JP2006067721A - Closed power switching device - Google Patents

Closed power switching device Download PDF

Info

Publication number
JP2006067721A
JP2006067721A JP2004248340A JP2004248340A JP2006067721A JP 2006067721 A JP2006067721 A JP 2006067721A JP 2004248340 A JP2004248340 A JP 2004248340A JP 2004248340 A JP2004248340 A JP 2004248340A JP 2006067721 A JP2006067721 A JP 2006067721A
Authority
JP
Japan
Prior art keywords
pressure vessel
pressure
vacuum valve
gas
disconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004248340A
Other languages
Japanese (ja)
Other versions
JP4468768B2 (en
Inventor
Shinji Sato
伸治 佐藤
Masahiro Arioka
正博 有岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004248340A priority Critical patent/JP4468768B2/en
Publication of JP2006067721A publication Critical patent/JP2006067721A/en
Application granted granted Critical
Publication of JP4468768B2 publication Critical patent/JP4468768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain the design flexibility of and reduce the cost of a closed power switching device that uses air, nitrogen, or the like as insulating gas. <P>SOLUTION: The closed power switching device includes a first pressure vessel 2 that is filled therein with insulating gas, and has first equipment requiring insulation placed therein; and second pressure vessels 12 and 14 that are filled therein with insulating gas, and have second equipment requiring insulation like the first equipment placed therein. Equipment that requires a higher breakdown voltage than the second equipment is included in the first equipment by insulating gas. The pressure in the first pressure vessel 2 is set to a value higher than the pressure in the second pressure vessels 12 and 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電力の送配電系統中に配置され、電力の遮断、電路の切り離し、電力設備の安全な点検等を行う密閉形電力開閉装置に関するものである。   The present invention relates to a hermetic power switchgear that is disposed in a power transmission / distribution system and that performs power interruption, disconnection of an electric circuit, safe inspection of power equipment, and the like.

電力開閉装置はその内部に3相分の電路を配しており、その相間、および電路と接地導体の間にあたる対地間には電気的な絶縁が不可欠である。そのために内部構造を密閉形にして、SFガスを絶縁媒体として充填する場合がある。 The electric power switchgear has three phases of electric circuits disposed therein, and electrical insulation is indispensable between the phases and the ground between the electric circuit and the ground conductor. For this purpose, the internal structure may be sealed, and SF 6 gas may be filled as an insulating medium.

図6は従来の密閉形電力開閉装置を示す構成断面図である。これは、非特許文献1の「VCB搭載72/84kV C−GISの製品化」に記載されている。題名中のC−GISとはキュービクル形ガス絶縁開閉装置(Cubicle-type Gas Insulated Switchgear)のことであり、密閉形電力開閉装置の一形態である。図6により、単相分の電路構造が把握できる。   FIG. 6 is a structural cross-sectional view showing a conventional hermetic power switchgear. This is described in Non-Patent Document 1, “Production of VCB-mounted 72/84 kV C-GIS”. C-GIS in the title is a cubicle-type gas insulated switchgear, and is one form of a sealed power switchgear. The electric circuit structure for a single phase can be grasped from FIG.

以下、図6の電路構造を説明する。図中右下からケーブル81が図示しない地下から立ち上がり、計器用変流器(CT)82中心を通ってT形ケーブルヘッド(T形CH)83に接続されている。T形ケーブルヘッド83以降、電路は一度下方へ向かい、ケーブルと真空バルブ84(遮断部のことで、非特許文献1のタイトル中にVCBと記載されているのは、遮断部に真空バルブを使用した遮断器のことを真空遮断器(Vacuum Circuit Breaker: VCB)と呼ぶためである。)を切り離すための線路断路器(線路DS)85を介し、真空バルブ84へと繋がっている。   Hereinafter, the electric circuit structure of FIG. 6 will be described. A cable 81 rises from the basement (not shown) from the lower right in the drawing, and is connected to a T-shaped cable head (T-shaped CH) 83 through the center of an instrument current transformer (CT) 82. After the T-shaped cable head 83, the electric circuit once goes downward, and the cable and the vacuum valve 84 (the blocking part. VCB is described in the title of Non-Patent Document 1 because a vacuum valve is used for the blocking part. This circuit breaker is connected to the vacuum valve 84 via a line breaker (line DS) 85 for breaking the vacuum circuit breaker (Vacuum Circuit Breaker: VCB).

この間、電路電圧を計測する分圧器(VD)86、過電圧を吸収する避雷器(LA)87、線路断路器85開極後にケーブルに残留した電荷を除去するための接地開閉器(線路ES)88、が電路と並列に設置されている。さらに真空バルブ84以降の電路は、母線89(通常、図6の電力開閉装置や変圧器等を紙面奥行き方向に列盤してひとつの電気室としての機能が発揮されるが、その盤間を接続する電路を母線という)と真空バルブ84を切り離すための母線断路器90を介して母線へと繋がっている。なお91は真空バルブ84の開閉を操作するVCB操作器、92は線路断路器85の開閉を操作するDS操作器、93は接地開閉器88の開閉を操作するES操作器、94は母線断路器90の開閉を操作するDS操作器である。   During this time, a voltage divider (VD) 86 for measuring the circuit voltage, a lightning arrester (LA) 87 for absorbing overvoltage, a ground switch (line ES) 88 for removing the charge remaining on the cable after the line disconnector 85 is opened, Is installed in parallel with the electric circuit. Further, the electric circuit after the vacuum valve 84 is connected to the bus 89 (usually the power switchgear, transformer, etc. of FIG. 6 are arranged in the depth direction of the page to function as one electric room. The electric circuit to be connected is called a bus) and is connected to the bus via a bus disconnector 90 for disconnecting the vacuum valve 84. Reference numeral 91 is a VCB operation device for operating the opening and closing of the vacuum valve 84, 92 is a DS operation device for operating the opening and closing of the line disconnect switch 85, 93 is an ES operation device for operating the opening and closing of the ground switch 88, and 94 is a bus disconnecting device. This is a DS operation device for operating 90 opening and closing.

以上で単相分の電路が構成され、これを紙面奥行き方向に三列配置して三相構造としている。図中の点線で囲まれた部分は接地された密閉容器95であり、三相分がひとつの密閉容器95内に収納されている。密閉容器95内には絶縁性能の良好なSF(六フッ化硫黄)を充填し、耐電圧性能を向上させ、密閉容器寸法を縮小している。 The electric circuit for a single phase is configured as described above, and this is arranged in three rows in the depth direction of the paper to form a three-phase structure. A portion surrounded by a dotted line in the figure is a grounded sealed container 95, and three phases are housed in one sealed container 95. The hermetic container 95 is filled with SF 6 (sulfur hexafluoride) having good insulation performance to improve the withstand voltage performance and to reduce the dimensions of the hermetic container.

“VCB搭載72/84kV C−GISの製品化”、電気設備学会誌、平成13年10月号、第795〜799頁"Production of 72 / 84kV C-GIS with VCB", Journal of the Institute of Electrical Installation, October 2001, 795-799

SFには非常に強い地球温暖化能力があり(二酸化炭素の23900倍)、近年の地球環境保護意識の高まりを背景に、SFを使用しない電力開閉装置が求められている。これを受けて、電力開閉装置の分野では、SFの替わりに地球温暖化能力のない空気,窒素,酸素,および地球温暖化能力の小さい二酸化炭素,並びにそれらのうちの2〜4種を適当な比率で混合した絶縁気体(絶縁ガス)を用いる方法がある。ただし、それらの耐電圧性能(ある一定距離の電極間に電圧を印加した場合の放電電圧)はSFの1/2〜1/3程度と低い。SFと同じ耐電圧性能を得るには、充填ガス圧を2〜3倍(つまり前記1/2〜1/3という比率の概略逆数分)にまで高めればよい。しかし、この場合には次の問題点が発生する。 SF 6 has a very strong global warming ability (23,900 times that of carbon dioxide), and a power switchgear that does not use SF 6 is demanded against the background of increasing awareness of global environmental protection in recent years. In response to this, in the field of power switchgear, instead of SF 6 , air, nitrogen, oxygen, carbon dioxide with a small global warming ability, and 2 to 4 of them are appropriately used. There is a method using an insulating gas (insulating gas) mixed at a proper ratio. However, (discharge voltage when a voltage is applied between a certain distance of the electrodes) their withstand voltage performance is 1 / 2-1 / 3 degree and low SF 6. In order to obtain the same withstand voltage performance as SF 6 , the filling gas pressure may be increased to 2 to 3 times (that is, approximately the reciprocal of the ratio of 1/2 to 1/3). However, in this case, the following problems occur.

問題点1:
例えば、従来のSF機種の充填ガス圧力は、おおむね0.1〜0.2MPa.abs.で、その2〜3倍のガス圧力となると、最大0.6MPa.abs.に達する。これだけのガス圧力に耐えるためには、非常に堅牢で限定的なガスタンク構造が要求される。すなわち圧力に耐えるため、タンクの断面形状は円形か楕円形が合理的であるが、これらの形状は内部に機器を搭載する上では必ずしも合理的ではない。この意味では平面が複数組み合わされた形状のタンクの方が合理的である。しかしこの場合、差圧による壁面での応力が不均等になり、歪みが発生し易くなってガス充填後の寸法精度が得にくくなる。またタンク板厚を増大させれば内圧力に耐えることができるが、材料コストが高くなるばかりか重量も増大する。このように高ガス圧に充填し必要耐電圧を確保する場合、タンク構造は円形または楕円形に限定されやすくなり、面で構成されるタンク構造、例えば、矩形タンク構造を採用しようとすると、コストと重量で問題点が生じる。
Problem 1:
For example, the filling gas pressure of the conventional SF 6 models is about 0.1 to 0.2 MPa. abs. When the gas pressure is 2 to 3 times the maximum, 0.6 MPa. abs. To reach. In order to withstand such a gas pressure, a very robust and limited gas tank structure is required. In other words, in order to withstand the pressure, it is reasonable that the cross-sectional shape of the tank is circular or elliptical, but these shapes are not always reasonable for mounting equipment inside. In this sense, a tank with a shape in which a plurality of planes are combined is more reasonable. However, in this case, the stress on the wall surface due to the differential pressure becomes uneven and distortion is likely to occur, making it difficult to obtain dimensional accuracy after gas filling. Further, if the tank plate thickness is increased, it can withstand the internal pressure, but the material cost increases and the weight also increases. In this way, when filling with a high gas pressure and ensuring the required withstand voltage, the tank structure is likely to be limited to a circle or an ellipse, and it is costly to adopt a tank structure composed of surfaces, for example, a rectangular tank structure. And problems arise in weight.

問題点2:
空気や窒素など耐電圧性能が低い気体を使用すると、上記問題が生じるので、耐電圧性能に優れた固体絶縁物で電路全体を被覆するという考え方もある。しかし、この場合にも次の課題がある。電力開閉装置では電力の遮断を行う部分に真空バルブという、セラミック製真空容器中に遮断接点を配した部材を用いる場合がある。このセラミックを固体絶縁物で被覆するための注型時の硬化過程において、双方の線膨張係数の違いから界面での密着性が低下し剥離が生じる場合もある。剥離が生じると剥離空間で部分放電が発生し易くなる。部分放電は固体絶縁物の劣化を進行させるので、最悪の場合、電力開閉装置に要求される絶縁の長期信頼性が保てなくなる。この点は、寸法の小さい真空バルブであって、電路電圧あるいは部分放電試験電圧が低ければ顕在化しない。しかし、定格電圧の高い機種に適用する際、あるいは定格電圧は低くても寸法の大きな真空バルブを使用する際には顕在化し、避けて通れない問題である。
Problem 2:
If a gas with low withstand voltage performance such as air or nitrogen is used, the above problem occurs. Therefore, there is a concept of covering the entire electric circuit with a solid insulator having excellent withstand voltage performance. However, even in this case, there are the following problems. In the power switchgear, there is a case where a member called a vacuum valve is provided in the ceramic vacuum vessel for the power cutoff. In the hardening process at the time of casting for coating this ceramic with a solid insulator, the adhesiveness at the interface may be lowered due to the difference in both linear expansion coefficients, and peeling may occur. When peeling occurs, partial discharge easily occurs in the peeling space. Since partial discharge causes deterioration of the solid insulator, in the worst case, the long-term reliability of insulation required for the power switchgear cannot be maintained. This point is a vacuum valve with a small size, and does not become obvious if the circuit voltage or the partial discharge test voltage is low. However, it is a problem that cannot be avoided when it is applied to a model with a high rated voltage or when a vacuum valve with a large size is used even if the rated voltage is low.

このように空気や窒素などを使用すると、充填ガス圧上昇によってタンク構造は円形または楕円形に限定されやすくなり、設計自由度低下、高コスト、重量増大という問題点が発生する。そして、固体絶縁物で電路全体を被覆する場合には注型時の界面剥離により部分放電が発生する場合があるという問題点がある。   When air, nitrogen, or the like is used in this way, the tank structure is likely to be limited to a circle or an ellipse due to an increase in filling gas pressure, which causes problems such as a reduction in design freedom, high cost, and an increase in weight. And when covering the whole electric circuit with a solid insulator, there exists a problem that a partial discharge may generate | occur | produce by the interface peeling at the time of casting.

この発明は、上記のような問題点を解消するためになされたもので、設計自由度を損なわず、低コスト化が可能な密閉形電力開閉装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a hermetic power switchgear capable of reducing the cost without impairing the degree of freedom in design.

この発明に係わる密閉形電力開閉装置は、内部に絶縁ガスが充填され、絶縁を必要とする第一機器をその内部に配置する第一圧力容器、内部に絶縁ガスが充填され、上記第一圧力容器と共に絶縁を必要とする第二機器をその内部に配置する第二圧力容器を備え、上記第一機器には、絶縁ガスによって、上記第二機器より高い耐電圧を必要とする機器を含有させ、上記第一圧力容器の圧力を、上記第二圧力容器の圧力より高くしたものである。   A hermetic power switchgear according to the present invention includes a first pressure vessel in which an insulating gas is filled and a first device that requires insulation is disposed therein. The first pressure vessel is filled with an insulating gas. A second pressure vessel is provided in which a second device that requires insulation is disposed together with the container, and the first device contains a device that requires a higher withstand voltage than the second device by an insulating gas. The pressure of the first pressure vessel is higher than the pressure of the second pressure vessel.

この発明の密閉形電力開閉装置によれば、第一機器(例えば、真空バルブの外側沿面)の耐電圧は、ガス圧の高い第一圧力容器内に配置される分だけ高くすることができる。従来の密閉形電力開閉装置のように単一圧力容器構造の場合、第一機器(例えば、真空バルブの外側沿面)の耐電圧を上記と同等分向上させようとすると、圧力を高めるために、圧力容器構造には高い機械強度が要求され、形状の設計自由度が低下し、高コスト化、重量増大を招きやすい。この発明は、第二圧力容器のガス圧を低く抑えることができので、設計自由度を損なわず、低コスト化が可能となる。   According to the hermetic power switchgear of the present invention, the withstand voltage of the first device (for example, the outer surface of the vacuum valve) can be increased by the amount disposed in the first pressure vessel having a high gas pressure. In the case of a single pressure vessel structure like a conventional hermetic power switchgear, in order to increase the pressure resistance of the first device (for example, the outer creepage of the vacuum valve) by the same amount as above, in order to increase the pressure, The pressure vessel structure is required to have high mechanical strength, the degree of freedom in designing the shape is lowered, and the cost is increased and the weight is easily increased. According to the present invention, since the gas pressure in the second pressure vessel can be kept low, the design freedom is not impaired and the cost can be reduced.

実施の形態1.
図1はこの発明の実施の形態1である密閉形電力開閉装置を示す構成断面図である。この密閉形電力開閉装置において、電力(電流)の遮断を行う部分は真空バルブ1である。この図では真空バルブ1の詳細は略しているが、真空度を10−3〜10―5Paに維持した容器内部に、可動側と固定側から成る一対の接点が配設されており、その開閉によって電流の遮断と投入を行う。
Embodiment 1 FIG.
FIG. 1 is a structural cross-sectional view showing a sealed electric power switch according to Embodiment 1 of the present invention. In this hermetic power switchgear, the part that cuts off the electric power (current) is the vacuum valve 1. Although the details of the vacuum valve 1 are omitted in this figure, a pair of contacts consisting of a movable side and a fixed side are arranged inside a container whose degree of vacuum is maintained at 10 −3 to 10 −5 Pa. The current is cut off and turned on by opening and closing.

この真空バルブ1は、第一圧力容器2の内部に、絶縁ロッド3(遮断器操作機構部4からの操作力を真空バルブ1の可動側接点に伝達しつつ、電路と遮断器操作機構部4を絶縁する部材)とスライドコンタクト5(可動部側電路の変位にあわせてスライドしつつ、電気的接触を維持する接触子)と共に配置されている。第一圧力容器2の外側にはケーブル側断路器6(スリーポジション形と呼ばれ、ブレード導体の位置によって図面の上から投入、断路、接地の3位置をとれる構造のもの。ただし、3位置がとれるブレード形以外の構造でも良い)が配置され、投入位置の先にはアレスタ7(過電圧を吸収し内部の各部材を保護する機器)が、さらにケーブル8の心線を接地するためのケーブル用接地開閉器9が配置されている。そしてケーブルヘッド10を介してケーブル8へと接続されている。   The vacuum valve 1 has an insulating rod 3 (operating force from the circuit breaker operating mechanism unit 4 is transmitted to the movable contact of the vacuum valve 1 while the electric circuit and the circuit breaker operating mechanism unit 4 are provided inside the first pressure vessel 2. And a slide contact 5 (contact that maintains electrical contact while sliding in accordance with the displacement of the movable part side electric circuit). Outside the first pressure vessel 2 is a cable-side disconnector 6 (called a three-position type, which has a structure that can take three positions from the top of the drawing, disconnection and grounding depending on the position of the blade conductor. Arrestor 7 (a device that absorbs overvoltage and protects each internal member) is placed at the end of the loading position, and for the cable for grounding the core of cable 8 A ground switch 9 is arranged. And it is connected to the cable 8 via the cable head 10.

一方、真空バルブ1の固定側には、バリヤ付きブッシング11が設けられている。そして、上記の各部材のうちケーブル8とケーブルヘッド10を除くものは、接地されている第二圧力容器12の内部に配置されている。さらにバリヤ付きブッシング11を貫く導体は母線側断路器13が内部に配置された母線側断路器圧力容器(第二圧力容器)14に入り、さらにバリヤ付きブッシング15を介し、母線16が内部に配置された母線圧力容器17へと入る。なお、18はケーブル側断路器・接地開閉器操作機構部、19はケーブル接地開閉器操作機構部、20は母線側断路器操作機構部である。   On the other hand, a bushing 11 with a barrier is provided on the fixed side of the vacuum valve 1. The members other than the cable 8 and the cable head 10 are disposed inside the second pressure vessel 12 that is grounded. Further, the conductor passing through the bushing 11 with the barrier enters the bus-side disconnector pressure vessel (second pressure vessel) 14 in which the bus-side disconnector 13 is arranged, and further, the busbar 16 is arranged inside through the bushing 15 with the barrier. Enter the generated busbar pressure vessel 17. Reference numeral 18 denotes a cable side disconnector / grounding switch operating mechanism, 19 denotes a cable grounding switch operating mechanism, and 20 denotes a bus side disconnector operating mechanism.

次に、図1中の第一圧力容器2の材質、内容積、充填ガス種、充填ガス圧等を説明する。材質には、エポキシ樹脂やガラスエポキシ複合材のような、機械強度のある絶縁物材質を用いる。絶縁物を用いる理由は、仮に容器に金属を使用すると、その容器にはブッシングを配設しなければならなくなり、構造の複雑化と寸法増大とコストアップが予想されるためである。図1では第一圧力容器2は上下二分割の構造であるが、分割なしあるいは3分割以上でも良い。分割の方向は図1のように真空バルブの中心軸に対して垂直な方がよい。充填ガス種は、空気,窒素,二酸化炭素,酸素のいずれか、またはこれらを2種類以上混合した気体である。充填ガス圧については、後述の第二圧力容器12の充填ガス圧より高い。   Next, the material, inner volume, filling gas type, filling gas pressure, etc. of the first pressure vessel 2 in FIG. 1 will be described. As the material, an insulator material having mechanical strength such as an epoxy resin or a glass epoxy composite material is used. The reason for using an insulator is that if a metal is used for the container, a bushing must be provided in the container, and the structure is complicated, the size is increased, and the cost is expected. In FIG. 1, the first pressure vessel 2 has a vertically divided structure, but it may be divided into three or more. The direction of division is preferably perpendicular to the central axis of the vacuum valve as shown in FIG. The filling gas species is air, nitrogen, carbon dioxide, oxygen, or a gas obtained by mixing two or more of these. The filling gas pressure is higher than the filling gas pressure of the second pressure vessel 12 described later.

一方、第二圧力容器12の材質には従来どおりの金属でよい。充填ガス種は、空気,窒素,二酸化炭素,酸素のいずれか、またはこれらを2種類以上混合した気体で、第一圧力容器2のガス種と異なっていても良い。第二圧力容器12の内圧は、矩形ガスタンク構造としてもタンク板厚やタンク重量が過剰に増大しない程度の比較的低い値とする。一例を挙げると、0.1〜0.3MPa.abs.程度である。一方、第一圧力容器2の内圧の一例は0.4〜0.5MPa.abs.程度である。   On the other hand, the material of the second pressure vessel 12 may be a conventional metal. The filling gas type is air, nitrogen, carbon dioxide, oxygen, or a gas obtained by mixing two or more of these, and may be different from the gas type of the first pressure vessel 2. The internal pressure of the second pressure vessel 12 is set to a relatively low value so that the tank plate thickness and the tank weight do not increase excessively even in a rectangular gas tank structure. As an example, 0.1 to 0.3 MPa. abs. Degree. On the other hand, an example of the internal pressure of the first pressure vessel 2 is 0.4 to 0.5 MPa. abs. Degree.

このような構成の電力開閉装置の作用効果を説明する。密閉形電力開閉装置はその定格電圧に応じた雷インパルス耐電圧と交流耐電圧が要求され、これらの耐電圧試験時および運転時に電圧が印加される部位には、所望の耐電圧を得る手段が必要である。この手段としては、(1)当該部位の絶縁距離を長くする、(2)密閉形電力開閉装置内部の充填ガス圧を上昇させる、(3)絶縁バリヤまたは絶縁被覆、の3つがある。この3つの手段のどの方法も適用可能な部位もあれば、種々の理由から手段が限られる部位もある。真空バルブ外側のセラミック表面は後者に分けられる。   The operation and effect of the power switching device having such a configuration will be described. A sealed power switchgear is required to have a lightning impulse withstand voltage and an AC withstand voltage according to its rated voltage, and means for obtaining a desired withstand voltage is provided at a site where voltage is applied during these withstand voltage tests and operation. is necessary. There are three means: (1) increase the insulation distance of the part, (2) increase the filling gas pressure inside the sealed power switchgear, and (3) insulation barrier or insulation coating. Some of these three means can be applied, and some are limited for various reasons. The ceramic surface outside the vacuum bulb is divided into the latter.

真空バルブ外側は極間耐電圧確保のため容易に閃絡しない対策が必要であるが、有効な手段は(2)に限定されてしまう。すなわち(1)は真空バルブ寸法を大きくしてしまう。(3)のうちの絶縁被覆は真空バルブの寸法が小さい場合は有効であるが、大きくなるとセラミックと樹脂の界面で剥離がどうしても生じやすくなり、部分放電発生による樹脂の劣化の可能性が高くなる。こういった問題を回避する意味から、(2)のガス圧上昇が最も確実な耐電圧上昇法である。   The outside of the vacuum valve requires measures to prevent flashing easily in order to secure the withstand voltage between the electrodes, but effective means are limited to (2). That is, (1) increases the size of the vacuum valve. The insulation coating of (3) is effective when the dimensions of the vacuum valve are small, but if it is large, peeling tends to occur at the interface between the ceramic and the resin, and the possibility of resin degradation due to partial discharge increases. . From the viewpoint of avoiding these problems, the increase in gas pressure (2) is the most reliable method for increasing the withstand voltage.

特に、SF代替ガスとして注目される、空気,窒素,二酸化炭素,酸素のいずれか、またはこれらを2種類以上混合した気体は、SFの絶縁性能の約1/3〜1/2程度しかなく、この意味からもガス圧上昇による真空バルブ外沿面の耐電圧向上は重要になる。しかし、雷インパルス耐電圧が300kVを越える高定格電圧機種で上記ガスを使用する場合、その耐電圧を満足するに必要なガス圧は非常に高くなることが想定される。この場合、そのガス圧に耐える非常に堅牢で限定的なガスタンク構造が要求される。すなわちタンクの断面形状は円形か楕円形が合理的であるが、これらの形状は内部に真空バルブ、断路器、アレスタなどの各種機器を搭載する上では必ずしも合理的ではない。 In particular, any of air, nitrogen, carbon dioxide, oxygen, or a gas obtained by mixing two or more of these, which is attracting attention as an SF 6 substitute gas, is only about 1/3 to 1/2 of the insulating performance of SF 6. In this sense, it is important to improve the withstand voltage outside the vacuum valve by increasing the gas pressure. However, when the gas is used in a high rated voltage model having a lightning impulse withstand voltage exceeding 300 kV, it is assumed that the gas pressure required to satisfy the withstand voltage is very high. In this case, a very robust and limited gas tank structure that can withstand the gas pressure is required. That is, it is reasonable that the tank has a circular or oval cross-sectional shape, but these shapes are not always reasonable in mounting various devices such as a vacuum valve, a disconnector, and an arrester.

この意味では平面が複数組み合わされた形状の矩形タンクの方が合理的であるが、この場合差圧によって壁面に加わる応力が不均等になり、歪みが発生し易くなって、ガス充填後の寸法精度が得にくくなる。ガス充填後の寸法精度は、内部搭載機器の位置あわせといった組み立て調整の容易さの面で重要である。またタンク板厚を増大させなければ内圧力に耐えることができなくなり、材料コストが高くなるばかりか重量も増大する。   In this sense, a rectangular tank with a combination of multiple planes is more reasonable, but in this case, the stress applied to the wall due to the differential pressure becomes uneven, and distortion tends to occur. Accuracy is difficult to obtain. The dimensional accuracy after gas filling is important in terms of ease of assembly and adjustment such as positioning of the internal equipment. Further, unless the tank plate thickness is increased, it becomes impossible to withstand the internal pressure, which increases the material cost and the weight.

実施の形態1では、真空バルブのように、その機器の雰囲気圧力を上昇しなければ沿面耐電圧が得られない機器を、小容量・高気圧の絶縁物製圧力容器内に配置し、そのガス圧を高く保っている。一方、それ以外の機器は上記圧力容器を含め金属製の大形圧力容器の内部に配置し、その内圧力は比較的低くしている。その結果、金属製の大形圧力容器はガス圧が低い分だけ設計の自由度が向上し、低コスト化・軽量化が図りやすくなるという効果がある。   In the first embodiment, a device such as a vacuum valve, which cannot obtain a creeping withstand voltage unless the atmospheric pressure of the device is increased, is placed in a small-capacity, high-pressure insulating pressure vessel, and the gas pressure is increased. Is kept high. On the other hand, the other devices are arranged inside a large metal pressure vessel including the pressure vessel, and the internal pressure is relatively low. As a result, the large metal pressure vessel has the effect that the degree of freedom in design is improved by the lower gas pressure, and the cost and weight can be easily reduced.

上記の構成により、第二圧力容器の内圧を大きく上昇させなくても、内部配置機器に必要とされる相間・対地間・極間耐電圧を得ることができる。また必要耐電圧を得る従来手段の一つに機器全体を固体絶縁物で被覆する方法があるが、この場合に比べ容易に必要耐電圧を得ることができる。   With the above configuration, it is possible to obtain the withstand voltage between the phases, between the ground and between the electrodes, which is required for the internally arranged device, without greatly increasing the internal pressure of the second pressure vessel. Further, as one of the conventional means for obtaining the required withstand voltage, there is a method in which the entire device is covered with a solid insulator.

実施の形態2.
また、図2はこの発明の実施の形態2である密閉形電力開閉装置を示す構成断面図である。図2のように、真空バルブ1を横配置にしてもよい。すなわち真空バルブ1の縦横配置に応じて第一圧力容器2の配置方向も変えてやればよい。その結果、容器の板厚や締結部材数・種類といった点への設計自由度が制限されることがなく、密閉形電力開閉装置の使用者が望む構造を提供しやすくなる。
Embodiment 2. FIG.
FIG. 2 is a structural sectional view showing a sealed power switchgear according to Embodiment 2 of the present invention. As shown in FIG. 2, the vacuum valve 1 may be arranged horizontally. That is, the arrangement direction of the first pressure vessel 2 may be changed according to the vertical and horizontal arrangement of the vacuum valve 1. As a result, the degree of freedom in designing the container thickness, the number and types of fastening members is not limited, and a structure desired by the user of the sealed power switchgear can be easily provided.

実施の形態3.
さらに、図3はこの発明の実施の形態3である密閉形電力開閉装置を示す構成断面図である。図3は図1の構造の一部を変えたものであるが、真空バルブ1への開閉操作力を、リンク棒40を用いて伝達しており、遮断器操作機構部4の配置位置が図面左側に移動している。この場合も上記同様の効果が得られる。
Embodiment 3 FIG.
Further, FIG. 3 is a structural sectional view showing a hermetic power switchgear according to Embodiment 3 of the present invention. FIG. 3 shows a part of the structure of FIG. 1, except that the opening / closing operation force to the vacuum valve 1 is transmitted using the link rod 40, and the arrangement position of the circuit breaker operation mechanism unit 4 is illustrated. Move to the left. In this case, the same effect as described above can be obtained.

実施の形態4.
図4はこの発明の実施の形態4である密閉形電力開閉装置を示す構成断面図である。図5は図4の要部にあたる点線枠のうち、ケーブル側断路器6についての拡大断面図を示す。実施の形態4では、真空バルブ1,ケーブル側断路器6,ケーブル用接地開閉器9および母線側断路器13がそれぞれ各第一圧力容器に配置し、各第一圧力容器と共に他の絶縁を必要とする機器を第二圧力容器12,14に配置している。
Embodiment 4 FIG.
FIG. 4 is a structural cross-sectional view showing a sealed electric power switch according to Embodiment 4 of the present invention. FIG. 5 shows an enlarged cross-sectional view of the cable side disconnector 6 in the dotted line frame corresponding to the main part of FIG. In the fourth embodiment, the vacuum valve 1, the cable side disconnector 6, the cable ground switch 9 and the busbar side disconnector 13 are arranged in each first pressure vessel, and other insulation is required together with each first pressure vessel. Is arranged in the second pressure vessel 12,14.

この密閉形電力開閉装置では、断路部21と接地開閉器22が一体になった往復動式の断路・接地一体断路器が適用されている。この断路器では、絶縁ロッド23により外部より印加された操作力で可動子24を図面左右方向に移動させ、投入・断路・接地の3状態を実現できる構造になっている。すなわち、可動子24が断路側接点25との間に配置された場合(図4,5の状態)は投入、可動子24が中間導体26の内部に位置する場合は断路、可動子24が接地側接点27との間に配置された場合は接地となる。断路側接点25には導体28が接続されている。   In this hermetic power switch, a reciprocating disconnect / ground integrated disconnect device in which the disconnect portion 21 and the ground switch 22 are integrated is applied. This disconnector has a structure in which the movable element 24 is moved in the left-right direction of the drawing by an operating force applied from the outside by the insulating rod 23 to realize the three states of closing, disconnecting, and grounding. That is, when the mover 24 is disposed between the disconnection side contact 25 (the state shown in FIGS. 4 and 5), it is turned on, and when the mover 24 is located inside the intermediate conductor 26, the disconnection is established, and the mover 24 is grounded. When it is arranged between the side contacts 27, it is grounded. A conductor 28 is connected to the disconnect side contact 25.

そして、これらの部材23〜27は絶縁物製の第一圧力容器29の内部に配置されている。この第一圧力容器29の図面右側には絶縁バリヤ30が設けられており、導体28の全周またはその一部を囲む構造となっている。また導体28の表面には絶縁被覆31が設けられている。上記の断路・接地一体断路器はこの密閉形電力開閉装置では単相あたり3つ必要になるので、同一構造のものが3相合計9カ所で用いられている。第一圧力容器29の材質、分割構造の有無、充填ガス種と圧力については実施の形態1と同じである。   And these members 23-27 are arrange | positioned inside the 1st pressure vessel 29 made from an insulator. An insulating barrier 30 is provided on the right side of the first pressure vessel 29 in the drawing so as to surround the entire circumference of the conductor 28 or a part thereof. An insulating coating 31 is provided on the surface of the conductor 28. The above-mentioned disconnect / grounded integrated disconnect switch requires three units per single phase in this hermetic power switchgear, and the same structure is used in a total of nine locations in three phases. The material of the first pressure vessel 29, presence / absence of a divided structure, filling gas type and pressure are the same as those in the first embodiment.

真空バルブ1の構造およびそれを納める第一圧力容器2の構造は、実施の形態1と同じである。また第二圧力容器12の詳細も実施の形態1と同様である。一方、真空バルブ1やケーブル側断路器6といった各機器を接続している導体32〜35には、絶縁被覆31が設けられている。また母線16には固体絶縁母線が適用されている。このように必要に応じて被覆絶縁を組み合わせ、密閉形電力開閉装置を構成しても良い。   The structure of the vacuum valve 1 and the structure of the first pressure vessel 2 in which it is stored are the same as those in the first embodiment. The details of the second pressure vessel 12 are the same as those in the first embodiment. On the other hand, an insulation coating 31 is provided on the conductors 32 to 35 connecting the devices such as the vacuum valve 1 and the cable side disconnector 6. A solid insulation bus is applied to the bus 16. As described above, a sealed power switchgear may be configured by combining insulation with insulation as necessary.

このように実施の形態4では、真空バルブ1,ケーブル側断路器6,ケーブル用接地開閉器9および母線側断路器13がそれぞれ各第一圧力容器に配置し、各第一圧力容器と共に他の絶縁を必要とする機器を第二圧力容器12,14に配置している。そのため、圧力を高くして真空バルブ1,ケーブル側断路器6,ケーブル用接地開閉器9および母線側断路器13の必要耐電圧を確保する一方、そられの第一圧力容器とその他機器は金属製の大形圧力容器の内部に配置し、その内圧力を比較的低くしている。その結果、金属製の大形圧力容器はガス圧が低い分だけ設計の自由度が向上し、低コスト化・軽量化が図りやすくなる。   Thus, in the fourth embodiment, the vacuum valve 1, the cable side disconnector 6, the cable ground switch 9 and the busbar side disconnector 13 are arranged in each first pressure vessel, respectively, and other first pressure vessels and other Devices that require insulation are disposed in the second pressure vessels 12 and 14. Therefore, the required pressure resistance of the vacuum valve 1, the cable side disconnector 6, the cable grounding switch 9 and the busbar side disconnector 13 is secured by increasing the pressure, while the first pressure vessel and other equipment are made of metal. It is arranged inside a large pressure vessel made of metal and its internal pressure is relatively low. As a result, the metal-made large pressure vessel has a higher degree of design freedom as the gas pressure is lower, making it easier to reduce costs and weight.

また図4では示していないが、真空バルブ1全体は絶縁物で被覆し、第一圧力容器は上記の断路・接地一体断路器又は接地開閉器にのみ適用しても良い。断路器や接地開閉器の極間耐電圧は、ガス圧の高い第一圧力容器内に配置される分だけ高くすることができる。従来の密閉形電力開閉装置のように単一圧力容器構造の場合、断路器や接地開閉器の極間耐電圧を上記と同等分向上させようとすると、圧力を高めるために、圧力容器構造には高い機械強度が要求され、形状の設計自由度が低下し、高コスト化、重量増大を招きやすい。この発明では、第二圧力容器のガス圧を低く抑えることができ、設計自由度を損なわず、低コスト化が可能となる。   Although not shown in FIG. 4, the entire vacuum valve 1 may be covered with an insulating material, and the first pressure vessel may be applied only to the disconnect / ground integrated disconnector or the ground switch. The withstand voltage between the electrodes of the disconnector and the ground switch can be increased by the amount disposed in the first pressure vessel having a high gas pressure. In the case of a single pressure vessel structure such as a conventional sealed power switchgear, if an attempt is made to increase the withstand voltage between the disconnecting switch and grounding switch by the same amount as above, the pressure vessel structure is increased to increase the pressure. High mechanical strength is required, the degree of freedom in designing the shape is reduced, and the cost and the weight are likely to increase. In the present invention, the gas pressure in the second pressure vessel can be kept low, and the cost can be reduced without impairing the degree of freedom in design.

この発明の実施の形態1である密閉形電力開閉装置を示す構成断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural cross-sectional view showing a sealed electric power switch according to Embodiment 1 of the present invention. 実施の形態2である密閉形電力開閉装置を示す構成断面図である。FIG. 3 is a structural cross-sectional view showing a sealed power switching device according to a second embodiment. 実施の形態3である密閉形電力開閉装置を示す構成断面図である。FIG. 6 is a structural cross-sectional view showing a sealed power switching device according to a third embodiment. 実施の形態4である密閉形電力開閉装置を示す構成断面図である。FIG. 6 is a structural cross-sectional view showing a hermetic power switchgear according to a fourth embodiment. 図4の要部にあたる点線枠のうち、ケーブル側断路器についての拡大断面図である。It is an expanded sectional view about a cable side disconnector among the dotted-line frames which are the principal part of FIG. 従来の密閉形電力開閉装置を示す構成断面図である。It is a cross-sectional view showing a conventional sealed power switchgear.

符号の説明Explanation of symbols

1 真空バルブ 2 第一圧力容器
3 絶縁ロッド 4 遮断器操作機構部
5 スライドコンタクト 6 ケーブル側断路器
7 アレスタ 8 ケーブル
9 ケーブル用接地開閉器 10 ケーブルヘッド
11 バリヤ付きブッシング 12 第二圧力容器
13 母線側断路器
14 母線側断路器圧力容器(第二圧力容器)
15 バリヤ付きブッシング 16 母線
17 母線圧力容器
18 ケーブル側断路器・接地開閉器操作機構部
19 ケーブル接地開閉器操作機構部 20 母線側断路器操作機構部
21 断路部 22 接地開閉器
23 絶縁ロッド 24 可動子
25 断路側接点 26 中間導体
27 接地側接点 28 導体
29 第一圧力容器 30 絶縁バリヤ
31 絶縁被覆 32〜35 導体
40 リンク棒 81 ケーブル
82 計器用変流器(CT) 83 T形ケーブルヘッド
84 真空バルブ 85 線路断路器
86 分圧器(VD) 87 避雷器
88 接地開閉器 89 母線
90 母線断路器 91 VCB操作器
92 DS操作器 93 ES操作器
94 DS操作器。
DESCRIPTION OF SYMBOLS 1 Vacuum valve 2 1st pressure vessel 3 Insulating rod 4 Circuit breaker operation mechanism part 5 Slide contact 6 Cable side disconnector 7 Arrester 8 Cable 9 Cable earthing switch 10 Cable head 11 Bushing with a barrier 12 Second pressure vessel 13 Bus side Disconnector 14 Busbar side disconnector pressure vessel (second pressure vessel)
15 Bushing with Barrier 16 Busbar 17 Busbar Pressure Vessel 18 Cable Side Disconnector / Grounding Switch Operation Mechanism Unit 19 Cable Grounding Switch Operation Mechanism Unit 20 Busbar Side Disconnector Operation Mechanism Unit 21 Disconnection Unit 22 Grounding Switch 23 Insulating Rod 24 Movable Child 25 Disconnect side contact 26 Intermediate conductor 27 Ground side contact 28 Conductor 29 First pressure vessel 30 Insulation barrier 31 Insulation coating 32 to 35 Conductor 40 Link rod 81 Cable 82 Current transformer (CT) 83 T type cable head 84 Vacuum Valve 85 Line disconnector 86 Voltage divider (VD) 87 Lightning arrester 88 Ground switch 89 Bus 90 Bus disconnector 91 VCB controller 92 DS controller 93 ES controller 94 DS controller

Claims (7)

内部に絶縁ガスが充填され、絶縁を必要とする第一機器をその内部に配置する第一圧力容器、
内部に絶縁ガスが充填され、上記第一圧力容器と共に絶縁を必要とする第二機器をその内部に配置する第二圧力容器を備え、
上記第一機器には、絶縁ガスによって、上記第二機器より高い耐電圧を必要とする機器を含有させ、上記第一圧力容器の圧力を、上記第二圧力容器の圧力より高くした密閉形電力開閉装置。
A first pressure vessel in which an insulating gas is filled and a first device that requires insulation is disposed;
Insulating gas is filled inside, and the second pressure vessel is disposed inside the second device that requires insulation together with the first pressure vessel,
The first device includes a device that requires a higher withstand voltage than the second device with an insulating gas, and the sealed electric power in which the pressure of the first pressure vessel is higher than the pressure of the second pressure vessel. Switchgear.
上記第一圧力容器の内部に配置する上記第一機器は、真空バルブ又は接地開閉器である請求項1記載の密閉形電力開閉装置。   The hermetic power switchgear according to claim 1, wherein the first device disposed inside the first pressure vessel is a vacuum valve or a ground switch. 上記第一圧力容器の内部に配置する上記第一機器は、断路器である請求項1記載の密閉形電力開閉装置。   The hermetic power switchgear according to claim 1, wherein the first device disposed inside the first pressure vessel is a disconnector. 上記第一圧力容器の内部に配置する上記第一機器は、真空バルブ,断路器および接地開閉器である請求項1記載の密閉形電力開閉装置。   The hermetic power switchgear according to claim 1, wherein the first device disposed inside the first pressure vessel is a vacuum valve, a disconnector, and a ground switch. 上記断路器は接地開閉器の機能を併せ持ち、投入,断路,接地の3状態の機能を有する請求項3又は請求項4記載の密閉形電力開閉装置。   5. The hermetic power switch according to claim 3, wherein the disconnector has a function of a ground switch, and has a function of three states of closing, disconnecting, and grounding. 上記第一圧力容器が絶縁物製である請求項1〜請求項5のいずれか1項に記載の密閉形電力開閉装置。   The hermetic power switchgear according to any one of claims 1 to 5, wherein the first pressure vessel is made of an insulating material. 上記第一および第二圧力容器に充填される絶縁ガスは、酸素,窒素,二酸化炭素,および空気のいずれか一種類のガス、又はこれらの二種類以上の混合ガスである請求項1〜請求項6のいずれか1項に記載の密閉形電力開閉装置。   The insulating gas filled in the first and second pressure vessels is any one of oxygen, nitrogen, carbon dioxide, and air, or a mixed gas of two or more of these. The sealed power switchgear according to any one of claims 6 to 6.
JP2004248340A 2004-08-27 2004-08-27 Sealed power switchgear Expired - Fee Related JP4468768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248340A JP4468768B2 (en) 2004-08-27 2004-08-27 Sealed power switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248340A JP4468768B2 (en) 2004-08-27 2004-08-27 Sealed power switchgear

Publications (2)

Publication Number Publication Date
JP2006067721A true JP2006067721A (en) 2006-03-09
JP4468768B2 JP4468768B2 (en) 2010-05-26

Family

ID=36113696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248340A Expired - Fee Related JP4468768B2 (en) 2004-08-27 2004-08-27 Sealed power switchgear

Country Status (1)

Country Link
JP (1) JP4468768B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513183A (en) * 2008-12-18 2012-06-07 シュネーデル、エレクトリック、インダストリーズ、エスアーエス Medium voltage distribution cubicle
EP2639903A1 (en) * 2012-03-14 2013-09-18 Hitachi Ltd. Switchgear
WO2014125948A1 (en) * 2013-02-13 2014-08-21 三菱電機株式会社 Gas-insulated switchgear

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513183A (en) * 2008-12-18 2012-06-07 シュネーデル、エレクトリック、インダストリーズ、エスアーエス Medium voltage distribution cubicle
EP2639903A1 (en) * 2012-03-14 2013-09-18 Hitachi Ltd. Switchgear
CN103311838A (en) * 2012-03-14 2013-09-18 株式会社日立制作所 Switchgear
JP2013192369A (en) * 2012-03-14 2013-09-26 Hitachi Ltd Switchgear
KR101445479B1 (en) * 2012-03-14 2014-09-26 가부시키가이샤 히타치세이사쿠쇼 Switch gear
US8946581B2 (en) 2012-03-14 2015-02-03 Hitachi, Ltd. Switchgear
CN103311838B (en) * 2012-03-14 2016-02-24 株式会社日立制作所 Switchgear
WO2014125948A1 (en) * 2013-02-13 2014-08-21 三菱電機株式会社 Gas-insulated switchgear
JP5602977B1 (en) * 2013-02-13 2014-10-08 三菱電機株式会社 Gas insulated switchgear
CN105075039A (en) * 2013-02-13 2015-11-18 三菱电机株式会社 Gas-insulated switchgear
US9355792B2 (en) 2013-02-13 2016-05-31 Mitsubishi Electric Corporation Gas insulated switchgear

Also Published As

Publication number Publication date
JP4468768B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
US6759616B2 (en) Gas insulated switchgear
TWI267245B (en) Gas insulated switchgear
KR20130105350A (en) Switch gear
KR102389097B1 (en) Dead tank circuit breaker with surge arrester connected across the bushing tops of each pole
JP2009225593A (en) Switchgear
JP4468768B2 (en) Sealed power switchgear
JP4712609B2 (en) Switchgear
CA3070518C (en) Disconnector pole for gas insulated switchgear
JP5324530B2 (en) High voltage switchgear
JP3623333B2 (en) Substation equipment
JP4477463B2 (en) Withstand voltage test method for sealed electrical equipment
JPH044707A (en) Gas insulation switchgear
JP2006352972A (en) Collective three-phase type gas insulated switchgear
JP2006049329A (en) Switch gear
JP2002315120A (en) Gas-insulated switch
JP4468540B2 (en) Sealed gas insulated switchgear
JP3203676U (en) Gas insulated switchgear
JPH10322822A (en) Lightning arrestor for gas insulated switchgear
JP4565888B2 (en) Sealed switchgear
JP5161608B2 (en) Gas circuit breaker
JP2009261111A (en) Switchgear
JP3507689B2 (en) Gas insulated electrical equipment
JP2000092635A (en) Composite switchgear
JPS5910884Y2 (en) Gas insulated switchgear with cylindrical insulating spacer
JPH0530617A (en) Gas insulated switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R151 Written notification of patent or utility model registration

Ref document number: 4468768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees