JP2006066910A - Light detection method and its device - Google Patents

Light detection method and its device Download PDF

Info

Publication number
JP2006066910A
JP2006066910A JP2005221770A JP2005221770A JP2006066910A JP 2006066910 A JP2006066910 A JP 2006066910A JP 2005221770 A JP2005221770 A JP 2005221770A JP 2005221770 A JP2005221770 A JP 2005221770A JP 2006066910 A JP2006066910 A JP 2006066910A
Authority
JP
Japan
Prior art keywords
voltage
light
junction
bias voltage
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005221770A
Other languages
Japanese (ja)
Inventor
Hideo Ito
日出男 伊藤
Ryosaku Kaji
良作 鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005221770A priority Critical patent/JP2006066910A/en
Publication of JP2006066910A publication Critical patent/JP2006066910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light detection method and its device capable of detecting feeble light with less photons at high speed. <P>SOLUTION: In the state that a direct current bias voltage is applied to a semiconductor photonic device having a pn junction or p-i-n junction, a periodic pulse voltage is further applied and in order to detect incident light in a time frame during which the pulse voltage is applied, the signal waveform immediately after the pulse voltage becomes extinct is observed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、赤外域の微弱光の検出に特に有用な、光検出方法および光検出装置に関するものである。   The present invention relates to a light detection method and a light detection device that are particularly useful for detecting weak light in the infrared region.

従来、近赤外域の微弱光を検出する方法として、たとえば、アバランシェフォトダイオードの電子増倍作用を利用した方法や、フォトダイオードとErbium Doped Fiber Amplifier(EDFA)を用いた方法が知られている(たとえば非特許文献1,2参照)。   Conventionally, as a method for detecting faint light in the near infrared region, for example, a method using an electron multiplication effect of an avalanche photodiode and a method using a photodiode and an Erbium Doped Fiber Amplifier (EDFA) are known ( For example, see non-patent documents 1 and 2).

これらの光検出方法は、長距離伝播信号光の検出や、大気・環境計測、微量物質分析などの多種多様な分野で利用されている。   These light detection methods are used in various fields such as detection of long-distance propagation signal light, air / environment measurement, and trace substance analysis.

ここで、前者の検出方法についてより具体的に説明すると、まず、アバランシェフォトダイオードに対し、ゲートオン時には降伏電圧(例えば51V)より大きな逆バイアス電圧を、ゲートオフ時には降伏電圧より小さな逆バイアス電圧を印加する。これにおいて、ゲートオン時に光子がAPDの光電変換領域(活性領域)に入射すると、入射光により発生した電子と正孔とが初期キャリアとなり、逆バイアスでそれぞれ反対方向に加速されアバランシェ効果により増倍し、増倍した電流(光電流)が外部回路に流れる。逆バイアス電圧が大きいほど信号電流の増倍率が増大し,少ない光子数の入射でも大きな電流が流れるため,理想的には単一光子の入射も検知は可能である.ただし,受光素子では,熱雑音などの要因により入射光が皆無でも一定の確率でキャリア(電子と正孔)が活性領域で発生するため,この発生したキャリアによる電流の増倍に伴う電流(暗電流)が雑音として検知される.入射光を検出するには,光電流が暗電流に比較して十分大きい必要があるので,一般には一定の数量以上の光子の入射が必要とされていた.通常、アバランシェフォトダイオードには抵抗が直列に接続されており、その両端の電圧をオシロスコープやコンパレータやディスクリミネータなどにより観測し、雪崩電流が発生しているか否かを判断する。もしキャリアの雪崩増倍がゲートオン時間内に発生していなければ、アバランシェフォトダイオードはキャパシタンスとみなされ、そのアバランシェフォトダイオードを具備した検出装置全体はクエンチング回路となる。キャリアの雪崩増倍がゲートオン時間内において発生していれば、アバランシェフォトダイオードはゲートオン時間内においてキャパシタンスと抵抗と電流源と見なされる。ゲートオフ時間内では、アバランシェフォトダイオードは常にキャパシタンスとみなされる。
S. Cova, M. Ghioni, A. Lacaita, S. Samori, and F. Zappa, “Avalanchephotodiodes and quenching circuits for single-photon detection,”APPLIED OPTICS,vol.35, No.12, pp.1956-1976, April 1996. 羽鳥光俊、青山友紀、小林郁太郎、“光通信工学(1),” コロナ社,1998.
Here, the former detection method will be described more specifically. First, a reverse bias voltage larger than the breakdown voltage (for example, 51 V) is applied to the avalanche photodiode when the gate is turned on, and a reverse bias voltage smaller than the breakdown voltage is applied when the gate is turned off. . In this case, when a photon is incident on the photoelectric conversion region (active region) of the APD when the gate is turned on, electrons and holes generated by the incident light become initial carriers and are accelerated in opposite directions by a reverse bias, respectively, and are multiplied by the avalanche effect. The multiplied current (photocurrent) flows to the external circuit. As the reverse bias voltage increases, the signal current multiplication factor increases, and a large current flows even with a small number of photons. Therefore, it is ideally possible to detect the incidence of a single photon. However, in the light receiving element, carriers (electrons and holes) are generated in the active region with a certain probability even if there is no incident light due to factors such as thermal noise. Current) is detected as noise. In order to detect incident light, the photocurrent needs to be sufficiently larger than the dark current, so that more than a certain number of photons are generally required. Usually, a resistance is connected in series with the avalanche photodiode, and the voltage at both ends thereof is observed with an oscilloscope, a comparator, a discriminator, or the like to determine whether or not an avalanche current is generated. If a carrier avalanche multiplication has not occurred within the gate-on time, the avalanche photodiode is regarded as a capacitance, and the entire detection device including the avalanche photodiode becomes a quenching circuit. If carrier avalanche multiplication occurs within the gate-on time, the avalanche photodiode is regarded as a capacitance, resistance, and current source within the gate-on time. Within the gate off time, an avalanche photodiode is always considered a capacitance.
S. Cova, M. Ghioni, A. Lacaita, S. Samori, and F. Zappa, “Avalanchephotodiodes and quenching circuits for single-photon detection,” APPLIED OPTICS, vol.35, No.12, pp.1956-1976, April 1996. Mitsutoshi Hatori, Yuki Aoyama, Shintaro Kobayashi, “Optical Communication Engineering (1),” Corona, 1998.

しかしながら、上記前者の光検出方法は、アバランシェフォトダイオードにおいて雪崩増倍された光電流を検出する方法であり、一般に103個/パルス程度の光子数の検知は可能であるものの、雪崩増倍が終息するまで次の検出を行えず、光子入射の時間分解能が回路のCR時定数よりもかなり長いといった問題点があった。また、上記後者の光検出方法では、EDFAによる入射光の前置増幅が必要で、10個/パルス程度の光子数でなければ検出できないといった問題点があった。 However, the former photodetection method is a method for detecting the photocurrent multiplied by the avalanche photodiode and generally can detect the number of photons of about 10 3 / pulse, but avalanche multiplication is not possible. There was a problem that the next detection could not be performed until the end, and the time resolution of photon incidence was considerably longer than the CR time constant of the circuit. In addition, the latter light detection method requires a pre-amplification of incident light by EDFA, and has a problem that it can be detected only when the number of photons is about 10 6 / pulse.

そこで、以上のとおりの事情に鑑み、本願発明は、高効率つまりより少ない光子数で微弱光を高速に検出することのできる光検出方法およびその装置を提供することを課題としている。   Therefore, in view of the circumstances as described above, it is an object of the present invention to provide a light detection method and apparatus capable of detecting faint light at high speed with high efficiency, that is, with a smaller number of photons.

本願発明は、上記の課題を解決するものとして、第1には、pn接合 またはp-i-n接合を有する半導体光素子に直流バイアス電圧を印加した状態でさらに周期的なパルス電圧を印加して、そのパルス電圧を印加した時間枠に入射した光を検出するために、パルス電圧が消えた直後の信号波形を観測することを特徴とする光検出方法を提供する。   In order to solve the above problems, the present invention firstly applies a periodic pulse voltage to a semiconductor optical device having a pn junction or a pin junction in a state where a DC bias voltage is applied. Provided is a light detection method characterized by observing a signal waveform immediately after a pulse voltage disappears in order to detect light incident in a time frame in which a voltage is applied.

第2には、前記半導体光素子がアバランシェフォトダイオードで構成されており、前記直流バイアス電圧がブレイクダウン電圧よりも小さく且つ前記直流バイアス電圧と前記パルス電圧との和の大きさもブレイクダウン電圧よりも小さい動作条件で、前記信号波形を観測することを特徴とする前記光検出方法を提供する。   Second, the semiconductor optical device is formed of an avalanche photodiode, the DC bias voltage is smaller than the breakdown voltage, and the sum of the DC bias voltage and the pulse voltage is also larger than the breakdown voltage. The light detection method is characterized by observing the signal waveform under a small operating condition.

第3には、前記入射した光が微弱光であることを特徴とする前記光検出方法を提供する。   Third, the light detection method is characterized in that the incident light is weak light.

また、本願発明は、第4には、pn接合 またはp-i-n接合を有する半導体光素子に直流バイアス電圧を印加する手段、前記半導体光素子に直流バイアス電圧を印加した状態でさらに周期的なパルス電圧を印加する手段、前記半導体光素子にパルス電圧を印加した時間枠で光を入射させる手段、およびパルス電圧が消えた直後の信号波形を計測する手段を備えていることを特徴とする光検出装置を提供する。   According to the present invention, fourthly, means for applying a DC bias voltage to a semiconductor optical device having a pn junction or a pin junction, and further applying a periodic pulse voltage with the DC bias voltage applied to the semiconductor optical device. A photodetecting device comprising means for applying, means for making light incident in a time frame in which a pulse voltage is applied to the semiconductor optical element, and means for measuring a signal waveform immediately after the pulse voltage disappears provide.

第5には、前記半導体光素子がアバランシェフォトダイオードで構成されており、前記直流バイアス電圧がブレイクダウン電圧よりも小さく且つ前記直流バイアス電圧と前記パルス電圧との和の大きさもブレイクダウン電圧よりも小さく設定されていることを特徴とする前記光検出装置を提供する。   Fifth, the semiconductor optical device is composed of an avalanche photodiode, the DC bias voltage is smaller than the breakdown voltage, and the sum of the DC bias voltage and the pulse voltage is also larger than the breakdown voltage. The photodetection device is characterized in that it is set small.

上記第1の光検出方法によれば、フォトダイオードをはじめとして、レーザダイオードや発光ダイオードなどのpn接合またはp-i-n接合を有する、受光、発光、または受発光機能を持つ半導体光素子に直流バイアス電圧と周期的パルス電圧を重畳して印加し、そのパルス電圧が消えた直後つまり除去した直後の信号波形を観測するだけで、従来よりも少ない光子数の微弱光、特に近赤外域(波長0.9〜1.5μ)の微弱光の高効率且つ高速検出を実現することができる。   According to the first light detection method, a DC bias voltage is applied to a semiconductor optical device having a pn junction or a pin junction, such as a photodiode, a laser diode, or a light emitting diode and having a light receiving, emitting, or receiving / emitting function. By applying a periodic pulse voltage in a superimposed manner and observing the signal waveform immediately after the pulse voltage disappears, that is, immediately after it is removed, weak light having a smaller number of photons than in the past, particularly in the near infrared region (wavelength 0.9) High-efficiency and high-speed detection of weak light (˜1.5 μ) can be realized.

上記第2の光検出方法によれば、上記第1の光検出方法と同様な効果が得られ、またさらに、半導体光素子としてアバランシェフォトダイオードを用いるとともに、印加すべき直流バイアス電圧のピーク値ならびにそれと周期的パルス電圧との和の大きさのピーク値をブレイクダウン電圧よりも低い動作条件とすることで、雑音発生が極めて小さいように設計された素子の性能を極限まで引き出すことができ、ブレイクダウン電圧以下のいわゆる雪崩増倍率が有限な値を持つ電圧範囲にて雪崩雑音を最小限に留めつつ、究極的には光子数レベルに至る微弱光をこれまでになく高効率に検出できるようになる。   According to the second photodetection method, the same effect as that of the first photodetection method can be obtained. Further, an avalanche photodiode is used as the semiconductor optical element, and the peak value of the DC bias voltage to be applied and By making the peak value of the sum of the periodic pulse voltage and the operating condition lower than the breakdown voltage, the performance of the element designed so that noise generation is extremely small can be brought out to the limit. In the voltage range where the so-called avalanche multiplication factor below the down voltage is finite, the avalanche noise is kept to a minimum, and the faint light that ultimately reaches the photon number level can be detected with higher efficiency than ever before. Become.

上記第3の光検出方法によれば、上記第1または第2の光検出方法と同様な効果が得られ、従来不可能であった上述したとおりの微弱光の検出、つまり光子数の常温での高速カウントが可能となる。   According to the third light detection method, the same effect as that of the first or second light detection method can be obtained, and detection of weak light as described above, which has been impossible in the past, that is, at the normal temperature of the number of photons. High-speed counting is possible.

そして、上記第4及び第5の光検出装置によれば、上記光検出方法と同様な効果を奏す
る装置が実現される。
And according to the said 4th and 5th photon detection apparatus, the apparatus which show | plays the effect similar to the said photon detection method is implement | achieved.

図1は、上記のとおりの特徴を有する本願発明の一実施形態を示したものであり、その光検出方法に用いられる光検出装置の概略回路構成図である。ここに、nはn型半導体、pはp型半導体、i(t)は外部に流れる電流、V(t)は直流バイアスにパルスを重畳した電圧源、Rは外部抵抗、v(t)はpn接合素子にかかる電圧、v(t)は外部抵抗にかかる電圧であり、通常v(t)を計測器等によって観測する。 FIG. 1 shows an embodiment of the present invention having the features as described above, and is a schematic circuit configuration diagram of a photodetection device used in the photodetection method. Here, n is an n-type semiconductor, p is a p-type semiconductor, i (t) is an external current, V (t) is a voltage source in which a pulse is superimposed on a DC bias, R is an external resistance, and v 0 (t) Is the voltage applied to the pn junction element, v (t) is the voltage applied to the external resistance, and usually v (t) is observed by a measuring instrument or the like.

この図1において、検出対象となる光をフォトダイオードに入射させ、そのpn接合に直流バイアス電圧を印加して入射光を検出することは従来と同じだが、本願発明では、直流バイアス電圧に加えてパルス電圧を周期的に印加することを大きな特徴としている。   In FIG. 1, the light to be detected is incident on a photodiode, and a DC bias voltage is applied to the pn junction to detect the incident light. However, in the present invention, in addition to the DC bias voltage, The main feature is that the pulse voltage is periodically applied.

すなわち、本願発明の発明者は、信号電流は大きくないと検出不可能であるという既存概念を打破し、印加電圧がオンからオフに切り替わるタイムフレームに着目することでpn接合の空乏層に存在するトラップ準位の占有率の変化を外部電圧の変化として捉え、信号電流が小さな場合の微弱な入射光の検出が可能であり、かつ直流バイアス電圧にパルス電圧を重畳し、そのパルスを高速に周期的印加することにより入射光の高速な繰り返し検出が可能であるという全く新たな技術思想を見出し、本願発明を成したのである。   That is, the inventor of the present invention breaks down the existing concept that detection is not possible unless the signal current is large, and exists in the depletion layer of the pn junction by focusing on the time frame in which the applied voltage switches from on to off. The change in the trap level occupancy can be seen as a change in the external voltage to detect weak incident light when the signal current is small, and the pulse voltage is superimposed on the DC bias voltage, and the pulse is cycled at high speed. Thus, the present invention has been found out by discovering a completely new technical idea that it is possible to repeatedly detect incident light at a high speed.

そして、これによれば、従来用いられている図1のような検出回路には何ら変更を加えることなく、印加電圧がオンからオフに切り替わるタイムフレームに着目するだけで、外部回路に過剰な電流が流れるようなブレイクダウン電圧より大きなバイアス電圧を印加せずに、むしろそれよりも小さな印加電圧で、光子数数百〜数千個/パルス、さらには光子数数個〜数十個/パルス程度という従来よりも極めて微弱な光を検出でき、つまり微弱光の光子数を常温でカウントできる。また、直流バイアス電圧が小さくても検出可能であることから、pn接合の空乏層のトラップ準位を制御することによって、暗電流の制御も可能になり、原理的に受光素子と負荷抵抗で構成されるCR時定数までの高速化が可能となる。もちろん、p-i-n接合を持つ半導体光素子にあっても同じことが言える。   And according to this, without making any change to the conventional detection circuit as shown in FIG. 1, it is necessary to pay attention only to the time frame in which the applied voltage is switched from on to off. Without applying a bias voltage that is larger than the breakdown voltage that causes the current to flow, but rather with a smaller applied voltage, several hundred to several thousand photons / pulse, or several photons to several tens of pulses / pulse It is possible to detect light that is much weaker than before, that is, the number of photons of weak light can be counted at room temperature. In addition, since detection is possible even with a small DC bias voltage, dark current can be controlled by controlling the trap level of the depletion layer of the pn junction. It is possible to speed up to the CR time constant. Of course, the same can be said for a semiconductor optical device having a p-i-n junction.

これを長距離伝播信号光の検出に用いた場合では、EDFAによる前置光増幅が不要となり、長距離伝送の低コスト化を図ることもできる。無中継長距離伝播微弱光の高速検出が実現されるのである。   When this is used for detection of long-distance propagation signal light, pre-amplification by EDFA is not required, and the cost of long-distance transmission can be reduced. High-speed detection of relayless long-distance propagation weak light is realized.

またもちろん、より高精度な大気・環境計測や蛍光分析や光吸収測定による微量物質の検出も実現される。   Of course, more accurate atmospheric / environmental measurement, detection of trace substances by fluorescence analysis and light absorption measurement can be realized.

他の応用としては、光通信における微弱信号再生技術におけるタイミング信号作成への応用や、検出時の暗電流を抑圧できるとも考えられるので、高効率な光・電子エネルギー変換技術としての応用などを考慮できる。   Other applications include the application to timing signal generation in weak signal regeneration technology in optical communications and the application of high-efficiency optical / electron energy conversion technology because dark current during detection can be suppressed. it can.

ここで、本願発明の光検出方法についてより具体的に説明すると、本願発明の光検出方法を用いた場合の図1におけるフォトダイオードの電流電圧特性は、図2に示したようになる。図2において、横軸Vはフォトダイオードにかかる電圧、縦軸Iはフォトダイオードに流れる電流、VBはフォトダイオードの降伏電圧、図中実線はフォトダイオードに光が照射された場合の特性曲線、破線は光が照射されていない場合の特性曲線である。図中下部の3つに分けられた電圧範囲は左から順にアバランシェフォトダイオードモード、フォトダイオードモード、太陽電池モードと呼ばれ、アバランシェフォトダイオードモードでは電子増倍率が1以上である。   Here, the photodetection method of the present invention will be described more specifically. The current-voltage characteristics of the photodiode in FIG. 1 when the photodetection method of the present invention is used are as shown in FIG. In FIG. 2, the horizontal axis V is the voltage applied to the photodiode, the vertical axis I is the current flowing through the photodiode, VB is the breakdown voltage of the photodiode, the solid line in the figure is the characteristic curve when the photodiode is irradiated with light, and the broken line Is a characteristic curve when light is not irradiated. The voltage ranges divided into the lower three parts in the figure are called avalanche photodiode mode, photodiode mode, and solar cell mode in order from the left. In the avalanche photodiode mode, the electron multiplication factor is 1 or more.

図1のpn接合近傍に光が入ると、光が吸収されたn形およびp形領域では電子・正孔対が発生する。空乏層から電子の拡散長以内の領域で発生した電子のうちいくつかは空乏層端にたどりつき、薄い空乏層内を電界の力をかりて走行し、n形領域にたどりつく。一方、n形領域においても空乏層端から正孔の拡散長以内の領域で発生した正孔のうちいくつかは、空乏層端にたどりつき空乏層内をドリフトしてp形領域にたどりつく。   When light enters the vicinity of the pn junction in FIG. 1, electron-hole pairs are generated in the n-type and p-type regions where the light is absorbed. Some of the electrons generated in the region within the electron diffusion length from the depletion layer reach the edge of the depletion layer, travel in the thin depletion layer with the force of the electric field, and reach the n-type region. On the other hand, in the n-type region, some of the holes generated in the region within the diffusion length of the hole from the end of the depletion layer reach the depletion layer end and drift in the depletion layer to reach the p-type region.

太陽電池モードでは、空乏層内で発生した電子・正孔対は分離されてドリフトし、電子はn形領域に、正孔はp形領域にそれぞれたどりつく。このように、電子と正孔が逆向きに空乏層を通過するということは、図1においてn形領域からp形領域へ向かう逆方向電流が流れることを意味する。したがって、入射光量に比例する光電流idが発生することになる。 In the solar cell mode, electron-hole pairs generated in the depletion layer are separated and drift, and electrons reach the n-type region and holes reach the p-type region, respectively. Thus, the fact that electrons and holes pass through the depletion layer in opposite directions means that a reverse current flows from the n-type region to the p-type region in FIG. Therefore, the photocurrent i d which is proportional to the amount of incident light is generated.

フォトダイオードモードでは、逆方向電圧をかけるため空乏層幅がひろがり、その中でほとんどの光が吸収されるようになり、発生した電子と正孔は空乏層内の電界で分離ドリフトされて光電流に寄与する。すなわち、極めて高い光-電気エネルギー変換効率が実現される。したがって、入射光量に比例する光電流idが発生することになる。 In the photodiode mode, the reverse voltage is applied, so the width of the depletion layer expands, and most of the light is absorbed in it, and the generated electrons and holes are separated and drifted by the electric field in the depletion layer, resulting in photocurrent. Contribute to. That is, extremely high light-electric energy conversion efficiency is realized. Therefore, the photocurrent i d which is proportional to the amount of incident light is generated.

なお、空乏層が容易に広がるためには、キャリア濃度の低い層を用いることが必要である。この層はi層といわれ、したがってp-i-n構造とすることがより一層有用である。   In order to easily spread the depletion layer, it is necessary to use a layer having a low carrier concentration. This layer is referred to as i layer, and it is therefore more useful to have a p-i-n structure.

アバランシェフォトダイオードモードでは、光子の入射により生成された電子正孔対は雪崩増倍を起こす。したがって、信号の増幅が行われ、極めて大きな光電流が得られる。   In the avalanche photodiode mode, electron-hole pairs generated by photon incidence cause avalanche multiplication. Therefore, the signal is amplified and a very large photocurrent is obtained.

従来、微弱光を検出するにはアバランシェフォトダイオードモードで行うか、前置増幅の後でフォトダイオードモードにするしかないと考えられてきた。   Conventionally, in order to detect faint light, it has been considered that the detection must be performed in the avalanche photodiode mode or in the photodiode mode after the preamplification.

これに対し、本願発明では、図1のようにpn接合に直流バイアスに加えて周期的なゲートパルスを印加し、検出時間枠をゲートパルスの立ち下がり後にすることで、前置増幅が不要な微弱光の検出がアバランシェフォトダイオードモードよりも小さな電圧範囲においても可能であることを利用しており、これにより微弱光の高効率、高速検出を実現している。   On the other hand, in the present invention, as shown in FIG. 1, a periodic gate pulse is applied to the pn junction in addition to the DC bias, and the detection time frame is set after the fall of the gate pulse, so that preamplification is unnecessary. Utilizing the fact that weak light can be detected even in a voltage range smaller than that of the avalanche photodiode mode, thereby realizing highly efficient and high-speed detection of weak light.

以上の動作原理を示す等価回路は、光の入射がない場合は信号電流idは流れないので、pn接合の空乏層をキャパシタンスと考えることができるため、図3に示すようになる。図3において、Cdはpn接合の接合容量、Q(t)はpn接合に蓄積される電荷、i(t)は外部に流れる電流、V(t)は直流バイアスに周期パルスを重畳した電圧源、Rは外部抵抗、v(t)はpn接合素子にかかる電圧、v(t)は外部抵抗にかかる電圧であり、通常v(t)を計測器等によって観測する。 Equivalent circuit showing the operation principle of the above, because if there is no incident light signal current i d does not flow, since the depletion layer of the pn junction can be considered as a capacitance, as shown in FIG. In FIG. 3, Cd is the junction capacitance of the pn junction, Q (t) is the charge accumulated in the pn junction, i (t) is the current flowing outside, and V (t) is a voltage source in which a periodic pulse is superimposed on the DC bias. , R is an external resistance, v 0 (t) is a voltage applied to the pn junction element, v (t) is a voltage applied to the external resistance, and v (t) is usually observed by a measuring instrument or the like.

一方、光の入射がある場合には信号電流が発生するので、図4に示すように定電流源idと抵抗が加わることになる。図4において、pn接合はキャパシタンスと見なされると同時に光電流源、抵抗と見なされる。Cdは光が照射されたpn接合の接合容量であり光が照射されていない場合の値とは異なる。Q(t)はpn接合に蓄積される電荷、R0は光が照射された状態のpn接合の内部抵抗、i(t)は外部に流れる電流、V(t)は直流バイアスに周期パルスを重畳した電圧源、Rは外部抵抗、v(t)はpn接合素子にかかる電圧、v(t)は外部抵抗にかかる電圧であり、通常v(t)を計測器等によって観測する。 On the other hand, since a signal current is generated when light is incident, a constant current source id and a resistor are added as shown in FIG. In FIG. 4, the pn junction is regarded as a capacitance and at the same time as a photocurrent source and a resistance. Cd is a junction capacitance of a pn junction irradiated with light, and is different from a value when light is not irradiated. Q (t) is the charge accumulated in the pn junction, R0 is the internal resistance of the pn junction in the irradiated state, i (t) is the current flowing outside, and V (t) is a periodic bias superimposed on the DC bias The voltage source, R is an external resistance, v 0 (t) is a voltage applied to the pn junction element, v (t) is a voltage applied to the external resistance, and v (t) is usually observed by a measuring instrument or the like.

より具体的には、光入射がない場合、半導体光素子に直流バイアスに重畳したパルス電圧を印加するとpn接合中の電子はプラス電極側へ、正孔はマイナス電極側へ引き寄せられ、pn接合部には電流に関与するキャリアがない空乏層が生じる。これは、受光素子の直流電気抵抗が非常に高く、ある間隔で導電物質が対向している、コンデンサと同様な状態になっているとみなすことができる。したがって、図3に示したように、等価回路はコンデンサと負荷抵抗が直列に接続され、それに直流バイアスに重畳したパルス電圧源から周期的に電圧が印加されている状態となる。電気的な特性はこの等価回路をもとに計算すればよい。   More specifically, in the absence of light incidence, when a pulse voltage superimposed on a DC bias is applied to the semiconductor optical device, electrons in the pn junction are attracted to the positive electrode side, and holes are attracted to the negative electrode side. In this case, a depletion layer having no carriers involved in the current is generated. This can be regarded as being in a state similar to a capacitor in which the direct current electric resistance of the light receiving element is very high and the conductive materials are opposed to each other at a certain interval. Therefore, as shown in FIG. 3, in the equivalent circuit, a capacitor and a load resistor are connected in series, and a voltage is periodically applied from a pulse voltage source superimposed on a DC bias. The electrical characteristics may be calculated based on this equivalent circuit.

一方、光入射がある場合には、光入射による光電子正孔対が発生し、光入射量が一定ならば定電流源とみなすことができる。このとき注意すべきことは、光入射量が小さく電流値がわずかな場合でも、pn接合内のトラップ準位がこれらのキャリアにより充填され、接合容量にも変化が生じることである。逆バイアス電圧の印加に対応したコンデンサとしての働きと、光電流が流れるという抵抗素子としての働きを考える必要があるため、受光素子の等価回路は図4のようになる。接合容量の時間的な変化が光の入射がない場合と異なることに注意されたい。   On the other hand, when there is light incidence, a photoelectron hole pair is generated by light incidence, and if the amount of light incidence is constant, it can be regarded as a constant current source. It should be noted that the trap level in the pn junction is filled with these carriers even when the light incident amount is small and the current value is small, and the junction capacitance also changes. Since it is necessary to consider the function as a capacitor corresponding to the application of the reverse bias voltage and the function as a resistance element in which a photocurrent flows, an equivalent circuit of the light receiving element is as shown in FIG. It should be noted that the temporal change of the junction capacitance is different from the case where no light is incident.

ここで、図3において標準的な回路のパラメータ(R=50Ω, Cd=5pF)を用い、図5のような矩形パルス逆バイアス電圧(Von=10V, Voff=5V)をフォトダイオードに印加した場合について回路の方程式を理論的に解く。図5において、直流逆バイアス電圧は5V、重畳する矩形周期パルス電圧は振幅5V、幅0.5ns、周期2nsである。微弱光の入射は逆バイアス電圧が高くなっている3番目のピークであるものとする。   Here, when the standard circuit parameters (R = 50Ω, Cd = 5pF) in FIG. 3 are used and a rectangular pulse reverse bias voltage (Von = 10V, Voff = 5V) as shown in FIG. 5 is applied to the photodiode. Solve the circuit equation theoretically for. In FIG. 5, the DC reverse bias voltage is 5V, the superimposed rectangular periodic pulse voltage has an amplitude of 5V, a width of 0.5 ns, and a period of 2 ns. It is assumed that the weak light is incident at the third peak where the reverse bias voltage is high.

その結果、図6のような応答電圧が算出される。ただし、三番目のパルス電圧印加時間枠(t=4.0〜4.5ns)にのみ微弱光が入射し、その時間枠内でのみ光電流が流れることにより、pn接合中のトラップ準位が充填され、接合容量(Cd)が変化したとしている。図5の矩形パルスのオンからオフへの立下り(t=0.5, 2.5, 4.5, 6.5, 8.5ns)での応答電圧に着目すると、三番目のパルス電圧に対応するところだけ下へのピークが鈍っていることが図6からわかる。すなわち、光子の入射によりpn接合中の空乏層のトラップ準位が充填されてキャリアが再びリリースされるまでの接合容量の時間変化が変調され、光子の入射がない場合に比べて矩形パルスの立下り直後の応答電圧波形が変化している。そこで、ここを観測基点とする。 As a result, a response voltage as shown in FIG. 6 is calculated. However, the weak light is incident only in the third pulse voltage application time frame (t = 4.0 to 4.5 ns), and the photocurrent flows only in that time frame, so that the trap level in the pn junction is filled, It is assumed that the junction capacitance (C d ) has changed. Paying attention to the response voltage at the fall of the rectangular pulse from ON to OFF (t = 0.5, 2.5, 4.5, 6.5, 8.5 ns) in Fig. 5, the peak downward only at the point corresponding to the third pulse voltage. It can be seen from FIG. In other words, the time variation of the junction capacitance from the time when the trap level of the depletion layer in the pn junction is filled by the incidence of the photon until the carrier is released again is modulated. The response voltage waveform immediately after going down changes. This is the observation base point.

図5の電圧が大きな時間枠に微弱光が入射すると、フォトダイオードのpn接合の空乏層に電子・正孔対が発生し、電子はp領域へ、正孔はn領域へ直流逆バイアス電圧によって加速される。正孔の有効質量が電子の有効質量に比べて重い材料の場合は、電子が空乏層の外側に出た後も正孔が空乏層内に残り、電荷の中性条件を満たすために外部から電子が流れ込み、正孔が空乏層外部に出て行くまで電子が流れ続ける。こうして光電流が流れ続けるとフォトダイオードは抵抗と見なすことができ、流れる電流によりpn接合の空乏層中に存在するトラップ準位が占有され、キャパシタンスも変調を受けることになる(図4参照)。   When weak light is incident in a time frame in which the voltage of FIG. 5 is large, electron-hole pairs are generated in the depletion layer of the pn junction of the photodiode, electrons are transferred to the p region, and holes are transferred to the n region by a DC reverse bias voltage. Accelerated. In the case of a material in which the effective mass of holes is heavier than the effective mass of electrons, holes remain in the depletion layer even after electrons exit outside the depletion layer, so that the neutral condition of the charge can be satisfied from the outside. The electrons flow in and continue to flow until the holes go out of the depletion layer. When the photocurrent continues to flow in this manner, the photodiode can be regarded as a resistance, and the trapped level existing in the depletion layer of the pn junction is occupied by the flowing current, and the capacitance is also modulated (see FIG. 4).

このように、観測時点を周期パルス電圧の立ち下がり(つまり除去)直後にすることで、電圧オンのパルスを細くしたり、直流バイアス電圧ならびにそれと周期パルス電圧との和をブレイクダウン電圧よりも低く設定したりすることによって、主要な雑音の原因となる過剰な電流を発生させることなく微弱光の検出が可能となる。過剰な電流を発生させないことは、pn接合のトラップ準位に捕獲されるキャリアの量を減らすということでもあり、極めて高速に次の検出が可能な状態にすることができる。   In this way, by observing the observation point immediately after the fall (that is, removal) of the periodic pulse voltage, the voltage-on pulse is narrowed, or the sum of the DC bias voltage and the periodic pulse voltage is made lower than the breakdown voltage. By setting, it is possible to detect faint light without generating an excessive current that causes major noise. Not generating an excessive current also means reducing the amount of carriers trapped in the trap level of the pn junction, so that the next detection can be performed at a very high speed.

なお、本願発明において、受光器、発光器、または受発光器として機能するpn接合またはp-i-n接合を有する半導体光素子(受光素子、発光素子、または受発光素子)としては、pn/p-i-nフォトダイオードやアバランシェフォトダイオードはもちろんのこと、レーザダイオードや発光ダイオードなどをも考慮でき、これらに対しても直流バイアスに重畳した周期的パルス電圧印加することによるpn接合中のトラップ準位の制御を応用できることは言うまでもない。   In the present invention, a semiconductor optical element having a pn junction or a pin junction that functions as a light receiver, light emitter, or light receiver / receiver (light receiving element, light emitting element, or light receiving / emitting element) includes a pn / pin photodiode, In addition to avalanche photodiodes, laser diodes and light-emitting diodes can be considered, and the ability to apply trap level control in pn junctions by applying a periodic pulse voltage superimposed on a DC bias is also applicable to these. Needless to say.

本願発明の一実施形態である光検出方法に用いられる光検出装置の概略回路構成図である。It is a schematic circuit block diagram of the photon detection apparatus used for the photon detection method which is one Embodiment of this invention. フォトダイオードの電流電圧特性図である。It is a current-voltage characteristic view of a photodiode. 光子の入射がないときの等価回路図である。It is an equivalent circuit diagram when there is no incidence of a photon. 光子の入射があるときの等価回路図である。It is an equivalent circuit diagram when there is incident photons. 逆バイアス電圧として印加する矩形パルスの一例を示した図である。It is the figure which showed an example of the rectangular pulse applied as a reverse bias voltage. 図5の逆バイアスパルスが印加されているときに3番目のタイムスロットに光子が入射した場合の応答波形の計算機シミュレーション結果の一例を示した図である。It is the figure which showed an example of the computer simulation result of the response waveform when a photon injects into the 3rd time slot when the reverse bias pulse of FIG. 5 is applied.

Claims (5)

pn接合 またはp-i-n接合を有する半導体光素子に直流バイアス電圧を印加した状態でさらに周期的なパルス電圧を印加して、そのパルス電圧を印加した時間枠に入射した光を検出するために、パルス電圧が消えた直後の信号波形を観測することを特徴とする光検出方法。   In order to detect light incident on the time frame in which the pulse voltage is applied by applying a periodic pulse voltage with a DC bias voltage applied to a semiconductor optical device having a pn junction or a pin junction, A light detection method characterized by observing a signal waveform immediately after the light disappears. 前記半導体光素子がアバランシェフォトダイオードで構成されており、前記直流バイアス電圧がブレイクダウン電圧よりも小さく且つ前記直流バイアス電圧と前記パルス電圧との和の大きさもブレイクダウン電圧よりも小さい動作条件で、前記信号波形を観測することを特徴とする請求項1記載の光検出方法。   The semiconductor optical element is composed of an avalanche photodiode, and the DC bias voltage is smaller than the breakdown voltage and the sum of the DC bias voltage and the pulse voltage is smaller than the breakdown voltage. The light detection method according to claim 1, wherein the signal waveform is observed. 前記入射した光が微弱光であることを特徴とする請求項1または2記載の光検出方法。   3. The light detection method according to claim 1, wherein the incident light is weak light. pn接合 またはp-i-n接合を有する半導体光素子に直流バイアス電圧を印加する手段、
前記半導体光素子に直流バイアス電圧を印加した状態でさらに周期的なパルス電圧を印加する手段、
前記半導体光素子にパルス電圧を印加した時間枠で光を入射させる手段、および
パルス電圧が消えた直後の信号波形を計測する手段を備えていることを特徴とする光検出装置。
means for applying a DC bias voltage to a semiconductor optical device having a pn junction or a pin junction;
Means for applying a periodic pulse voltage in a state where a DC bias voltage is applied to the semiconductor optical device;
An optical detection apparatus comprising: means for making light incident in a time frame in which a pulse voltage is applied to the semiconductor optical element; and means for measuring a signal waveform immediately after the pulse voltage disappears.
前記半導体光素子がアバランシェフォトダイオードで構成されており、前記直流バイアス電圧がブレイクダウン電圧よりも小さく且つ前記直流バイアス電圧と前記パルス電圧との和の大きさもブレイクダウン電圧よりも小さく設定されていることを特徴とする請求項4記載の光検出装置。   The semiconductor optical element is composed of an avalanche photodiode, and the DC bias voltage is set smaller than the breakdown voltage, and the sum of the DC bias voltage and the pulse voltage is set smaller than the breakdown voltage. The photodetection device according to claim 4.
JP2005221770A 2004-07-30 2005-07-29 Light detection method and its device Pending JP2006066910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221770A JP2006066910A (en) 2004-07-30 2005-07-29 Light detection method and its device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004222774 2004-07-30
JP2005221770A JP2006066910A (en) 2004-07-30 2005-07-29 Light detection method and its device

Publications (1)

Publication Number Publication Date
JP2006066910A true JP2006066910A (en) 2006-03-09

Family

ID=36113049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221770A Pending JP2006066910A (en) 2004-07-30 2005-07-29 Light detection method and its device

Country Status (1)

Country Link
JP (1) JP2006066910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508869A (en) * 2008-01-03 2011-03-17 株式会社東芝 Photon detection photon detection system and method
KR101490810B1 (en) * 2012-04-16 2015-02-06 삼성탈레스 주식회사 Bias voltage setting appratus of avalanche photo diode detector for laser range finder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508869A (en) * 2008-01-03 2011-03-17 株式会社東芝 Photon detection photon detection system and method
JP2011252918A (en) * 2008-01-03 2011-12-15 Toshiba Corp Photon detection system and photon detection method for detecting photons
US8716648B2 (en) 2008-01-03 2014-05-06 Kabushiki Kaisha Toshiba Photon detection system and method of photon detection
US8772700B2 (en) 2008-01-03 2014-07-08 Kabushiki Kaisha Toshiba Photon detection system and method of photon detection for determining the number of photons received at a photon detector
KR101490810B1 (en) * 2012-04-16 2015-02-06 삼성탈레스 주식회사 Bias voltage setting appratus of avalanche photo diode detector for laser range finder

Similar Documents

Publication Publication Date Title
Itzler et al. Advances in InGaAsP-based avalanche diode single photon detectors
Lacaita et al. Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors
Zappa et al. Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors
US9029774B2 (en) Single photon detector in the near infrared using an InGaAs/InP avalanche photodiode operated with a bipolar rectangular gating signal
US20220069152A1 (en) Wide-area single-photon detector with time-gating capability
US20220013571A1 (en) Image sensor with large dynamic range
Thomas et al. Efficient photon number detection with silicon avalanche photodiodes
Itzler et al. InP-based negative feedback avalanche diodes
Mahmoudi et al. Statistical study of intrinsic parasitics in an SPAD-based integrated fiber optical receiver
Rech et al. Modified single photon counting modules for optimal timing performance
Itzler et al. Single-photon detectors based on InP avalanche diodes: Status and prospects
Zhang et al. Feasibility study of Multi-Pixel Photon Counter serving as the detector in digital optical communications
Bourennane et al. Single-photon counters in the telecom wavelength region of 1550 nm for quantum information processing
Wang et al. Noise characterization of geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection
Dinu Silicon photomultipliers (SiPM)
Mu et al. Evaluation and experimental comparisons of different photodetector receivers for visible light communication systems under typical scenarios
JP2006066910A (en) Light detection method and its device
Jiang et al. Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers
Li et al. A real-time SiPM based receiver for FSO communication
Jiang et al. Negative feedback avalanche diodes for near-infrared single-photon detection
TWI805634B (en) A radiation detector with a dc-to-dc converter based on mems switches
KR20100120808A (en) A method to supply pulse bias to an avalanche photo diode by optically utilizing serially connected photo diode to it and to eliminate after pulse using flyback diode in an optical detection circuit operated in geiger mode constructed with an avalanche photo diode.
Gašpar Vergleich von Quencherschaltungen und SPADs
Liu et al. A novel quenching circuit to reduce afterpulsing of single photon avalanche diodes
Kim et al. Near-infrared detection using pulsed tunneling junction in silicon devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630