JP2006066615A - Polypropylene film for capacitor and capacitor made thereof - Google Patents

Polypropylene film for capacitor and capacitor made thereof Download PDF

Info

Publication number
JP2006066615A
JP2006066615A JP2004246971A JP2004246971A JP2006066615A JP 2006066615 A JP2006066615 A JP 2006066615A JP 2004246971 A JP2004246971 A JP 2004246971A JP 2004246971 A JP2004246971 A JP 2004246971A JP 2006066615 A JP2006066615 A JP 2006066615A
Authority
JP
Japan
Prior art keywords
film
capacitor
polypropylene film
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246971A
Other languages
Japanese (ja)
Inventor
Isamu Moriguchi
勇 森口
Tatsuya Ito
達也 伊藤
Kimitake Uematsu
君剛 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004246971A priority Critical patent/JP2006066615A/en
Publication of JP2006066615A publication Critical patent/JP2006066615A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene film for a capacitor with a stable withstanding voltage characteristic and a lifetime characteristic in the case of being subjected to power application for a long time at a high temperature. <P>SOLUTION: The polypropylene film for the capacitor is made of a polypropylene resin whose mesopentad fraction is 0.97 or over and 0.99 or below, the film therein contains 2,000 ppm or over and 8,000 ppm or below of a polar organic compound whose melting point is 90&deg;C or over and 160&deg;C or below, and a &Delta;d (the difference of thickness by the micrometer method and thickness by the weighing method) of the film is 0.05 &mu;m or over and 0.25 &mu;m or below. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、コンデンサ用ポリプロピレンフィルムに関するものであり、更に詳しくは、スイッチング電源、DC−DCコンバーターや、インバーター等の平滑用として用いるコンデンサに好適なポリプロピレンフイルム及びそれからなるコンデンサに関するものである。   The present invention relates to a polypropylene film for a capacitor, and more particularly to a polypropylene film suitable for a capacitor used for smoothing a switching power supply, a DC-DC converter, an inverter and the like, and a capacitor comprising the same.

ポリプロピレンフィルムは、耐電圧特性や誘電損失などの電気特性が他のプラスチックフィルムよりも優れていることなどの理由からコンデンサ用途に広く用いられている。しかしながら、一方においては誘電率が他のプラスチクフィルムよりも小さいために、例えば平滑コンデンサのように大容量が求められる場合は、コンデンサの電極間距離をできる限り小さくするためにフィルムを薄くし、電極面積をできる限り広くするために長く巻回す必要がある。このようなコンデンサにおいては、コンデンサ素子の変形によって容量が変動する可能性があるため、フィルムの熱寸法安定性が重要であることが知られており、フィルムの熱収縮率を低減する提案が成されている(特許文献1,特許文献2)。
特許番号3269709号公報 特開平11−67580号公報
Polypropylene films are widely used for capacitor applications because they have superior electrical characteristics such as withstand voltage characteristics and dielectric loss than other plastic films. However, on the one hand, the dielectric constant is smaller than other plastic films, so when a large capacity is required, such as a smoothing capacitor, the film is made thin in order to make the distance between the electrodes of the capacitor as small as possible. It is necessary to wind long in order to make the area as wide as possible. In such a capacitor, it is known that the thermal dimensional stability of the film is important because the capacitance may fluctuate due to deformation of the capacitor element, and a proposal to reduce the thermal shrinkage rate of the film has been made. (Patent Document 1, Patent Document 2).
Japanese Patent No. 3269709 JP 11-67580 A

しかしながら、これらの提案では特にマイクロメータ法で測定したポリプロピレンフィルムの厚みが5μm以下、中でもさらに4μm以下のフィルムを使用する、例えばハイブリッドカーのインバータ用などのように容量が1000μFを超えるような大容量コンデンサに用いられる場合に至っては、たとえ熱収縮率のみを小さく抑えてもコンデンサの容量減少を免れないことを見出した。すなわち、フィルム厚みが上述のような薄い領域おいては、特に巻回型のコンデンサで、フィルムの熱収縮に応じて素子形状が変形することによる電極間距離の拡張による容量減少だけでなく、誘電体を構成しているポリプロピレンフィルムの絶縁破壊やこれに起因するコンデンサの保安機能の作動によって、コンデンサの使用経時における容量の減少が顕著になるということであり、フィルムの絶縁破壊自体を低減することが容量の安定化に極めて重要であることを見い出したものである。   However, in these proposals, a polypropylene film having a thickness of 5 μm or less, particularly 4 μm or less measured by the micrometer method is used. For example, for a hybrid car inverter, the capacity exceeds 1000 μF. It has been found that when used in a capacitor, it is inevitable that the capacitance of the capacitor is reduced even if only the thermal contraction rate is suppressed. That is, in the thin film region as described above, in particular, in the case of a wound type capacitor, not only the capacity reduction due to the expansion of the distance between the electrodes due to the deformation of the element shape according to the thermal contraction of the film, but also the dielectric The dielectric breakdown of the polypropylene film that constitutes the body and the operation of the capacitor's safety function resulting from this cause a significant decrease in the capacity of the capacitor over time, reducing the dielectric breakdown of the film itself. Has been found to be extremely important for capacity stabilization.

本発明は、上述の問題を解決するために、
(1) メソペンタッド分率が0.97以上0.99以下のポリプロピレン樹脂からなるポリプロピレンフィルムであって、該フィルム中に融点が90℃以上160℃以下の有極性有機系化合物を2000ppm以上8000ppm以下含有し、かつ該フイルムのΔd(マイクロメータ法厚さ−質量法厚さ)が0.05μm以上0.25μm以下であることを特徴とするコンデンサ用ポリプロピレンフィルム。
(2) マイクロメータ法のフィルム厚みが2μm以上5μm以下であることを特徴とする(1)項に記載のコンデンサ用ポリプロピレンフィルム。
(3) (1)項または(2)項に記載のコンデンサ用ポリプロピレンフィルムの片面もしくは両面に金属蒸着したことを特徴とするコンデンサ用金属化ポリプロピレンフィルム。
(4) (3)項に記載のコンデンサ用金属化ポリプロピレンフィルムにおいて蒸着パターンのマージンの内、少なくとも一部が長さ方向に平行でないマージンであることを特徴とするコンデンサ用金属化ポリプロピレンフィルム。
(5) (3)項〜(4)項のいずれかに記載の金属化ポリプロピレンフィルムを用いてなるコンデンサであって、保証温度が該有極性有機系化合物の融点以下、静電容量が5μF以上であることを特徴とするコンデンサ。
(6) (5)項に記載のコンデンサが巻回型であることを特徴とする巻回型コンデンサ。
を提案するものである。
In order to solve the above problems, the present invention
(1) A polypropylene film composed of a polypropylene resin having a mesopentad fraction of 0.97 or more and 0.99 or less, wherein the film contains a polar organic compound having a melting point of 90 ° C or more and 160 ° C or less in a range of 2000 ppm or more and 8000 ppm or less. And a Δd (micrometer method thickness−mass method thickness) of the film is 0.05 μm or more and 0.25 μm or less.
(2) The film thickness of the micrometer method is 2 μm or more and 5 μm or less, and the polypropylene film for capacitors as described in the item (1).
(3) A metallized polypropylene film for capacitors, wherein metal is deposited on one or both sides of the polypropylene film for capacitors described in (1) or (2).
(4) A metallized polypropylene film for capacitors according to the item (3), wherein at least a part of the margin of the vapor deposition pattern is not parallel to the length direction.
(5) A capacitor using the metallized polypropylene film according to any one of (3) to (4), wherein the guaranteed temperature is not higher than the melting point of the polar organic compound, and the capacitance is not less than 5 μF. Capacitor characterized by being.
(6) A winding type capacitor, wherein the capacitor described in (5) is a winding type.
This is a proposal.

本発明は、コンデンサの長期課電時の静電容量が安定しており、信頼性に優れるコンデンサを提供することができ、特に大容量の巻回型コンデンサに好適である。   INDUSTRIAL APPLICABILITY The present invention can provide a capacitor having a stable capacitance during long-term voltage application and excellent in reliability, and is particularly suitable for a large-capacity wound capacitor.

以下に、本発明について、望ましい実施の形態とともに詳細に説明する。   Hereinafter, the present invention will be described in detail together with preferred embodiments.

本発明ポリプロピレンフィルムを構成する樹脂としては、立体規則性の指標であるメソペンタッド分率が0.97以上0.99以下であることが必要であり、好ましくは0.975以上0.985以下である。メソペンタッド分率が低すぎると絶縁破壊電圧が低下する。一方メソペンタッド分率が高すぎるとフイルムの厚み斑や内部ボイドの増加によってかえって素子としての耐圧を低下させる。   As a resin constituting the polypropylene film of the present invention, the mesopentad fraction, which is an index of stereoregularity, needs to be 0.97 or more and 0.99 or less, preferably 0.975 or more and 0.985 or less. . If the mesopentad fraction is too low, the dielectric breakdown voltage decreases. On the other hand, if the mesopentad fraction is too high, the breakdown voltage as an element is lowered due to the increase in film thickness spots and internal voids.

次いで該フイルム中に融点が90℃以上160℃以下の有極性有機系化合物を2000ppm以上8000ppm以下含有していることが必要である。該有極性有機系化合物の融点としてより好ましい範囲は100℃以上150℃以下、更に好ましくは110℃以上140℃以下である。    Next, it is necessary that the polar organic compound having a melting point of 90 ° C. or higher and 160 ° C. or lower is contained in the film in an amount of 2000 ppm to 8000 ppm. A more preferable range of the melting point of the polar organic compound is 100 ° C. or higher and 150 ° C. or lower, and more preferably 110 ° C. or higher and 140 ° C. or lower.

含有量が上述の範囲よりも少ないと長期ライフ特性に劣り、多すぎると固有抵抗が低下しコンデンサ特性を悪化させる。また、該化合物の融点が低すぎると誘電損失の増大を招くばかりか漏れ電流が増加してコンデンサ素子の発熱を招く可能性がある。一方融点が高すぎるとフイルム中にボイドを生成するきっかけとなって初期耐圧が低下する。   If the content is less than the above range, the long-term life characteristics are inferior. If the content is too large, the specific resistance is lowered and the capacitor characteristics are deteriorated. Further, if the melting point of the compound is too low, not only the dielectric loss increases but also the leakage current increases, which may cause the capacitor element to generate heat. On the other hand, if the melting point is too high, voids are generated in the film and the initial breakdown voltage is lowered.

ここで有極性有機化合物とはカルボニル基、カルボキシル基、アミド基等の分極性の官能基類を含む化合物であるが、ベンゼン環、ナフタレン環の芳香族環も電子分極性があり、本発明においては有極性化合物として定義する。   Here, the polar organic compound is a compound containing polar functional groups such as a carbonyl group, a carboxyl group, and an amide group, but the aromatic ring such as a benzene ring and a naphthalene ring also has an electronic polarizability. Is defined as a polar compound.

更に該有機化合物としては、ポリプロピレンに相溶可能な化合物であることが好ましく、更に融点・結晶性に極力影響を与えない比較的分子量の低いものであることが好ましい。具体的にはヒンダードフェノール系化合物として、1,6−ヘキサンジオールビス[3−(3,5−ジーt−ブチルー4ヒドロキシフェニル)プロピオネート](商標名“Irganox”259)、2,4―ビスー(n―オクチルチオ)―6―(4−ヒドロキシアニリノ)―1,3,5―トリアジン(商標名“Irganox”565)、ペンタエリスリチル・テトラキス[3―(3,5−ジーt−ブチルー4ヒドロキシフェニル)プロピオネート]](商標名“Irganox”1010),3,9―ビス[2―[3―(3−t−ブチルー4―ヒドロキシ−5―メチルフェニル)プロピオニルオキシ]―1,1―ジメチルエチル]―2,4,8,10−テトラオキサスピロ[5・5]ウンデカン(商標名“Sumilizer”GA−80)等が例示される。   Further, the organic compound is preferably a compound compatible with polypropylene, and more preferably has a relatively low molecular weight that does not affect the melting point and crystallinity as much as possible. Specifically, as a hindered phenol compound, 1,6-hexanediol bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name “Irganox” 259), 2,4-bis- (N-octylthio) -6- (4-hydroxyanilino) -1,3,5-triazine (trade name “Irganox” 565), pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4 Hydroxyphenyl) propionate]] (trade name “Irganox” 1010), 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethyl Ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (trade name “Sumilizer” GA-80 Like it is exemplified.

これらの有極性有機化合物はポリプロピレンに含有されるものであるが、その一部はフィルム表面にブリードアウトして該ポリプロピレンフィルムの表層に特定濃度で存在する。有極性有機化合物はその分極能から局所的な電界の集中を防ぐ機能を有しおり、結果的にポリプロピレンフィルムの耐圧を向上する。特にその効果は薄いフィルムほど顕著になり、5μm以下、好ましくは4μm以下の薄いフィルムを誘電体として使用した場合、重要となる。特に保安機能付きのコンデンサでは、電極をパターン蒸着化しているために、コンデンサは小型コンデンサ(セル)の集合体になっているが、何らかの原因で一部のセルが破壊した場合にその周囲で発生する電圧変動が、薄いフィルム程顕著になるため、その周囲のセルまで破壊するリスクが高まるが、電界が緩和できると誘発電界による周辺セルの破壊を低減することが可能となるのである。このようなブリード挙動を安定させるために該有極性有機系化合物の分子量は500〜2500g/モルであることが好ましく、更に好ましくは700〜2000g/モルである。   These polar organic compounds are contained in polypropylene, but some of them are bleed out on the surface of the film and are present at a specific concentration in the surface layer of the polypropylene film. The polar organic compound has a function to prevent local electric field concentration due to its polarization ability, and as a result, improves the pressure resistance of the polypropylene film. In particular, the effect becomes more remarkable as the film becomes thinner, and becomes important when a thin film of 5 μm or less, preferably 4 μm or less is used as the dielectric. Especially for capacitors with security function, the electrodes are patterned, so the capacitors are aggregates of small capacitors (cells). If some cells are destroyed for some reason, they are generated around them. Since the voltage fluctuations that occur are more prominent in thin films, the risk of destruction to the surrounding cells increases. However, if the electric field can be relaxed, it is possible to reduce the destruction of the peripheral cells due to the induced electric field. In order to stabilize such bleed behavior, the molecular weight of the polar organic compound is preferably 500 to 2500 g / mol, and more preferably 700 to 2000 g / mol.

また、このような現象は高温・高電圧ほど生じ易くなり、特に80℃以上、電位傾度200V/μ以上で顕著になる。したがって、本発明フィルムは特にこの領域で使用されるコンデンサに好適である。   Also, such a phenomenon is more likely to occur at higher temperatures and higher voltages, and becomes particularly prominent at 80 ° C. or higher and a potential gradient of 200 V / μ or higher. Therefore, the film of the present invention is particularly suitable for a capacitor used in this region.

次いで、本発明に係るポリプロピレンフィルムは、フィルムのΔdが0.05μm以上0.25μm以下である必要がある。Δdは、マイクロメータ法厚さ(MMV)から質量法厚さ(WMV)を引いた差の値であり、一般にこの値が大きいとフィルムの表面が粗れていることを意味し、コンデンサ素子に巻き上げたときのフィルム層間の空隙率が大きくなり、小さいとフィルムの表面が平滑であることを意味し、コンデンサ素子に巻き上げたときのフィルム層間の空隙率が小さくなる。   Next, in the polypropylene film according to the present invention, Δd of the film needs to be 0.05 μm or more and 0.25 μm or less. Δd is a difference value obtained by subtracting the mass method thickness (WMV) from the micrometer method thickness (MMV). Generally, when this value is large, it means that the surface of the film is rough. When the film is wound up, the porosity between the film layers becomes large, and when it is small, it means that the surface of the film is smooth, and when the film is wound on the capacitor element, the porosity between the film layers becomes small.

本発明のポリプロピレンフィルムにおいて、フィルムのΔdが0.05μm未満ではフィルムがすべりにくくなるため、しわ抑制効果が得られないといったフィルム加工上の問題が生じ、また、コンデンサ内ではフィルム層間の空隙率が小さくなるため、コンデンサ内で自己回復が起こった際に発生するガスや飛散金属が系外に抜けずに耐電圧特性に支障を及ぼすなどの不具合を発生させるので不適当である。0.25μmを超えるとコンデンサ素子の巻き取り時にフィルムがずれるといったフィルムの加工性の問題が生じ、また、コンデンサ内のフィルム層間空隙率が大きくなるため内部放電を起こしやすくなることが原因で、コンデンサに課電した際に経時に伴う容量減少が大きくなる、コンデンサの耐電圧が低下するなどの支障が出るので不適当である。好ましくは0.07μm以上0.20μm以下である。   In the polypropylene film of the present invention, when the film Δd is less than 0.05 μm, the film is difficult to slip, so that there is a problem in film processing such that a wrinkle suppressing effect cannot be obtained. Therefore, the gas and scattered metal generated when self-recovery occurs in the capacitor does not escape from the system, causing problems such as impeding the withstand voltage characteristics. If the thickness exceeds 0.25 μm, there arises a problem of workability of the film such that the film is displaced at the time of winding the capacitor element, and because the void ratio between the films in the capacitor becomes large, internal discharge is likely to occur. When power is applied to the capacitor, it is not appropriate because it causes problems such as a large decrease in capacitance with time and a decrease in the withstand voltage of the capacitor. Preferably they are 0.07 micrometer or more and 0.20 micrometer or less.

本発明のポリプロピレンフィルムのΔdを上記範囲内にする方法としては、押し出し機から押し出したポリマーを冷却ロールで冷却固化する際のポリマー温度状態をコントロールする方法や適当な結晶性をもつポリマーを選択する方法、あるいはポリプロピレンなどの造核剤を含有せしめる方法などが例示される。   As a method of setting Δd of the polypropylene film of the present invention within the above range, a method of controlling a polymer temperature state when a polymer extruded from an extruder is cooled and solidified by a cooling roll, or a polymer having appropriate crystallinity is selected. Examples thereof include a method and a method of containing a nucleating agent such as polypropylene.

また本発明のポリプロピレンフィルムの幅方向の収縮寸法変化率は、1.0%以下であることが好ましく、更に好ましくは−1.5〜0.5%以下である。1.0%を超えるとコンデンサ素子を加熱処理するなどのコンデンサ製造工程でフィルムの収縮が大きくなり、素子の形状変化の原因となり、結果的に耐電圧が低下する。なお、収縮寸法変化率のマイナスは寸法が大きくなることを意味する。   The shrinkage dimensional change rate in the width direction of the polypropylene film of the present invention is preferably 1.0% or less, more preferably -1.5 to 0.5%. If it exceeds 1.0%, the shrinkage of the film becomes large in the capacitor production process such as heat treatment of the capacitor element, which causes a change in the shape of the element, resulting in a decrease in withstand voltage. In addition, the minus of shrinkage dimensional change rate means that a dimension becomes large.

さらに本発明におけるポリプロピレンフィルムの長さ方向の収縮寸法変化率と幅方向の収縮寸法率の和は、0%以上4.0%以下が好ましく、より好ましくは0.5%以上3.5以下%である。この範囲にあれば、蒸着加工や加熱プレスなどの熱ストレスを受ける加工において、フィルムの縮みを抑制することができ、所望の寸法精度や容量精度を得ることができるので好ましい。   Further, the sum of the shrinkage dimension change rate in the length direction and the shrinkage dimension ratio in the width direction of the polypropylene film in the present invention is preferably 0% or more and 4.0% or less, more preferably 0.5% or more and 3.5 or less%. It is. If it exists in this range, in the process which receives thermal stress, such as a vapor deposition process and a heating press, shrinkage | contraction of a film can be suppressed and desired dimensional accuracy and capacity | capacitance accuracy can be obtained, and it is preferable.

また本発明におけるポリプロピレンフィルムの少なくとも片面の十点平均粗さRzは、0.8μm以下であることが好ましい。金属蒸着を目的とした面のRzが、0.8μmを超えるとコンデンサの電極として機能する蒸着金属面に粗大な凹凸を構成するため電界の集中を招き、耐電圧特性を低下させることがあるので、金属蒸着を目的とした面のRzが、0.8μm以下であることが好ましい。より好ましくは0.7μm以下である。尚、Rzの下限は、本発明の効果を奏する限りにおいて特に限定されないが、フィルムのすべり性を適正に保つためには0.2μm以上であることが好ましい。   In addition, the ten-point average roughness Rz of at least one surface of the polypropylene film in the present invention is preferably 0.8 μm or less. If the Rz of the surface for metal deposition exceeds 0.8 μm, the surface of the deposited metal that functions as the electrode of the capacitor forms rough irregularities, which may cause electric field concentration and lower the withstand voltage characteristics. The Rz of the surface intended for metal vapor deposition is preferably 0.8 μm or less. More preferably, it is 0.7 μm or less. The lower limit of Rz is not particularly limited as long as the effects of the present invention are exhibited, but it is preferably 0.2 μm or more in order to keep the slipperiness of the film properly.

本発明フィルムは前述の通り、薄いフィルム領域で素子変形に伴う素子内の電位変動を低減して安定的な静電容量を維持する。このようなフイルム厚みの領域はマイクロメータで5μm以下であり、好ましくは2μm以上5μm以下、更に好ましくは2.5μm以上4.0μm以下である。   As described above, the film of the present invention maintains a stable capacitance by reducing potential fluctuations in the device accompanying device deformation in a thin film region. Such a film thickness region is 5 μm or less with a micrometer, preferably 2 μm or more and 5 μm or less, and more preferably 2.5 μm or more and 4.0 μm or less.

さらに、本発明のポリプロピレンフィルムは、テンター法、インフレーション法のいずれで得たものでもかまわないし、延伸方法も特に限定されないが、薄くてかつ、厚薄むらの小さいこと要求されることから、テンター法二軸延伸が好ましい。   Furthermore, the polypropylene film of the present invention may be obtained by either the tenter method or the inflation method, and the stretching method is not particularly limited. However, since the thin film is required to be thin and small in thickness, the tenter method 2 Axial stretching is preferred.

また本発明のポリプロピレンフィルムに含有される有極性有機系化合物以外の添加剤は特に限定されるものではなく、コンデンサ特性に支障を及ぼさない範囲で、適宜選択添加してもよい。   Further, additives other than the polar organic compound contained in the polypropylene film of the present invention are not particularly limited, and may be appropriately selected and added within a range not affecting the capacitor characteristics.

本発明のポリプロピレンフィルムをコンデンサに使用する場合の電極は特に限定されるものではなく、例えば金属箔であっても両面を金属化した紙やプラスチックフィルムであっても、本発明のポリプロピレンフィルムの片面もしくは両面を直接金属化してもかまわないが、小型軽量化が望まれるコンデンサ用途にあっては特に直接フィルムを金属化することに好適である。このとき、用いる金属の種類は、亜鉛、錫、銀、クロム、アルミニウム、銅、ニッケルなどの単体や複数種の混合物あるいは合金などが挙げられるが、特に限定されるものではない。   The electrode in the case of using the polypropylene film of the present invention for a capacitor is not particularly limited. For example, even if it is a metal foil or a paper or plastic film metallized on both sides, one side of the polypropylene film of the present invention Alternatively, both sides may be directly metallized, but it is particularly suitable for directly metallizing a film in a capacitor application where a reduction in size and weight is desired. At this time, the type of metal used includes, but is not particularly limited to, simple substances such as zinc, tin, silver, chromium, aluminum, copper, nickel, and a mixture or alloy of plural kinds.

また、フィルムを直接金属化する方法としては、真空蒸着法やスパッタリング法などが例示され、特に限定されるものではないが、その生産性や経済性などの観点から真空蒸着法がより好ましい。一般に真空蒸着法にはるつぼ方式やボート方式などが例示されるが、特に限定されるものではなく、適宜選択すればよい。蒸着により金属化する場合のマージンパターンも特に限定されるものではなく、通常のパターンであってもコンデンサの保安性向上などの目的で施される図1や図2に例示されるような長さ方向に平行でないマージンを含むパターンであってもかまわない。
さらに、それらのマージンの構成方式も特に限定されるものではなく例えば、テープ方式であってもオイル方式であってもかまわない。
Moreover, examples of the method for directly metallizing the film include a vacuum deposition method and a sputtering method, and are not particularly limited, but the vacuum deposition method is more preferable from the viewpoint of productivity and economy. In general, a crucible method, a boat method, and the like are exemplified as the vacuum deposition method, but the method is not particularly limited and may be appropriately selected. The margin pattern in the case of metallization by vapor deposition is not particularly limited, and even a normal pattern has a length as illustrated in FIGS. 1 and 2 applied for the purpose of improving the security of the capacitor. A pattern including a margin that is not parallel to the direction may be used.
Further, the configuration method of those margins is not particularly limited, and for example, a tape method or an oil method may be used.

また本発明のポリプロピレンフィルムからなるコンデンサの構造や形態は、特に限定されるものではなく、例えば乾式でも液体などによる含浸式でも、あるいは丸型でも扁平プレス型でも差し支えないが、しわが入り易い扁平化プレス工程を経る扁平型コンデンサには特に好適である。   Further, the structure and form of the capacitor made of the polypropylene film of the present invention are not particularly limited. For example, a dry type, a liquid impregnation type, a round type or a flat press type may be used. It is particularly suitable for a flat capacitor that has undergone a press forming step.

更に、上述のように本発明フィルムを用いると高温での信頼性が求められかつ大容量が求められる金属蒸着コンデンサに好適であるが、特にコンデンサの保証温度との関係においては、該保証温度が該有極性有機系化合物の融点を上回らないようにしておくことが好ましい。具体的には該有極性有機系化合物の融点以下が好ましく、更に好ましくは該融点−10℃以下である。また、該コンデンサの静電容量が5μF以上、更に好ましくは10μF以上、特に好ましくは50μF以上のコンデンサ素子で構成されるコンデンサに好適である。   Furthermore, when the film of the present invention is used as described above, it is suitable for a metal vapor deposition capacitor that requires high temperature reliability and a large capacity, but particularly in relation to the guaranteed temperature of the capacitor, the guaranteed temperature is It is preferable not to exceed the melting point of the polar organic compound. Specifically, it is preferably not higher than the melting point of the polar organic compound, more preferably not higher than -10 ° C. Further, it is suitable for a capacitor constituted by a capacitor element having a capacitance of 5 μF or more, more preferably 10 μF or more, and particularly preferably 50 μF or more.

次に本発明のポリプロピレンフィルムの製造法の一例を示すが、特に限定されるものではない。
ペンタエリスリチル・テトラキス[3―(3,5−ジーt−ブチルー4ヒドロキシフェニル)プロピオネート]](商標名“Irganox1010),3,9―ビス[2―[3―(3−t−ブチルー4―ヒドロキシ−5―メチルフェニル)プロピオニルオキシ]―1,1―ジメチルエチル]―2,4,8,10−テトラオキサスピロ[5・5]ウンデカン(商標名“Sumilizer”GA−80)等から適宜選択された有極性有機系化合物を2000ppm以上8000ppm以下添加したメルトインデックス3.0〜4.5g/10minのポリプロピレン樹脂を、240〜270℃の温度の押出機に供給して溶融し、スリットを施したTダイより、シート状に押出し、75〜95℃の温度の冷却ロールで冷却固化する。このとき、ポリプロピレン樹脂のメルトインデックスが高いほど収縮寸法変化率は小さくなり、灰分が少ないほど、またはメソペンダット分率が高いほど絶縁破壊電圧が向上するので、各々を適宜選択すればよい。また一般に冷却ロール温度が高いほど、面粗さが大きくなる関係にあるので、所望のΔdを得るためには、適宜冷却ロール温度を選択すればよいが、80〜90℃が好ましい。
Next, although an example of the manufacturing method of the polypropylene film of this invention is shown, it does not specifically limit.
Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]] (trade name “Irganox 1010), 3,9-bis [2- [3- (3-t-butyl-4- Hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (trade name “Sumilizer” GA-80) A polypropylene resin having a melt index of 3.0 to 4.5 g / 10 min with 2000 to 8000 ppm of the polar organic compound added was supplied to an extruder at a temperature of 240 to 270 ° C., melted, and slitted Extruded into a sheet form from a T-die and cooled and solidified with a cooling roll at a temperature of 75 to 95 ° C. The higher the melt index of the propylene resin, the smaller the shrinkage dimensional change rate, and the lower the ash content or the higher the mesopendart fraction, the higher the dielectric breakdown voltage, so each can be selected as appropriate. The higher the surface roughness, the larger the surface roughness. Therefore, in order to obtain the desired Δd, the cooling roll temperature may be appropriately selected, but 80 to 90 ° C. is preferable.

次に135〜155℃の延伸ロールでフィルムを長さ方向に3〜7倍に延伸する。この場合も延伸温度を選択することで面粗さの大きさを変えられる。次いで、幅方向に融点−10℃〜融点−1℃好ましくは融点−8℃〜融点−2℃の温度で7〜12倍延伸しさらに、150〜165℃で熱処理を施す。一般に延伸温度や熱処理温度が低いほど、また延伸倍率が高いほど収縮寸法変化率が大きくなる関係にあるので、これらの条件を適宜選択すればよい。   Next, the film is stretched 3 to 7 times in the length direction with a stretching roll of 135 to 155 ° C. Also in this case, the size of the surface roughness can be changed by selecting the stretching temperature. Next, the film is stretched 7 to 12 times in the width direction at a melting point of −10 ° C. to a melting point of 1 ° C., preferably a melting point of −8 ° C. to a melting point of −2 ° C., and further subjected to heat treatment at 150 to 165 ° C. In general, the lower the stretching temperature or the heat treatment temperature, and the higher the stretching ratio, the greater the shrinkage dimensional change rate. Therefore, these conditions may be appropriately selected.

こうして得られたポリプロピレンフィルムの片面にコロナ放電処理を施した後、ワインダーで巻取る。   One side of the polypropylene film thus obtained is subjected to corona discharge treatment, and then wound with a winder.

ここで、マイクロメータ法フィルム厚さは、口金からのポリプロピレン樹脂の押し出し量と延伸倍率を選択することで所望の厚みが得られるので、適宜選択すればよい。   Here, since the desired thickness is obtained by selecting the extrusion amount and the draw ratio of the polypropylene resin from the die, the micrometer method film thickness may be appropriately selected.

次に本発明の実施例に用いる測定法及び評価法について説明する。   Next, measurement methods and evaluation methods used in the examples of the present invention will be described.

(1)メソペンタッド分率(mmmm)
試料を溶媒に溶解し、13C−NMRを用いて、以下の条件にてメソペンタッド分 率(mmmm)(百分率)を求める
測定条件
装置:Bruker社製、DRX−500
測定核:13C核(共鳴周波数:125.8MHz))
測定濃度:10wt%(試料10wt%、溶媒90wt%)
溶媒:ベンゼン/重オルトジクロロベンゼン=1:3混合溶液(容積比)
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10000回
測定モード:complete decoupling
解析条件
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下の様にピーク分割を行い、更にソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。尚、測定はn=5で行い、その平均値を求める
ピーク
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmm+rmrr
(f)mmrr
(g)mmmr
(h)ss(mmmmのスピニングサイドバンドピーク)
(i)mmmm
(j)rmmr 。
(1) Mesopentad fraction (mmmm)
A sample is dissolved in a solvent, and a mesopentad fraction (mmmm) (percentage) is determined under the following conditions using 13C-NMR. Measurement conditions Apparatus: DRX-500 manufactured by Bruker
Measurement nucleus: 13C nucleus (resonance frequency: 125.8 MHz))
Measurement concentration: 10 wt% (sample 10 wt%, solvent 90 wt%)
Solvent: benzene / heavy orthodichlorobenzene = 1: 3 mixed solution (volume ratio)
Measurement temperature: 130 ° C
Spin rotation speed: 12Hz
NMR sample tube: 5 mm tube Pulse width: 45 ° (4.5 μs)
Pulse repetition time: 10 seconds Data point: 64K
Number of conversions: 10000 times Measurement mode: complete decoupling
Analysis condition LB (line broadening factor) was set to 1.0, and Fourier transform was performed to set the mmmm peak to 21.86 ppm. Peak splitting is performed using WINFIT software (manufactured by Bruker). At that time, the peak splitting is performed from the peak on the high magnetic field side as shown below, and the soft automatic fitting is performed to optimize the peak splitting. The sum of the peak fractions is defined as the mesopentad fraction (mmmm). The measurement is performed at n = 5, and the average value is obtained. Peak
(A) mrrm
(B) (c) rrrrm (divided as two peaks)
(D) rrrr
(E) mrmm + rmrr
(F) mmrr
(G) mmmr
(H) ss (mmmm spinning sideband peak)
(I) mmmm
(J) rmmmr.

(2)有極性有機系化合物の含有量
コンデンサ素子として組み込まれている場合は、素子を解体して後、電極金属を酸で除去して、風乾する。該サンプルを10gサンプリングし、更に化学天秤で精量してその重量をW1(g)とする。次いで該サンプルを沸騰キシレンで完全溶解して室温まで冷却した後、フィルターで不溶分を除去したものを一旦乾燥する
次いで該乾燥物をアセトンに溶解して可溶分のみを取り出し、乾燥後その重量を精量しW2(g)とする。また、該アセトン可溶分の赤外フーリエ変換スペクトル(FT−IR)から該可溶分の構造および該構造中に有極性構造の有無を確認する
この結果、有極性有機系化合物の含有量(Z(ppm))は次式で求められる
Z=W2/W1×10
(2) Content of polar organic compound When incorporated as a capacitor element, after disassembling the element, the electrode metal is removed with an acid and air-dried. 10 g of this sample is sampled, and further weighed with an analytical balance, and its weight is defined as W1 (g). Next, the sample is completely dissolved in boiling xylene and cooled to room temperature, and then the insoluble matter removed by a filter is dried once. Next, the dried product is dissolved in acetone, and only the soluble matter is taken out. To be W2 (g). Further, the structure of the soluble component and the presence or absence of a polar structure in the structure are confirmed from the infrared Fourier transform spectrum (FT-IR) of the acetone-soluble component. As a result, the content of the polar organic compound ( Z (ppm)) is obtained by the following formula: Z = W2 / W1 × 10 6 .

(3)Δd、マイクロメータ法厚さ
JIS C−2330(2001)の7.4.1.1によりマイクロメータ法厚さ(以下MMVという)を測定した
次いでJIS C−2330(2001)の7.4.1.2により質量法厚さ(以下WMVという)を測定した後、次式で求めた
Δd(μm)=MMV(μm)−WMV(μm) 。
(3) Δd, Micrometer Method Thickness The micrometer method thickness (hereinafter referred to as “MMV”) was measured according to JIS C-2330 (2001) 7.4.1.1, then JIS C-2330 (2001) 7. After measuring the mass method thickness (hereinafter referred to as WMV) according to 4.1.2, Δd (μm) = MMV (μm) −WMV (μm) determined by the following formula.

(4)収縮寸法変化率
JIS C−2330(2001)の7.4.6.2 B法によった。
(4) Shrinkage dimensional change rate This was measured according to 7.4.6.2 B method of JIS C-2330 (2001).

(5)中心線平均粗さ(Ra)及び十点平均粗さ(Rz)
JIS B−0601(1982)により、株式会社小坂研究所製「非接触三次元微細形状測定器(ET−30HK)」及び「三次元粗さ分析装置(MODEL SPA−11)」を用いて測定した。測定数は3とし、その平均値を用いた。詳細条件は次の通り
測定面処理:測定面にアルミニウムを真空蒸着し、非接触法とした
測定長:1mm
横倍率:200倍
縦倍率:20000倍
カットオフ:0.25mm
幅方向送り速度:0.1mm/秒
長さ方向送りピッチ:10μm
長さ方向送り数:20回
測定方向:フィルムの幅方向 。
(5) Centerline average roughness (Ra) and ten-point average roughness (Rz)
Measured according to JIS B-0601 (1982) using a “non-contact three-dimensional fine shape measuring instrument (ET-30HK)” and “three-dimensional roughness analyzer (MODEL SPA-11)” manufactured by Kosaka Laboratory Ltd. . The number of measurements was 3, and the average value was used. Detailed conditions are as follows Measurement surface treatment: Aluminum was vacuum-deposited on the measurement surface to make a non-contact method Measurement length: 1 mm
Horizontal magnification: 200x Vertical magnification: 20000x Cutoff: 0.25mm
Width direction feed speed: 0.1 mm / sec Length direction feed pitch: 10 μm
Number of feeds in length direction: 20 times Measurement direction: width direction of film.

(6)コンデンサ特性の評価
後述する各実施例および比較例で得られたフィルムに、ULVAC製真空蒸着機でアルミニウムを膜抵抗が5Ω/sqになるように蒸着し、フィルム長手方向を長さ方向として、幅50mm、長さ20000mにスリットし、24本(12ペア)の蒸着リールを採取した。
(6) Evaluation of Capacitor Characteristics Aluminum was vapor-deposited on a film obtained in each of Examples and Comparative Examples, which will be described later, with a ULVAC vacuum vapor deposition machine so that the film resistance was 5 Ω / sq, and the longitudinal direction of the film was the length direction. As a result, slitting was made to have a width of 50 mm and a length of 20000 m, and 24 (12 pairs) vapor deposition reels were collected.

なお、保安機能を付与するためのマージンパターンは図2に示すパターンとした
次いで、このリールを用いて皆藤製作所製素子巻き機にてコンデンサ素子を巻き取り、メタリコンを施した後、真空中において120℃の温度で16時間の熱処理を施し、リード線を取り付けた後、エポキシ樹脂にてポッティングしてコンデンサ素子を仕上げた。このときのコンデンサ素子容量は10μFであった。
The margin pattern for providing the security function was the pattern shown in FIG. 2. Next, the reel was used to wind up the capacitor element with an element winding machine manufactured by Minato Manufacturing Co., Ltd. A heat treatment was carried out at a temperature of 16 ° C. for 16 hours, a lead wire was attached, and then potting was performed with an epoxy resin to finish the capacitor element. The capacitor element capacity at this time was 10 μF.

こうして得たコンデンサ素子5個を用いて、100℃のオーブン内でコンデンサ素子に700Vの電圧を連続課電するという通称ライフテストを実施し、各々のコンデンサについて初期容量(μF)に対する100時間後の容量(μF)の変化率を次式で算出して、コンデンサ素子5個の平均値を容量変化率(%)とした。このとき容量変化率が±5%以内であることを合格とした
容量変化率=(100時間後容量−初期容量)×100/初期容量 。
Using the five capacitor elements thus obtained, a so-called life test in which a voltage of 700 V was continuously applied to the capacitor element in an oven at 100 ° C. was conducted, and after 100 hours with respect to the initial capacity (μF) for each capacitor The change rate of the capacitance (μF) was calculated by the following equation, and the average value of the five capacitor elements was defined as the capacitance change rate (%). At this time, it was determined that the capacity change rate was within ± 5%. Capacity change rate = (capacity after 100 hours−initial capacity) × 100 / initial capacity.

また別のコンデンサ素子5個を用いて、常温下でコンデンサ素子に600VDCの電圧を10分間印加し、次に印加電圧を700VDCに上昇させて10分間印加するというように、10分毎に印加電圧を100VDC上昇させるという通称ステップアップ試験を行ない、コンデンサ素子の容量が初期の80%になる電圧を測定して平均値を求めた。このとき、初期容量の80%になる電圧が1000V以上であることを合格とした。   In addition, using another five capacitor elements, a voltage of 600 VDC is applied to the capacitor element at room temperature for 10 minutes, and then the applied voltage is increased to 700 VDC and applied for 10 minutes. A so-called step-up test was performed to increase the voltage of the capacitor element by 100 VDC, and the voltage at which the capacitance of the capacitor element was 80% of the initial value was measured to obtain an average value. At this time, it was determined that the voltage at 80% of the initial capacity was 1000 V or more.

次に、本発明の実施例に基づき説明する。   Next, description will be made based on an embodiment of the present invention.

(実施例1)
三井化学製ポリプロピレン樹脂パウダー(メソペンタッド分率0.980、η=1.9dl/g、融点165℃)に有極性有機化合物として融点が125℃のチバスペシャリティケミカルズ製”Irganox”1010を5000ppm添加した後、これを溶融固化してポリプロピレン樹脂ペレットを得た。
Example 1
After adding 5000 ppm of “Irganox” 1010 made by Ciba Specialty Chemicals having a melting point of 125 ° C. as a polar organic compound to a polypropylene resin powder made by Mitsui Chemicals (mesopentad fraction 0.980, η = 1.9 dl / g, melting point 165 ° C.) This was melted and solidified to obtain polypropylene resin pellets.

こうして得たペレットを240℃で押出機より溶融押出し、Tダイよりシート状に押出し、85℃の温度の冷却ロールで冷却固化した後、135℃の温度で長さ方向に4.7倍に延伸し、次いで両端をクリップで把持して熱風オーブン中に導いて、167℃の雰囲気で予熱後、159℃で横方向に9倍に延伸し、次いで、160℃の温度で熱処理した。その後、フイルムの片面に濡れ張力が44mN/mとなるようにコロナ放電処理を施してワインダーで巻き取った後、さらに幅630mm、長さ40000mに裁断し、巻き上げた。   The pellets thus obtained were melt-extruded from an extruder at 240 ° C, extruded into a sheet form from a T-die, cooled and solidified with a cooling roll at a temperature of 85 ° C, and then stretched 4.7 times in the length direction at a temperature of 135 ° C. Then, both ends were held with clips and guided into a hot air oven, preheated in an atmosphere at 167 ° C., stretched 9 times in the transverse direction at 159 ° C., and then heat-treated at a temperature of 160 ° C. Then, after corona discharge treatment was performed on one surface of the film so that the wet tension was 44 mN / m and the film was wound with a winder, the film was further cut into a width of 630 mm and a length of 40000 m.

このとき、フィルムのMMVは3μm、Δdは0.10μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.7μm、長さ方向の収縮寸法変化率が2.7%、幅方向の収縮寸法変化率が0.3%であった。またフィルムに残存する”Irganox”1010は4500ppmであった。   At this time, the MMV of the film was 3 μm, Δd was 0.10 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.4 μm, the 10-point average roughness Rz of the opposite surface was 0.7 μm, and the length The shrinkage dimensional change rate in the direction was 2.7%, and the shrinkage dimensional change rate in the width direction was 0.3%. Further, “Irganox” 1010 remaining in the film was 4500 ppm.

このコンデンサのライフテストによる容量変化率は+0.1%と良好で、ステップアップ試験での80%容量点の電圧は1100VDCとこれも良好であった。   The rate of change in capacitance of this capacitor during the life test was as good as + 0.1%, and the voltage at the 80% capacity point in the step-up test was 1100 VDC, which was also good.

(実施例2)
”Irganox”1010の添加量を8000ppmとした以外は実施例1と同様に実施した。
(Example 2)
The same operation as in Example 1 was performed except that the amount of “Irganox” 1010 added was 8000 ppm.

このとき、フィルムのMMVは3μm、Δdは0.10μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.7μm、長さ方向の収縮寸法変化率が2.7%、幅方向の収縮寸法変化率が0.3%であった。
またフィルムに残存する”Irganox”1010は7400ppmであった。
またこのコンデンサのライフテストによる容量変化率は+0.2%と良好で、ステップアップ試験での80%容量点の電圧は1050VDCとこれも良好であった。
At this time, the MMV of the film was 3 μm, Δd was 0.10 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.4 μm, the 10-point average roughness Rz of the opposite surface was 0.7 μm, and the length The shrinkage dimensional change rate in the direction was 2.7%, and the shrinkage dimensional change rate in the width direction was 0.3%.
Further, “Irganox” 1010 remaining in the film was 7400 ppm.
Further, the rate of change in the capacitance by this life test was as good as + 0.2%, and the voltage at the 80% capacity point in the step-up test was also good at 1050 VDC.

(実施例3)
”Irganox”1010の添加量を3000ppmとした以外は実施例1と同様に実施した。
(Example 3)
The same operation as in Example 1 was performed except that the amount of “Irganox” 1010 added was changed to 3000 ppm.

このとき、フィルムのMMVは3μm、Δdは0.10μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.7μm、長さ方向の収縮寸法変化率が2.7%、幅方向の収縮寸法変化率が0.3%であった。
またフィルムに残存する”Irganox”1010は2400ppmであった。
またこのコンデンサのライフテストによる容量変化率は−0.9%、ステップアップ試験での80%容量点の電圧は1120VDCであった。
At this time, the MMV of the film was 3 μm, Δd was 0.10 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.4 μm, the 10-point average roughness Rz of the opposite surface was 0.7 μm, and the length The shrinkage dimensional change rate in the direction was 2.7%, and the shrinkage dimensional change rate in the width direction was 0.3%.
Further, “Irganox” 1010 remaining in the film was 2400 ppm.
Further, the rate of change in capacitance by the life test of this capacitor was -0.9%, and the voltage at the 80% capacity point in the step-up test was 1120 VDC.

(実施例4)
ペンタッド分率が0.97で“Irganox”1010が4500ppm添加された融点が163℃のBorealis社製ポリプロピレンHC300BFを使用した以外は実施例1と同様に実施した。
Example 4
It was carried out in the same manner as in Example 1 except that a polypropylene HC300BF manufactured by Borealis having a melting point of 163 ° C. in which 4500 ppm of “Irganox” 1010 was added with a pentad fraction of 0.97 was used.

このとき、フィルムのMMVは3μm、Δdは0.10μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.7μm、長さ方向の収縮寸法変化率が2.9%、幅方向の収縮寸法変化率が0.4%であった。
またフィルムに残存する”Irganox”1010は3800ppmであった。
またこのコンデンサのライフテストによる容量変化率は−1.3%、ステップアップ試験での80%容量点の電圧は1090VDCであった。
At this time, the MMV of the film was 3 μm, Δd was 0.10 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.4 μm, the 10-point average roughness Rz of the opposite surface was 0.7 μm, and the length The shrinkage dimensional change rate in the direction was 2.9%, and the shrinkage dimensional change rate in the width direction was 0.4%.
Further, “Irganox” 1010 remaining in the film was 3800 ppm.
Further, the rate of change in capacitance of this capacitor during the life test was -1.3%, and the voltage at the 80% capacity point in the step-up test was 1090 VDC.

(実施例5)
スリットを施したTダイから押出したシートを90℃の温度の冷却ロールで冷却固化した以外は実施例1と同じ条件でポリプロピレンフイルムを得た。
(Example 5)
A polypropylene film was obtained under the same conditions as in Example 1 except that the sheet extruded from the T-die provided with slits was cooled and solidified with a cooling roll having a temperature of 90 ° C.

このとき、フィルムのMMVは3μm、Δdは0.15μm、コロナ放電処理を施した面の十点平均粗さRzが0.5μm、反対面の十点平均粗さRzが0.8μm、長さ方向の収縮寸法変化率が2.5%、幅方向の収縮寸法変化率が0.1%であった。
またフィルムに残存する”Irganox”1010は4300ppmであった。
またこのコンデンサのライフテストによる容量変化率は−2.6%、ステップアップ試験での80%容量点の電圧は1010VDCであった。
At this time, the MMV of the film was 3 μm, Δd was 0.15 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.5 μm, the 10-point average roughness Rz of the opposite surface was 0.8 μm, and the length The shrinkage dimensional change rate in the direction was 2.5%, and the shrinkage dimensional change rate in the width direction was 0.1%.
Further, “Irganox” 1010 remaining in the film was 4300 ppm.
In addition, the capacitance change rate by the life test of this capacitor was −2.6%, and the voltage at the 80% capacity point in the step-up test was 1010 VDC.

(実施例6)
スリットを施したTダイから押出したシートを82℃の温度の冷却ロールで冷却固化した以外は実施例1と同様に実施した。
(Example 6)
The same procedure as in Example 1 was performed, except that the sheet extruded from the T-die having the slit was cooled and solidified by a cooling roll having a temperature of 82 ° C.

このとき、フィルムのMMVは3μm、Δdは0.06μm、コロナ放電処理を施した面の十点平均粗さRzが0.3μm、反対面の十点平均粗さRzが0.5μm、長さ方向の収縮寸法変化率が2.9%、幅方向の収縮寸法変化率が0.3%であった。
またフィルムに残存する”Irganox”1010は4300ppmであった。
またこのコンデンサのライフテストによる容量変化率は+0.8%であり、ステップアップ試験でも80%容量点の電圧は1210VDCと良好であったが、ステップアップ試験に供したコンデンサ素子5個中1個に絶縁抵抗の顕著な低下が認められ、初期値の10000MΩから2000MΩ程度に上昇するのが通常であるのに対して、300MΩに低下した。
At this time, the MMV of the film was 3 μm, Δd was 0.06 μm, the 10-point average roughness Rz of the surface subjected to corona discharge treatment was 0.3 μm, the 10-point average roughness Rz of the opposite surface was 0.5 μm, and the length The shrinkage dimensional change rate in the direction was 2.9%, and the shrinkage dimensional change rate in the width direction was 0.3%.
Further, “Irganox” 1010 remaining in the film was 4300 ppm.
In addition, the capacity change rate by the life test of this capacitor was + 0.8%, and the voltage at the 80% capacity point was 1210 VDC as good in the step-up test, but one out of five capacitor elements subjected to the step-up test. A remarkable decrease in the insulation resistance was observed, and it increased from the initial value of 10,000 MΩ to about 2000 MΩ, whereas it decreased to 300 MΩ.

(実施例7)
140℃の温度で長さ方向に5倍に延伸し、次いで158℃の温度で幅方向に10倍に延伸し、次いで、165℃の温度で熱処理した以外は実施例1と同様に実施した。
(Example 7)
The same procedure as in Example 1 was performed except that the film was stretched 5 times in the length direction at a temperature of 140 ° C., then 10 times in the width direction at a temperature of 158 ° C., and then heat-treated at a temperature of 165 ° C.

このとき、フィルムのMMVは3μm、Δdは0.13μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.8μm、長さ方向の収縮寸法変化率が2.4%、幅方向の収縮寸法変化率が−0.1%であった。
またフィルムに残存する”Irganox”1010は4200ppmであった。
またこのコンデンサのライフテストによる容量変化率は+0.3%、ステップアップ試験での80%容量点の電圧は1080VDCであった。
At this time, the MMV of the film was 3 μm, Δd was 0.13 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.4 μm, the 10-point average roughness Rz of the opposite surface was 0.8 μm, and the length The shrinkage dimensional change rate in the direction was 2.4%, and the shrinkage dimensional change rate in the width direction was -0.1%.
Further, “Irganox” 1010 remaining in the film was 4200 ppm.
Further, the rate of change in capacitance according to the life test of this capacitor was + 0.3%, and the voltage at the 80% capacity point in the step-up test was 1080 VDC.

(実施例8)
130℃の温度で長さ方向に5倍に延伸し、次いで156℃の温度で幅方向に10倍に延伸し、次いで、155℃の温度で熱処理した以外は実施例1と同様に実施した。
(Example 8)
The same procedure as in Example 1 was performed except that the film was stretched 5 times in the length direction at a temperature of 130 ° C., then 10 times in the width direction at a temperature of 156 ° C., and then heat-treated at a temperature of 155 ° C.

このとき、フィルムのMMVは3μm、Δdは0.08μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.6μm、長さ方向の収縮寸法変化率が3.2%、幅方向の収縮寸法変化率が0.5%であった。
またフィルムに残存する”Irganox”1010は4300ppmであった。
またこのコンデンサのライフテストによる容量変化率は−2.1%、ステップアップ試験での80%容量点の電圧は1060VDCであった。但し、ステップアップ試験に供したコンデンサ素子5個中1個の絶縁抵抗が初期値の10000MΩから400MΩに低下した。
At this time, the MMV of the film is 3 μm, Δd is 0.08 μm, the 10-point average roughness Rz of the surface subjected to the corona discharge treatment is 0.4 μm, the 10-point average roughness Rz of the opposite surface is 0.6 μm, and the length. The shrinkage dimensional change rate in the direction was 3.2%, and the shrinkage dimensional change rate in the width direction was 0.5%.
Further, “Irganox” 1010 remaining in the film was 4300 ppm.
In addition, the capacitance change rate by the life test of this capacitor was −2.1%, and the voltage at the 80% capacity point in the step-up test was 1060 VDC. However, the insulation resistance of one of the five capacitor elements subjected to the step-up test decreased from the initial value of 10,000 MΩ to 400 MΩ.

(比較例1)
スリットを施したTダイから押出したシートを75℃の温度の冷却ロールで冷却固化した以外は実施例1と同様に実施した。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the sheet extruded from the T-die having the slits was cooled and solidified with a cooling roll having a temperature of 75 ° C.

このとき、フィルムのMMVは3μm、Δdは0.04μm、コロナ放電処理を施した面の十点平均粗さRzが0.2μm、反対面の十点平均粗さRzが0.4μm、長さ方向の収縮寸法変化率が3.3%、幅方向の収縮寸法変化率が0.6%であった。
またフィルムに残存する”Irganox”1010は4400ppmであった。
またこのコンデンサのライフテストによる容量変化率は+1.2%と良好であったが、ステップアップ試験での80%容量点の電圧は930VDCであった。
また、ステップアップ試験に供したコンデンサ素子5個中2個の絶縁抵抗が初期値の10000MΩから各々300MΩと400MΩに低下した。
At this time, the MMV of the film was 3 μm, Δd was 0.04 μm, the ten-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.2 μm, the ten-point average roughness Rz of the opposite surface was 0.4 μm, and the length The shrinkage dimensional change rate in the direction was 3.3%, and the shrinkage dimensional change rate in the width direction was 0.6%.
Further, “Irganox” 1010 remaining in the film was 4400 ppm.
Further, the rate of change in capacitance by this life test was as good as + 1.2%, but the voltage at the 80% capacity point in the step-up test was 930 VDC.
In addition, the insulation resistance of two of the five capacitor elements subjected to the step-up test decreased from the initial value of 10,000 MΩ to 300 MΩ and 400 MΩ, respectively.

(比較例2)
スリットを施したTダイから押出したシートを95℃の温度の冷却ロールで冷却固化した以外は実施例1と同じ条件でポリプロピレンフイルムを得た。
(Comparative Example 2)
A polypropylene film was obtained under the same conditions as in Example 1 except that the sheet extruded from the T-die provided with slits was cooled and solidified with a cooling roll having a temperature of 95 ° C.

このとき、フィルムのMMVは3μm、Δdは0.28μm、コロナ放電処理を施した面の十点平均粗さRzが0.7μm、反対面の十点平均粗さRzが1.2μm、長さ方向の収縮寸法変化率が2.7%、幅方向の収縮寸法変化率が0.0%であった。   At this time, the MMV of the film was 3 μm, Δd was 0.28 μm, the ten-point average roughness Rz of the surface subjected to the corona discharge treatment was 0.7 μm, the ten-point average roughness Rz of the opposite surface was 1.2 μm, and the length The shrinkage dimensional change rate in the direction was 2.7%, and the shrinkage dimensional change rate in the width direction was 0.0%.

またフィルムに残存する”Irganox”1010は4300ppmであった。
またこのコンデンサのライフテストによる容量変化率は−6.2%であり、ステップアップ試験での80%容量点の電圧は920VDCと実用に支障をきたすものであった。
Further, “Irganox” 1010 remaining in the film was 4300 ppm.
Further, the rate of change in capacitance by the life test of this capacitor was -6.2%, and the voltage at the 80% capacity point in the step-up test was 920 VDC, which hindered practical use.

(比較例3)
“Irganox”1010を1500ppm添加した以外は実施例1と同様に実施した。
(Comparative Example 3)
The same operation as in Example 1 was performed except that 1500 ppm of “Irganox” 1010 was added.

このとこのとき、フィルムのMMVは3μm、Δdは0.10μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.7μm、長さ方向の収縮寸法変化率が2.7%、幅方向の収縮寸法変化率が0.3%であった。   At this time, the MMV of the film is 3 μm, Δd is 0.10 μm, the ten-point average roughness Rz of the surface subjected to the corona discharge treatment is 0.4 μm, the ten-point average roughness Rz of the opposite surface is 0.7 μm, The shrinkage dimensional change rate in the length direction was 2.7%, and the shrinkage dimensional change rate in the width direction was 0.3%.

またフィルムに残存する”Irganox”1010は1030ppmであった。
またこのコンデンサのライフテストによる容量変化率は−5.1%、ステップアップ試験での80%容量点の電圧は1110VDCであった。
また、ステップアップ試験に供したコンデンサ素子5個中1個の絶縁抵抗が初期値の10000MΩから200MΩに低下した。
Further, “Irganox” 1010 remaining in the film was 1030 ppm.
Further, the capacity change rate of the capacitor by the life test was −5.1%, and the voltage at the 80% capacity point in the step-up test was 1110 VDC.
In addition, the insulation resistance of one of the five capacitor elements subjected to the step-up test decreased from the initial value of 10,000 MΩ to 200 MΩ.

(比較例4)
ペンタッド分率が0.96のポリプロピレン樹脂パウダーを使用した以外は実施例1と同様に実施した。
(Comparative Example 4)
The same operation as in Example 1 was performed except that a polypropylene resin powder having a pentad fraction of 0.96 was used.

このとこのとき、フィルムのMMVは3μm、Δdは0.10μm、コロナ放電処理を施した面の十点平均粗さRzが0.4μm、反対面の十点平均粗さRzが0.7μm、長さ方向の収縮寸法変化率が2.7%、幅方向の収縮寸法変化率が0.3%であった。   At this time, the MMV of the film is 3 μm, Δd is 0.10 μm, the ten-point average roughness Rz of the surface subjected to the corona discharge treatment is 0.4 μm, the ten-point average roughness Rz of the opposite surface is 0.7 μm, The shrinkage dimensional change rate in the length direction was 2.7%, and the shrinkage dimensional change rate in the width direction was 0.3%.

またフィルムに残存する”Irganox”1010は4600ppmであった。
またこのコンデンサのライフテストによる容量変化率は−4.2%、ステップアップ試験での80%容量点の電圧は980VDCであった。
Further, “Irganox” 1010 remaining in the film was 4600 ppm.
In addition, the capacitance change rate by the life test of this capacitor was −4.2%, and the voltage at the 80% capacity point in the step-up test was 980 VDC.

実施例1〜8、比較例1〜4の結果を表1に示す。   Table 1 shows the results of Examples 1 to 8 and Comparative Examples 1 to 4.

Figure 2006066615
Figure 2006066615

本発明は、耐電圧特性および寿命特性において安定したコンデンサが得られるものであり、厚みの薄いフィルムが適用されるインバータ用、特に設置スペースが小さく、かつ耐熱性が要求されるハイブリッドカー用に好適なポリプロピレンフィルムであり、その応用
範囲はさらに広がるものである。
INDUSTRIAL APPLICABILITY The present invention provides a capacitor that is stable in withstand voltage characteristics and life characteristics, and is suitable for an inverter to which a thin film is applied, particularly for a hybrid car that requires a small installation space and requires heat resistance. This polypropylene film has a wider range of applications.

金属化フィルムの長さ方向に平行でないマージンを含む蒸着パターンの例である。It is an example of the vapor deposition pattern containing the margin which is not parallel to the length direction of a metallized film. 金属化フィルムの長さ方向に平行でないマージンを含む蒸着パターンの別の例である。It is another example of the vapor deposition pattern containing the margin which is not parallel to the length direction of a metallized film.

符号の説明Explanation of symbols

1.蒸着部分
2.マージン部分
1. Vapor deposition part Margin

Claims (6)

メソペンタッド分率が0.97以上0.99以下のポリプロピレン樹脂からなるポリプロピレンフィルムであって、該フィルム中に融点が90℃以上160℃以下の有極性有機系化合物を2000ppm以上8000ppm以下含有し、かつ該フィルムのΔd(マイクロメータ法厚さ−質量法厚さ)が0.05μm以上0.25μm以下であることを特徴とするコンデンサ用ポリプロピレンフィルム。   A polypropylene film comprising a polypropylene resin having a mesopentad fraction of 0.97 or more and 0.99 or less, wherein the film contains a polar organic compound having a melting point of 90 ° C or more and 160 ° C or less and 2000 ppm or more and 8000 ppm or less, and A polypropylene film for a capacitor, wherein Δd (micrometer method thickness−mass method thickness) of the film is 0.05 μm or more and 0.25 μm or less. マイクロメータ法のフィルム厚さが2μm以上5μm以下であることを特徴とする請求項1に記載のコンデンサ用ポリプロピレンフィルム。   2. The polypropylene film for capacitors according to claim 1, wherein the film thickness of the micrometer method is 2 μm or more and 5 μm or less. 請求項1または2に記載のコンデンサ用ポリプロピレンフィルムの片面もしくは両面に金属蒸着したことを特徴とするコンデンサ用金属化ポリプロピレンフィルム。   A metallized polypropylene film for a capacitor, wherein metal is deposited on one or both sides of the polypropylene film for a capacitor according to claim 1. 請求項3に記載のコンデンサ用金属化ポリプロピレンフィルムにおいて蒸着パターンのマージンの内、少なくとも一部が長さ方向に平行でないマージンであることを特徴とするコンデンサ用金属化ポリプロピレンフィルム。   4. The metallized polypropylene film for capacitors according to claim 3, wherein at least a part of the margin of the vapor deposition pattern is a margin that is not parallel to the length direction. 請求項3〜4のいずれかに記載の金属化ポリプロピレンフィルムを用いてなるコンデンサであって、保証温度が該有極性有機系化合物の融点以下、静電容量が5μF以上であることを特徴とするコンデンサ。   It is a capacitor | condenser formed using the metallized polypropylene film in any one of Claims 3-4, Comprising: Guaranteed temperature is below melting | fusing point of this polar organic type compound, and an electrostatic capacitance is 5 micro F or more. Capacitor. 請求項5に記載のコンデンサが巻回型であることを特徴とする巻回型コンデンサ。 The winding capacitor according to claim 5, wherein the capacitor is a winding type.
JP2004246971A 2004-08-26 2004-08-26 Polypropylene film for capacitor and capacitor made thereof Pending JP2006066615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246971A JP2006066615A (en) 2004-08-26 2004-08-26 Polypropylene film for capacitor and capacitor made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246971A JP2006066615A (en) 2004-08-26 2004-08-26 Polypropylene film for capacitor and capacitor made thereof

Publications (1)

Publication Number Publication Date
JP2006066615A true JP2006066615A (en) 2006-03-09

Family

ID=36112818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246971A Pending JP2006066615A (en) 2004-08-26 2004-08-26 Polypropylene film for capacitor and capacitor made thereof

Country Status (1)

Country Link
JP (1) JP2006066615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099653A (en) * 2007-10-15 2009-05-07 Panasonic Corp Inspecting method for metallized film capacitor
JP2009170685A (en) * 2008-01-17 2009-07-30 Panasonic Corp Metallized film capacitor
WO2012099167A1 (en) * 2011-01-19 2012-07-26 王子製紙株式会社 Polypropylene film for capacitor
WO2012144015A1 (en) * 2011-04-19 2012-10-26 東レ株式会社 Biaxially stretched polypropylene film for capacitor, metallized film, and film capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099653A (en) * 2007-10-15 2009-05-07 Panasonic Corp Inspecting method for metallized film capacitor
JP2009170685A (en) * 2008-01-17 2009-07-30 Panasonic Corp Metallized film capacitor
WO2012099167A1 (en) * 2011-01-19 2012-07-26 王子製紙株式会社 Polypropylene film for capacitor
JP2012149171A (en) * 2011-01-19 2012-08-09 Oji Paper Co Ltd Polypropylene film for capacitor
CN103329226A (en) * 2011-01-19 2013-09-25 王子控股株式会社 Polypropylene film for capacitor
US9349538B2 (en) 2011-01-19 2016-05-24 Oji Holdings Corporation Polypropylene film for capacitor
WO2012144015A1 (en) * 2011-04-19 2012-10-26 東レ株式会社 Biaxially stretched polypropylene film for capacitor, metallized film, and film capacitor
KR101728585B1 (en) 2011-04-19 2017-04-19 도레이 카부시키가이샤 Biaxially stretched polypropylene film for capacitor, metallized film, and film capacitor
US9991052B2 (en) 2011-04-19 2018-06-05 Toray Industries, Inc. Biaxially stretched polypropylene film for capacitor, metallized film, and film capacitor

Similar Documents

Publication Publication Date Title
JP4962082B2 (en) Metallized biaxially oriented polypropylene film and capacitor comprising the same
EP2977398B1 (en) Biaxially oriented polypropylene film, metallized film and film capacitor
JP2006093688A (en) Polypropylene film for capacitor and capacitor using the same
JP5664137B2 (en) Biaxially oriented polypropylene film and metallized film for capacitors, film capacitors
JP6319293B2 (en) Biaxially oriented polypropylene film for capacitors, metallized film, and film capacitor
JP2016187959A (en) Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
JP6658953B1 (en) Polypropylene film, metal film laminated film and film capacitor using the same
JP5664136B2 (en) Biaxially oriented polypropylene film for capacitors, metallized film and film capacitor
JP2016188360A (en) Biaxially oriented polypropylene film, metal film laminated film and film capacitor
JPWO2017159103A1 (en) Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
JPWO2012121256A1 (en) Biaxially oriented polypropylene film, metallized film, and film capacitor
JP2008127460A (en) Biaxially oriented polypropylene film for capacitor, and metallized film and capacitor by using the same
JP4715390B2 (en) Polypropylene film for capacitor and capacitor comprising the same
JP2007169595A (en) Polypropylene film for capacitor
WO2016158590A1 (en) Biaxially oriented polypropylene film for capacitor, metal laminated film, and film capacitor
JP2018028075A (en) Polypropylene film roll
JP7218618B2 (en) Biaxially oriented polypropylene film, metal film laminated film and film capacitor
WO2021162021A1 (en) Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
JP6885484B2 (en) Polypropylene film and metal film laminated film using it, film capacitor
EP4108712A1 (en) Polypropylene film, metal membrane layered film using same, and film capacitor
JP2006066615A (en) Polypropylene film for capacitor and capacitor made thereof
JP7234698B2 (en) Biaxially oriented polypropylene film, metal film laminated film and film capacitor
JP7375599B2 (en) Biaxially oriented polypropylene film, metal film laminate film and film capacitor
JP3847551B2 (en) Polyester film for capacitors
JP2018028074A (en) Polypropylene film roll