JP2006068630A - Classifier and classification method for solid particulate - Google Patents

Classifier and classification method for solid particulate Download PDF

Info

Publication number
JP2006068630A
JP2006068630A JP2004254553A JP2004254553A JP2006068630A JP 2006068630 A JP2006068630 A JP 2006068630A JP 2004254553 A JP2004254553 A JP 2004254553A JP 2004254553 A JP2004254553 A JP 2004254553A JP 2006068630 A JP2006068630 A JP 2006068630A
Authority
JP
Japan
Prior art keywords
particles
classification
bent
wall surface
folded plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004254553A
Other languages
Japanese (ja)
Inventor
Kunihiko Terase
邦彦 寺瀬
Masaaki Ikemura
政昭 池村
Takashi Saito
尚 齊藤
Tokumitsu Kato
徳光 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2004254553A priority Critical patent/JP2006068630A/en
Publication of JP2006068630A publication Critical patent/JP2006068630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a classifier which is capable of effectively classifying solid particulates containing large particles (course grain) and small particles (fine particles). <P>SOLUTION: The classifier is prepared by vertically arranging a plurality of folding plates each with a bent part spaced at a distance and being provided with a classification element forming a passage with a cross-sectional folded part by the wall face of the folding plate. Air current containing the solid particulates to be classified is allowed to flow into the folded passage of the classification element. The large particles is trapped by colliding it against the wall face of the folding plate and is trapped by dropping it along with the wall face by gravity. The small particles are classified by accompanying the air current and using a classifier to take out them outside the element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大粒子(粗粒子)と小粒子(微細粒子)を含む固体微粒子の分級装置に関し、さらに詳しくは、大粒子または小粒子が他の粒子径のものに対して、小部分存在する場合、当該小部分存在する粒子を大部分存在する粒子から分級し、分離するのに特に適した固体微粒子の分級装置に関する。   The present invention relates to an apparatus for classifying solid fine particles including large particles (coarse particles) and small particles (fine particles), and more particularly, large particles or small particles are present in a small portion with respect to those having other particle sizes. In particular, the present invention relates to a solid fine particle classifying device particularly suitable for classifying and separating the small part of the particles from the majority of the particles.

大粒子と小粒子を含む固体微粒子の分級装置または分級方法としては、これを固体粒子のまま処理する篩分け分級が最も基本的なものであるが、その他、当該微粒子を気流に同伴させ、固体微粒子含有気流として、遠心力と慣性力を利用して分級する、各種の気流式分級装置、例えばサイクロン分級装置や機械的な回転式衝突羽根を用いる分級装置などが常用されている。   As the classifying device or classification method for solid fine particles including large particles and small particles, sieving classification in which the particles are processed as solid particles is the most basic. Various airflow classifiers, such as a cyclone classifier or a classifier using mechanical rotating impingement blades, which classify using a centrifugal force and an inertial force are commonly used as the fine particle-containing airflow.

しかしながら、大粒子と小粒子を含む固体微粒子(例えば平均粒子径が数十μm、粒子径20〜100μm程度の範囲の固体微粒子)においては、その中の当該大粒子または小粒子のどちらかが他の粒径のものに対して、小部分に存在する場合、当該小部分存在する粒径のものを、他の大部分存在する粒径のものから分級して回収または除去することを目的とする場合には、上記のような分級装置を使用する方法では、現実的には以下のような困難な問題がある。   However, in the case of solid fine particles including large particles and small particles (for example, solid fine particles having an average particle size of several tens of μm and a particle size in the range of 20 to 100 μm), either the large particles or the small particles are the other particles. The purpose is to collect or remove the particles having a small particle size from those having a particle size that is present in the majority of the particles having a particle size of In some cases, the method using the classifier as described above has the following difficult problems in practice.

例えば、粒子径20〜100μm程度の微粒子を、篩網で篩分けする場合には、150〜400メッシュ(呼び寸法:37〜105μm)程度の目開きの篩網を使用すれば、篩網の目開きが非常に小さくはなるが、ほぼ一定粒子径を境にして高精度で分級ができる。   For example, when fine particles having a particle size of about 20 to 100 μm are sieved with a sieve mesh, if a sieve mesh with an opening of about 150 to 400 mesh (nominal size: 37 to 105 μm) is used, Although the opening is very small, classification can be performed with high accuracy with a substantially constant particle size as a boundary.

しかしながら、篩分けによる分級装置では、このように篩網の目開きが小さくなると、その篩分処理能力(処理速度)は、顕著に低下する。また、篩網を構成する網線が極端に細くなる(線径:0.025〜0.070mm程度)ので、特に硬度の高い無機質粒子を篩分けする場合など、微粒子との接触による摩耗で篩網自体の寿命が極めて短くなり、せいぜい1週間程度で頻繁に篩網を取り替えなければならないという実用上の大きな問題がある。なお、超音波を利用した篩網を用いる篩分け装置もあるが、上記問題は、大幅には解消されない。このように、篩網による分級装置は、原理的には分級・分離できるものであっても、実際の使用面で上記した大きな問題がある。   However, in the classifying device by sieving, when the mesh opening of the sieving mesh is thus reduced, the sieving capacity (processing speed) is significantly reduced. In addition, since the mesh wire constituting the sieve mesh becomes extremely thin (wire diameter: about 0.025 to 0.070 mm), especially when the inorganic particles having high hardness are sieved, the sieve is worn by contact with fine particles. The life of the net itself becomes extremely short, and there is a large practical problem that the sieve net must be frequently replaced in about one week at most. There is also a sieving device that uses a sieving net using ultrasonic waves, but the above problem is not substantially eliminated. As described above, even though the classification device using a sieve screen can be classified / separated in principle, it has the above-described major problems in terms of actual use.

一方、例えば、サイクロンのような遠心力集塵装置においては、平均粒子よりも大きな粒子から小さな粒子まで、まとめて一括して分級する目的には適している。   On the other hand, for example, a centrifugal dust collector such as a cyclone is suitable for the purpose of collectively classifying particles larger than average particles to small particles.

しかしながら、平均粒子径よりも粒子径が大きな大粒子または小さな小粒子が、他の粒径のものに対して、小部分、すなわち僅かに存在する場合に、当該小部分を分離する目的には適していない。例えば、平均粒子径よりも大きな大粒子(粗粒子)が小部分存在する場合に、それら小部分存在する粗粒子を、主として大部分存在する小粒子(微細粒子)から分級する目的には、全く適していないという問題がある。なお、遠心力集塵に機械的な回転式衝突羽根を付加した分級装置も各種存在するが、上記のような状況における課題は、本質的には少しも解決されるものではない。   However, when large particles or small particles larger than the average particle size are present in a small portion, i.e., a small amount relative to other particle sizes, they are suitable for the purpose of separating the small portion. Not. For example, when there are small portions of large particles (coarse particles) larger than the average particle size, the purpose of classifying coarse particles present in these small portions mainly from small particles (fine particles) that are present in large part is completely There is a problem that it is not suitable. There are various classifiers that add mechanical rotary impingement blades to centrifugal dust collection, but the problems in the above situation are not essentially solved at all.

また、重力を利用する重力集塵という分級方式もあるが、微粒子の分級の場合、装置容積(沈降室容積)が大きくなることと、上記のような小部分存在する粒子の高精度分級には、全く適していない。   There is also a classification method called gravity dust collection that uses gravity, but in the case of fine particle classification, the device volume (sedimentation chamber volume) becomes large and the above-mentioned high-precision classification of particles that exist in small parts , Not at all suitable.

さらに、慣性および衝突集塵という分級装置もあるが(例えば、非特許文献1参照。)、分級性能やスケールアップに問題が多く実用装置として、殆ど用いられていない。   Furthermore, although there is a classification device called inertia and collision dust collection (see, for example, Non-Patent Document 1), there are many problems in classification performance and scale-up, and it is hardly used as a practical device.

このように、平均粒子径が数十μmの固体微粒子中に小部分存在する粗粒子又は微細粒子を、経済性良く、かつ、精度高く分級・分離する装置は、従来存在しなかった。   As described above, there has conventionally not been an apparatus for classifying and separating coarse particles or fine particles, which are present in a small part in solid fine particles having an average particle size of several tens of μm, with high efficiency and high accuracy.

なお、固体微粒子ではなく、気流中の微小液滴(ミスト)を、折れ板を利用して分離する、所謂、折れ板デミスターは、古くから公害防止装置として使用されている(例えば、非特許文献2参照。)。   Note that a so-called folded plate demister that separates fine liquid droplets (mist) in an air flow by using a folded plate instead of solid fine particles has long been used as a pollution prevention device (for example, non-patent literature). 2).

気流中の微小液滴は、折れ板に衝突する場合は、衝突した液滴が、折れ板表面で直ちに液膜へと変化するため、折れ板表面に形成されたこのような液膜は、大きな液滴となって下方に流下するので、気流中の液滴の分離は容易にできるのである。しかも、折れ板デミスターは、気流中に同伴してくるすべての液滴の全捕集(除去)を行うものであり、ミストをその径によって分離する、すなわち分級するものではない。   When a micro droplet in an air current collides with a folded plate, the collided droplet immediately changes to a liquid film on the folded plate surface. Therefore, such a liquid film formed on the folded plate surface is large. Since the droplets flow downwards, the droplets in the airflow can be easily separated. In addition, the folded plate demister collects (removes) all the droplets that accompany the air stream, and does not separate, that is, classify, the mist according to its diameter.

これに対し、固体微粒子の場合には、固体微粒子が、慣性力で折れ板に衝突しても、液滴と全く異なり、当該衝突粒子が捕捉されずに跳ね返ったり、気流に容易に再同伴されるという問題もあり、効率良く、粗粒子だけを分級・分離することが困難であるため、従来ほとんど使用されていない。   On the other hand, in the case of solid particulates, even if the solid particulates collide with the folded plate due to inertial force, unlike the liquid droplets, the colliding particles bounce off without being captured or are easily re-entrained by the airflow. Since it is difficult to classify and separate only coarse particles efficiently, it has hardly been used in the past.

井伊谷鋼一編著、「集塵装置」、新版、日刊工業新聞社、1969年、P211−219Iitani Koichi, “Dust Collector”, new edition, Nikkan Kogyo Shimbun, 1969, P211-219 吉川、「化学工学の進歩3、気泡・液滴工学、ミスト分離」、化学工学協会編、日刊工業新聞社、1969年、p221−227Yoshikawa, “Progress of chemical engineering 3, bubble / droplet engineering, mist separation”, edited by Chemical Engineering Association, Nikkan Kogyo Shimbun, 1969, p221-227

本発明の目的は、大粒子と小粒子を含む固体微粒子の分級装置、特に、当該大粒子または小粒子が他の粒子径のものに対して、小部分存在する場合、当該小部分存在する粒子を大部分存在する粒子から分級し、分離するに適した固体微粒子の分級装置及び分級方法を提供することである。   It is an object of the present invention to classify a solid fine particle including large particles and small particles, and in particular, when the large particles or small particles are present in a small portion with respect to those of other particle sizes, the particles present in the small portion It is intended to provide a solid fine particle classifying apparatus and a classification method suitable for classifying and separating particles from existing particles.

本発明に従えば、以下の大粒子と小粒子を含む固体微粒子の分級装置が提供される。
〔1〕
分級すべき大粒子と小粒子を含む固体微粒子の分級装置であって、屈曲部を有する複数個の折れ板を、互いに間隔を設けて垂直に配置して、当該折れ板の壁面により屈曲した流路を形成した分級エレメントと、
当該分級エレメントを備えた分級室と、
前記固体微粒子を含有する気流を、当該分級室に供給する手段と、
当該分級エレメントの流路中において、折れ板壁面に衝突させて捕捉した当該固体微粒子中の大粒子を、壁面に沿って重力で落下させて捕集する手段と、及び
当該分級エレメントの流路を気流に同伴して通過した前記小粒子を当該分級室外にて捕集する手段とからなることを特徴とする固体微粒子の分級装置。
According to the present invention, there is provided a solid fine particle classification apparatus including the following large particles and small particles.
[1]
A device for classifying solid fine particles including large particles and small particles to be classified, wherein a plurality of bent plates having bent portions are arranged vertically at intervals from each other and bent by the wall surface of the bent plates. A classification element that forms a path;
A classification room equipped with the classification element;
Means for supplying an airflow containing the solid fine particles to the classification chamber;
In the flow path of the classification element, means for dropping and collecting large particles in the solid fine particles colliding with the folded plate wall surface by gravity along the wall surface, and the flow path of the classification element A solid fine particle classification device comprising: means for collecting the small particles that have passed along with the air flow outside the classification chamber.

〔2〕
分級すべき大粒子(粗粒子)と小粒子(微細粒子)を含む固体微粒子の分級装置であって屈曲部を有する折れ板を、複数個、互いに間隔を設けて垂直に配置して、当該折れ板の壁面により断面折れ曲がり部を有する流路を形成してなる分級エレメントを備え、前記固体微粒子を含有する気流を、当該エレメントの折れ曲がり流路に流し、当該大粒子を折れ板壁面に衝突させて捕捉し、これを壁面に沿って重力で落下させて捕集し、前記小粒子は、気流に同伴させて前記エレメント外に取り出すことを特徴とする固体微粒子の分級装置。
[2]
A device for classifying solid fine particles including large particles (coarse particles) and small particles (fine particles) to be classified, and a plurality of folding plates having bent portions are arranged vertically at intervals from each other. A classification element formed by forming a flow path having a cross-sectional bent portion by the wall surface of the plate, flowing an air flow containing the solid fine particles through the bent flow path of the element, and causing the large particles to collide with the bent plate wall surface. An apparatus for classifying solid fine particles, wherein the particles are collected by dropping along a wall surface by gravity, and the small particles are taken out of the element by being accompanied by an air flow.

〔3〕
前記大粒子が小粒子に比較してその含有量において小部分であるか、または、前記小粒子が大粒子に比較してその含有量において小部分である〔1〕項又は〔2〕項に記載の分級装置。
[3]
In the item [1] or [2], the large particle is a small part in the content compared to the small particle, or the small particle is a small part in the content compared to the large particle. The classifier described.

〔4〕
前記気流が前記エレメントの折れ板壁面間流路を流れる際に、折れ板の前面における風速が、0.3〜3.0m/secである〔1〕項〜〔3〕項のいずれかに記載の分級装置。
[4]
When the airflow flows through the flow path between the folded plate wall surfaces of the element, the wind speed at the front surface of the folded plate is 0.3 to 3.0 m / sec, according to any one of [1] to [3]. Classification device.

〔5〕
前記エレメントの屈曲部における折れ板壁面のなす外角度θ(屈折角度)が、30〜150(度)である〔4〕項に記載の分級装置。
[5]
The classification device according to item [4], wherein an outer angle θ (a refraction angle) formed by a bent plate wall surface in the bent portion of the element is 30 to 150 (degrees).

〔6〕
前記エレメントの垂直方向に配置される折れ板壁面の角度が、垂直面に対して±45(度)以内である〔4〕項に記載の分級装置。
[6]
The classifier according to [4], wherein the angle of the folded plate wall surface arranged in the vertical direction of the element is within ± 45 (degrees) with respect to the vertical plane.

〔7〕
前記エレメントの対向する折れ板壁面の屈曲部における間隔(ピッチ)Sが、1.0〜30cmである〔4〕項に記載の分級装置。
[7]
The classifying apparatus according to [4], in which an interval (pitch) S at a bent portion of the opposing folded plate wall surface of the element is 1.0 to 30 cm.

〔8〕
前記エレメントの折れ板の気流方向の1辺の長さが、S×COS((180−θ)/2)で計算される長さ以上である〔4〕項に記載の分級装置。
[8]
The classifier according to [4], wherein the length of one side in the airflow direction of the folded plate of the element is equal to or longer than the length calculated by S × COS ((180−θ) / 2).

〔9〕
気流が前記エレメントを通過するまでの折れ板の屈曲回数が、1〜5回である〔4〕項〜〔8〕項のいずれかに記載の固体微粒子の分級装置。
[9]
The apparatus for classifying solid fine particles according to any one of [4] to [8], wherein the bent plate is bent 1 to 5 times until the airflow passes through the element.

〔10〕
前記エレメントの折れ板の屈曲部分が蝶番構造であり、屈曲角度が可変であるように構成される〔4〕項〜〔8〕項のいずれかに記載の分級装置。
[10]
The classification device according to any one of items [4] to [8], wherein the bent portion of the bent plate of the element has a hinge structure and the bending angle is variable.

また、本発明に従えば、以下の大粒子と小粒子を含む固体微粒子の分級方法が提供される。
〔11〕
分級すべき大粒子(粗粒子)と小粒子(微細粒子)を含む固体微粒子を分級する方法であって、屈曲部を有する折れ板を、複数個、間隔を設けて垂直に配置して、当該折れ板壁面により断面折れ曲がり部を有する流路を形成して分級エレメントを構成し、前記固体微粒子を含有する気流を、当該エレメントの折れ曲がり流路に流し、当該大粒子を折れ板壁面に衝突させて捕捉し、これを壁面に沿って重力で落下させて捕集し、前記小粒子は、気流に同伴させて前記エレメント外に取り出すことを特徴とする固体微粒子の分級方法。
Moreover, according to this invention, the classification method of the solid fine particle containing the following large particles and small particles is provided.
[11]
A method of classifying solid fine particles including large particles (coarse particles) and small particles (fine particles) to be classified, wherein a plurality of bent plates having bent portions are arranged vertically with a gap therebetween, A flow path having a cross-section bent portion is formed by the folded plate wall surface to form a classification element, and an air flow containing the solid fine particles is caused to flow through the bent flow channel of the element, and the large particles are caused to collide with the folded plate wall surface. A method for classifying solid fine particles, wherein the particles are collected by dropping along a wall surface by gravity, and the small particles are taken out of the element by being accompanied by an air flow.

以下、図面を参照しながら、本発明を詳細に説明する。
(分級エレメント)
図1は、本発明の分離エレメントを形成する折れ板の形状、配置を示す斜視図であり、図2は、折れ板の配置により、流路が形成される状態を示す平面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
(Classification element)
FIG. 1 is a perspective view showing the shape and arrangement of a folded plate forming the separation element of the present invention, and FIG. 2 is a plan view showing a state where a flow path is formed by the arrangement of the folded plate.

本発明の分級装置においては、図1に示すように、屈曲部1を有する折れ板3を、複数個(N1,N2,N3,・・・)、間隔を設けて垂直に配置して、図2に示すように当該折れ板の壁面5,5’により断面折れ曲がり部を有する流路7,7’、すなわち屈曲した流路を形成するように構成した分級エレメント10を備えているものである。 In the classifying apparatus of the present invention, as shown in FIG. 1, a plurality of folded plates 3 (N 1 , N 2 , N 3 ,...) Having a bent portion 1 are arranged vertically at intervals. As shown in FIG. 2, the flow path 7, 7 'having a cross-section bent portion by the wall surface 5, 5' of the bent plate, that is, a classification element 10 configured to form a bent flow path is provided. It is.

折れ板の壁面5,5’は、屈曲した流路7,7’を形成するものであり、後記するように、当該流路を流れる気流中の固体粒子がこの壁面に衝突し捕集されるものであるから、その壁面は基本的には平滑であることが望ましいが、衝突した粒子が捕集されやすいように、その表面に浅い凹凸や碁盤目、平行溝等を設けてもよい。また壁面は、完全な平板からなるものの外に緩い曲面を形成していてもかまわない。   The wall surfaces 5 and 5 'of the bent plate form the bent flow paths 7 and 7', and as will be described later, solid particles in the airflow flowing through the flow paths collide with the wall surfaces and are collected. Therefore, it is desirable that the wall surface is basically smooth, but shallow irregularities, grids, parallel grooves, and the like may be provided on the surface so that the colliding particles are easily collected. Further, the wall surface may be formed of a flat plate and may have a loose curved surface.

分級エレメントを形成する折れ板の気流方向の1辺の長さ(壁面の気流方向の長さ、すなわち流路長さ)L、L’は、入口側と出口側で等しいことが基本であるが、場合によっては、入り口側流路長さLを出口側流路長さL’より長く形成してもよいし、逆に出口側流路を入り口側流路より長く形成してもよい。   Basically, the length of one side of the folded plate forming the classification element in the airflow direction (the length of the wall surface in the airflow direction, that is, the flow path length) L and L ′ is equal on the inlet side and the outlet side. In some cases, the inlet-side channel length L may be longer than the outlet-side channel length L ′, and conversely, the outlet-side channel may be formed longer than the inlet-side channel.

また分級エレメントを形成する折れ板の高さ(垂直方向の長さ)HBは、処理すべき気流の流量等に応じて自由に変更することができる。折れ板の材質は、ステンレス鋼等金属、ポリ塩化ビニール、ポリプロピレン、FRP等プラスチックス、ガラス、結晶質セラミックス等セラミックス、木材、硬質ボール紙またはこれらの複合材料やライニング材料等、分級対象固体粒子の種類、粒径、粒子形状、粒子硬度、その処理量、分級エレメントの設置環境等、及びエレメントの製作容易性等によって任意に選択することが可能である。なお、エレメントを形成する折れ板の厚みはその形成材料の強度等によっても変わりうるものであり、特に限定するものではないが、加工の容易性等から、通常5mm以下1mm以上であることが好ましい。   Further, the height (vertical length) HB of the folded plate forming the classification element can be freely changed according to the flow rate of the airflow to be processed. The material of the folding plate is made of metal such as stainless steel, plastics such as polyvinyl chloride, polypropylene and FRP, glass, ceramics such as crystalline ceramics, wood, hard cardboard, or composite materials and lining materials thereof, etc. It can be arbitrarily selected depending on the type, particle size, particle shape, particle hardness, the amount of treatment, the installation environment of the classification element, the ease of manufacturing the element, and the like. The thickness of the folded plate forming the element can vary depending on the strength of the forming material and the like, and is not particularly limited. However, from the viewpoint of ease of processing, it is usually preferably 5 mm or less and 1 mm or more. .

(分級エレメントによる分級メカニズム)
図3は本発明の分級エレメントによる分級メカニズムを説明するための説明図、図4は大粒子と小粒子を含む固体微粒子含有気流を本発明の分級エレメントに流し、大粒子と小粒子の分級が行われる状態を示す説明図である。
(Classification mechanism by classification element)
FIG. 3 is an explanatory diagram for explaining the classification mechanism by the classification element of the present invention. FIG. 4 is a diagram illustrating the flow of a solid fine particle-containing air flow containing large particles and small particles to the classification element of the present invention. It is explanatory drawing which shows the state performed.

本発明においては、図3に示すように、大粒子(粗粒子)Pと小粒子(微細粒子)p’を含有する処理前気流Fを、分級エレメント10に供給する。   In the present invention, as shown in FIG. 3, a pretreatment air flow F containing large particles (coarse particles) P and small particles (fine particles) p ′ is supplied to the classification element 10.

処理前の気流Fは、壁面が形成する流路内を流れるが、入り口側流路7から出口側流路7’へ接続している部分で屈曲部1により、流路の方向が急激に変えられている。気流中の大粒子Pは、慣性力が大きいので、出口側流路7’の壁面5’に衝突して捕捉され、当該壁面は水平面に垂直方向に配設されているので、当該大粒子Pは、図4に示すように壁面に沿って重力で下方に落下して捕集される。一方、小粒子p’は、慣性力が小さいので、壁面に衝突せずに図4に示すように気流F’と共に排出され、通常の集塵装置であるバグフィルター、サイクロンなどにより容易に捕集される。   The pre-treatment air flow F flows in the flow path formed by the wall surface, but the direction of the flow path is suddenly changed by the bent portion 1 at the portion connected from the inlet side flow path 7 to the outlet side flow path 7 '. It has been. Since the large particles P in the airflow have a large inertial force, they collide with the wall surface 5 ′ of the outlet side flow path 7 ′ and are captured, and the wall surfaces are arranged in a direction perpendicular to the horizontal plane. As shown in FIG. 4, it is dropped and collected by gravity along the wall surface. On the other hand, since the small particles p ′ have a small inertia force, they are discharged together with the air flow F ′ as shown in FIG. 4 without colliding with the wall surface, and are easily collected by a bag filter, a cyclone or the like that is a normal dust collector. Is done.

(折れ板前面の気流流速)
図5は、分級エレメントのディメンション等を説明する平面図であるが、固体微粒子含有気流が、分級エレメントの折れ板壁面間流路を流れる際に、折れ板の前面における風速Uは、0.3〜3.0m/sec 好ましくは、0.5〜3.0m/sec、さらに好ましくは0.7〜3.0m/secである。折れ板の前面における気流の流速Uが、0.3m/sec未満の場合は、気流の流速が大粒子の終端速度よりも小さくなるので、当該大粒子は気流に同伴されず当該大粒子が折れ板部分に到達する前に流路下方に沈降し、分級エレメントを収納する分級室内等に堆積してしまう。一方、流速が3.0m/secを越えると、折れ板壁面に衝突し捕集された大粒子(粗粒子)が、気流によって折れ板壁面を再び離れ、気流中に再同伴されてしまうため好ましくない。
(Airflow velocity in front of folded plate)
FIG. 5 is a plan view for explaining dimensions and the like of the classification element. When the air flow containing solid fine particles flows through the flow path between the folding plate wall surfaces of the classification element, the wind speed U at the front surface of the folding plate is 0.3. -3.0 m / sec Preferably, it is 0.5-3.0 m / sec, More preferably, it is 0.7-3.0 m / sec. When the airflow velocity U at the front surface of the folded plate is less than 0.3 m / sec, the airflow velocity is smaller than the terminal velocity of the large particles, so that the large particles are not accompanied by the airflow and the large particles break. Before reaching the plate portion, it settles down below the flow path and accumulates in a classification chamber or the like for storing the classification elements. On the other hand, when the flow velocity exceeds 3.0 m / sec, large particles (coarse particles) that collide with the folded plate wall surface and are collected are preferably separated from the folded plate wall surface by the air stream and re-entrained in the air stream. Absent.

(折れ板の屈折角度)
分級エレメントの屈曲部における折れ板壁面のなす外角度θ(屈折角度)は、30〜150(度)であることが好ましい。
(Bending plate refraction angle)
The external angle θ (refraction angle) formed by the bent plate wall surface at the bent portion of the classification element is preferably 30 to 150 (degrees).

ここで折れ板壁面が屈曲部でなす外角度とは、図5に示すように、二つの壁面5と5’のなす外角度θ(屈折角度)(度)と定義される。従って、当該2つの壁面のなす内角度は、180−θ(度)となる。   Here, the outer angle formed by the bent plate wall surface at the bent portion is defined as an outer angle θ (refractive angle) (degree) formed by the two wall surfaces 5 and 5 ′ as shown in FIG. 5. Therefore, the inner angle formed by the two wall surfaces is 180−θ (degrees).

屈折角度θが、30(度)未満の場合は、入り口側流路7と出口側流路7’の屈曲部1における流路方向の変化が緩やかになりすぎて、大粒子(粗粒子)の折れ板壁面への衝突確率が低下し、分級性能が低下するので望ましくない。一方、屈折角度θが、150(度)を超えると、屈曲部における流路方向の変化が急激すぎて、屈曲部近傍で気流に渦が発生し、大粒子の分級効率がかえって低下するため望ましくない。   When the refraction angle θ is less than 30 (degrees), the change in the flow direction in the bent portion 1 of the inlet-side flow channel 7 and the outlet-side flow channel 7 ′ becomes too gradual, and large particles (coarse particles) This is not desirable because the probability of collision with the folded plate wall surface is lowered and the classification performance is lowered. On the other hand, if the refraction angle θ exceeds 150 (degrees), the change in the flow direction in the bent portion is too rapid, and a vortex is generated in the airflow in the vicinity of the bent portion, so that the classification efficiency of the large particles is decreased. Absent.

(折れ板壁面が、上下方向に配置される垂直面に対する角度)
分級エレメントの垂直方向に配置される折れ板壁面の角度(傾斜角度)は、垂直面に対して±45(度)以内であることが好ましく、±20(度)以内がさらに好ましく、最も好ましくは±10(度)以内である。本発明の分級エレメントにおいては、折れ板壁面に衝突して捕捉された大粒子が、重力により当該壁面に沿って落下して捕集されることが必要であり、壁面の垂直面に対する角度は、少なくとも当該大粒子が、壁面で安息し固定する角度(安息角)を越えるものでなければならない。一般的に折れ板壁面の垂直面に対する角度が、45(度)を超えると折れ板壁面上に捕捉された大粒子の下方への重力による円滑な落下が妨害される。
(An angle with respect to a vertical plane where the folded plate wall surface is arranged in the vertical direction)
The angle (inclination angle) of the folded plate wall surface arranged in the vertical direction of the classification element is preferably within ± 45 (degrees), more preferably within ± 20 (degrees) with respect to the vertical plane, and most preferably Within ± 10 degrees. In the classification element of the present invention, it is necessary that large particles that have been captured by colliding with the folded plate wall surface fall and be collected along the wall surface by gravity, and the angle of the wall surface with respect to the vertical plane is: At least the large particles must exceed the angle at which they rest and fix on the wall (the angle of repose). In general, when the angle of the folded plate wall surface with respect to the vertical surface exceeds 45 (degrees), smooth falling due to gravity below large particles trapped on the folded plate wall surface is hindered.

(折れ板壁面の屈曲部の間隔)
図5に示すように、分級エレメントの折れ板壁面の屈曲部の間隔(ピッチ)Sは、1.0〜30cmであることが望ましい。上記間隔Sがあまり狭く1.0cm未満の場合には、気流の圧力損失が大きくなったり、気流の流路が、固体微粒子で閉塞することがあるので、望ましくない。上記間隔が、30cmを越えると、粗粒子が、折れ板表面に衝突する確率が低下するので望ましくない。
(Spacing between bent parts of folded plate wall)
As shown in FIG. 5, the interval (pitch) S between the bent portions of the folded plate wall surface of the classification element is preferably 1.0 to 30 cm. If the distance S is too narrow and less than 1.0 cm, the pressure loss of the airflow may increase or the airflow passage may be blocked with solid fine particles, which is not desirable. When the distance exceeds 30 cm, the probability that coarse particles collide with the folded plate surface is lowered, which is not desirable.

(折れ板の気流方向の1辺の長さ)
分級エレメントの折れ板壁面の気流方向の1辺の長さL(L’)は、S×COS((180−θ)/2)(ここで角度の単位は(度)である。)で計算される長さ以上であることが好ましい。
(Length of one side in the airflow direction of the folded plate)
The length L (L ′) of one side in the airflow direction of the folded plate wall surface of the classifying element is calculated by S × COS ((180−θ) / 2) (where the unit of angle is (degree)). It is preferable that it is more than the length to be made.

折れ板壁面の1辺の長さL,L’が、上記で計算される数値の長さ未満とあまり短い場合は、折れ板間の気流が短絡現象を起こしたり、気流が折れ板壁面に衝突し、一旦は捕集された固体粗粒子が、重力により下方に落下するまでに、気流によって折れ板壁面を再び離れ、気流中に再同伴されてしまうので、望ましくない。   If the length L, L 'on one side of the folded plate wall is too short, less than the length calculated above, the air flow between the folded plates will cause a short circuit or the air flow will collide with the folded plate wall However, once the collected solid coarse particles fall downward due to gravity, the broken solid wall surface is again separated by the air current and is re-entrained in the air current.

(折れ板の屈曲回数)
本発明の分級エレメントにおいては、気流が分級エレメント10を通過するまでの折れ板壁面の屈曲回数は、1〜5回であることが好ましい。これは、折れ板壁面に気流中の固体微粒子が慣性衝突するためには、屈曲は少なくとも1回以上であり、入り口側流路と出口側流路が屈曲部において流路方向の変化を伴う必要があるからである。一般的に屈曲回数が増加すると分級能力は増加するが、5回を越えると、気流の圧力損失が増加するだけで、分級性能の増加は、実質的に認められなくなるため、1〜3回であることがより好ましい。
(Number of bending plate bending)
In the classifying element of the present invention, the number of bending of the folded plate wall surface until the airflow passes through the classifying element 10 is preferably 1 to 5 times. This is because at least one bend is required for the solid fine particles in the air current to collide with the folded plate wall, and the inlet-side channel and the outlet-side channel must be accompanied by changes in the channel direction at the bent portion. Because there is. Generally, as the number of bendings increases, the classification ability increases. However, if the number of bendings exceeds 5, the pressure loss of the airflow only increases, and the increase in classification performance is substantially not recognized. More preferably.

(その他の周辺構造)
本発明のエレメントにおいては、折れ板の屈曲部分を蝶番構造とし、屈曲角度が可変であるように構成することが好ましい。
(Other peripheral structures)
In the element of the present invention, it is preferable that the bent portion of the bent plate has a hinge structure and the bending angle is variable.

これは、分級される微粒子の粒子径分布や粒子の比重に対応して、分級性能を最適化するように折れ板壁面の屈折角度θを任意に設定するため、可変構造とすることが望ましく、このため、折れ板の屈曲部を蝶番構造にすることが好ましいからである。   This is preferably a variable structure in order to arbitrarily set the refractive angle θ of the folded plate wall surface so as to optimize the classification performance corresponding to the particle size distribution of the fine particles to be classified and the specific gravity of the particles, For this reason, it is because it is preferable to make the bending part of a folding plate into a hinge structure.

なお、分級される固体微粒子の種類によっては、折れ板壁面に衝突し捕集された粗粒子が、凝集性を有するものであり、折れ板壁面上で凝集・付着・堆積する場合もあるため、分級エレメントを枠構造の中に収納し、当該枠に機械的打撃を加え、折れ板壁面への付着・堆積を防止する装置とすることなども場合によっては有効である。   Depending on the type of solid fine particles to be classified, coarse particles that collide and collect on the wall surface of the folded plate have aggregating properties, and may aggregate, adhere and accumulate on the wall surface of the folded plate. It is also effective in some cases to store the classification element in a frame structure, mechanically hit the frame, and to prevent the adhesion and accumulation on the folded plate wall surface.

本発明の分級エレメントにおいては、当該エレメントにおける折れ板群の形状(開口部)は、気流の入口から見て、長方形または正方形となることが望ましい。従って、折れ板群エレメントの前後の気流の流路の形状も気流入口から見て、長方形または正方形であることが望ましいが、これに限定されるものではない。   In the classifying element of the present invention, the shape (opening) of the folded plate group in the element is preferably rectangular or square when viewed from the airflow inlet. Accordingly, the shape of the air flow path before and after the folded plate group element is preferably rectangular or square as viewed from the air flow inlet, but is not limited thereto.

(分級室)
図6は、分級エレメント10を収納・設置した分級室20を示す説明図であって、図6(a)は平面図、図6(b)は側面図である。
(Classification room)
FIGS. 6A and 6B are explanatory views showing the classification chamber 20 in which the classification element 10 is accommodated and installed. FIG. 6A is a plan view and FIG. 6B is a side view.

本発明においては、図に示したように、上記した分級エレメント10を分級室20内に配設・収納して使用することが好ましい。分級室20は、分級すべき固体微粒子含有気流Fの入口23、エレメント通過後の気流F’の出口25を有し、また、設置した分級エレメント10の前後には、気流の整流部k,k’を備えている。整流部k,k’は、分級エレメントを構成する折れ板の個数(N1,N2,N3,・・・)、エレメント(折れ板壁面)高さ、気流に対向するエレメントの断面積、処理気体流量等によって任意に変更可能であるが、通常0.5〜2m程度である。 In the present invention, as shown in the drawing, the classification element 10 described above is preferably used by being disposed and housed in the classification chamber 20. The classification chamber 20 has an inlet 23 for the air flow F containing solid fine particles to be classified and an outlet 25 for the air flow F ′ after passing through the element. Is equipped with. The rectifying sections k, k ′ are the number of folded plates (N 1 , N 2 , N 3 ,...), The height of the element (folded plate wall surface), the cross-sectional area of the element facing the air flow, Although it can be arbitrarily changed depending on the processing gas flow rate or the like, it is usually about 0.5 to 2 m.

図6(b)に示したように、分級エレメント10の下部は、分級室20下部の底板Tを貫いて外部に開放され、下部に設けられたダンパーやロータリーバルブ付のダストシュートdに捕集される。   As shown in FIG. 6 (b), the lower part of the classification element 10 is opened to the outside through the bottom plate T at the lower part of the classification chamber 20, and is collected in a dust chute d with a damper or a rotary valve provided in the lower part. Is done.

(分級エレメントを備えた分級装置)
図7は、本発明の分級エレメントを備えた分級装置の構成の一例を示す説明図である。
30は、分級すべき大粒子(粗粒子)と小粒子(微細粒子)を含む固体微粒子33の供給槽である。この固体微粒子33は、テーブルフィーダー35等の粉体供給手段により、空気37とともに粒子受け入れ部38に供給され、下部の気流配管に39において、分散用加圧空気に40により均一分散される。均一分散された固体微粒子含有気流Fは、当該気流配管に接続された分級室20の入口23から供給される。以上が、固体微粒子を含有する気流を、当該分級室に供給する手段を構成する。
(Classification device with classification elements)
FIG. 7 is an explanatory diagram showing an example of a configuration of a classification device including the classification element of the present invention.
Reference numeral 30 denotes a supply tank for the solid fine particles 33 including large particles (coarse particles) and small particles (fine particles) to be classified. The solid fine particles 33 are supplied to the particle receiving unit 38 together with the air 37 by the powder supply means such as the table feeder 35, and are uniformly dispersed by the lower airflow pipe 39 in the dispersion pressurized air 40. The uniformly dispersed solid fine particle-containing air flow F is supplied from the inlet 23 of the classification chamber 20 connected to the air flow piping. The above constitutes a means for supplying an air flow containing solid fine particles to the classification chamber.

固体微粒子含有気流Fは、整流部kを経て、分級エレメント内の流路を流動し、すでに述べたメカニズムにより粗粒子と微細粒子の分級が行われる。分級された大粒子Pは壁面に沿って重力で落下させて捕集する手段により、分級室20の下部より捕集される。   The solid fine particle-containing air flow F flows through the flow path in the classification element through the rectifying unit k, and classification of coarse particles and fine particles is performed by the mechanism described above. The classified large particles P are collected from the lower part of the classification chamber 20 by means of dropping and collecting along the wall surface by gravity.

また、微細粒子p’は気流F’とともに分級室の出口25より排出され、出口配管41を経て、当該微細粒子(小粒子)を当該分級室外にて捕集する手段、例えばバグフィルター43等の粉塵回収手段により、回収される。なお、微細粒子が除去された清澄な排出気体45は、吸引ブロワー47をへて大気中に放出される。   Further, the fine particles p ′ are discharged from the classification chamber outlet 25 together with the air flow F ′, and the means for collecting the fine particles (small particles) outside the classification chamber via the outlet pipe 41, for example, the bag filter 43 or the like. It is recovered by the dust recovery means. The clear exhaust gas 45 from which the fine particles have been removed is discharged into the atmosphere through the suction blower 47.

図7で一例として説明した本発明の分級装置を念のため一般的に規定すれば、以下のとおりである。すなわち、分級すべき大粒子と小粒子を含む固体微粒子の分級装置であって、屈曲部を有する複数個の折れ板を、互いに間隔を設けて垂直に配置して、当該折れ板の壁面により屈曲した流路を形成した分級エレメントと、
当該分級エレメントを備えた分級室と、
The classifying device of the present invention described as an example in FIG. 7 is generally defined as follows for the sake of safety. That is, a classification device for solid fine particles including large particles and small particles to be classified, in which a plurality of bent plates having bent portions are arranged perpendicularly at intervals and bent by the wall surface of the bent plates. A classification element that forms a flow path,
A classification room equipped with the classification element;

前記固体微粒子を含有する気流を、当該分級室に供給する手段と、
当該分級エレメントの流路中において、折れ板壁面に衝突させて捕捉した当該固体微粒子中の大粒子を、壁面に沿って重力で落下させて捕集する手段と、及び
当該分級エレメントの流路を気流に同伴して通過した前記小粒子を当該分級室外にて捕集する手段とからなることを特徴とする固体微粒子の分級装置、である。
Means for supplying an airflow containing the solid fine particles to the classification chamber;
In the flow path of the classification element, means for dropping and collecting large particles in the solid fine particles colliding with the folded plate wall surface by gravity along the wall surface, and the flow path of the classification element A solid fine particle classification device comprising means for collecting the small particles that have passed along with the air flow outside the classification chamber.

なお、本発明が分級対象とする固体微粒子とは有機物、無機物を問わない。また本発明における大粒子(粗粒子)としては、例えば20μm以上、好ましくは30μm以上、さらに好ましくは40μm以上、200μm以下、好ましくは100μm以下程度のものである。   The solid fine particles to be classified by the present invention may be organic or inorganic. The large particles (coarse particles) in the present invention are, for example, 20 μm or more, preferably 30 μm or more, more preferably 40 μm or more and 200 μm or less, preferably about 100 μm or less.

以下、実施例により本発明を説明する。ただし、これらは単なる実施の態様の一例であり、本発明の技術的範囲がこれらによりなんら限定的に解釈されるものではない。   Hereinafter, the present invention will be described by way of examples. However, these are merely examples of embodiments, and the technical scope of the present invention is not construed as being limited thereto.

〔実施例1〕
(1)ステンレス平板を折り曲げて作成した折れ板の屈曲角度θが90(度)、折れ板の気流方向の1辺の長さL及びL’がそれぞれ20cm、気流と垂直方向の折れ板の高さHBが50cm(以下の実施例で同じ)である4枚の同一寸法の折れ板を、折れ板の屈曲部間の間隔(ピッチ)Sが10cmになるように、屈曲部を水平面に対し垂直になるように配置し、分級エレメントを形成した。
[Example 1]
(1) The bending angle θ of a folded plate made by bending a stainless steel flat plate is 90 (degrees), the length L and L ′ of one side in the airflow direction of the folded plate are 20 cm, respectively, and the height of the folded plate in the direction perpendicular to the airflow Four bent plates of the same dimension having a height HB of 50 cm (the same in the following embodiments) are arranged so that the bent portions are perpendicular to the horizontal plane so that the spacing (pitch) S between the bent portions of the bent plates is 10 cm. The classification elements were formed.

(2)分級される固体微粒子としては、体積基準の平均粒子径19.1μm(レーザー散乱式粒子径分布測定装置、島津製作所社製、型式:SALD−2000J)であり、粒子径分布として、D10=9.6μm、D50=19.1μm、D90=36.6μmであるオキシ水酸化コバルト(CoOOH)微粒子(粒子比重約4、粒子形状は球状に近い。)を用いた。なお、実施例、比較例において、粗粒子とは、粒子径40μm以上の粒子をいう。供給粉体中の当該粒子径40μm以上の粒子(粗粒子)の含有率は、8.9質量%であった。 (2) The solid fine particles to be classified are a volume-based average particle size of 19.1 μm (laser scattering type particle size distribution measuring device, manufactured by Shimadzu Corporation, model: SALD-2000J), and the particle size distribution is D10 Cobalt oxyhydroxide (CoOOH) fine particles (particle specific gravity of about 4 and particle shape is nearly spherical) with = 9.6 μm, D50 = 19.1 μm, and D90 = 36.6 μm were used. In Examples and Comparative Examples, coarse particles mean particles having a particle diameter of 40 μm or more. The content rate of particles (coarse particles) having a particle diameter of 40 μm or more in the supplied powder was 8.9% by mass.

(なお、後記実施例2、実施例4〜11、比較例1〜3についても実施例1と同じ固体微粒子を用いて実験を行ったが、実施例3は、粒子径分布として、D10=8.6μm、D50=17.2μm、D90=33.2μmであるオキシ水酸化コバルト(CoOOH)微粒子(粒子比重約4、粒子形状は球状に近いものであり、粒径40μm以上の粒子(粗粒子)の含有率は6.2%である。)を用いて実験した。) (Note that although the following Example 2, Examples 4 to 11, and Comparative Examples 1 to 3 were also tested using the same solid fine particles as in Example 1, Example 3 has a particle size distribution of D10 = 8. .6 μm, D50 = 17.2 μm, D90 = 33.2 μm cobalt oxyhydroxide (CoOOH) fine particles (particle specific gravity about 4, particle shape is nearly spherical, particles having a particle size of 40 μm or more (coarse particles) The content ratio of was 6.2%.)).

(3)折れ板群(分級エレメント)の前後は、気流の整流のために長さ各1mの長方形断面の流路(整流部k)を設けて分級室を形成した。固体微粒子を含有する気流は、当該分級室に導入され、水平気流として、上記分級エレメントの4枚の折れ板壁面で形成される間隔S=10cm、高さHBが50cmの長方形の断面を有する3つの開口部を通過させた。 (3) Before and after the folded plate group (classifying element), a flow path (rectifying section k) having a rectangular cross section of 1 m in length was provided to rectify the airflow, thereby forming a classification chamber. The air flow containing the solid fine particles is introduced into the classification chamber, and has a rectangular cross section with a spacing S = 10 cm and a height HB of 50 cm formed by the four folded plate wall surfaces of the classification element as a horizontal air flow 3 Two openings were passed.

(4)試験に使用した分級装置は、図7に示したような、微粒子の供給槽30、テーブルフィーダー35、微粒子の均一分散のための加圧空気40、気流配管39、分級室20であり、内部に上記した分級エレメント10を備えた分級室20、出口配管41、バグフィルター43、吸引ブロワー47からなるものである。 (4) The classifier used in the test is a fine particle supply tank 30, a table feeder 35, pressurized air 40 for uniform dispersion of fine particles, an air flow pipe 39, and a classification chamber 20, as shown in FIG. The classification chamber 20 having the classification element 10 described above, an outlet pipe 41, a bag filter 43, and a suction blower 47 are included.

定量供給された微粒子は、気流中に均一分散させ、分級室内の分級エレメントに導入した。微粒子中の粗粒子は、折れ板壁面に慣性力で衝突し、折れ板壁面に沿って重力で下部に落下して捕集された。一方、供給微粒子中の微細粒子は、折れ板壁面に衝突しないで、折れ板間を通過し、分級室を出てバグフィルターで捕集された。   The finely supplied fine particles were uniformly dispersed in an air stream and introduced into the classification element in the classification chamber. Coarse particles in the fine particles collided with the folded plate wall surface by inertial force, and dropped along the folded plate wall surface by gravity and collected. On the other hand, the fine particles in the supplied fine particles passed between the folded plates without colliding with the folded plate wall surface, exited the classification chamber, and were collected by the bag filter.

供給気流中の粉体濃度150g/m3(以下の実施例で同じ)、折れ板群の前面開口部における平均風速1.5m/sec(気流温度28℃)という運転条件で、1時間の連続分級を行った。 Continuous for 1 hour under the operating conditions of a powder concentration of 150 g / m 3 (same in the following examples) in the supply airflow and an average wind speed of 1.5 m / sec (airflow temperature 28 ° C.) at the front opening of the folded plate group. Classification was performed.

(5)分級エレメントによる供給微粒子量に対する微細粒子側の回収率は、78.0質量%、粗粒子側の回収率は、22.0質量%であった(合計100%)。
分級前後の粒子径分布は次のとおりであった。
(5) The recovery rate on the fine particle side with respect to the amount of fine particles supplied by the classification element was 78.0% by mass, and the recovery rate on the coarse particle side was 22.0% by mass (total 100%).
The particle size distribution before and after classification was as follows.

すなわち、分級前の供給粉体の粒径分布は、D10=9.6μm、D50=19.1μm、D90=36.6μmであり、供給粉体中の粒子径40μm以上の粒子(粗粒子)の含有率が、8.9質量%であった。   That is, the particle size distribution of the supplied powder before classification is D10 = 9.6 μm, D50 = 19.1 μm, D90 = 36.6 μm, and particles (coarse particles) having a particle diameter of 40 μm or more in the supplied powder. The content rate was 8.9% by mass.

分級後の粒子径分布は、分級後の微細粒子側粉体は、D10=8.9μm、D50=17.5μm、D90=28.3μmであり、分級後の当該微細微子側粉体中の粒子径40μm以上の粒子(粗粒子)の含有率が、2.3質量%であった。一方、分級後の粗粒側粉体は、D10=16.5μm、D50=29.6μm、D90=51.8μm、分級後の粗粒粉体中の粒子径40μm以上の粒子(粗粒子)の含有率が、32.2質量%であった。
供給微粒子中に小部分存在する粗粒子が、効率良く分級されていた。
以下の結果を表1(折れ板式の分級装置の操作条件及び分級後の微粒子の回収率)及び表2(折れ板式の分級装置での分級前後の粒子径分布)に示した。
The particle size distribution after classification is as follows: fine particle side powder after classification is D10 = 8.9 μm, D50 = 17.5 μm, D90 = 28.3 μm. The content of particles (coarse particles) having a particle diameter of 40 μm or more was 2.3% by mass. On the other hand, the coarse particle side powder after classification is D10 = 16.5 μm, D50 = 29.6 μm, D90 = 51.8 μm, and particles (coarse particles) having a particle diameter of 40 μm or more in the coarse particle powder after classification. The content was 32.2% by mass.
Coarse particles present in a small part in the supplied fine particles were classified efficiently.
The following results are shown in Table 1 (operating conditions of the folding plate type classification device and the recovery rate of fine particles after classification) and Table 2 (particle size distribution before and after classification in the folding plate type classification device).

〔実施例2〜11〕
供給気流の折れ板での前面風速、折れ板一辺の長さ、折れ板の屈曲角度、折れ板屈曲部の間隔(ピッチ)を表1及び表2のように変更したほかは、実施例1と同様な実験を行った。結果を表1及び表2に示す。なお、実施例10及び実施例11については、折れ板の屈曲部分を、固定ではなく蝶番構造にして可変にした実施例である。
[Examples 2 to 11]
Example 1 except that the front wind speed at the folded plate of the supply airflow, the length of one side of the folded plate, the bending angle of the folded plate, and the interval (pitch) of the bent plate bent portions were changed as shown in Table 1 and Table 2. A similar experiment was conducted. The results are shown in Tables 1 and 2. In addition, about Example 10 and Example 11, it is an Example which made the bending part of the folding plate variable by using hinge structure instead of fixation.

〔比較例1〜3〕
供給気流の流速、折れ板壁面一辺の長さ、折れ板壁面の屈曲角度、折れ板壁面屈曲部の間隔(ピッチ)を表3のように変更したほかは、実施例1と同様な実験を行った。結果を表3に示す。
[Comparative Examples 1-3]
The same experiment as in Example 1 was performed except that the flow velocity of the supply airflow, the length of one side of the folded plate wall surface, the bending angle of the folded plate wall surface, and the interval (pitch) of the bent plate wall surface bent portions were changed as shown in Table 3. It was. The results are shown in Table 3.

Figure 2006068630
Figure 2006068630

Figure 2006068630
Figure 2006068630

Figure 2006068630
Figure 2006068630

本発明によれば、例えば上記した実施例(表1〜表2)に示したように、大粒子(粗粒子)と小粒子(微細粒子)を含む固体微粒子を効果的に分級できる分級装置が提供され、特に、従来の分級装置では、効果的に分級することがきわめて困難であった大粒子または小粒子が他の粒子径のものに対して、小部分存在する場合、当該小部分存在する粒子を大部分存在する粒子から分級し、分離するのに適した分級装置及び分級方法が提供されるものであり、その産業上の利用可能性は非常に大きい。   According to the present invention, for example, as shown in the above-described Examples (Tables 1 to 2), there is provided a classification device that can effectively classify solid fine particles including large particles (coarse particles) and small particles (fine particles). In particular, when a large particle or small particle, which is extremely difficult to classify effectively with a conventional classification apparatus, is present in a small portion with respect to those of other particle sizes, the small portion is present. A classification device and a classification method suitable for classifying and separating particles from most existing particles are provided, and their industrial applicability is very large.

分離エレメントを形成する折れ板の形状、配置を示す斜視図である。It is a perspective view which shows the shape and arrangement | positioning of a folding plate which form a separation element. 折れ板の配置により、流路が形成される状態を示す平面図である。It is a top view which shows the state in which a flow path is formed by arrangement | positioning of a folding plate. 本発明の分級エレメントによる分級メカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the classification mechanism by the classification element of this invention. 固体粒子含有気流を本発明の分級エレメントに流し、分級が行われる状態を示す説明図である。It is explanatory drawing which shows the state by which a solid particle containing airflow is flowed to the classification element of this invention, and classification is performed. 分級エレメントのディメンション等を説明する平面図である。It is a top view explaining the dimension etc. of a classification element. 分級エレメントを収納した分級室を示す説明図である。It is explanatory drawing which shows the classification chamber which accommodated the classification element. 分級エレメントを備えた分級装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the classification apparatus provided with the classification element.

符号の説明Explanation of symbols

1 屈曲部
3 折れ板
5,5’折れ板壁面
7,7’流路
10 分級エレメント
20 分級室
23 気流入口
25 気流出口
30 固体微粒子供給槽
33 固体微粒子
35 テーブルフィーダー等粉体供給手段
37 空気
38 粒子受け入れ部
39 気流配管
40 分散用加圧空気
41 出口配管
43 バグフィルター等粉塵回収手段
45 清澄な排出気体
47 吸引ブロワー
d ダストシュート
F,F’処理前の気流および処理後の気流
HB 折れ板壁面高さ
k,k’整流部(の長さ)
L,L’折れ板壁面の気流方向の一辺の長さ
1,N2,N3 それぞれの折れ板
P 大粒子
p’ 微細粒子
S 対向する折れ板壁面の屈曲部における間隔
T 分級室底板
U 折れ板前面における風速
θ 屈曲部における折れ板壁面のなす外角度(屈折角度)
1 Bent part 3 Folded plate
5,5 'folded plate wall
7, 7 'flow path 10 classification element 20 classification chamber 23 air flow inlet 25 air flow outlet 30 solid fine particle supply tank 33 solid fine particle 35 powder feeder means 37 such as table feeder air 38 particle receiving portion 39 air flow piping 40 pressurized air 41 for dispersion Outlet piping 43 Dust collection means 45 such as bag filter Clear exhaust gas 47 Suction blower d Dust chute F, F 'Airflow before treatment and airflow HB after treatment HB Folding plate wall height k, k' Rectification part (length)
L, L ′ Folded plate wall side length N 1 , N 2 , N 3 of each side of folded plate P Large particle p ′ Fine particle S Spacing at the bent portion of the bent plate wall facing surface T Classification chamber bottom plate U Wind speed θ at the front of the folded plate Outside angle (refraction angle) formed by the folded plate wall surface at the bent part

Claims (11)

分級すべき大粒子と小粒子を含む固体微粒子の分級装置であって、屈曲部を有する複数個の折れ板を、互いに間隔を設けて垂直に配置して、当該折れ板の壁面により屈曲した流路を形成した分級エレメントと、
当該分級エレメントを備えた分級室と、
前記固体微粒子を含有する気流を、当該分級室に供給する手段と、
当該分級エレメントの流路中において、折れ板壁面に衝突させて捕捉した当該固体微粒子中の大粒子を、壁面に沿って重力で落下させて捕集する手段と、及び
当該分級エレメントの流路を気流に同伴して通過した前記小粒子を当該分級室外にて捕集する手段とからなることを特徴とする固体微粒子の分級装置。
A device for classifying solid fine particles including large particles and small particles to be classified, wherein a plurality of bent plates having bent portions are arranged vertically at intervals from each other and bent by the wall surface of the bent plates. A classification element that forms a path;
A classification room equipped with the classification element;
Means for supplying an airflow containing the solid fine particles to the classification chamber;
In the flow path of the classification element, means for dropping and collecting large particles in the solid fine particles colliding with the folded plate wall surface by gravity along the wall surface, and the flow path of the classification element A solid fine particle classification device comprising: means for collecting the small particles that have passed along with the air flow outside the classification chamber.
分級すべき大粒子と小粒子を含む固体微粒子の分級装置であって、屈曲部を有する折れ板を、複数個、互いに間隔を設けて垂直に配置して、当該折れ板の壁面により断面折れ曲がり部を有する流路を形成してなる分級エレメントを備え、前記固体微粒子を含有する気流を、当該エレメントの折れ曲がり流路に流し、当該大粒子を折れ板壁面に衝突させて捕捉し、これを壁面に沿って重力で落下させて捕集し、前記小粒子は、気流に同伴させて前記エレメント外に取り出すことを特徴とする固体微粒子の分級装置。   A device for classifying solid fine particles including large particles and small particles to be classified, wherein a plurality of bent plates having bent portions are vertically arranged at intervals from each other, and a cross-section bent portion is formed by a wall surface of the bent plates. A classification element formed by forming a flow path having a flow path, and flowing an air flow containing the solid fine particles through the bent flow path of the element, causing the large particles to collide with the folded plate wall surface, and capturing it on the wall surface. A device for classifying solid fine particles, wherein the small particles are collected by being dropped along with gravity, and the small particles are taken out of the element along with an air stream. 前記大粒子が小粒子に比較してその含有量において小部分であるか、または、前記小粒子が大粒子に比較してその含有量において小部分である請求項1又は2に記載の分級装置。   The classification device according to claim 1 or 2, wherein the large particles are a small part in the content compared to the small particles, or the small particles are a small part in the content compared to the large particles. . 前記気流が前記エレメントの折れ板壁面間流路を流れる際に、折れ板の前面における風速が、0.3〜3.0m/secである請求項1〜3のいずれかに記載の分級装置。   The classification device according to any one of claims 1 to 3, wherein when the airflow flows through the flow path between the folded plate wall surfaces of the element, the wind speed at the front surface of the folded plate is 0.3 to 3.0 m / sec. 前記エレメントの屈曲部における折れ板壁面のなす外角度θ(屈折角度)が、30〜150(度)である請求項4に記載の分級装置。   The classification device according to claim 4, wherein an outer angle θ (refractive angle) formed by a bent plate wall surface in the bent portion of the element is 30 to 150 (degrees). 前記エレメントの垂直方向に配置される折れ板壁面の角度が、垂直面に対して±45(度)以内である請求項4に記載の分級装置。   The classification device according to claim 4, wherein an angle of a folded plate wall surface arranged in the vertical direction of the element is within ± 45 (degrees) with respect to the vertical plane. 前記エレメントの対向する折れ板壁面の屈曲部における間隔(ピッチ)Sが、1.0〜30cmである請求項4に記載の分級装置。   The classifying apparatus according to claim 4, wherein an interval (pitch) S in a bent portion of the opposing folded plate wall surface of the element is 1.0 to 30 cm. 前記エレメントの折れ板壁面の気流方向の1辺の長さが、S×COS((180−θ)/2)で計算される長さ以上である請求項4に記載の分級装置。   The classification device according to claim 4, wherein the length of one side in the airflow direction of the folded plate wall surface of the element is equal to or longer than a length calculated by S × COS ((180−θ) / 2). 気流が前記エレメントを通過するまでの折れ板の屈曲回数が、1〜5回である請求項4〜8のいずれかに記載の分級装置。   The classification device according to any one of claims 4 to 8, wherein the bent plate is bent 1 to 5 times until the airflow passes through the element. 前記エレメントの折れ板の屈曲部分が蝶番構造であり、屈曲角度が可変であるように構成される請求項4〜8のいずれかに記載の分級装置。   The classification device according to any one of claims 4 to 8, wherein the bent portion of the bent plate of the element has a hinge structure, and the bending angle is variable. 分級すべき大粒子と小粒子を含む固体微粒子を分級する方法であって、屈曲部を有する折れ板を、複数個、互いに間隔を設けて垂直に配置して、当該折れ板壁面により断面折れ曲がり部を有する流路を形成して分級エレメントを構成し、前記固体微粒子を含有する気流を、当該エレメントの折れ曲がり流路に流し、当該大粒子を折れ板壁面に衝突させて捕捉し、これを壁面に沿って重力で落下させて捕集し、前記小粒子は、気流に同伴させて前記エレメント外に取り出すことを特徴とする固体微粒子の分級方法。   A method of classifying solid fine particles including large particles and small particles to be classified, wherein a plurality of bent plates having bent portions are arranged vertically at intervals from each other, and a cross-section bent portion is formed by the folded plate wall surface. Forming a classification element by forming a flow path having an air flow, and flowing an air flow containing the solid fine particles through the bent flow path of the element, causing the large particles to collide with the folded plate wall surface, and capturing it on the wall surface. A method for classifying solid fine particles, wherein the small particles are collected by being dropped along with gravity, and the small particles are taken out of the element along with an air flow.
JP2004254553A 2004-09-01 2004-09-01 Classifier and classification method for solid particulate Pending JP2006068630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254553A JP2006068630A (en) 2004-09-01 2004-09-01 Classifier and classification method for solid particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254553A JP2006068630A (en) 2004-09-01 2004-09-01 Classifier and classification method for solid particulate

Publications (1)

Publication Number Publication Date
JP2006068630A true JP2006068630A (en) 2006-03-16

Family

ID=36149783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254553A Pending JP2006068630A (en) 2004-09-01 2004-09-01 Classifier and classification method for solid particulate

Country Status (1)

Country Link
JP (1) JP2006068630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075796A (en) * 2008-09-24 2010-04-08 Fujitsu Ltd Particle sorting apparatus and method, and method of manufacturing electronic member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184465A (en) * 1975-01-21 1976-07-23 Ishikawajima Harima Heavy Ind KISOCHUKARANORYUSHI BUNKYUSOCHI
JPS5485579U (en) * 1977-11-30 1979-06-16
JPH0414696Y2 (en) * 1986-06-12 1992-04-02
JPH04132998A (en) * 1990-09-26 1992-05-07 Ngk Insulators Ltd Sorting device for radioactive waste and decontaminating device utilizing it
JPH0588671U (en) * 1991-08-23 1993-12-03 株式会社三栄シリカ Powder classifier
JP2002001222A (en) * 2000-06-27 2002-01-08 Takahashi Kikan:Kk Fibrillation facilities
JP2002311180A (en) * 2001-04-18 2002-10-23 Mitsubishi Heavy Ind Ltd Moisture separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184465A (en) * 1975-01-21 1976-07-23 Ishikawajima Harima Heavy Ind KISOCHUKARANORYUSHI BUNKYUSOCHI
JPS5485579U (en) * 1977-11-30 1979-06-16
JPH0414696Y2 (en) * 1986-06-12 1992-04-02
JPH04132998A (en) * 1990-09-26 1992-05-07 Ngk Insulators Ltd Sorting device for radioactive waste and decontaminating device utilizing it
JPH0588671U (en) * 1991-08-23 1993-12-03 株式会社三栄シリカ Powder classifier
JP2002001222A (en) * 2000-06-27 2002-01-08 Takahashi Kikan:Kk Fibrillation facilities
JP2002311180A (en) * 2001-04-18 2002-10-23 Mitsubishi Heavy Ind Ltd Moisture separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075796A (en) * 2008-09-24 2010-04-08 Fujitsu Ltd Particle sorting apparatus and method, and method of manufacturing electronic member

Similar Documents

Publication Publication Date Title
SE527104C2 (en) Method and apparatus for separating dust particles
EP3034943B1 (en) Duct wall surface structure
CA2168486C (en) Particle agglomeration and precipitation from a gaseous stream
US7951217B2 (en) Low pressure impact separator for separation, classification and collection of ultra-fine particles
US8475577B2 (en) Omnidirectional aerosol sampling intake
JP6596041B2 (en) Fine particle collector
JP2006068630A (en) Classifier and classification method for solid particulate
CN210613229U (en) Filter device
BG98095A (en) Device for multicomponent fluids separation
JP4978875B2 (en) Cyclone
JP2002361179A (en) Classifier for glass powder
US8083071B2 (en) Rotating cone classifier
Kwon et al. Novel air filtration device for building air handling unit
JP4605707B2 (en) Filter separator
JPS6142380A (en) Dry type sorter
JP5603128B2 (en) Separation device
RU2316397C1 (en) Fine dust catcher
RU168683U1 (en) DUST CATCHER CLASSIFIER
CN2619720Y (en) High-voltage electrostatic duster containing new air inlet device
JP2018004206A (en) Duct structure, boiler, and removal method for solid particles from solid-gas biphase flow
JP2004050084A (en) Bag filter apparatus
JP2013226496A (en) Dust collecting device
JP2000107533A (en) Bag filter apparatus
Velasquez Influence of water injection rate on the Vortecone, an impingement screen, and a conventional filter screen cleaning efficiency
CN111821791A (en) Filter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A02 Decision of refusal

Effective date: 20100917

Free format text: JAPANESE INTERMEDIATE CODE: A02