす影響が比較的小さいとの新知見を得て、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆の技術思想に立脚して、鋼板の組織を多量の転位が残存した加工組織および回復状態の組織(以下、「回復組織」と称する。)とすることにより、回転子に要求される磁気特性および機械特性が得られることを見出した。さらには、均熱処理を行うことによりカシメ性が向上し、Nb,Zr,TiおよびVの含有量を所定の範囲とすることにより良好な表面性状が得られることを見出し、本発明を完成させた。
すなわち、本発明は、質量%で、C:0.04%以下、Si:1.0%以上3.5%以下、Mn:0.1%以上2.5%以下、Al:0.2%以上2.5%以下、Si+Al:2.0%以上5.0%以下、P:0.2%以下、S:0.03%以下、N:0.005%以下を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を、下記式(1)を満足する範囲で含有し、残部が実質的にFeおよび不純物からなり、再結晶部分の面積比率が25%未満、伸びが2%以上であることを特徴とする回転子用無方向性電磁鋼板を提供する。
0<Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)<5×10−3 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
本発明においては、再結晶部分の面積比率を適正に制御し、多くの転位が残存した鋼組織とすることにより強度を高めることができるので、機械特性および磁気特性が良好な回転子用無方向性電磁鋼板とすることができる。また、伸びを上記範囲とすることによりカシメ性を向上させることができる。さらに、上述した鋼組成とすることにより優れた表面性状を得ることができる。これにより、上述した回転子に要求される磁気特性および機械特性のみならず、カシメ性および表面性状をも満足するものとすることができる。
本発明は、また、上述した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を500℃以上780℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。
本発明においては、均熱処理での均熱温度を所定の範囲とすることにより、再結晶を抑制して、所定の板厚への加工の際に導入された転位を消滅させることなく残存させた回復組織を主体とすることができるので、鋼板の強度を高めることができる。さらに、均熱処理での均熱温度を所定の範囲とすることにより、伸びが適正範囲に制御されるためカシメ性も良好となる。また本発明によれば、冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらにまた、所定の鋼組成を備える鋼塊または鋼片を用いることにより、機械特性および磁気特性のみならず表面性状も良好な回転子用無方向性電磁鋼板を製造することができる。
また、本発明の回転子用無方向性電磁鋼板の製造方法は、上記熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を有していてもよい。熱延板焼鈍を施すことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制でき、さらには優れた表面性状を得ることができるからである。
本発明によれば、高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備し、さらにはカシメ性および表面性状にも優れた無方向性電磁鋼板を、多大なコスト増加を招くことなく安定に製造することが可能である。そのため、電気自動車やハイブリッド自動車の駆動モータ分野などにおける回転数の高速化に十分対応でき、その工業的価値は極めて高い。
本発明で言及する回転子に用いる電磁鋼板として必要な特性とは、第一に機械特性であり、降伏点、および引張強さを指す。これは高速回転時の回転子の変形抑制のみならず、応力変動に起因する疲労破壊抑制を目的としている。近年の電気自動車、ハイブリッド自動車の駆動モータでは、回転子は250MPa程度の平均応力下で150MPa程度の応力振幅を受ける。したがって、変形抑制の観点から降伏点は400MPa以上、安全率を考慮すると500MPa以上を満たす必要がある。好ましくは550MPa以上である。また、上述の応力状態での疲労破壊を抑制する観点から引張強さは550MPa以上、安全率を考慮すると600MPa、好ましくは700MPa以上必要である。
また、回転子に用いる電磁鋼板として必要な第二の特性は磁束密度である。IPMモータのようにリラクタンストルクを活用するモータでは回転子に用いられる材質の磁束密度もトルクに影響を及ぼし、磁束密度が低いと所望のトルクを得られない。
さらに、回転子に用いる電磁鋼板として必要な第三の特性は鉄損である。鉄損は不可逆な磁壁移動に起因するヒステリシス損失と、磁化変化に起因して発生する渦電流によるジュール熱(渦電流損失)とから構成され、電磁鋼板の鉄損はこれらの総和であるトータルの鉄損で評価される。回転子で発生する損失はモータ効率そのものを支配するものではないが、回転子の損失すなわち発熱により永久磁石が減磁するため、間接的にモータ性能を劣化させる。したがって、回転子に使用される材質の鉄損値の上限は永久磁石の耐熱温度の観点から決定され、固定子に使用される材質よりも鉄損値が高くとも許容されると想起される。
また、回転子に用いる電磁鋼板として必要な第四の特性は表面性状である。表面性状に劣る場合には、積層した場合の鋼板の占積率が低下するため、モータ効率が低下する。特にリラクタンストルクを活用するIPMモータにおいて低下が顕著となる。
さらに、回転子に用いる電磁鋼板として必要な第五の特性はカシメ性である。駆動モータの鉄心はカシメではなく溶接により固着されることもあるが、カシメにより一体化したものを溶接する場合が多く、カシメ性は鉄心の製造効率の観点から極めて重要な特性である。
本発明者らはこれらの特性を満足する無方向性電磁鋼板について鋭意検討を行った。まず、上述の着想をもとに回転子に適した磁気特性と機械特性とを兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行った。その結果、固溶強化および析出強化では冷間圧延母材も高強度化されるため冷間圧延時の破断が避けられないこと、結晶粒微細化のみでは要求レベルの機械特性を達成できないこと、および、マルテンサイト等の変態組織では鉄損が著しく増大することが判明した。さらに、強化機構として加工硬化について検討した結果、加工時に導入される転位は鉄損に及ぼす影響が比較的小さいことが判明した。これらの結果から、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆に、多量の転位が残存した加工組織および回復組織とすることにより、回転子に要求される磁気特性と機械特性とが達成されるとの知見を得た。
加工組織および回復組織は、所定の板厚への加工時に導入された転位を均熱処理時に消滅させることなく、あるいは消滅を抑制して残存させることにより得られる。そのため、固溶強化あるいは析出強化主体の従来技術とは異なり、冷間圧延母材の高強度化を伴うことなく高強度化が可能であり、冷間圧延時の破断を抑制できる。このような加工組織および回復組織を得るためには、通常冷間圧延後に行われる均熱処理での再結晶を抑制することが必要である。また、均熱処理時に再結晶を抑制するには、Nb,Zr,TiおよびVを含有させることが必要である。ただし、Nb,Zr,TiおよびVを過度に含有させると表面性状が劣化するため、Nb,Zr,TiおよびVの含有量の適正化が重要となる。多量の転位を残存させることのみを目的とすれば、所定の板厚への加工後に均熱処理を施す必要はない。しかしながら、その場合には鋼板の変形能が著しく低いためカシメ性に劣る。本発明においては、良好なカシメ性を具備せしめるために均熱処理により変形能を改善する必要がある。
以下、本発明を完成させるに至った知見について説明する。
主要成分が質量%で、Si:2.0%、Mn:0.2%、Al:0.3%、N:0.002%であり、C,SおよびNbの含有量をそれぞれC:0.001〜0.04%、S:0.0002〜0.03%、Nb:0.001〜0.6%と変化させた鋼に熱間圧延を施して2.3mmとした後、800℃で10時間の熱延板焼鈍を行い、さらに0.35mmまで冷間圧延し、700℃で20秒間保持あるいは750℃で20秒間保持の2つの条件で均熱処理を施した。このようにして得られた鋼板の引張強さを測定した。
図1および図2に、700℃または750℃で20秒間保持の均熱処理を施したそれぞれの鋼板について、Nb,CおよびNの含有量により規定される下記式(2)で示されるNbと、鋼板の引張強さとの関係を示す。
Nb=Nb/93−C/12−N/14 (2)
(ここで、式(2)中、Nb,CおよびNはそれぞれの元素の含有量(質量%)を示す。)
図1および図2より、Nb>0の場合にのみ優れた機械特性が得られることがわかった。また、鋼組織を調査した結果、Nb>0の場合にのみ再結晶が抑制されており、鋼組織は加工組織および回復組織であった。Nbは固溶Nb含有量と対応しており、再結晶抑制には固溶Nb含有量の確保が重要であると判明した。さらに、均熱処理での均熱温度が高温化した場合にはNbが高いほど再結晶抑制効果が大きくなることも判明した。
また、Ti,ZrおよびVについても上記と同様の検討を行い、それらの知見を合わせて再結晶抑制には下記式(3)を満足させる必要があると判明した。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)>0 (3)
(ここで、式(3)中、Nb,Zr,Ti,V,CおよびNはそれぞれの元素の含有量(質量%)を示す。)
これらの鋼板の表面性状を調査したところ、Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)の数値が過度に高い場合にはリジングと呼ばれる表面欠陥が発生するとの知見を得た。これらの知見より、磁気特性と機械特性とを兼ね備えた上に、表面性状の劣化を抑制するには、Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)を適正範囲に制御する必要があると判明し、本発明を完成したのである。
以下、本発明の回転子用無方向性電磁鋼板およびその製造方法について詳細に説明する。
A.回転子用無方向性電磁鋼板
本発明の回転子用無方向性電磁鋼板は、質量%で、C:0.04%以下、Si:1.0%以上3.5%以下、Mn:0.1%以上2.5%以下、Al:0.2%以上2.5%以下、Si+Al:2.0%以上5.0%以下、P:0.2%以下、S:0.03%以下、N:0.005%以下を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を、下記式(1)を満足する範囲で含有し、残部が実質的にFeおよび不純物からなり、再結晶部分の面積比率が25%未満、伸びが2%以上であることを特徴とするものである。
0<Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)<5×10−3 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。また、本発明において「残部が実質的にFeおよび不純物からなる」とは、本発明の効果を阻害しない範囲で他の元素を含有する場合を含むことを意味する。
以下、本発明の回転子用無方向性電磁鋼板における鋼組成、再結晶部分の面積比率、および伸びについて説明する。
1.鋼組成
(1)C
CはNb,Zr,TiまたはVと結びついて析出物を形成するため、固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。したがって、固溶Nb,Zr,TiおよびVの含有量を確保するためには、C含有量を低減することが好ましい。しかしながら、過度のC含有量の低減は製鋼コストが増加する点や、C含有量が多くてもNb,Zr,TiおよびVの含有量をそれに応じて増加させれば固溶Nb,Zr,TiおよびVの含有量は確保される点を鑑み、C含有量の上限は0.04%とする。好ましくは0.02%以下、さらに好ましくは0.01%以下である。
(2)Si
Siは電気抵抗を高め、渦電流損失を低減する効果を有する元素である。また、固溶強化により鋼板の高強度化にも寄与する。そのためSi含有量は1.0%以上とする。一方、多量のSiを含有させた場合には冷間圧延時の割れを誘発し、鋼板の歩留まり低下により製造コストが増加する。そのためSi含有量は3.5%以下とする。割れ抑制の観点からは3.0%以下が好ましい。
(3)Mn
MnはSiと同様に電気抵抗を高め、渦電流損失を低減する効果がある。しかしながら、Mnを多量に含有させると合金コストが増加するため、Mn含有量の上限は2.5%とする。一方、Mn含有量の下限はSを固定する観点から定められるものであり、0.1%とする。
(4)Al
AlはSiと同様に電気抵抗を高め、Siより寄与は小さいものの固溶強化の効果も有する。そのためAl含有量は0.2%以上とする。一方、多量にAlを含有させると合金コストが増加するとともに、飽和磁束密度低下により磁束の漏れが発生するためモータ効率が低下する。これらの観点からAl含有量の上限は2.5%とする。
(5)Si+Al
上述のとおりSiおよびAlは効果が類似しているため、磁気特性および機械特性の両立にはその合計量を規定する必要があり、SiおよびAlの合計含有量を2.0%以上5.0%以下とする。SiおよびAlの合計含有量が少なすぎると機械特性または磁気特性が劣ったものとなり、多すぎると冷間圧延時に破断するおそれがある。
(6)P
Pは固溶強化により鋼板の強度を高める効果があるが、多量にPを含有する場合には冷間圧延時の割れを誘発する。そのためP含有量は0.2%以下とする。
(7)S
Sは鋼中に不可避的に混入する不純物であるが、製鋼段階で低減するにはコストが増加するためS含有量としては0.03%を上限とする。
(8)N
NはNb,Zr,TiまたはVと結びついて析出物を形成するため、固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。したがって、固溶Nb,Zr,TiおよびVの含有量を確保する観点からはN含有量を低減することが好ましい。そのためN含有量は0.005%以下とする。
(9)Nb,Zr,TiおよびV
均熱処理中の転位の消滅および再結晶を抑制し、加工組織および回復組織を得るためには析出物を形成していない固溶した状態のNb,Zr,TiまたはVを含有させることが必要である。したがって、Nb,Zr,TiおよびVからなる群から選択される少なくとも1種の元素を、下記式(3)を満足する範囲で含有させることが必要である。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)>0 (3)
(ここで、式(3)中、Nb,Zr,Ti,V,CおよびNはそれぞれの元素の含有量(質量%)を示す。)
上記式(3)の左辺は、Nb,Zr,TiおよびVの含有量とCおよびNの含有量との差を表しており、この値が正であることは炭化物、窒化物または炭窒化物といった析出物を形成していない固溶した状態のNb,Zr,TiまたはVを含有していることに対応する。
図1および図2に示すように、均熱処理時の均熱温度が高温の場合、固溶Nb,Zr,TiおよびVの含有量が多ければ多いほど転位の消滅および再結晶を抑制する効果は大きくなり、加工組織または回復組織を得るには有効である。
しかしながら、過度に固溶Nb,Zr,TiおよびVを含有する場合には熱間圧延時および熱延板焼鈍時にも転位の消滅および再結晶が抑制されるため、冷間圧延前の組織が未再結晶状態となる。その結果としてリジングと呼ばれる表面欠陥が生じ、鉄心に積層した場合の占積率が低下しモータ効率が低下するため好ましくない。固溶Nb,Zr,TiおよびVの含有量の上限値はこの観点から定められ、Nb,Zr,TiおよびVは下記式(1)で示される範囲で含有させる必要がある。
0<Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)<5×10−3 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
また、硫化物を考慮すると固溶状態のNb,Zr,TiおよびVの含有量はS含有量にも影響される。しかしながら、上述したS含有量の範囲内ではSによる影響は認められなかったため、本発明においてはSの項を省略した上記式(1)を採用した。Sの影響が認められなかった理由は明確でないが、凝固末期のSが濃化した領域からMnSとなって晶出するなどしてMnによりSが固定されたためと考えられる。
(10)その他
本発明においては、本発明の効果を損なわない範囲で上述した元素以外の元素を含有させることが可能である。本発明においては、再結晶粒径の細粒化ではなく再結晶そのものを抑制することにあるから、この再結晶抑制効果を損なわない範囲でCr,Mo,B,Cu,Ni,CoおよびWなどを必要に応じて含有させてもよい。
Cr,MoおよびBを含有させる場合には、Cr,MoおよびBの含有量は、Cr:0.01%以上、Mo:0.005%以上、B:0.0001%以上とすることが好ましい。一方、Cr,MoおよびBを多量に含有させても合金コストの観点から好ましくない。したがって、Cr,MoおよびBの含有量は、Cr:4.0%未満、Mo:4.0%未満、B:0.01%未満とするのが好ましい。
また、CuおよびNiも冷間圧延時に破断を引き起こすことの無い範囲で含有させることが可能である。CuおよびNiの含有量は、それぞれ0.01%以上2.0%以下の範囲で設定することができる。
さらに、CoおよびWの含有量は合計で4.0%以下とするのが合金コストおよび冷間圧延性の観点から好ましい。
また、脱酸剤として、あるいはSを無害化する元素としてCaを0.01%以下含有させても本発明の効果は損なわれない。
2.再結晶部分の面積比率
次に、本発明における再結晶部分の面積比率について説明する。
本発明においては、鋼組成を上述した範囲となるように調整しても、再結晶部分の面積比率が25%以上であると急激に強度が低下するため所望の機械特性が得られない場合がある。そのため、再結晶部分の面積比率は25%未満とする。機械特性の観点からは再結晶部分の面積比率は低いほど好ましく、20%以下であることが好ましい。また、再結晶部分の面積比率をゼロとし、完全に未再結晶状態(加工組織および回復組織)とすることが好ましく、そのためには均熱処理時の均熱温度や均熱時間などを調整することが重要である。
ここで、再結晶部分の面積比率とは、本発明の回転子用無方向性電磁鋼板の圧延方向に平行な断面組織写真において視野中に占める再結晶粒の割合を示すものであり、この断面組織写真をもとに測定することができる。断面組織写真としては、光学顕微鏡写真を用いることができ、例えば100倍の倍率で撮影した写真を用いればよい。
3.伸び
次に、本発明における伸びについて説明する。
本発明においては、鋼組成および再結晶部分の面積比率を上述した範囲に制御しても、カシメ性が劣る場合がある。通常の無方向性電磁鋼板の場合には冷間圧延後に行われる均熱処理にて再結晶および結晶粒成長を進行させるため変形能は改善されるが、本発明においては再結晶を抑制しているため変形能の改善が十分でない場合がある。そこで、本発明においてはカシメ性に影響を及ぼす変形能の指標として鋼板の伸びを採用し、伸びを2%以上とする。望ましくは3%以上である。例えば冷間圧延後に均熱処理を施さない場合、鋼板の伸びは本発明範囲外となりカシメ性が劣る。
ここで、伸びは、JIS5号試験片を用いた引張試験を行うことにより測定した値とする。
B.本発明の回転子用無方向性電磁鋼板の製造方法
次に、本発明の回転子用無方向性電磁鋼板の製造方法について説明する。
本発明の回転子用無方向性電磁鋼板の製造方法は、上述した「A.回転子用無方向性電磁鋼板」の項に記載した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を500℃以上780℃以下で均熱する均熱処理工程とを有することを特徴とするものである。
本発明によれば、再結晶および結晶粒成長を目的として通常冷間圧延後に実施される均熱処理工程での均熱温度を所定の範囲とすることにより、再結晶を抑制し、所定の板厚への加工の際に導入された転位の消滅を抑制して、多量の転位を残存させた回復組織を主体とすることができる。これにより鋼板の高強度化が可能である。
本発明においては、従来の固溶強化や析出強化のように冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに本発明においては、所定の鋼組成を有する鋼塊または鋼片を用い、また上述したように均熱処理工程での均熱温度を所定の範囲とすることで高強度化を図ることから、従来のように高価な鋼成分を用いることも、特殊な工程を経ることもなく、例えば駆動モータの回転子として必要な磁気特性および機械特性を満足する回転子用無方向性電磁鋼板を安定して製造することができる。さらに、均熱処理工程を行うことにより変形能を改善し、伸びを適正範囲に制御できるためカシメ性も良好となる。またさらに、所定の鋼組成に制御することから鋼板の表面性状も良好となり、回転子を構成した際の占積率が向上しモータ効率を向上させることができる。
以下、本発明の回転子用無方向性電磁鋼板の製造方法における各工程について説明する。
(1)熱間圧延工程
本発明における熱間圧延工程は、上述した鋼組成を備える鋼塊または鋼片(以下、「スラブ」ともいう。)に熱間圧延を施す工程である。
なお、鋼塊または鋼片の鋼組成については、上述した「A.回転子用無方向性電磁鋼板」の項に記載したものと同様であるので、ここでの説明は省略する。
本工程においては、上述した組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、加熱炉に装入して熱間圧延を施す。この際、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。
また、スラブ加熱温度は特に限定されるものではないが、コストおよび熱間圧延性の観点から1000〜1300℃とすることが好ましい。より好ましくは1050〜1250℃である。
熱間圧延の各種条件は特に限定されるものではなく、例えば仕上げ温度が700〜950℃、巻き取り温度が750℃以下など、一般的な条件に従って行えばよい。
(2)冷間圧延工程
本発明における冷間圧延工程は、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す工程である。このような冷間圧延工程を行うことにより、鋼板を所定の板厚に仕上げる。
本工程においては、一回の冷間圧延で所定の板厚まで仕上げてもよいし、中間焼鈍を含む二回以上の冷間圧延によって仕上げてもよい。
また、冷間圧延の各種条件は特に限定されるものではなく、被圧延材の鋼組成、目的とする鋼板の板厚などにより適宜選択するものとする。
(3)均熱処理工程
本発明における均熱処理工程は、上述した冷間圧延工程により得られた冷間圧延鋼板を500℃以上780℃以下で均熱する工程である。
均熱処理は、箱焼鈍および連続焼鈍のいずれの方法で実施してもよい。この際、均熱温度が高温であると再結晶が進行するため十分な機械特性が得られない。そのため、均熱温度の上限は780℃とする。好ましくは750℃以下、さらに好ましくは700℃以下である。均熱温度は低ければ低いほど再結晶進行が抑制されるが、連続焼鈍で均熱処理を実施する場合、均熱温度が低いと鋼板の平坦が矯正されずに回転子に積層した場合の占積率が低下する場合がある。また、均熱処理により変形能を改善し、カシメ性の指標である鋼板の伸びを所定の範囲に制御する必要があるため、均熱温度が低い場合にはこの目標を達成できない。そこで、平坦矯正およびカシメ性改善の観点から、均熱温度の下限値を500℃とする。
本発明において、均熱処理を箱焼鈍で実施する場合には、コイル状態で焼鈍に供されることに起因して鋼板の平坦度が低下したり、形状が劣化したりすることがあるため、均熱処理工程後に軽加工により鋼板の平坦度や形状を矯正する矯正工程を行ってもよい。
(4)熱延板焼鈍工程
本発明においては、上記熱間圧延工程により得られた熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。この熱延板焼鈍工程は、熱間圧延工程と冷間圧延工程との間に行われる工程である。
熱延板焼鈍工程は必ずしも必須の工程ではないが、熱延板焼鈍工程を行うことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できる。また、鋼組成が特定範囲に制御されているため、熱延板焼鈍を実施することにより表面性状が良好となる。
熱延板焼鈍は、箱焼鈍および連続焼鈍のいずれの方法で実施してもよい。また、熱延板焼鈍の各種条件は特に限定されるものではなく、熱間圧延鋼板の鋼組成などにより適宜選択するものとする。
(5)その他
本発明においては、上記均熱処理工程後(箱焼鈍による均熱処理工程後に軽加工により鋼板の平坦度や形状を矯正する矯正工程を行う場合には、その矯正工程後)に、一般的な方法に従って、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁被膜を鋼板表面に塗布するコーティング工程を行うことが好ましい。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
なお、本発明により製造される回転子用無方向性電磁鋼板については、上述した「A.回転子用無方向性電磁鋼板」の項に記載したものと同様であるので、ここでの説明は省略する。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
以下、実施例および比較例を例示して、本発明を具体的に説明する。
[実施例1〜16]
下記の表1に示す鋼組成を有する鋼を真空溶製し、これらの鋼を1150℃に加熱し、仕上げ温度820℃で熱間圧延を行って580℃で巻き取り、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板のうち一部を除いて水素雰囲気中にて750℃または800℃で10時間保持する箱焼鈍、あるいは1000℃で60秒間保持する連続焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。また、一部の熱間圧延鋼板については、上記の熱延板焼鈍後、中間板厚まで冷間圧延した後、水素雰囲気中にて750℃または800℃で10時間保持する箱焼鈍、あるいは1000℃で60秒間保持する連続焼鈍による中間焼鈍を実施し、二回目の冷間圧延で0.35mmに仕上げた。さらに、一部の熱間圧延鋼板については熱延板焼鈍を施すことなく、一回あるいは中間焼鈍を含む二回の冷間圧延にて0.35mmに仕上げた。その後、実施例1〜9および11〜16には種々の均熱温度で30秒間保持する連続焼鈍による均熱処理を施した。実施例10には500℃で10時間保持する箱焼鈍による均熱処理を施した。
Figure 2006070296
[比較例1〜11]
上記の表1に示す鋼組成を有する鋼を用いて、実施例1〜16と同様にして鋼板を作製した。
[評価]
実施例1〜16および比較例1〜11の鋼板について、再結晶部分の面積比率、機械特性、磁気特性、疲労特性および表面性状を評価した。
再結晶部分の面積比率は、100倍の倍率で撮影した圧延方向に平行な断面の光学顕微鏡写真を用い、視野中に占める再結晶粒の割合を算出した。
機械特性は、JIS5号試験片を用いた引張試験にて、降伏点:YP、引張強さ:TS、伸び:ELにて評価した。
磁気特性は、JIS C 2550に規定されるエプスタイン試験にて、最大磁束密度:1.0T、励磁周波数:400Hzでの鉄損W10/400と磁化力5000A/mでの磁束密度B50とを測定した。
疲労試験は、打ち抜き加工により試験片を採取し、端面に研削加工を施すことなく打ち抜きのままで振動数60Hzの片振り電磁共振試験に供した。この疲労試験では、駆動モータの応力状態に対して安全率を考慮し、平均応力:300MPa、応力振幅:180MPaの条件で疲労破壊しなかったものを良好と判断した。また、繰り返し数は10まで実施し、この繰り返し数での破壊の有無で判断した。表2において疲労破壊のないものを「○」印、疲労破壊のあるものを「×」印で示した。
表面性状は、表面粗さ計で測定した山高さを指標とし、山高さ<3μmを良好、山高さ≧3μmを不良とした。表2において良好なものを「○」印、不良のものを「×」印で示した。
表2に、実施例1〜16および比較例1〜11の鋼板についての熱延板焼鈍条件、冷間圧延条件、均熱処理条件および評価結果をそれぞれ示す。
Figure 2006070296
比較例1の鋼板はSi含有量が高いために冷間圧延時に破断した。また、比較例2の鋼板はAl含有量が高いために磁束密度が低かった。比較例3の鋼板はP含有量が高いために冷間圧延時に破断した。さらに、比較例4の鋼板はCおよびMnの含有量が高く、鋼組織がマルテンサイト組織であるために鉄損が著しく増大し、磁束密度も低かった。比較例5の鋼板はNb,Zr,TiおよびVの含有量が本発明範囲外であるために再結晶が抑制されず、再結晶部分の面積比率が高くなり降伏点および引張強さともに劣っていた。比較例6,7の鋼板は均熱処理を施さないあるいは均熱温度が低いことに起因して伸びが低く、カシメ性に劣っていた。また、比較例8,9の鋼板は再結晶部分の面積比率が高いために降伏点および引張強さともに劣っていた。比較例10の鋼板はNb,Zr,TiおよびVの含有量が本発明範囲の上限を超えているためにリジングが発生し、表面性状の劣化により鉄心に積層した場合の占積率が低下するおそれがあった。比較例11の鋼板はSi+Alが本発明範囲外であるために降伏点および引張強さともに劣っていた。
これに対して本発明で規定する要件を満足する実施例1〜16の鋼板では磁気特性、機械特性とも優れた値を示しており、上述の応力条件でも疲労破壊を生じることはなかった。また、実施例13および14を比較することにより、S含有量が変化しても機械特性は変化しないことがわかった。
700℃で20秒間保持の均熱処理を行った鋼板についての、Nb(=Nb/93−C/12−N/14)と引張強さとの関係を示す図である。 750℃で20秒間保持の均熱処理を行った鋼板についての、Nb(=Nb/93−C/12−N/14)と引張強さとの関係を示す図である。

Claims (3)

  1. 質量%で、C:0.04%以下、Si:1.0%以上3.5%以下、Mn:0.1%以上2.5%以下、Al:0.2%以上2.5%以下、Si+Al:2.0%以上5.0%以下、P:0.2%以下、S:0.03%以下、N:0.005%以下を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を、下記式(1)を満足する範囲で含有し、残部が実質的にFeおよび不純物からなり、再結晶部分の面積比率が25%未満、伸びが2%以上であることを特徴とする回転子用無方向性電磁鋼板。
    0<Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)<5×10−3 (1)
    (ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
  2. 請求項1に記載の鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、前記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、前記冷間圧延工程により得られた冷間圧延鋼板を500℃以上780℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法。
  3. 前記熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を有することを特徴とする請求項2に記載の回転子用無方向性電磁鋼板の製造方法。
JP2004252395A 2004-08-31 2004-08-31 回転子用無方向性電磁鋼板およびその製造方法 Active JP4265508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252395A JP4265508B2 (ja) 2004-08-31 2004-08-31 回転子用無方向性電磁鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252395A JP4265508B2 (ja) 2004-08-31 2004-08-31 回転子用無方向性電磁鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006070296A true JP2006070296A (ja) 2006-03-16
JP4265508B2 JP4265508B2 (ja) 2009-05-20

Family

ID=36151229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252395A Active JP4265508B2 (ja) 2004-08-31 2004-08-31 回転子用無方向性電磁鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP4265508B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070348A (ja) * 2004-09-06 2006-03-16 Nippon Steel Corp 高強度電磁鋼板とその製造方法および加工方法
JP2007254801A (ja) * 2006-03-22 2007-10-04 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
WO2007144964A1 (ja) 2006-06-16 2007-12-21 Nippon Steel Corporation 高強度電磁鋼板およびその製造方法
JP2010159494A (ja) * 2010-02-09 2010-07-22 Nippon Steel Corp 高強度電磁鋼板とその製造方法および加工方法
WO2022210530A1 (ja) 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975076B2 (ja) 2014-08-27 2016-08-23 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070348A (ja) * 2004-09-06 2006-03-16 Nippon Steel Corp 高強度電磁鋼板とその製造方法および加工方法
JP4510559B2 (ja) * 2004-09-06 2010-07-28 新日本製鐵株式会社 高強度電磁鋼板とその製造方法および加工方法
JP2007254801A (ja) * 2006-03-22 2007-10-04 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
WO2007144964A1 (ja) 2006-06-16 2007-12-21 Nippon Steel Corporation 高強度電磁鋼板およびその製造方法
JP2010159494A (ja) * 2010-02-09 2010-07-22 Nippon Steel Corp 高強度電磁鋼板とその製造方法および加工方法
WO2022210530A1 (ja) 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
KR20230134148A (ko) 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법

Also Published As

Publication number Publication date
JP4265508B2 (ja) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4779474B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4586669B2 (ja) 回転子用無方向性電磁鋼板の製造方法
US8157928B2 (en) Non-oriented electrical steel sheet and production process thereof
JP5126788B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4855222B2 (ja) 分割コア用無方向性電磁鋼板
JP5076510B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2010121150A (ja) 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
JP4389691B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2011084761A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP6606988B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP2009299102A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4311127B2 (ja) 高張力無方向性電磁鋼板およびその製造方法
JP4710458B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP2004183002A (ja) 自動車用無方向性電磁鋼板およびその製造方法
JP2009007592A (ja) 回転子用無方向性電磁鋼板の製造方法
JP4506664B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4265508B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP5333415B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2003096548A (ja) 無方向性電磁鋼板とその製造方法
JP4415933B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP2003055746A (ja) 無方向性電磁鋼板およびその製造方法
JP4415932B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4853392B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009001887A (ja) 回転子用無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350