JP2006065320A - Display device and method for manufacturing the same - Google Patents

Display device and method for manufacturing the same Download PDF

Info

Publication number
JP2006065320A
JP2006065320A JP2005220492A JP2005220492A JP2006065320A JP 2006065320 A JP2006065320 A JP 2006065320A JP 2005220492 A JP2005220492 A JP 2005220492A JP 2005220492 A JP2005220492 A JP 2005220492A JP 2006065320 A JP2006065320 A JP 2006065320A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
film
insulating layer
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005220492A
Other languages
Japanese (ja)
Other versions
JP5072202B2 (en
JP2006065320A5 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Tomohito Murakami
智史 村上
Motomu Kurata
求 倉田
Hiroyuki Hata
宏幸 畑
Mitsuhiro Ichijo
充弘 一條
Takashi Otsuki
高志 大槻
Aya Anzai
彩 安西
Masayuki Sakakura
真之 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005220492A priority Critical patent/JP5072202B2/en
Publication of JP2006065320A publication Critical patent/JP2006065320A/en
Publication of JP2006065320A5 publication Critical patent/JP2006065320A5/ja
Application granted granted Critical
Publication of JP5072202B2 publication Critical patent/JP5072202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of manufacturing a highly reliable display device at a low cost with high yield. <P>SOLUTION: A step due to an opening in a contact is covered with an insulating layer to reduce the step, and is processed into a gentle shape. A wiring or the like is formed to be in contact with the insulating layer and thus the coverage of the wiring or the like is enhanced. In addition, deterioration of a light-emitting element due to contaminants such as water can be prevented by sealing a layer including an organic material that has water permeability in a display device with a sealing material. Since the sealing material is formed in a portion of a driver circuit region in the display device, the frame margin of the display device can be narrowed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表示装置、及びそれらの作製方法に関する。   The present invention relates to display devices and manufacturing methods thereof.

EL素子は、一定期間駆動すると、発光輝度、発光の均一性等の発光特性が初期に比べて著しく劣化するという問題がある。この信頼性の低さは実用化の用途が限られている要因である。     When the EL element is driven for a certain period, there is a problem that light emission characteristics such as light emission luminance and light emission uniformity are significantly deteriorated compared to the initial stage. This low reliability is a factor that limits the practical application.

信頼性を悪化させる要因の一つに、外部からEL素子に侵入する水分や酸素などがあげられる。   One factor that deteriorates reliability is moisture, oxygen, and the like that enter the EL element from the outside.

EL素子の劣化を防ぐ構造を有する表示装置の開発がなされている。また、EL素子の形成された絶縁体の上にシール材を形成し、シール材を用いてカバー材およびシール材で囲まれた密閉空間を樹脂などから成る充填材で充填し、外部から遮断する方法もある(例えば、特許文献1参照。)。
特開平13-203076号公報
A display device having a structure for preventing deterioration of an EL element has been developed. In addition, a sealing material is formed on the insulator on which the EL element is formed, and the sealed space surrounded by the cover material and the sealing material is filled with a filling material made of resin or the like using the sealing material, and is blocked from the outside. There is also a method (for example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 13-203076

本発明では、工程、装置を複雑化することなく、高い信頼性や優れた電気特性を有する表示装置を低いコストで歩留まり良く製造することができる技術を提供することを目的とする。     An object of the present invention is to provide a technique capable of manufacturing a display device having high reliability and excellent electrical characteristics at low cost and high yield without complicating processes and devices.

本発明は、コンタクトにおける開口の段差を絶縁層によって被覆し、段差を軽減し、なだらかな形状に加工する。その絶縁層に接して配線等は形成されるため、配線の被覆性が向上する。また、透水性を有する有機材料を含む層を表示装置の中にシール材で封止してしまうため、発光素子の水等の汚染物質による劣化を防ぐ事ができる。シール材は表示装置の駆動回路領域の一部に形成されるため表示装置の狭額縁化も達成できる。     In the present invention, the step of the opening in the contact is covered with the insulating layer, the step is reduced, and the contact is processed into a gentle shape. Since the wiring and the like are formed in contact with the insulating layer, the coverage of the wiring is improved. In addition, since a layer including an organic material having water permeability is sealed in a display device with a sealant, the light-emitting element can be prevented from being deteriorated by a contaminant such as water. Since the sealing material is formed in a part of the drive circuit area of the display device, the frame of the display device can be narrowed.

本発明を用いることのできる表示装置には、エレクトロルミネセンス(以下「EL」ともいう。)と呼ばれる発光を発現する有機物、若しくは有機物と無機物の混合物を含む媒体を、電極間に介在させた発光素子とTFTとが接続された発光表示装置がある。     In a display device to which the present invention can be used, light emission in which an organic substance that expresses light emission called electroluminescence (hereinafter also referred to as “EL”) or a medium containing a mixture of an organic substance and an inorganic substance is interposed between electrodes. There is a light-emitting display device in which an element and a TFT are connected.

本発明の表示装置の一は、画素領域、接続領域を有し、画素領域に不純物領域を含む半導体層を有し、半導体層上にはゲート絶縁層を有し、ゲート絶縁層上にはゲート電極層を有し、ゲート電極層上には第1の層間絶縁層を有し、ゲート絶縁層及び第1の層間絶縁層は不純物領域に達する第1の開口を有し、開口にソース電極層又はドレイン電極層を有し、ソース電極層又はドレイン電極層は、第1の層間絶縁層を介してゲート電極層の一部を覆っており、ソース電極層又はドレイン電極層及び第1の層間絶縁層上に第2の層間絶縁層を有し、第2の層間絶縁層はソース電極層又はドレイン電極層に達する第2の開口を有し、第2の開口は、第1の層間絶縁層を介してゲート電極層の一部を覆っているソース電極層又はドレイン電極層に設けられ、第2の開口に第1の電極層を有し、接続領域に第1の層間膜上に設けられた配線層を有し、配線層上に、配線層に達する第3の開口が設けられた第2の層間絶縁層を有し、第3の開口の上端部は、絶縁層に覆われており、第3の開口に、絶縁層に接して第2の電極層を有する。     One embodiment of the display device of the present invention includes a pixel region, a connection region, a semiconductor layer including an impurity region in the pixel region, a gate insulating layer over the semiconductor layer, and a gate over the gate insulating layer. An electrode layer, a first interlayer insulating layer on the gate electrode layer, the gate insulating layer and the first interlayer insulating layer have a first opening reaching the impurity region, and the source electrode layer in the opening Alternatively, a drain electrode layer is provided, and the source electrode layer or the drain electrode layer covers a part of the gate electrode layer through the first interlayer insulating layer, and the source electrode layer or the drain electrode layer and the first interlayer insulating layer are covered. A second interlayer insulating layer on the layer, the second interlayer insulating layer has a second opening reaching the source electrode layer or the drain electrode layer, and the second opening includes the first interlayer insulating layer; Provided on the source or drain electrode layer covering a part of the gate electrode layer The second opening has a first electrode layer, the connection region has a wiring layer provided on the first interlayer film, and a third opening reaching the wiring layer is provided on the wiring layer. The upper end portion of the third opening is covered with an insulating layer, and the third opening has a second electrode layer in contact with the insulating layer.

本発明の表示装置の一は、画素領域に不純物領域を有する半導体層を形成し、接続領域及び半導体層上にゲート絶縁層を形成し、ゲート絶縁層上にゲート電極層及び導電層を形成し、ゲート電極層上及び導電層上に第1の層間絶縁層を形成し、ゲート絶縁層及び第1の層間絶縁層は不純物領域に達する第1の開口を有し、第1の開口、及びゲート電極層の一部を覆ってソース電極層又はドレイン電極層を形成し、第1の層間絶縁層上に導電層を覆って配線層を形成し、第1の層間絶縁層、配線層、ソース電極層及びドレイン電極層上に第2の層間絶縁層を形成し、第2の層間絶縁層にソース電極層又はドレイン電極層に達する第2の開口、及び配線層に達する第3の開口を形成し、第2の開口に第1の電極層を形成し、第2の層間絶縁層の第3の開口の上端部及び第1の電極層の一部を覆って絶縁層を形成し、第3の開口に、絶縁層に接して第2の電極層を形成する。     In a display device of the present invention, a semiconductor layer having an impurity region is formed in a pixel region, a gate insulating layer is formed over a connection region and the semiconductor layer, and a gate electrode layer and a conductive layer are formed over the gate insulating layer. Forming a first interlayer insulating layer on the gate electrode layer and the conductive layer, the gate insulating layer and the first interlayer insulating layer having a first opening reaching the impurity region, the first opening, and the gate; A source electrode layer or a drain electrode layer is formed so as to cover a part of the electrode layer, and a wiring layer is formed so as to cover a conductive layer on the first interlayer insulating layer. The first interlayer insulating layer, the wiring layer, and the source electrode Forming a second interlayer insulating layer on the layer and the drain electrode layer; forming a second opening reaching the source or drain electrode layer and a third opening reaching the wiring layer in the second interlayer insulating layer; Forming a first electrode layer in the second opening, and forming a second interlayer insulating layer Of covering a portion of the upper end portion and the first electrode layer of the opening to form an insulating layer, the third opening, forming a second electrode layer in contact with the insulating layer.

本発明を用いると、信頼性の高い表示装置を簡略化した工程で作製することができる。よって、高精細、高画質な表示装置を低いコストで歩留まり良く製造することができる。     By using the present invention, a highly reliable display device can be manufactured through a simplified process. Therefore, a high-definition and high-quality display device can be manufactured at a low cost and with a high yield.

本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。   Embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Note that in structures of the present invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated.

(実施の形態1)
本実施の形態における薄膜トランジスタの作製方法を、図1乃至図6を用いて詳細に説明する。
(Embodiment 1)
A method for manufacturing the thin film transistor in this embodiment will be described in detail with reference to FIGS.

図16(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであれば1024×768×3(RGB)、UXGAであれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させるのであれば1920×1080×3(RGB)とすれば良い。     FIG. 16A is a top view illustrating a structure of a display panel according to the present invention. A pixel portion 2701 in which pixels 2702 are arranged in a matrix over a substrate 2700 having an insulating surface, a scan line side input terminal 2703, a signal A line side input terminal 2704 is formed. The number of pixels may be provided in accordance with various standards. For XGA, 1024 × 768 × 3 (RGB), for UXGA, 1600 × 1200 × 3 (RGB), and for full specification high vision, 1920 × 1080. X3 (RGB) may be used.

画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極層が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極層側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。     The pixels 2702 are arranged in a matrix by a scan line extending from the scan line side input terminal 2703 and a signal line extending from the signal line side input terminal 2704 intersecting. Each of the pixels 2702 includes a switching element and a pixel electrode layer connected to the switching element. A typical example of a switching element is a TFT. By connecting the gate electrode layer side of the TFT to a scanning line and the source or drain side to a signal line, each pixel can be controlled independently by a signal input from the outside. It is said.

TFTは、その主要な構成要素として、半導体層、ゲート絶縁層及びゲート電極層が挙げられ、半導体層に形成されるソース及びドレイン領域に接続する配線層がそれに付随する。構造的には基板側から半導体層、ゲート絶縁層及びゲート電極層を配設したトップゲート型と、基板側からゲート電極層、ゲート絶縁層及び半導体層を配設したボトムゲート型などが代表的に知られているが、本発明においてはそれらの構造のどのようなものを用いても良い。     A TFT includes a semiconductor layer, a gate insulating layer, and a gate electrode layer as main components, and a wiring layer connected to a source region and a drain region formed in the semiconductor layer is attached to the TFT. Structurally, the top gate type in which the semiconductor layer, the gate insulating layer and the gate electrode layer are arranged from the substrate side, and the bottom gate type in which the gate electrode layer, the gate insulating layer and the semiconductor layer are arranged from the substrate side are representative. In the present invention, any of those structures may be used.

図16(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、図17(A)に示すように、COG(Chip on Glass)方式によりドライバIC2751を基板2700上に実装しても良い。また他の実装形態として、図17(B)に示すようなTAB(Tape Automated Bonding)方式を用いてもよい。ドライバICは単結晶半導体基板に形成されたものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。図17において、ドライバIC2751は、FPC(Flexible printed circuit)2750と接続している。     FIG. 16A shows a structure of a display panel in which signals input to the scanning lines and the signal lines are controlled by an external driver circuit. As shown in FIG. 17A, a COG (Chip on The driver IC 2751 may be mounted on the substrate 2700 by the Glass method. As another mounting mode, a TAB (Tape Automated Bonding) method as shown in FIG. 17B may be used. The driver IC may be formed on a single crystal semiconductor substrate or may be a circuit in which a TFT is formed on a glass substrate. In FIG. 17, a driver IC 2751 is connected to an FPC (Flexible printed circuit) 2750.

また、画素に設けるTFTを結晶性を有する半導体で形成する場合には、図16(B)に示すように走査線側駆動回路3702を基板3700上に形成し一体化することもできる。図16(B)において、画素部3701は、信号線側入力端子3704と接続した図16(A)と同様に外付けの駆動回路により制御する。画素に設けるTFTを移動度の高い、多結晶(微結晶)半導体、単結晶半導体などで形成する場合は、図16(C)は、画素部4701、走査線駆動回路4702と、信号線駆動回路4704を基板4700上に一体形成することもできる。     In the case where a TFT provided for a pixel is formed using a crystalline semiconductor, a scan line driver circuit 3702 can be formed over the substrate 3700 and integrated as shown in FIG. In FIG. 16B, the pixel portion 3701 is controlled by an external driver circuit as in FIG. 16A connected to the signal line side input terminal 3704. In the case where a TFT provided for a pixel is formed using a polycrystalline (microcrystalline) semiconductor, a single crystal semiconductor, or the like with high mobility, FIG. 16C illustrates a pixel portion 4701, a scan line driver circuit 4702, and a signal line driver circuit. 4704 can be integrally formed on the substrate 4700.

絶縁表面を有する基板100の上に下地膜として、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などにより窒化酸化珪素膜(SiNO)を用いて下地膜101aを10〜200nm(好ましくは50〜100nm)形成し、酸化窒化珪素膜(SiON)を用いて下地膜101bを50〜200nm(好ましくは100〜150nm)積層する。本実施の形態では、プラズマCVD法を用いて下地膜101a、下地膜101bを形成する。基板100としてはガラス基板、石英基板やシリコン基板、SUS基板などの金属基板、またはステンレス基板の表面に絶縁膜を形成したものを用いて良い。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよいし、フィルムのような可撓性基板を用いても良い。プラスチック基板としてはPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)からなる基板、可撓性基板としてはアクリル等の合成樹脂を用いることができる。     Silicon nitride oxide by a sputtering method, a PVD method (Physical Vapor Deposition), a low pressure CVD method (LPCVD method), or a CVD method (Chemical Vapor Deposition) such as a plasma CVD method as a base film on the substrate 100 having an insulating surface A base film 101a is formed to a thickness of 10 to 200 nm (preferably 50 to 100 nm) using a film (SiNO), and a base film 101b is stacked to a thickness of 50 to 200 nm (preferably 100 to 150 nm) using a silicon oxynitride film (SiON). . In this embodiment, the base film 101a and the base film 101b are formed by a plasma CVD method. As the substrate 100, a glass substrate, a quartz substrate, a silicon substrate, a metal substrate such as a SUS substrate, or a stainless substrate on which an insulating film is formed may be used. Further, a plastic substrate having heat resistance that can withstand the processing temperature of this embodiment may be used, or a flexible substrate such as a film may be used. As the plastic substrate, a substrate made of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PES (polyethersulfone) can be used, and as the flexible substrate, a synthetic resin such as acrylic can be used.

下地膜としては、酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素などを用いることができ、単層でも2層、3層といった積層構造でもよい。なお本明細書中において酸化窒化珪素とは酸素の組成比が窒素の組成比より大きい物質であり、窒素を含む酸化珪素とも言える。同様に、窒化酸化珪素とは、窒素の組成比が酸素の組成比より大きい物質であり、酸素を含む窒化珪素とも言える。本実施の形態では、基板上にSiH4、NH3、N2O、N2及びH2を反応ガスとして窒化酸化珪素膜を膜厚50nm形成し、SiH4及びN2Oを反応ガスとして酸化窒化珪素膜を膜厚100nmで形成する。また窒化酸化珪素膜の膜厚を140nm、積層する酸化窒化珪素膜の膜厚を100nmとしてもよい。 As the base film, silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or the like can be used, and a single layer or a laminated structure of two layers or three layers may be used. Note that in this specification, silicon oxynitride is a substance in which the oxygen composition ratio is higher than the nitrogen composition ratio, and can also be referred to as silicon oxide containing nitrogen. Similarly, silicon nitride oxide is a substance in which the composition ratio of nitrogen is higher than the composition ratio of oxygen, and can be said to be silicon nitride containing oxygen. In this embodiment, a silicon nitride oxide film having a thickness of 50 nm is formed on a substrate using SiH 4 , NH 3 , N 2 O, N 2, and H 2 as reactive gases, and oxidized using SiH 4 and N 2 O as reactive gases. A silicon nitride film is formed with a thickness of 100 nm. The thickness of the silicon nitride oxide film may be 140 nm, and the thickness of the stacked silicon oxynitride film may be 100 nm.

次いで、下地膜上に半導体膜を形成する。半導体膜は25〜200nm(好ましくは30〜150nm)の厚さで公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜すればよい。本実施の形態では、非晶質半導体膜を、レーザ結晶化し、結晶性半導体膜とするものを用いるのが好ましい。     Next, a semiconductor film is formed over the base film. The semiconductor film may be formed by a known means (a sputtering method, an LPCVD method, a plasma CVD method, or the like) with a thickness of 25 to 200 nm (preferably 30 to 150 nm). In this embodiment mode, it is preferable to use a crystalline semiconductor film obtained by crystallizing an amorphous semiconductor film by laser crystallization.

半導体膜を形成する材料は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製される非晶質半導体(以下「アモルファス半導体:AS」ともいう。)、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた多結晶半導体、或いはセミアモルファス(微結晶若しくはマイクロクリスタルとも呼ばれる。以下「SAS」ともいう。)半導体などを用いることができる。     As a material for forming the semiconductor film, an amorphous semiconductor (hereinafter also referred to as “amorphous semiconductor: AS”) manufactured by a vapor deposition method or a sputtering method using a semiconductor material gas typified by silane or germane is used. A polycrystalline semiconductor obtained by crystallizing a crystalline semiconductor using light energy or thermal energy, or a semi-amorphous (also referred to as microcrystal or microcrystal; hereinafter, also referred to as “SAS”) semiconductor can be used.

SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5〜20nmの結晶領域を観測することが出来、珪素を主成分とする場合にはラマンスペクトルが520cm-1よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合手(ダングリングボンド)の終端化するために水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。SASは、珪化物気体をグロー放電分解(プラズマCVD)して形成する。珪化物気体としては、SiH4、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることが可能である。またF2、GeF4を混合させても良い。この珪化物気体をH2、又は、H2とHe、Ar、Kr、Neから選ばれた一種または複数種の希ガス元素で希釈しても良い。希釈率は2〜1000倍の範囲、圧力は概略0.1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHzである。基板加熱温度は300℃以下が好ましく、100〜200℃の基板加熱温度でも形成可能である。ここで、主に成膜時に取り込まれる不純物元素として、酸素、窒素、炭素などの大気成分に由来する不純物は1×1020cm-3以下とすることが望ましく、特に、酸素濃度は5×1019cm-3以下、好ましくは1×1019cm-3以下となるようにすることが好ましい。また、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なSASが得られる。また半導体膜としてフッ素を含む珪化物気体より形成されるSAS層に水素を含む珪化物気体より形成されるSAS層を積層してもよい。 SAS is a semiconductor having an intermediate structure between amorphous and crystalline structures (including single crystal and polycrystal) and having a third state that is stable in terms of free energy and has a short-range order and a lattice. It includes a crystalline region with strain. A crystal region of 0.5 to 20 nm can be observed in at least a part of the film, and when silicon is the main component, the Raman spectrum shifts to a lower wave number side than 520 cm −1. Yes. In X-ray diffraction, diffraction peaks of (111) and (220) that are derived from the silicon crystal lattice are observed. In order to terminate dangling bonds (dangling bonds), hydrogen or halogen is contained at least 1 atomic% or more. The SAS is formed by glow discharge decomposition (plasma CVD) of a silicide gas. As the silicide gas, SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4, and the like can be used. Further, F 2 and GeF 4 may be mixed. This silicide gas may be diluted with H 2 , or H 2 and one or more kinds of rare gas elements selected from He, Ar, Kr, and Ne. The dilution rate is in the range of 2 to 1000 times, the pressure is in the range of approximately 0.1 Pa to 133 Pa, and the power supply frequency is 1 MHz to 120 MHz, preferably 13 MHz to 60 MHz. The substrate heating temperature is preferably 300 ° C. or lower, and can be formed even at a substrate heating temperature of 100 to 200 ° C. Here, as an impurity element mainly taken in at the time of film formation, it is desirable that impurities derived from atmospheric components such as oxygen, nitrogen, and carbon be 1 × 10 20 cm −3 or less, and in particular, the oxygen concentration is 5 × 10 5. It is preferable to be 19 cm −3 or less, preferably 1 × 10 19 cm −3 or less. Further, by adding a rare gas element such as helium, argon, krypton, or neon to further promote lattice distortion, stability is improved and a favorable SAS can be obtained. Alternatively, a SAS layer formed of a silicide gas containing hydrogen may be stacked on a SAS layer formed of a silicide gas containing fluorine as a semiconductor film.

非晶質半導体としては、代表的には水素化アモルファスシリコン、結晶性半導体としては代表的にはポリシリコンなどがあげられる。ポリシリコン(多結晶シリコン)には、800℃以上のプロセス温度を経て形成されるポリシリコンを主材料として用いた所謂高温ポリシリコンや、600℃以下のプロセス温度で形成されるポリシリコンを主材料として用いた所謂低温ポリシリコン、また結晶化を促進する元素などを添加し結晶化させたポリシリコンなどを含んでいる。もちろん、前述したように、セミアモルファス半導体又は半導体膜の一部に結晶相を含む半導体を用いることもできる。     A typical example of an amorphous semiconductor is hydrogenated amorphous silicon, and a typical example of a crystalline semiconductor is polysilicon. Polysilicon (polycrystalline silicon) is mainly made of so-called high-temperature polysilicon using polysilicon formed through a process temperature of 800 ° C. or higher as a main material, or polysilicon formed at a process temperature of 600 ° C. or lower. And so-called low-temperature polysilicon, and polysilicon crystallized by adding an element that promotes crystallization. Needless to say, as described above, a semi-amorphous semiconductor or a semiconductor containing a crystal phase in part of a semiconductor film can also be used.

半導体膜に、結晶性半導体膜を用いる場合、その結晶性半導体膜の作製方法は、公知の方法(レーザ結晶化法、熱結晶化法、またはニッケルなどの結晶化を助長する元素を用いた熱結晶化法等)を用いれば良い。また、SASである微結晶半導体をレーザ照射して結晶化し、結晶性を高めることもできる。結晶化を助長する元素を導入しない場合は、非晶質半導体膜にレーザ光を照射する前に、窒素雰囲気下500℃で1時間加熱することによって非晶質半導体膜の含有水素濃度を1×1020atoms/cm3以下にまで放出させる。これは水素を多く含んだ非晶質半導体膜にレーザ光を照射すると非晶質半導体膜が破壊されてしまうからである。結晶化のための加熱処理は、加熱炉、レーザ照射、若しくはランプから発する光の照射(ランプアニールともいう)などを用いることができる。加熱方法としてGRTA(Gas Rapid Thermal Anneal)法、LRTA(Lamp Rapid Thermal Anneal)法等のRTA法がある。 In the case where a crystalline semiconductor film is used as the semiconductor film, a method for manufacturing the crystalline semiconductor film can be a known method (laser crystallization method, thermal crystallization method, or heat using an element that promotes crystallization such as nickel. A crystallization method or the like may be used. In addition, a microcrystalline semiconductor that is a SAS can be crystallized by laser irradiation to improve crystallinity. In the case where an element for promoting crystallization is not introduced, the concentration of hydrogen contained in the amorphous semiconductor film is set to 1 × by heating at 500 ° C. for 1 hour in a nitrogen atmosphere before irradiating the amorphous semiconductor film with laser light. Release to 10 20 atoms / cm 3 or less. This is because when an amorphous semiconductor film containing a large amount of hydrogen is irradiated with laser light, the amorphous semiconductor film is destroyed. As the heat treatment for crystallization, a heating furnace, laser irradiation, irradiation with light emitted from a lamp (also referred to as lamp annealing), or the like can be used. As a heating method, there are RTA methods such as a GRTA (Gas Rapid Thermal Anneal) method and an LRTA (Lamp Rapid Thermal Anneal) method.

非晶質半導体膜への金属元素の導入の仕方としては、当該金属元素を非晶質半導体膜の表面又はその内部に存在させ得る手法であれば特に限定はなく、例えばスパッタ法、CVD法、プラズマ処理法(プラズマCVD法も含む)、吸着法、金属塩の溶液を塗布する方法を使用することができる。このうち溶液を用いる方法は簡便であり、金属元素の濃度調整が容易であるという点で有用である。また、このとき非晶質半導体膜の表面のぬれ性を改善し、非晶質半導体膜の表面全体に水溶液を行き渡らせるため、酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を成膜することが望ましい。     The method of introducing the metal element into the amorphous semiconductor film is not particularly limited as long as the metal element can be present on the surface of the amorphous semiconductor film or inside the amorphous semiconductor film. For example, sputtering, CVD, A plasma treatment method (including a plasma CVD method), an adsorption method, or a method of applying a metal salt solution can be used. Among these, the method using a solution is simple and useful in that the concentration of the metal element can be easily adjusted. At this time, in order to improve the wettability of the surface of the amorphous semiconductor film and to spread the aqueous solution over the entire surface of the amorphous semiconductor film, irradiation with UV light in an oxygen atmosphere, thermal oxidation method, hydroxy radical It is desirable to form an oxide film by treatment with ozone water or hydrogen peroxide.

連続発振が可能な固体レーザを用い、基本波の第2高調波〜第4高調波のレーザ光を照射することで、大粒径の結晶を得ることができる。例えば、代表的には、Nd:YVO4レーザ(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm)を用いるのが望ましい。具体的には、連続発振のYVO4レーザから射出されたレーザ光を非線形光学素子により高調波に変換し、出力数W以上のレーザ光を得る。そして、好ましくは光学系により照射面にて矩形状または楕円形状のレーザ光に成形して、半導体膜に照射する。このときのエネルギー密度(パワー密度)は0.001〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、走査速度を0.5〜2000cm/sec程度(好ましくは10〜200cm/sec)とし、照射する。 By using a solid-state laser capable of continuous oscillation and irradiating laser light of the second to fourth harmonics of the fundamental wave, a crystal having a large grain size can be obtained. For example, typically, it is desirable to use the second harmonic (532 nm) or the third harmonic (355 nm) of an Nd: YVO 4 laser (fundamental wave 1064 nm). Specifically, laser light emitted from a continuous wave YVO 4 laser is converted into a harmonic by a non-linear optical element to obtain laser light having an output number of W or more. Then, it is preferably formed into a rectangular or elliptical laser beam on the irradiation surface by an optical system and irradiated onto the semiconductor film. Energy density of the (power density) of about 0.001~100MW / cm 2 (preferably 0.1 to 10 MW / cm 2) is required. Then, irradiation is performed at a scanning speed of about 0.5 to 2000 cm / sec (preferably 10 to 200 cm / sec).

レーザのビーム形状は、線状とすると好ましい。その結果、スループットを向上させることができる。またさらにレーザは、半導体膜に対して入射角θ(0<θ<90度)を持たせて照射させるとよい。レーザの干渉を防止することができるからである。     The laser beam shape is preferably linear. As a result, throughput can be improved. Further, the laser may be irradiated with an incident angle θ (0 <θ <90 degrees) with respect to the semiconductor film. This is because laser interference can be prevented.

このようなレーザと、半導体膜とを相対的に走査することにより、レーザ照射を行うことができる。またレーザ照射において、ビームを精度よく重ね合わせたり、レーザ照射開始位置やレーザ照射終了位置を制御するため、マーカーを形成したりすることもできる。マーカーは非晶質半導体膜と同時に、基板上へ形成すればよい。     Laser irradiation can be performed by relatively scanning such a laser and the semiconductor film. In laser irradiation, it is also possible to form a marker in order to accurately superimpose beams and to control the laser irradiation start position and laser irradiation end position. The marker may be formed on the substrate simultaneously with the amorphous semiconductor film.

なおレーザは、連続発振またはパルス発振の気体レーザ、固体レーザ、銅蒸気レーザまたは金蒸気レーザなどを用いることができる。気体レーザとして、エキシマレーザ、Arレーザ、Krレーザ、He−Cdレーザなどがあり、固体レーザとして、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、Y23レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、Ti:サファイアレーザなどが挙げられる。 As the laser, a continuous wave or pulsed gas laser, solid state laser, copper vapor laser, gold vapor laser, or the like can be used. Examples of gas lasers include excimer lasers, Ar lasers, Kr lasers, and He-Cd lasers. Solid state lasers include YAG lasers, YVO 4 lasers, YLF lasers, YAlO 3 lasers, Y 2 O 3 lasers, glass lasers, and ruby lasers. Alexandrite laser, Ti: sapphire laser, and the like.

また、パルス発振のレーザ光の発振周波数を0.5MHz以上とし、通常用いられている数十Hz〜数百Hzの周波数帯よりも著しく高い周波数帯を用いてレーザ結晶化を行っても良い。パルス発振でレーザ光を半導体膜に照射してから半導体膜が完全に固化するまでの時間は数十nsec〜数百nsecと言われている。よって上記周波数帯を用いることで、半導体膜がレーザ光によって溶融してから固化するまでに、次のパルスのレーザ光を照射できる。したがって、半導体膜中において固液界面を連続的に移動させることができるので、走査方向に向かって連続的に成長した結晶粒を有する半導体膜が形成される。具体的には、含まれる結晶粒の走査方向における幅が10〜30μm、走査方向に対して垂直な方向における幅が1〜5μm程度の結晶粒の集合を形成することができる。該走査方向に沿って長く延びた単結晶の結晶粒を形成することで、少なくとも薄膜トランジスタのチャネル方向には結晶粒界のほとんど存在しない半導体膜の形成が可能となる。     Further, the laser crystallization may be performed using a frequency band significantly higher than a frequency band of several tens to several hundreds Hz that is usually used with an oscillation frequency of pulsed laser light of 0.5 MHz or more. It is said that the time from irradiating a semiconductor film with laser light by pulse oscillation until the semiconductor film is completely solidified is several tens to several hundreds nsec. Therefore, by using the above frequency band, it is possible to irradiate the next pulse of laser light from when the semiconductor film is melted by the laser light to solidification. Accordingly, since the solid-liquid interface can be continuously moved in the semiconductor film, a semiconductor film having crystal grains continuously grown in the scanning direction is formed. Specifically, a set of crystal grains having a width of 10 to 30 μm in the scanning direction and a width of about 1 to 5 μm in a direction perpendicular to the scanning direction can be formed. By forming single crystal grains extending long along the scanning direction, a semiconductor film having almost no crystal grain boundary at least in the channel direction of the thin film transistor can be formed.

また、希ガスや窒素などの不活性ガス雰囲気中でレーザ光を照射するようにしても良い。これにより、レーザ光の照射により半導体表面の荒れを抑えることができ、界面準位密度のばらつきによって生じるしきい値のばらつきを抑えることができる。     Further, laser light may be irradiated in an inert gas atmosphere such as a rare gas or nitrogen. Accordingly, the surface roughness of the semiconductor can be suppressed by laser light irradiation, and variations in threshold values caused by variations in interface state density can be suppressed.

非晶質半導体膜の結晶化は、熱処理とレーザ光照射による結晶化を組み合わせてもよく、熱処理やレーザ光照射を単独で、複数回行っても良い。     Crystallization of the amorphous semiconductor film may be a combination of heat treatment and crystallization by laser light irradiation, or may be performed multiple times by heat treatment or laser light irradiation alone.

本実施の形態では、下地膜101b上に、非晶質半導体膜を形成し、非晶質半導体膜を結晶化させることによって結晶性半導体膜を形成する。非晶質半導体膜としては、SiH4、H2の反応ガスにより形成する非晶質珪素を用いる。本実施の形態において、下地膜101a、下地膜101b、非晶質半導体膜は、同チャンバー内で真空を破らずに、真空を維持しながら330℃の同一温度下で、反応ガスを切り変えながら連続的に形成する。 In this embodiment, an amorphous semiconductor film is formed over the base film 101b, and the crystalline semiconductor film is formed by crystallizing the amorphous semiconductor film. As the amorphous semiconductor film, amorphous silicon formed using a reaction gas of SiH 4 and H 2 is used. In this embodiment mode, the base film 101a, the base film 101b, and the amorphous semiconductor film are used while switching the reaction gas at the same temperature of 330 ° C. while maintaining the vacuum without breaking the vacuum in the same chamber. Form continuously.

非晶質半導体膜上に形成された酸化膜を除去した後、酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を1〜5nm形成する。本実施の形態では、結晶化を助長する元素としてNiを用いる。Ni酢酸塩10ppmを含有した水溶液をスピンコーティング法により塗布する。     After removing the oxide film formed on the amorphous semiconductor film, the oxide film is made 1 by irradiation with UV light in an oxygen atmosphere, a thermal oxidation method, treatment with ozone water containing hydrogen radicals or hydrogen peroxide, and the like. Form ~ 5 nm. In this embodiment mode, Ni is used as an element for promoting crystallization. An aqueous solution containing 10 ppm of Ni acetate is applied by spin coating.

本実施の形態では、熱処理をRTA法により650℃で6分間行った後、半導体膜上に形成される酸化膜を除去し、レーザ光を照射する。非晶質半導体膜は以上の結晶化処理により結晶化し、結晶性半導体膜として形成される。     In this embodiment, after heat treatment is performed at 650 ° C. for 6 minutes by an RTA method, an oxide film formed over the semiconductor film is removed and laser light is irradiated. The amorphous semiconductor film is crystallized by the above crystallization treatment and formed as a crystalline semiconductor film.

金属元素を用いた結晶化を行った場合、金属元素を低減、又は除去するためにゲッタリング工程を施す。本実施の形態では、非晶質半導体膜をゲッタリングシンクとして金属元素を捕獲する。まず、結晶性半導体膜上に酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を形成する。酸化膜は加熱処理によって厚膜化することが望ましい。本実施の形態では、酸化膜形成後に、RTA法により650℃で6分間熱処理を行うことによって、酸化膜の厚膜化を行う。次いでプラズマCVD法(本実施の形態における条件350W、35Pa)を用いて、非晶質半導体膜を30nmの膜厚で形成する。     When crystallization using a metal element is performed, a gettering step is performed in order to reduce or remove the metal element. In this embodiment mode, a metal element is captured using an amorphous semiconductor film as a gettering sink. First, an oxide film is formed over the crystalline semiconductor film by irradiation with UV light in an oxygen atmosphere, a thermal oxidation method, treatment with ozone water containing hydroxyl radicals or hydrogen peroxide, and the like. The oxide film is preferably thickened by heat treatment. In this embodiment, after the oxide film is formed, the oxide film is thickened by performing heat treatment at 650 ° C. for 6 minutes by the RTA method. Next, an amorphous semiconductor film is formed to a thickness of 30 nm by a plasma CVD method (conditions 350 W and 35 Pa in this embodiment).

その後、RTA法により650℃で6分間熱処理を行い、金属元素を低減、又は除去する。熱処理は窒素雰囲気下で行ってもよい。そして、ゲッタリングシンクとなっていた非晶質半導体膜、及び非晶質半導体膜上に形成された酸化膜をフッ酸等により除去し、金属元素が低減、又は除去された結晶性半導体膜102を得ることができる(図2(A)参照。)。本実施の形態では、ゲッタリングシンクとなった非晶質半導体膜の除去をTMAH(Tetramethyl ammonium hydroxide)を用いて行う。   Thereafter, heat treatment is performed at 650 ° C. for 6 minutes by the RTA method to reduce or remove the metal element. The heat treatment may be performed in a nitrogen atmosphere. Then, the amorphous semiconductor film serving as the gettering sink and the oxide film formed over the amorphous semiconductor film are removed by hydrofluoric acid or the like, and the crystalline semiconductor film 102 in which the metal element is reduced or removed is removed. Can be obtained (see FIG. 2A). In this embodiment mode, the amorphous semiconductor film serving as a gettering sink is removed using TMAH (Tetramethyl ammonium hydroxide).

このようにして得られた半導体膜に対して、薄膜トランジスタのしきい値電圧を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。この不純物元素のドーピングは、結晶化工程の前の非晶質半導体膜に行ってもよい。非晶質半導体膜の状態で不純物元素をドーピングすると、その後の結晶化のための加熱処理によって、不純物の活性化も行うことができる。また、ドーピングの際に生じる欠陥等も改善することができる。     In order to control the threshold voltage of the thin film transistor, the semiconductor film thus obtained may be doped with a trace amount of impurity element (boron or phosphorus). This doping of the impurity element may be performed on the amorphous semiconductor film before the crystallization step. When the impurity element is doped in the state of the amorphous semiconductor film, the impurity can be activated by heat treatment for subsequent crystallization. In addition, defects and the like generated during doping can be improved.

次に結晶性半導体膜102を、マスクを用いてパターニングする。本実施の形態では結晶性半導体膜102上に形成された酸化膜を除去した後、新たに酸化膜を形成する。そして、フォトマスクを作製し、フォトリソグラフィ法を用いたパターニング処理により、半導体層103、半導体層104、半導体層105、及び半導体層106を形成する。     Next, the crystalline semiconductor film 102 is patterned using a mask. In this embodiment mode, after the oxide film formed over the crystalline semiconductor film 102 is removed, a new oxide film is formed. Then, a photomask is manufactured, and the semiconductor layer 103, the semiconductor layer 104, the semiconductor layer 105, and the semiconductor layer 106 are formed by patterning treatment using a photolithography method.

パターニングの際のエッチング加工は、プラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、CF4、NF3などのフッ素を含むガス又はCl2、BCl3などの塩素を含むガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。 As the etching process at the time of patterning, either plasma etching (dry etching) or wet etching may be employed, but plasma etching is suitable for processing a large area substrate. As an etching gas, a gas containing fluorine such as CF 4 or NF 3 or a gas containing chlorine such as Cl 2 or BCl 3 may be used, and an inert gas such as He or Ar may be added as appropriate. Further, if an atmospheric pressure discharge etching process is applied, a local electric discharge process is also possible, and it is not necessary to form a mask layer on the entire surface of the substrate.

本発明において、配線層若しくは電極層を形成する導電層や、所定のパターンを形成するためのマスク層などを、液滴吐出法のような選択的にパターンを形成できる方法により形成してもよい。液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれる。)は、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパターン(導電層や絶縁層など)を形成することができる。この際、被形成領域にぬれ性や密着性を制御する処理を行ってもよい。また、パターンが転写、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)なども用いることができる。     In the present invention, a conductive layer for forming a wiring layer or an electrode layer, a mask layer for forming a predetermined pattern, or the like may be formed by a method capable of selectively forming a pattern such as a droplet discharge method. . A droplet discharge (ejection) method (also called an ink-jet method depending on the method) is a method in which a droplet of a composition prepared for a specific purpose is selectively ejected (ejection) to form a predetermined pattern (such as a conductive layer or a conductive layer). An insulating layer or the like can be formed. At this time, a process for controlling wettability and adhesion may be performed on the formation region. In addition, a method by which a pattern can be transferred or drawn, for example, a printing method (a method for forming a pattern such as screen printing or offset printing) can be used.

本実施の形態において、用いるマスクは、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するポリイミドなどの有機材料、シロキサンポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いることもできる。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、代表的なポジ型レジストである、ノボラック樹脂と感光剤であるナフトキノンジアジド化合物、ネガ型レジストであるベース樹脂、ジフェニルシランジオール及び酸発生剤などを用いてもよい。液滴吐出法を用いる場合、いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。   In this embodiment mode, a resin material such as an epoxy resin, an acrylic resin, a phenol resin, a novolac resin, a melamine resin, or a urethane resin is used as a mask to be used. Also, use organic materials such as benzocyclobutene, parylene, flare, permeable polyimide, compound materials made by polymerization of siloxane polymers, composition materials containing water-soluble homopolymers and water-soluble copolymers, etc. You can also. Alternatively, a commercially available resist material containing a photosensitizer may be used. For example, a novolak resin that is a typical positive resist and a naphthoquinonediazide compound that is a photosensitizer, a base resin that is a negative resist, diphenylsilanediol, and An acid generator or the like may be used. When using the droplet discharge method, regardless of which material is used, the surface tension and viscosity are appropriately adjusted by adjusting the concentration of the solvent or adding a surfactant or the like.

半導体層上の酸化膜を除去し、半導体層103、半導体層104、半導体層105、及び半導体層106を覆うゲート絶縁層107を形成する。ゲート絶縁層107はプラズマCVD法またはスパッタ法などを用い、厚さを10〜150nmとして珪素を含む絶縁膜で形成する。ゲート絶縁層107としては、窒化珪素、酸化珪素、酸化窒化珪素、窒化酸化珪素に代表される珪素の酸化物材料又は窒化物材料等の公知の材料で形成すればよく、積層でも単層でもよい。本実施の形態では、ゲート絶縁層は窒化珪素膜、酸化珪素膜、窒化珪素膜の3層の積層を用いる。またそれらや、酸化窒化珪素膜の単層、2層からなる積層でも良い。好適には、緻密な膜質を有する窒化珪素膜を用いるとよい。さらに半導体層とゲート絶縁層の間に、膜厚1〜100nm、好ましくは1〜10nm、さらに好ましくは2〜5nmである膜厚の薄い酸化珪素膜を形成してもよい。薄い酸化珪素膜の形成方法としては、GRTA法、LRTA法等を用いて半導体領域表面を酸化し、熱酸化膜を形成することで、膜厚の薄い酸化珪素膜を形成することができる。なお、低い成膜温度でゲートリーク電流が少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。     The oxide film over the semiconductor layer is removed, and a gate insulating layer 107 is formed to cover the semiconductor layer 103, the semiconductor layer 104, the semiconductor layer 105, and the semiconductor layer 106. The gate insulating layer 107 is formed of an insulating film containing silicon with a thickness of 10 to 150 nm using a plasma CVD method, a sputtering method, or the like. The gate insulating layer 107 may be formed using a known material such as silicon nitride, silicon oxide, silicon oxynitride, or silicon oxide or nitride material typified by silicon nitride oxide, and may be a stacked layer or a single layer. . In this embodiment, the gate insulating layer is a three-layer stack including a silicon nitride film, a silicon oxide film, and a silicon nitride film. Alternatively, a single layer or a double layer of silicon oxynitride film may be used. A silicon nitride film having a dense film quality is preferably used. Further, a thin silicon oxide film with a thickness of 1 to 100 nm, preferably 1 to 10 nm, more preferably 2 to 5 nm may be formed between the semiconductor layer and the gate insulating layer. As a method for forming a thin silicon oxide film, a thin silicon oxide film can be formed by oxidizing the surface of the semiconductor region using a GRTA method, an LRTA method, or the like to form a thermal oxide film. Note that in order to form a dense insulating film with low gate leakage current at a low deposition temperature, a rare gas element such as argon is preferably contained in a reaction gas and mixed into the formed insulating film.

次いで、ゲート絶縁層107上にゲート電極層として用いる膜厚20〜100nmの第1の導電膜108と、膜厚100〜400nmの第2の導電膜109とを積層して形成する(図2(B)参照。)。第1の導電膜108及び第2の導電膜109は、スパッタリング法、蒸着法、CVD法等の公知の手法により形成することができる。第1の導電膜108及び第2の導電膜109はタンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ネオジウム(Nd)から選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料で形成すればよい。また、第1の導電膜108及び第2の導電膜109としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や、AgPdCu合金を用いてもよい。また、2層構造に限定されず、例えば、第1の導電膜として膜厚50nmのタングステン膜、第2の導電膜として膜厚500nmのアルミニウムとシリコンの合金(Al−Si)膜、第3の導電膜として膜厚30nmの窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、第1の導電膜のタングステンに代えて窒化タングステンを用いてもよいし、第2の導電膜のアルミニウムとシリコンの合金(Al−Si)膜に代えてアルミニウムとチタンの合金膜(Al−Ti)を用いてもよいし、第3の導電膜の窒化チタン膜に代えてチタン膜を用いてもよい。また、単層構造であってもよい。本実施の形態では、第1の導電膜106として窒化タンタル(TaN)を膜厚30nm形成し、第2の導電膜107としてタングステン(W)を膜厚370nm形成する。     Next, a first conductive film 108 with a thickness of 20 to 100 nm and a second conductive film 109 with a thickness of 100 to 400 nm used as a gate electrode layer are stacked over the gate insulating layer 107 (FIG. 2 ( See B). The first conductive film 108 and the second conductive film 109 can be formed by a known method such as a sputtering method, an evaporation method, or a CVD method. The first conductive film 108 and the second conductive film 109 are tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo), aluminum (Al), copper (Cu), chromium (Cr), neodymium. An element selected from (Nd) or an alloy material or compound material containing the element as a main component may be used. Alternatively, a semiconductor film typified by a polycrystalline silicon film doped with an impurity element such as phosphorus, or an AgPdCu alloy may be used as the first conductive film 108 and the second conductive film 109. The structure is not limited to a two-layer structure. For example, a tungsten film with a thickness of 50 nm is used as the first conductive film, an aluminum-silicon alloy (Al-Si) film with a thickness of 500 nm is used as the second conductive film, The conductive film may have a three-layer structure in which titanium nitride films with a thickness of 30 nm are sequentially stacked. In the case of a three-layer structure, tungsten nitride may be used instead of tungsten of the first conductive film, or aluminum instead of the aluminum and silicon alloy (Al-Si) film of the second conductive film. A titanium alloy film (Al—Ti) may be used, or a titanium film may be used instead of the titanium nitride film of the third conductive film. Moreover, a single layer structure may be sufficient. In this embodiment, tantalum nitride (TaN) is formed to a thickness of 30 nm as the first conductive film 106 and tungsten (W) is formed to a thickness of 370 nm as the second conductive film 107.

次に、フォトリソグラフィ法を用いてレジストからなるマスク110a、マスク110b、マスク110c、マスク110d、及びマスク110fを形成し、第1の導電膜108及び第2の導電膜109をパターニングし、第1のゲート電極層121、第1のゲート電極層122、導電層123、第1のゲート電極層124、第1のゲート電極層125、及び第1のゲート電極層126、並びに導電層111、導電層112、導電層113、導電層114、導電層115、及び導電層116を形成する(図2(C)参照。)。ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング条件(コイル型の電極層に印加される電力量、基板側の電極層に印加される電力量、基板側の電極温度等)を適宜調節することにより、第1のゲート電極層121、第1のゲート電極層122、導電層123、第1のゲート電極層124、第1のゲート電極層125、及び第1のゲート電極層126、並びに導電層111、導電層112、導電層113、導電層114、導電層115、及び導電層116を所望のテーパー形状を有するようにエッチングすることができる。また、テーパー形状は、マスク110a、マスク110b、マスク110c、マスク110d、及びマスク110fの形状によっても角度等を制御することができる。なお、エッチング用ガスとしては、Cl2、BCl3、SiCl4もしくはCCl4などを代表とする塩素を含むガス、CF4、CF5、SF6もしくはNF3などを代表とするフッ素を含むガス又はO2を適宜用いることができる。本実施の形態では、CF5、Cl2、O2からなるエッチング用ガスを用いて第2の導電膜109のエッチングを行い、連続してCF5、Cl2からなるエッチング用ガスを用いて第1の導電膜108をエッチングする。 Next, a resist mask 110a, a mask 110b, a mask 110c, a mask 110d, and a mask 110f are formed by photolithography, and the first conductive film 108 and the second conductive film 109 are patterned, and the first conductive film 108 is patterned. Gate electrode layer 121, first gate electrode layer 122, conductive layer 123, first gate electrode layer 124, first gate electrode layer 125, first gate electrode layer 126, and conductive layer 111, conductive layer 112, a conductive layer 113, a conductive layer 114, a conductive layer 115, and a conductive layer 116 are formed (see FIG. 2C). Using ICP (Inductively Coupled Plasma) etching method, etching conditions (amount of power applied to coil-type electrode layer, amount of power applied to electrode layer on substrate side, electrode temperature on substrate side, etc.) By appropriately adjusting the first gate electrode layer 121, the first gate electrode layer 122, the conductive layer 123, the first gate electrode layer 124, the first gate electrode layer 125, and the first gate electrode layer 126, and the conductive layer 111, the conductive layer 112, the conductive layer 113, the conductive layer 114, the conductive layer 115, and the conductive layer 116 can be etched to have a desired tapered shape. The taper shape can be controlled in angle and the like by the shapes of the mask 110a, the mask 110b, the mask 110c, the mask 110d, and the mask 110f. As an etching gas, a gas containing chlorine typified by Cl 2 , BCl 3 , SiCl 4 or CCl 4 , a gas containing fluorine typified by CF 4 , CF 5 , SF 6 or NF 3, or the like O 2 can be used as appropriate. In this embodiment, the second conductive film 109 is etched using an etching gas composed of CF 5 , Cl 2 , and O 2 , and then continuously etched using an etching gas composed of CF 5 and Cl 2 . The first conductive film 108 is etched.

次に、マスク110a、マスク110b、マスク110c、マスク110d、及びマスク110fを用いて、導電層111、導電層112、導電層113、導電層114、導電層115、及び導電層116をパターニングする。このとき、導電層を形成する第2の導電膜109と、第1のゲート電極層を形成する第1の導電膜108との選択比の高いエッチング条件で、導電層をエッチングする。このエッチングによって、導電層111、導電層112、導電層113、導電層114、導電層115、及び導電層116をエッチングし、第2のゲート電極層131、第2のゲート電極層132、導電層133、第2のゲート電極層134、第2のゲート電極層135、及び第2のゲート電極層136を形成する。本実施の形態では、第3導電層もテーパー形状を有しているが、そのテーパー角度は、第1のゲート電極層121、第1のゲート電極層122、導電層123、第1のゲート電極層124、第1のゲート電極層125、及び第1のゲート電極層126の有するテーパー角度より大きい。なおテーパー角度とは第1のゲート電極層、第2のゲート電極層、導電層表面に対する側面の角度である。よって、テーパー角度を大きくし、90度の場合導電層は垂直な側面を有しており、テーパー形状を有さなくなる。本実施の形態では、第2のゲート電極層を形成するためのエッチング用ガスとしてCl2、SF6、O2を用いる。 Next, the conductive layer 111, the conductive layer 112, the conductive layer 113, the conductive layer 114, the conductive layer 115, and the conductive layer 116 are patterned using the mask 110a, the mask 110b, the mask 110c, the mask 110d, and the mask 110f. At this time, the conductive layer is etched under an etching condition with a high selection ratio between the second conductive film 109 that forms the conductive layer and the first conductive film 108 that forms the first gate electrode layer. By this etching, the conductive layer 111, the conductive layer 112, the conductive layer 113, the conductive layer 114, the conductive layer 115, and the conductive layer 116 are etched, and the second gate electrode layer 131, the second gate electrode layer 132, and the conductive layer are etched. 133, a second gate electrode layer 134, a second gate electrode layer 135, and a second gate electrode layer 136 are formed. In this embodiment mode, the third conductive layer also has a tapered shape, and the taper angles thereof are the first gate electrode layer 121, the first gate electrode layer 122, the conductive layer 123, and the first gate electrode. It is larger than the taper angle of the layer 124, the first gate electrode layer 125, and the first gate electrode layer 126. Note that the taper angle is an angle of a side surface with respect to the surfaces of the first gate electrode layer, the second gate electrode layer, and the conductive layer. Therefore, when the taper angle is increased and the angle is 90 degrees, the conductive layer has a vertical side surface and does not have a tapered shape. In this embodiment mode, Cl 2 , SF 6 , and O 2 are used as etching gases for forming the second gate electrode layer.

本実施の形態では第1のゲート電極層、導電層、及び第2のゲート電極層を、テーパー形状を有する様に形成するため、2層のゲート電極層両方がテーパー形状を有している。しかし、本発明はそれに限定されず、ゲート電極層の一層のみがテーパー形状を有し、他方は異方性エッチングによって垂直な側面を有していてもよい。本実施の形態のように、テーパー角度も積層するゲート電極層間で異なっていても良いし、同一でもよい。テーパー形状を有することによって、その上に積層する膜の被覆性が向上し、欠陥が軽減されるので信頼性が向上する。     In this embodiment mode, since the first gate electrode layer, the conductive layer, and the second gate electrode layer are formed to have a tapered shape, both the two gate electrode layers have a tapered shape. However, the present invention is not limited thereto, and only one gate electrode layer may have a tapered shape, and the other may have a vertical side surface by anisotropic etching. As in this embodiment, the taper angle may be different between the stacked gate electrode layers, or may be the same. By having a tapered shape, the coverage of a film stacked thereon is improved and defects are reduced, so that reliability is improved.

以上の工程によって、周辺駆動回路領域204に第1のゲート電極層121及び第2のゲート電極層131からなるゲート電極層117、第1のゲート電極層122及び第2のゲート電極層132からなるゲート電極層118、画素領域206に第1のゲート電極層124及び第2のゲート電極層134からなるゲート電極層127、第1のゲート電極層125及び第2のゲート電極層135からなるゲート電極層128、第1のゲート電極層126及び第2のゲート電極層136からなるゲート電極層129、接続領域205に導電層123及び導電層133からなる導電層130を形成することができる(図2(D)参照。)。本実施の形態では、ゲート電極層の形成をドライエッチングで行うがウェットエッチングでもよい。     Through the above steps, the peripheral driver circuit region 204 includes the gate electrode layer 117 including the first gate electrode layer 121 and the second gate electrode layer 131, and includes the first gate electrode layer 122 and the second gate electrode layer 132. The gate electrode layer 118 includes a gate electrode layer 127 including a first gate electrode layer 124 and a second gate electrode layer 134, and a gate electrode including a first gate electrode layer 125 and a second gate electrode layer 135. The gate electrode layer 129 including the layer 128, the first gate electrode layer 126 and the second gate electrode layer 136, and the conductive layer 130 including the conductive layer 123 and the conductive layer 133 can be formed in the connection region 205 (FIG. 2). (See (D).) In this embodiment mode, the gate electrode layer is formed by dry etching, but may be wet etching.

ゲート電極層を形成する際のエッチング工程によって、ゲート絶縁層107は多少エッチングされ、膜厚が減る(いわゆる膜減り)ことがある。     The gate insulating layer 107 may be slightly etched by an etching process when forming the gate electrode layer, and the film thickness may be reduced (so-called film reduction).

ゲート電極層を形成する際、ゲート電極層の幅を細くすることによって、高速動作が可能な薄膜トランジスタを形成することができる。ゲート電極層をチャネル方向の幅を細く形成する2つの方法を以下に示す。     When forming the gate electrode layer, a thin film transistor capable of high-speed operation can be formed by reducing the width of the gate electrode layer. Two methods for forming the gate electrode layer with a narrow width in the channel direction are described below.

第1の方法はゲート電極層のマスクを形成した後、マスクを幅方向にエッチング、アッシング等によりスリミングして、さらに幅の細いマスクを形成する。あらかじめ幅細い形状に形成されたマスクを用いることによって、ゲート電極層も幅細い形状に形成することができる。     In the first method, after a mask for the gate electrode layer is formed, the mask is slimmed in the width direction by etching, ashing, or the like to form a mask having a narrower width. By using a mask formed in advance in a narrow shape, the gate electrode layer can also be formed in a narrow shape.

次に、第2の方法は通常のマスクを形成し、そのマスクを用いてゲート電極層を形成する。次に得られたゲート電極層を幅方向にさらにサイドエッチングして細らせる。よって最終的に幅の細いゲート電極層を形成することができる。以上の工程を経ることによって、後にチャネル長の短い薄膜トランジスタを形成することが可能であり、高速度動作が可能な薄膜トランジスタを作製することが可能である。     Next, in the second method, a normal mask is formed, and a gate electrode layer is formed using the mask. Next, the obtained gate electrode layer is further thinned by side etching in the width direction. Therefore, a narrow gate electrode layer can be finally formed. Through the above steps, a thin film transistor with a short channel length can be formed later, and a thin film transistor capable of high-speed operation can be manufactured.

次に、ゲート電極層117、ゲート電極層118、ゲート電極層127、ゲート電極層128、ゲート電極層129、導電層130をマスクとして、n型を付与する不純物元素151を添加し、第1のn型不純物領域140a、第1のn型不純物領域140b、第1のn型不純物領域141a、第1のn型不純物領域141b、第1のn型不純物領域142a、第1のn型不純物領域142b、第1のn型不純物領域142c、第1のn型不純物領域143a、第1のn型不純物領域143bを形成する(図3(A)参照。)。本実施の形態では、不純物元素を含むドーピングガスとしてホスフィン(PH3)(Pの組成比率は5%)を用い、ガス流量80sccm、ビーム電流54μA/cm、加速電圧50kV、添加するドーズ量7.0×1013ions/cm2でドーピングを行う。ここでは、第1のn型不純物領域140a、第1のn型不純物領域140b、第1のn型不純物領域141a、第1のn型不純物領域141b、第1のn型不純物領域142a、第1のn型不純物領域142b、第1のn型不純物領域142c、第1のn型不純物領域143a、第1のn型不純物領域143bに、n型を付与する不純物元素が1×1017〜5×1018/cm3程度の濃度で含まれるように添加する。本実施の形態では、n型を付与する不純物元素としてリン(P)を用いる。 Next, an impurity element 151 imparting n-type conductivity is added using the gate electrode layer 117, the gate electrode layer 118, the gate electrode layer 127, the gate electrode layer 128, the gate electrode layer 129, and the conductive layer 130 as masks, n-type impurity region 140a, first n-type impurity region 140b, first n-type impurity region 141a, first n-type impurity region 141b, first n-type impurity region 142a, first n-type impurity region 142b A first n-type impurity region 142c, a first n-type impurity region 143a, and a first n-type impurity region 143b are formed (see FIG. 3A). In this embodiment mode, phosphine (PH 3 ) (P composition ratio is 5%) is used as a doping gas containing an impurity element, a gas flow rate of 80 sccm, a beam current of 54 μA / cm, an acceleration voltage of 50 kV, and a dose amount to be added. Doping is performed at 0 × 10 13 ions / cm 2 . Here, the first n-type impurity region 140a, the first n-type impurity region 140b, the first n-type impurity region 141a, the first n-type impurity region 141b, the first n-type impurity region 142a, the first In the n-type impurity region 142b, the first n-type impurity region 142c, the first n-type impurity region 143a, and the first n-type impurity region 143b, an impurity element imparting n-type conductivity is 1 × 10 17 to 5 ×. Add so that it is contained at a concentration of about 10 18 / cm 3 . In this embodiment mode, phosphorus (P) is used as the impurity element imparting n-type conductivity.

本実施の形態では、不純物領域がゲート絶縁層を介してゲート電極層と重なる領域をLov領域と示し、不純物領域がゲート絶縁層を介してゲート電極層と重ならない領域をLoff領域と示す。図3では、不純物領域においてハッチングと白地で示されているが、これは、白地部分に不純物元素が添加されていないということを示すのではなく、この領域の不純物元素の濃度分布がマスクやドーピング条件を反映していることを直感的に理解できるようにしたためである。なお、このことは本明細書の他の図面においても同様である。   In this embodiment, a region where the impurity region overlaps with the gate electrode layer through the gate insulating layer is referred to as a Lov region, and a region where the impurity region does not overlap with the gate electrode layer through the gate insulating layer is referred to as a Loff region. In FIG. 3, hatching and white background are shown in the impurity region, but this does not indicate that the impurity element is not added to the white background part, but the concentration distribution of the impurity element in this region is mask or doping. This is because it is possible to intuitively understand that the conditions are reflected. This also applies to other drawings in this specification.

次に半導体層103、半導体層105の一部、半導体層106を覆うマスク153a、マスク153b、マスク153c、及びマスク153dを形成する。マスク153a、マスク153b、マスク153c、マスク153d、第2のゲート電極層132をマスクとしてn型を付与する不純物元素152を添加し、第2のn型不純物領域144a、第2のn型不純物領域144b、第3のn型不純物領域145a、第3のn型不純物領域145b、第2のn型不純物領域147a、第2のn型不純物領域147b、第2のn型不純物領域147c、第3のn型不純物領域148a、第3のn型不純物領域148b、第3のn型不純物領域148c、第3のn型不純物領域148dが形成される。本実施の形態では、不純物元素を含むドーピングガスとしてPH3(Pの組成比率は5%)を用い、ガス流量80sccm、ビーム電流540μA/cm、加速電圧70kV、添加するドーズ量5.0×1015ions/cm2でドーピングを行う。ここでは、第2のn型不純物領域144a、第2のn型不純物領域144bにn型を付与する不純物元素が5×1019〜5×1020/cm3程度の濃度で含まれるように添加する。第3の不純物領域145a、第3の不純物領域145bは、第3のn型不純物領域148a、第3のn型不純物領域148b、第3のn型不純物領域148c、第3のn型不純物領域148dと同程度、もしくは少し高めの濃度でn型を付与する不純物元素を含むように形成される。また、半導体層104にチャネル形成領域146、半導体層105にチャネル形成領域149a及びチャネル形成領域149bが形成される。 Next, a mask 153a, a mask 153b, a mask 153c, and a mask 153d that cover the semiconductor layer 103, part of the semiconductor layer 105, and the semiconductor layer 106 are formed. An n-type impurity element 152 is added using the mask 153a, the mask 153b, the mask 153c, the mask 153d, and the second gate electrode layer 132 as a mask, and the second n-type impurity region 144a and the second n-type impurity region are added. 144b, a third n-type impurity region 145a, a third n-type impurity region 145b, a second n-type impurity region 147a, a second n-type impurity region 147b, a second n-type impurity region 147c, a third An n-type impurity region 148a, a third n-type impurity region 148b, a third n-type impurity region 148c, and a third n-type impurity region 148d are formed. In this embodiment, PH 3 (P composition ratio is 5%) is used as a doping gas containing an impurity element, a gas flow rate is 80 sccm, a beam current is 540 μA / cm, an acceleration voltage is 70 kV, and a dose amount is 5.0 × 10. Doping is performed at 15 ions / cm 2 . Here, the second n-type impurity region 144a and the second n-type impurity region 144b are added so that the impurity element imparting n-type is included at a concentration of about 5 × 10 19 to 5 × 10 20 / cm 3. To do. The third impurity region 145a and the third impurity region 145b include a third n-type impurity region 148a, a third n-type impurity region 148b, a third n-type impurity region 148c, and a third n-type impurity region 148d. It is formed so as to contain an impurity element imparting n-type at a concentration slightly higher than or slightly higher. In addition, a channel formation region 146 is formed in the semiconductor layer 104, and a channel formation region 149 a and a channel formation region 149 b are formed in the semiconductor layer 105.

第2のn型不純物領域144a、第2のn型不純物領域144b、第2のn型不純物領域147a、第2のn型不純物領域147b、第2のn型不純物領域147cは高濃度n型不純物領域であり、ソース、ドレインとして機能する。一方、第3のn型不純物領域145a、第3のn型不純物領域145b、第3のn型不純物領域148a、第3のn型不純物領域148b、第3のn型不純物領域148c、第3のn型不純物領域148dは低濃度不純物領域であり、LDD(LightlyDoped Drain)領域となる。n型不純物領域145a、n型不純物領域145bは、ゲート絶縁層107を介して、第1のゲート電極層122に覆われているのでLov領域であり、ドレイン近傍の電界を緩和し、ホットキャリアによるオン電流の劣化を抑制することが可能である。この結果、高速動作が可能な薄膜トランジスタを形成することができる。一方、第3のn型不純物領域148a、第3のn型不純物領域148b、第3のn型不純物領域148c、第3のn型不純物領域148dはゲート電極層127、ゲート電極層128に覆われていないLoff領域に形成されるため、ドレイン近傍の電界を緩和してホットキャリア注入による劣化を防ぐとともに、オフ電流を低減する効果がある。この結果、信頼性の高く、低消費電力の半導体装置を作製することが可能である。     The second n-type impurity region 144a, the second n-type impurity region 144b, the second n-type impurity region 147a, the second n-type impurity region 147b, and the second n-type impurity region 147c are high-concentration n-type impurities. It is a region and functions as a source and a drain. On the other hand, a third n-type impurity region 145a, a third n-type impurity region 145b, a third n-type impurity region 148a, a third n-type impurity region 148b, a third n-type impurity region 148c, and a third The n-type impurity region 148d is a low concentration impurity region and becomes an LDD (Lightly Doped Drain) region. Since the n-type impurity region 145a and the n-type impurity region 145b are covered with the first gate electrode layer 122 through the gate insulating layer 107, they are Lov regions, which relieve an electric field in the vicinity of the drain and are caused by hot carriers. It is possible to suppress deterioration of on-current. As a result, a thin film transistor capable of high speed operation can be formed. On the other hand, the third n-type impurity region 148a, the third n-type impurity region 148b, the third n-type impurity region 148c, and the third n-type impurity region 148d are covered with the gate electrode layer 127 and the gate electrode layer 128. Therefore, the electric field in the vicinity of the drain is relaxed to prevent deterioration due to hot carrier injection and to reduce the off current. As a result, a highly reliable semiconductor device with low power consumption can be manufactured.

次に、マスク153a、マスク153b、マスク153c及びマスク153dを除去し、半導体層103、半導体層105を覆うマスク155a、マスク155bを形成する。マスク155a、マスク155b、ゲート電極層117及びゲート電極層129をマスクとしてp型を付与する不純物元素154を添加し、第1のp型不純物領域160a、第1のp型不純物領域160b、第1のp型不純物領域163a、第1のp型不純物領域163b、第2のp型不純物領域161a、第2のp型不純物領域161b、第2のp型不純物領域164a、第2のp型不純物領域164bが形成される。本実施の形態では、不純物元素としてボロン(B)を用いるため、不純物元素を含むドーピングガスとしてジボラン(B26)(Bの組成比率は15%)を用い、ガス流量70sccm、ビーム電流180μA/cm、加速電圧80kV、添加するドーズ量2.0×1015ions/cm2でドーピングを行う。ここでは、第1のp型不純物領域160a、第1のp型不純物領域160b、第1のp型不純物領域163a、第1のp型不純物領域163b、第2のp型不純物領域161a、第2のp型不純物領域161b、第2のp型不純物領域164a、第2のp型不純物領域164bにp型を付与する不純物元素が1×1020〜5×1021/cm3程度の濃度で含まれるように添加する。本実施の形態では、第2のp型不純物領域161a、第2のp型不純物領域161b、第2のp型不純物領域164a、第2のp型不純物領域164bは、ゲート電極層117及びゲート電極層129の形状を反映し、自己整合的に第1のp型不純物領域160a、第1のp型不純物領域160b、第1のp型不純物領域163a、第1のp型不純物領域163bより低濃度となるように形成する。また、半導体層103にチャネル形成領域162、半導体層106にチャネル形成領域165が形成される。 Next, the mask 153a, the mask 153b, the mask 153c, and the mask 153d are removed, and a mask 155a and a mask 155b that cover the semiconductor layer 103 and the semiconductor layer 105 are formed. An impurity element 154 imparting p-type conductivity is added using the mask 155a, the mask 155b, the gate electrode layer 117, and the gate electrode layer 129 as a mask, and the first p-type impurity region 160a, the first p-type impurity region 160b, and the first P-type impurity region 163a, first p-type impurity region 163b, second p-type impurity region 161a, second p-type impurity region 161b, second p-type impurity region 164a, and second p-type impurity region 164b is formed. In this embodiment, since boron (B) is used as the impurity element, diborane (B 2 H 6 ) (B composition ratio is 15%) is used as the doping gas containing the impurity element, the gas flow rate is 70 sccm, and the beam current is 180 μA. / Cm, accelerating voltage 80 kV, doping amount to be added is 2.0 × 10 15 ions / cm 2 . Here, the first p-type impurity region 160a, the first p-type impurity region 160b, the first p-type impurity region 163a, the first p-type impurity region 163b, the second p-type impurity region 161a, and the second The p-type impurity region 161b, the second p-type impurity region 164a, and the second p-type impurity region 164b contain an impurity element imparting p-type at a concentration of about 1 × 10 20 to 5 × 10 21 / cm 3. Add as required. In this embodiment, the second p-type impurity region 161a, the second p-type impurity region 161b, the second p-type impurity region 164a, and the second p-type impurity region 164b include the gate electrode layer 117 and the gate electrode. Reflecting the shape of the layer 129, the concentration is lower than that of the first p-type impurity region 160a, the first p-type impurity region 160b, the first p-type impurity region 163a, and the first p-type impurity region 163b in a self-aligned manner. It forms so that it becomes. In addition, a channel formation region 162 is formed in the semiconductor layer 103, and a channel formation region 165 is formed in the semiconductor layer 106.

第2のn型不純物領域144a、第2のn型不純物領域144b、第2のn型不純物領域147a、第2のn型不純物領域147b、第2のn型不純物領域147cは高濃度n型不純物領域であり、ソース、ドレインとして機能する。一方、第2のp型不純物領域161a、第2のp型不純物領域161b、第2のp型不純物領域164a、第2のp型不純物領域164bは低濃度不純物領域であり、LDD(LightlyDoped Drain)領域となる。第2のp型不純物領域161a、第2のp型不純物領域161b、第2のp型不純物領域164a、第2のp型不純物領域164bは、ゲート絶縁層107を介して、第1のゲート電極層121、第1のゲート電極層126に覆われているのでLov領域であり、ドレイン近傍の電界を緩和し、ホットキャリアによるオン電流の劣化を抑制することが可能である。     The second n-type impurity region 144a, the second n-type impurity region 144b, the second n-type impurity region 147a, the second n-type impurity region 147b, and the second n-type impurity region 147c are high-concentration n-type impurities. It is a region and functions as a source and a drain. On the other hand, the second p-type impurity region 161a, the second p-type impurity region 161b, the second p-type impurity region 164a, and the second p-type impurity region 164b are low-concentration impurity regions, and are LDD (Lightly Doped Drain). It becomes an area. The second p-type impurity region 161a, the second p-type impurity region 161b, the second p-type impurity region 164a, and the second p-type impurity region 164b are connected to the first gate electrode through the gate insulating layer 107. Since it is covered with the layer 121 and the first gate electrode layer 126, it is a Lov region, and an electric field in the vicinity of the drain can be relaxed and deterioration of on-current due to hot carriers can be suppressed.

マスク155a、マスク155bをO2アッシングやレジスト剥離液により除去し、酸化膜も除去する。その後、ゲート電極層の側面を覆うように、絶縁膜、いわゆるサイドウォールを形成してもよい。サイドウォールは、プラズマCVD法や減圧CVD(LPCVD)法を用いて、珪素を有する絶縁膜により形成することができる。 The masks 155a and 155b are removed by O 2 ashing or resist stripping solution, and the oxide film is also removed. After that, an insulating film, so-called sidewall, may be formed so as to cover the side surface of the gate electrode layer. The sidewall can be formed using an insulating film containing silicon by a plasma CVD method or a low pressure CVD (LPCVD) method.

不純物元素を活性化するために加熱処理、強光の照射、又はレーザ光の照射を行ってもよい。活性化と同時にゲート絶縁層へのプラズマダメージやゲート絶縁層と半導体層との界面へのプラズマダメージを回復することができる。     In order to activate the impurity element, heat treatment, intense light irradiation, or laser light irradiation may be performed. Simultaneously with activation, plasma damage to the gate insulating layer and plasma damage to the interface between the gate insulating layer and the semiconductor layer can be recovered.

次いで、ゲート電極層、ゲート絶縁層を覆う層間絶縁層を形成する。本実施の形態では、絶縁膜167と絶縁膜168との積層構造とする(図4(A)参照。)。絶縁膜167として窒化酸化珪素膜を膜厚200nm形成し、絶縁膜168として酸化窒化珪素膜を膜厚800nm形成し、積層構造とする。また、ゲート電極層、ゲート絶縁層を覆って、酸化窒化珪素膜を膜厚30nm形成し、窒化酸化珪素膜を膜厚140nm形成し、酸化窒化珪素膜を膜厚800nm形成し、3層の積層構造としてもよい。本実施の形態では、絶縁膜167及び絶縁膜168を下地膜と同様にプラズマCVD法を用いて連続的に形成する。絶縁膜167、絶縁膜168は窒化珪素膜に限定されるものでなく、スパッタ法、またはプラズマCVDを用いた窒化酸化珪素膜、酸化窒化珪素膜、酸化珪素膜でもよく、他の珪素を含む絶縁膜を単層または3層以上の積層構造として用いても良い。     Next, an interlayer insulating layer is formed to cover the gate electrode layer and the gate insulating layer. In this embodiment, a stacked structure of the insulating film 167 and the insulating film 168 is employed (see FIG. 4A). A silicon nitride oxide film is formed to a thickness of 200 nm as the insulating film 167 and a silicon oxynitride film is formed to a thickness of 800 nm as the insulating film 168 to have a stacked structure. Further, a silicon oxynitride film is formed to a thickness of 30 nm, a silicon nitride oxide film is formed to a thickness of 140 nm, a silicon oxynitride film is formed to a thickness of 800 nm, and the three-layer stack is formed to cover the gate electrode layer and the gate insulating layer. It is good also as a structure. In this embodiment, the insulating film 167 and the insulating film 168 are continuously formed using a plasma CVD method as in the case of the base film. The insulating films 167 and 168 are not limited to silicon nitride films, and may be a silicon nitride oxide film, a silicon oxynitride film, or a silicon oxide film formed by a sputtering method or plasma CVD, and other insulating materials including silicon. The film may be used as a single layer or a stacked structure of three or more layers.

さらに、窒素雰囲気中で、300〜550℃で1〜12時間の熱処理を行い、半導体層を水素化する工程を行う。好ましくは、400〜500℃で行う。この工程は層間絶縁層である絶縁膜167に含まれる水素により半導体層のダングリングボンドを終端する工程である。本実施の形態では、410度(℃)で加熱処理を行う。     Further, a heat treatment is performed at 300 to 550 ° C. for 1 to 12 hours in a nitrogen atmosphere to perform a step of hydrogenating the semiconductor layer. Preferably, it carries out at 400-500 degreeC. This step is a step of terminating dangling bonds in the semiconductor layer with hydrogen contained in the insulating film 167 which is an interlayer insulating layer. In this embodiment, heat treatment is performed at 410 degrees (° C.).

絶縁膜167、絶縁膜168としては他に窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CN)その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン、ポリシラザンを用いることができる。平坦性のよい塗布法によってされる塗布膜を用いてもよい。     In addition, as the insulating films 167 and 168, aluminum nitride (AlN), aluminum oxynitride (AlON), aluminum nitride oxide (AlNO) or aluminum oxide in which the nitrogen content is higher than the oxygen content, diamond like carbon (DLC) A nitrogen-containing carbon film (CN) can be formed of a material selected from substances including other inorganic insulating materials. A siloxane resin may also be used. Note that a siloxane resin corresponds to a resin including a Si—O—Si bond. Siloxane has a skeleton structure formed of a bond of silicon (Si) and oxygen (O). As a substituent, an organic group containing at least hydrogen (for example, an alkyl group or an aromatic hydrocarbon) is used. A fluoro group may be used as a substituent. Alternatively, an organic group containing at least hydrogen and a fluoro group may be used as a substituent. Moreover, an organic insulating material may be used, and as the organic material, polyimide, acrylic, polyamide, polyimide amide, resist, benzocyclobutene, or polysilazane can be used. A coating film formed by a coating method with good flatness may be used.

次いで、レジストからなるマスクを用いて絶縁膜167、絶縁膜168、ゲート絶縁層107に半導体層に達するコンタクトホール(開口)を形成する。エッチングは、用いる材料の選択比によって、一回で行っても複数回行っても良い。本実施の形態では、酸化窒化珪素膜である絶縁膜168と、窒化酸化珪素膜である絶縁膜167及びゲート絶縁層107と選択比が取れる条件で、第1のエッチングを行い、絶縁膜168を除去する。次に第2のエッチングによって、絶縁膜167及びゲート絶縁層107を除去し、ソース領域又はドレイン領域である第1のp型不純物領域160a、第1のp型不純物領域160b、第1のp型不純物領域163a、第1のp型不純物領域163b、第2のn型不純物領域144a、第2のn型不純物領域144b、第2のn型不純物領域147a、第2のn型不純物領域147bに達する開口を形成する。本実施の形態では、第1のエッチングをウェットエッチングによって行い、第2のエッチングをドライエッチングによって行う。ウェットエッチングのエッチャントは、フッ化水素アンモニウム及びフッ化アンモニウムを含む混合溶液のようなフッ酸系の溶液を用いるとよい。エッチング用ガスとしては、Cl2、BCl3、SiCl4もしくはCCl4などを代表とする塩素を含むガス、CF4、SF6もしくはNF3などを代表とするフッ素を含むガス又はO2を適宜用いることができる。また用いるエッチング用ガスに不活性気体を添加してもよい。添加する不活性元素としては、He、Ne、Ar、Kr、Xeから選ばれた一種または複数種の元素を用いることができる。 Next, contact holes (openings) that reach the semiconductor layers are formed in the insulating film 167, the insulating film 168, and the gate insulating layer 107 using a resist mask. Etching may be performed once or a plurality of times depending on the selection ratio of the material to be used. In this embodiment, the first etching is performed under a condition in which the insulating film 168 that is a silicon oxynitride film, the insulating film 167 that is a silicon nitride oxide film, and the gate insulating layer 107 have a selection ratio, and the insulating film 168 is formed. Remove. Next, the insulating film 167 and the gate insulating layer 107 are removed by second etching, and the first p-type impurity region 160a, the first p-type impurity region 160b, and the first p-type which are source regions or drain regions are removed. The impurity region 163a, the first p-type impurity region 163b, the second n-type impurity region 144a, the second n-type impurity region 144b, the second n-type impurity region 147a, and the second n-type impurity region 147b are reached. Form an opening. In this embodiment mode, the first etching is performed by wet etching, and the second etching is performed by dry etching. As an etchant for wet etching, a hydrofluoric acid-based solution such as a mixed solution containing ammonium hydrogen fluoride and ammonium fluoride is preferably used. As an etching gas, using Cl 2, BCl 3, SiCl 4 or a gas containing chlorine typified by such CCl 4, the CF 4, SF 6 or gas or O 2 containing fluorine to such a representative NF 3 as appropriate be able to. Further, an inert gas may be added to the etching gas used. As the inert element to be added, one or more elements selected from He, Ne, Ar, Kr, and Xe can be used.

開口を覆うように導電膜を形成し、導電膜をエッチングして各ソース領域又はドレイン領域の一部とそれぞれ電気的に接続するソース電極層又はドレイン電極層169a、ソース電極層又はドレイン電極層169b、ソース電極層又はドレイン電極層170a、ソース電極層又はドレイン電極層170b、ソース電極層又はドレイン電極層171a、ソース電極層又はドレイン電極層171b、ソース電極層又はドレイン電極層172a、ソース電極層又はドレイン電極層172b、配線156を形成する。ソース電極層又はドレイン電極層は、PVD法、CVD法、蒸着法等により導電膜を成膜した後、所望の形状にエッチングして形成することができる。また、液滴吐出法、印刷法、電界メッキ法等により、所定の場所に選択的に導電層を形成することができる。更にはリフロー法、ダマシン法を用いても良い。ソース電極層又はドレイン電極層の材料は、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Si、Ge、Zr、Ba等の金属又はその合金、若しくはその金属窒化物を用いて形成する。また、これらの積層構造としても良い。本実施の形態では、チタン(Ti)を膜厚100nm形成し、アルミニウムとシリコンの合金(Al−Si)を膜厚700nm形成し、チタン(Ti)を膜厚200nm形成し、所望な形状にパターニングする。     A conductive film is formed so as to cover the opening, and the conductive film is etched to be electrically connected to part of each source region or drain region, respectively, and a source electrode layer or a drain electrode layer 169 b , Source or drain electrode layer 170a, source or drain electrode layer 170b, source or drain electrode layer 171a, source or drain electrode layer 171b, source or drain electrode layer 172a, source or drain electrode layer 172a A drain electrode layer 172b and a wiring 156 are formed. The source electrode layer or the drain electrode layer can be formed by forming a conductive film by a PVD method, a CVD method, an evaporation method, or the like and then etching the conductive film into a desired shape. Further, the conductive layer can be selectively formed at a predetermined place by a droplet discharge method, a printing method, an electroplating method, or the like. Furthermore, a reflow method or a damascene method may be used. The material of the source electrode layer or the drain electrode layer is Ag, Au, Cu, Ni, Pt, Pd, Ir, Rh, W, Al, Ta, Mo, Cd, Zn, Fe, Ti, Si, Ge, Zr, Ba Or a metal nitride thereof or a metal nitride thereof. Moreover, it is good also as these laminated structures. In this embodiment mode, titanium (Ti) is formed to a thickness of 100 nm, an alloy of aluminum and silicon (Al—Si) is formed to a thickness of 700 nm, titanium (Ti) is formed to a thickness of 200 nm, and is patterned into a desired shape. To do.

以上の工程で周辺駆動回路領域204にLov領域にp型不純物領域を有するpチャネル型薄膜トランジスタ173、Lov領域にnチャネル型不純物領域を有するnチャネル型薄膜トランジスタ174を、接続領域に、導電層177を、画素領域206にLoff領域にn型不純物領域を有するマルチチャネル型のnチャネル型薄膜トランジスタ175、Lov領域にp型不純物領域を有するpチャネル型薄膜トランジスタ176を有するアクティブマトリクス基板を作製することができる(図4(B)参照。)。     Through the above steps, a p-channel thin film transistor 173 having a p-type impurity region in the Lov region in the peripheral driver circuit region 204, an n-channel thin film transistor 174 having an n-channel impurity region in the Lov region, and a conductive layer 177 in the connection region. An active matrix substrate having a multi-channel n-channel thin film transistor 175 having an n-type impurity region in a Loff region and a p-channel thin film transistor 176 having a p-type impurity region in a Lov region can be manufactured in the pixel region 206 ( (See FIG. 4B).

そして、アクティブマトリクス基板は、自発光素子を有する発光装置、液晶素子を有する液晶表示装置、その他の表示装置に用いることができる。またCPU(中央演算処理装置)に代表される各種プロセッサやIDチップを搭載したカード等の半導体装置に用いることができる。     The active matrix substrate can be used for a light emitting device having a self light emitting element, a liquid crystal display device having a liquid crystal element, and other display devices. Further, it can be used for various processors typified by a CPU (Central Processing Unit) and a semiconductor device such as a card equipped with an ID chip.

本実施の形態に限定されず、薄膜トランジスタはチャネル形成領域が一つ形成されるシングルゲート構造でも、二つ形成されるダブルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。また、周辺駆動回路領域の薄膜トランジスタも、シングルゲート構造、ダブルゲート構造もしくはトリプルゲート構造であっても良い。     Without being limited to this embodiment mode, the thin film transistor may have a single gate structure in which one channel formation region is formed, a double gate structure in which two channel formation regions are formed, or a triple gate structure in which three channel formation regions are formed. The thin film transistor in the peripheral driver circuit region may have a single gate structure, a double gate structure, or a triple gate structure.

なお、本実施の形態で示した薄膜トランジスタの作製方法に限らず、トップゲート型(プレーナー型)、ボトムゲート型(逆スタガ型)、あるいはチャネル領域の上下にゲート絶縁膜を介して配置された2つのゲート電極層を有する、デュアルゲート型やその他の構造においても適用できる。     Note that, not limited to the method for manufacturing the thin film transistor described in this embodiment mode, a top gate type (planar type), a bottom gate type (reverse stagger type), or 2 arranged above and below a channel region with a gate insulating film interposed therebetween. The present invention can also be applied to a dual gate type or other structure having two gate electrode layers.

次に第2の層間絶縁層として絶縁膜180及び絶縁膜181を形成する(図5(A)参照。)。図5は、表示装置の作製工程を示しており、スクライブによる切り離しのための切り離し領域201、FPCの貼り付け部である外部端子接続領域202、周辺部の引き回し配線領域である配線領域203、周辺駆動回路領域204、接続領域205、画素領域206である。配線領域203には配線179a、配線179bが設けられ、外部端子接続領域202には、外部端子と接続する端子電極層178が設けられている。     Next, an insulating film 180 and an insulating film 181 are formed as a second interlayer insulating layer (see FIG. 5A). FIG. 5 shows a manufacturing process of a display device. A separation region 201 for separation by scribing, an external terminal connection region 202 as an FPC pasting portion, a wiring region 203 as a peripheral wiring region, They are a drive circuit area 204, a connection area 205, and a pixel area 206. The wiring region 203 is provided with wirings 179a and 179b, and the external terminal connection region 202 is provided with a terminal electrode layer 178 that is connected to an external terminal.

絶縁膜180、絶縁膜181としては酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素、窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CN)、PSG(リンガラス)、BPSG(リンボロンガラス)、アルミナ膜、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサン樹脂を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン、ポリシラザン、低誘電率であるLow k材料を用いることができる。     As the insulating film 180 and the insulating film 181, silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, aluminum nitride (AlN), aluminum oxynitride (AlON), aluminum nitride oxide having a nitrogen content higher than an oxygen content ( AlNO) or aluminum oxide, diamond-like carbon (DLC), nitrogen-containing carbon film (CN), PSG (phosphorus glass), BPSG (phosphorus boron glass), alumina film, and other inorganic insulating materials. Can be made of material. A siloxane resin may also be used. Further, an organic insulating material may be used, and the organic material may be either photosensitive or non-photosensitive, such as polyimide, acrylic, polyamide, polyimide amide, resist or benzocyclobutene, polysilazane, and low dielectric constant Low. k material can be used.

本実施の形態では、絶縁膜180としてCVD法を用いて酸化窒化珪素膜を膜厚200nm形成する。平坦化のために設ける層間絶縁層としては、耐熱性および絶縁性が高く、且つ、平坦化率の高いものが要求されるので、絶縁膜181の形成方法としては、スピンコート法で代表される塗布法を用いると好ましい。     In this embodiment, a 200-nm-thick silicon oxynitride film is formed as the insulating film 180 by a CVD method. An interlayer insulating layer provided for planarization is required to have high heat resistance and high insulation and a high planarization rate. Therefore, a method for forming the insulating film 181 is represented by a spin coating method. It is preferable to use a coating method.

本実施の形態では、絶縁膜181の材料としては、シロキサン樹脂を用いた塗布膜を用いる。焼成した後の膜は、アルキル基を含む酸化珪素膜(SiOx))(x=1、2・・・)と呼べる。このアルキル基を含む酸化珪素膜は、300℃以上の加熱処理にも耐えうるものである。     In this embodiment mode, a coating film using a siloxane resin is used as a material for the insulating film 181. The film after baking can be called a silicon oxide film (SiOx) containing alkyl groups (x = 1, 2,...). This silicon oxide film containing an alkyl group can withstand heat treatment at 300 ° C. or higher.

絶縁膜180、絶縁膜181は、ディップ、スプレー塗布、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター、CVD法、蒸着法等を採用することができる。液滴吐出法により絶縁膜180、絶縁膜181を形成してもよい。液滴吐出法を用いた場合には材料液を節約することができる。また、液滴吐出法のようにパターンが転写、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)なども用いることができる。     For the insulating film 180 and the insulating film 181, dipping, spray coating, doctor knife, roll coater, curtain coater, knife coater, CVD method, vapor deposition method, or the like can be employed. The insulating film 180 and the insulating film 181 may be formed by a droplet discharge method. When the droplet discharge method is used, the material liquid can be saved. Further, a method capable of transferring or drawing a pattern, such as a droplet discharge method, for example, a printing method (a method for forming a pattern such as screen printing or offset printing) or the like can be used.

次に、図5(B)に示すように、第2の層間絶縁層である絶縁膜180及び絶縁膜181に開口を形成する。絶縁膜180及び絶縁膜181は、接続領域205、配線領域203、外部端子接続領域202、切り離し領域201等では広面積にエッチングする必要がある。しかし、画素領域206においては開口面積が、接続領域205等の開口面積と比較して非常に小さく、微細なものとなる。従って、画素領域の開口形成用のフォトリソグラフィ工程と、接続領域の開口形成用のフォトリソグラフィ工程とを設けることにより、エッチング条件のマージンをより広げることができる。その結果、歩留まりを向上させることができる。またエッチング条件のマージンが広がることにより、画素領域に形成されるコンタクトホールを高精度に形成することができる。     Next, as illustrated in FIG. 5B, openings are formed in the insulating film 180 and the insulating film 181 which are second interlayer insulating layers. The insulating film 180 and the insulating film 181 need to be etched over a wide area in the connection region 205, the wiring region 203, the external terminal connection region 202, the separation region 201, and the like. However, the opening area of the pixel region 206 is very small and fine compared to the opening area of the connection region 205 and the like. Therefore, by providing the photolithography process for forming the opening in the pixel region and the photolithography process for forming the opening in the connection region, the margin of the etching condition can be further expanded. As a result, the yield can be improved. Further, since the margin of the etching condition is widened, the contact hole formed in the pixel region can be formed with high accuracy.

具体的には、接続領域205、配線領域203、外部端子接続領域202、切り離し領域201、周辺駆動回路領域204の一部に設けられた絶縁膜180及び絶縁膜181に広面積な開口を形成する。そのため、画素領域206、接続領域205の一部、及び周辺駆動回路領域204の一部の絶縁膜180及び絶縁膜181を覆うようにマスクを形成する。エッチングは並行平板RIE装置やICPエッチング装置を用いることができる。なおエッチング時間は、配線層や第1の層間絶縁層がオーバーエッチングされる程度とするとよい。このようにオーバーエッチングされる程度とすると、基板内の膜厚バラツキと、エッチングレートのバラツキを低減することができる。このようにして接続領域205には開口182が、外部端子接続領域202には開口183がそれぞれ形成される。     Specifically, wide openings are formed in the insulating film 180 and the insulating film 181 provided in part of the connection region 205, the wiring region 203, the external terminal connection region 202, the separation region 201, and the peripheral driver circuit region 204. . Therefore, a mask is formed so as to cover the insulating film 180 and the insulating film 181 in part of the pixel region 206, the connection region 205, and a part of the peripheral driver circuit region 204. For the etching, a parallel plate RIE apparatus or an ICP etching apparatus can be used. Note that the etching time is preferably set so that the wiring layer and the first interlayer insulating layer are over-etched. When the over-etching is performed as described above, it is possible to reduce the film thickness variation in the substrate and the etching rate variation. Thus, the opening 182 is formed in the connection region 205 and the opening 183 is formed in the external terminal connection region 202, respectively.

その後図5(B)に示すように、画素領域206の絶縁膜180及び絶縁膜181に微細な開口、つまりコンタクトホールを形成する(図5(C)参照。)。このとき、画素領域206、接続領域205の一部、及び周辺駆動回路領域204の一部、画素領域206を覆うようにマスクを形成する。マスクは、画素領域206の開口形成用のマスクであり、所定な箇所に微細な開口が設けられている。このようなマスクとしては、例えばレジストマスクを用いることができる。     After that, as illustrated in FIG. 5B, minute openings, that is, contact holes are formed in the insulating film 180 and the insulating film 181 in the pixel region 206 (see FIG. 5C). At this time, a mask is formed so as to cover the pixel region 206, a part of the connection region 205, a part of the peripheral driver circuit region 204, and the pixel region 206. The mask is a mask for forming an opening in the pixel region 206, and a fine opening is provided at a predetermined location. As such a mask, for example, a resist mask can be used.

そして、並行平板RIE装置を用いて、絶縁膜180及び絶縁膜181をエッチングする。なおエッチング時間は、配線層や第1の層間絶縁層がオーバーエッチングされる程度とするとよい。このようにオーバーエッチングされる程度とすると、基板内の膜厚バラツキと、エッチングレートのバラツキを低減することができる。     Then, the insulating film 180 and the insulating film 181 are etched using a parallel plate RIE apparatus. Note that the etching time is preferably set so that the wiring layer and the first interlayer insulating layer are over-etched. When the over-etching is performed as described above, it is possible to reduce the film thickness variation in the substrate and the etching rate variation.

またエッチング装置にICP装置を用いてもよい。以上の工程で、画素領域206にソース電極又はドレイン電極172aに達する開口184を形成する。本発明において、ソース電極又はドレイン電極172aは、薄膜トランジスタ176において薄膜が多く積層しており総膜厚が大きい場所であるゲート電極層126を、絶縁膜167及び絶縁膜168を介して覆うように形成されている。よって開口184を膜厚深く開口する必要がないため、開口工程が短縮でき、制御性も向上する。また、開口に形成される電極層も、角度の大きい開口を広く被覆する必要がないため、被覆性良く形成することができ、信頼性も向上する。     An ICP apparatus may be used as the etching apparatus. Through the above steps, an opening 184 reaching the source or drain electrode 172a is formed in the pixel region 206. In the present invention, the source or drain electrode 172a is formed so as to cover the gate electrode layer 126 where the thin film is stacked in the thin film transistor 176 and the total film thickness is large via the insulating film 167 and the insulating film 168. Has been. Therefore, since it is not necessary to open the opening 184 deeply, the opening process can be shortened and controllability is improved. In addition, since the electrode layer formed in the opening does not need to cover the opening having a large angle widely, the electrode layer can be formed with good coverage and reliability is improved.

本実施の形態では、接続領域205、配線領域203、外部端子接続領域202の一部、切り離し領域201、周辺駆動回路領域204の一部を覆い、画素領域206に所定の開口が設けられたマスクで、絶縁膜180及び絶縁膜181をエッチングする場合を説明したが、本発明はこれに限定されない。例えば、接続領域204の開口は広面積であるため、エッチングする量が多い。このような広面積な開口は、複数回エッチングしてもよい。また、その他の開口と比較して、深い開口を形成する場合、同様に複数回エッチングしてもよい。     In this embodiment mode, a mask that covers a part of the connection region 205, the wiring region 203, a part of the external terminal connection region 202, a separation region 201, and a peripheral driver circuit region 204 and has a predetermined opening in the pixel region 206. The case where the insulating film 180 and the insulating film 181 are etched has been described, but the present invention is not limited to this. For example, since the opening of the connection region 204 has a large area, the etching amount is large. Such a wide-area opening may be etched a plurality of times. In addition, when a deep opening is formed as compared with other openings, etching may be performed a plurality of times in the same manner.

また、本実施の形態では、絶縁膜180及び絶縁膜181への開口の形成を図5(B)、(C)で示すように複数回に分けて行うが、一回だけのエッチング工程によって形成しても良い。この場合、ICP装置を用いて、ICPパワー7000W、バイアスパワー1000W、圧力0.8パスカル(Pa)、エッチングガスとしてCF4を240sccm、O2を160sccmとしてエッチングする。バイアスパワーは1000〜4000Wが好ましい。一回のエッチング工程で開口が形成できるので工程が簡略化する利点がある。 In this embodiment mode, openings in the insulating film 180 and the insulating film 181 are formed in a plurality of times as shown in FIGS. 5B and 5C. However, the openings are formed by a single etching process. You may do it. In this case, using an ICP apparatus, etching is performed with an ICP power of 7000 W, a bias power of 1000 W, a pressure of 0.8 Pascal (Pa), CF 4 as an etching gas of 240 sccm, and O 2 of 160 sccm. The bias power is preferably 1000 to 4000 W. Since the opening can be formed by one etching process, there is an advantage that the process is simplified.

次に、ソース電極層又はドレイン電極層172aと接するように、第1の電極層185(画素電極層ともいう。)を形成する。第1の電極層は陽極、または陰極として機能し、Ti、TiN、TiSiXY、Ni、W、WSiX、WNX、WSiXY、NbN、Cr、Pt、Zn、Sn、In、またはMoから選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚100nm〜800nmの範囲で用いればよい。 Next, a first electrode layer 185 (also referred to as a pixel electrode layer) is formed so as to be in contact with the source or drain electrode layer 172a. The first electrode layer functions as an anode or a cathode, and Ti, TiN, TiSi x N y , Ni, W, WSi x , WN x , WSi x N y , NbN, Cr, Pt, Zn, Sn, In, Alternatively, an element selected from Mo, or a film mainly containing an alloy material or compound material containing the element as a main component or a stacked film thereof may be used in a total film thickness range of 100 nm to 800 nm.

本実施の形態では、表示素子として発光素子を用い、発光素子からの光を第1の電極層185側から取り出す構造のため、第1の電極層185が透光性を有する。第1の電極層185として、透明導電膜を形成し、所望の形状にエッチングすることで第1の電極層185を形成する。本発明で用いる第1の電極層185として、酸化珪素を含む酸化インジウムスズ(酸化珪素を含むインジウム錫酸化物ともいう、以下、「ITSO」という。)、酸化亜鉛、酸化スズ、酸化インジウムなどを用いてもよい。この他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した酸化インジウム酸化亜鉛合金などの透明導電膜を用いることができる。第1の電極層185として上記透明導電膜の他に、窒化チタン膜またはチタン膜を用いても良い。この場合、透明導電膜を成膜した後に、窒化チタン膜またはチタン膜を、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で成膜する。本実施の形態では、第1の電極層185として、酸化インジウムスズと酸化珪素を用いたITSOを用いる。本実施の形態では、ITSO膜を、インジウム錫酸化物に1〜10[%]の酸化珪素(SiO2)を混合したターゲットを用い、Arガス流量を120sccm、O2ガス流量を5sccm、圧力を0.25Pa、電力3.2kWとしてスパッタ法により膜厚185nmで成膜する。第1の電極層185は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層185の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。 In this embodiment, a light-emitting element is used as a display element and light from the light-emitting element is extracted from the first electrode layer 185 side; thus, the first electrode layer 185 has a light-transmitting property. A transparent conductive film is formed as the first electrode layer 185, and the first electrode layer 185 is formed by etching into a desired shape. As the first electrode layer 185 used in the present invention, indium tin oxide containing silicon oxide (also referred to as indium tin oxide containing silicon oxide, hereinafter referred to as “ITSO”), zinc oxide, tin oxide, indium oxide, or the like is used. It may be used. In addition, a transparent conductive film such as an indium zinc oxide alloy in which 2 to 20% zinc oxide (ZnO) is mixed with indium oxide can be used. In addition to the transparent conductive film, a titanium nitride film or a titanium film may be used as the first electrode layer 185. In this case, after forming the transparent conductive film, the titanium nitride film or the titanium film is formed with a thickness enough to transmit light (preferably, about 5 nm to 30 nm). In this embodiment, ITSO using indium tin oxide and silicon oxide is used for the first electrode layer 185. In this embodiment, the ITSO film is a target in which indium tin oxide is mixed with 1 to 10% silicon oxide (SiO 2 ), the Ar gas flow rate is 120 sccm, the O 2 gas flow rate is 5 sccm, and the pressure is A film having a film thickness of 185 nm is formed by sputtering at 0.25 Pa and power of 3.2 kW. The first electrode layer 185 may be wiped with a CMP method or a polyvinyl alcohol-based porous material and polished so that the surface thereof is planarized. Further, after polishing using the CMP method, the surface of the first electrode layer 185 may be subjected to ultraviolet irradiation, oxygen plasma treatment, or the like.

第1の電極層185を形成後、加熱処理を行ってもよい。この加熱処理により、第1の電極層185中に含まれる水分は放出される。よって、第1の電極層185は脱ガスなどを生じないため、第1の電極層上に水分によって劣化しやすい発光材料を形成しても、発光材料は劣化せず、信頼性の高い表示装置を作製することができる。本実施の形態では、第1の電極層185にITSOを用いているので、ベークを行ってもITO(酸化インジウム酸化スズ合金)のように結晶化せず、アモルファス状態のままである。従って、ITSOは、ITOよりも平坦性が高く、有機化合物を含む層が薄くとも陰極とのショートが生じにくい。     Heat treatment may be performed after the first electrode layer 185 is formed. By this heat treatment, moisture contained in the first electrode layer 185 is released. Therefore, the first electrode layer 185 does not cause degassing. Therefore, even when a light-emitting material that is easily deteriorated by moisture is formed over the first electrode layer, the light-emitting material is not deteriorated and the display device has high reliability. Can be produced. In this embodiment mode, ITSO is used for the first electrode layer 185; therefore, even when baked, it does not crystallize like ITO (indium tin oxide alloy) and remains in an amorphous state. Therefore, ITSO has higher flatness than ITO, and even if the layer containing an organic compound is thin, short-circuiting with the cathode is unlikely to occur.

次に、第1の電極層185の端部、ソース電極層又はドレイン電極層を覆う絶縁物(絶縁層)186(バンク、隔壁、障壁、土手などと呼ばれる)を形成する(図6(B)参照。)。また同工程で外部端子接続領域202に絶縁物187a、絶縁物187bを形成する。本実施の形態では、絶縁物186にアクリルを用いる。また絶縁物186に絶縁膜181と同材料を用い、同工程で形成すると、製造コストを削減することができる。また、塗布成膜装置やエッチング装置などの装置の共通化によるコストダウンが図れる。     Next, an insulator (insulating layer) 186 (referred to as a bank, a partition, a barrier, a bank, or the like) which covers the edge portion of the first electrode layer 185 and the source or drain electrode layer is formed (FIG. 6B). reference.). In the same process, an insulator 187 a and an insulator 187 b are formed in the external terminal connection region 202. In this embodiment, acrylic is used for the insulator 186. In addition, when the same material as that of the insulating film 181 is used for the insulator 186 and formed in the same process, manufacturing cost can be reduced. In addition, the cost can be reduced by using a common apparatus such as a coating film forming apparatus or an etching apparatus.

絶縁物186は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウムその他の無機絶縁性材料、又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成してもよい。絶縁物186は曲率半径が連続的に変化する形状が好ましく、上に形成される電界発光層188、第2の電極層189の被覆性が向上する。     The insulator 186 includes silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, aluminum oxynitride, and other inorganic insulating materials, or acrylic acid, methacrylic acid, and derivatives thereof, polyimide, aromatic A heat-resistant polymer such as polyamide, polybenzimidazole, or a siloxane resin may be used. You may form using photosensitive and non-photosensitive materials, such as an acryl and a polyimide. The insulator 186 preferably has a shape in which the radius of curvature continuously changes, and the coverage of the electroluminescent layer 188 and the second electrode layer 189 formed thereon is improved.

接続領域205において、絶縁物186は、開口182の側面の絶縁膜180及び絶縁膜181の上端部を覆うように形成されている。パターニングによって段差を有するように加工された絶縁膜180及び絶縁膜181の上端部は、その急激な段差のため、その上に積層する第2の電極層189の被覆性が悪い。よって本発明のように、開口周辺の段差を絶縁物186によって覆い、段差をなだらかにすることで、積層する第2の電極層189の被覆性を向上させることができる。接続領域205において、第2の電極層と同工程、同材料で形成される配線層は配線層156と電気的に接続する。本実施の形態では、第2の電極層189は配線層156と直接接して電気的に接続されているが、他の配線を介して電気的に接続されてもよい。     In the connection region 205, the insulator 186 is formed so as to cover the insulating film 180 on the side surface of the opening 182 and the upper end portion of the insulating film 181. The upper end portions of the insulating film 180 and the insulating film 181 processed so as to have a step by patterning have a steep step, and thus the coverage of the second electrode layer 189 stacked thereover is poor. Therefore, as in the present invention, the step around the opening is covered with the insulator 186, and the step is smoothed, whereby the coverage of the second electrode layer 189 to be stacked can be improved. In the connection region 205, a wiring layer formed using the same process and material as the second electrode layer is electrically connected to the wiring layer 156. In this embodiment mode, the second electrode layer 189 is in direct contact with and electrically connected to the wiring layer 156; however, the second electrode layer 189 may be electrically connected through another wiring.

また、さらに信頼性を向上させるため、電界発光層(有機化合物を含む層)188の形成前に真空加熱を行って脱気を行うことが好ましい。例えば、有機化合物材料の蒸着を行う前に、基板に含まれるガスを除去するために減圧雰囲気や不活性雰囲気で200〜400℃、好ましくは250〜350℃の加熱処理を行うことが望ましい。またそのまま大気に晒さずに電界発光層188を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。この熱処理で、第1の電極層となる導電膜や絶縁層(隔壁)に含有、付着している水分を放出することができる。この加熱処理は、真空を破らず、真空のチャンパー内を基板が輸送できるのであれば、先の加熱工程と兼ねることもでき、先の加熱工程を絶縁層(隔壁)形成後に、一度行えばよい。ここでは、層間絶縁膜と絶縁物(隔壁)とを高耐熱性を有する物質で形成すれば信頼性向上のための加熱処理工程を十分行うことができる。     In order to further improve the reliability, it is preferable to perform deaeration by performing vacuum heating before forming the electroluminescent layer (a layer containing an organic compound) 188. For example, before vapor deposition of the organic compound material, it is desirable to perform heat treatment at 200 to 400 ° C., preferably 250 to 350 ° C. in a reduced pressure atmosphere or an inert atmosphere in order to remove gas contained in the substrate. In addition, it is preferable to form the electroluminescent layer 188 by vacuum deposition or a droplet discharge method under reduced pressure without exposing it to the atmosphere. By this heat treatment, moisture contained in and adhering to the conductive film or insulating layer (partition wall) to be the first electrode layer can be released. This heat treatment can be combined with the previous heating step as long as the substrate can be transported in the vacuum chamber without breaking the vacuum, and the previous heating step may be performed once after the formation of the insulating layer (partition wall). . Here, if the interlayer insulating film and the insulator (partition wall) are formed of a material having high heat resistance, a heat treatment process for improving reliability can be sufficiently performed.

第1の電極層185の上には電界発光層188が形成される。なお、図1では一画素しか図示していないが、本実施の形態ではR(赤)、G(緑)、B(青)の各色に対応した電界電極層を作り分けている。本実施の形態では電界発光層188として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料は、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。     An electroluminescent layer 188 is formed over the first electrode layer 185. Although only one pixel is shown in FIG. 1, field electrode layers corresponding to each color of R (red), G (green), and B (blue) are separately formed in this embodiment. In this embodiment mode, a material that emits red (R), green (G), and blue (B) light is selectively formed as the electroluminescent layer 188 by an evaporation method using an evaporation mask or the like. A material that emits red (R), green (G), and blue (B) light can also be formed by a droplet discharge method (such as a low-molecular or high-molecular material), and in this case, RGB can be used without using a mask. Can be applied separately, which is preferable.

次に、電界発光層188の上に導電膜からなる第2の電極層189が設けられる。第2の電極層189としては、仕事関数の小さい材料(Al、Ag、Li、Ca、またはこれらの合金MgAg、MgIn、AlLi、CaF2、またはCaN)を用いればよい。こうして第1の電極層185、電界発光層188及び第2の電極層189からなる発光素子190が形成される。 Next, a second electrode layer 189 made of a conductive film is provided over the electroluminescent layer 188. As the second electrode layer 189, a material having a low work function (Al, Ag, Li, Ca, or an alloy thereof, MgAg, MgIn, AlLi, CaF 2 , or CaN) may be used. Thus, a light-emitting element 190 including the first electrode layer 185, the electroluminescent layer 188, and the second electrode layer 189 is formed.

図1に示した本実施の形態の表示装置において、発光素子190から発した光は、第1の電極層185側から、図1中の矢印の方向に透過して出射される。     In the display device of this embodiment mode illustrated in FIG. 1, light emitted from the light-emitting element 190 is transmitted through and emitted from the first electrode layer 185 side in the direction of the arrow in FIG.

第2の電極層189を覆うようにしてパッシベーション膜191を設けることは有効である。パッシベーション膜191としては、窒化珪素、酸化珪素、酸化窒化珪素(SiON)、窒化酸化珪素(SiNO)、窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CN)を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。また、シロキサン樹脂を用いてもよい。     It is effective to provide a passivation film 191 so as to cover the second electrode layer 189. Examples of the passivation film 191 include silicon nitride, silicon oxide, silicon oxynitride (SiON), silicon nitride oxide (SiNO), aluminum nitride (AlN), aluminum oxynitride (AlON), and nitriding in which the nitrogen content is higher than the oxygen content. The insulating film includes aluminum oxide (AlNO) or aluminum oxide, diamond-like carbon (DLC), and a nitrogen-containing carbon film (CN), and a single layer or a combination of the insulating films can be used. A siloxane resin may also be used.

この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い電界発光層188の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH4、C22、C66など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてC24ガスとN2ガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、電界発光層188の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に電界発光層188が酸化するといった問題を防止できる。 At this time, it is preferable to use a film with good coverage as the passivation film, and it is effective to use a carbon film, particularly a DLC film. Since the DLC film can be formed in a temperature range from room temperature to 100 ° C., it can be easily formed over the electroluminescent layer 188 having low heat resistance. The DLC film is formed by a plasma CVD method (typically, an RF plasma CVD method, a microwave CVD method, an electron cyclotron resonance (ECR) CVD method, a hot filament CVD method, etc.), a combustion flame method, a sputtering method, or an ion beam evaporation method. It can be formed by laser vapor deposition. The reaction gas used for film formation was hydrogen gas and a hydrocarbon-based gas (for example, CH 4 , C 2 H 2 , C 6 H 6, etc.), ionized by glow discharge, and negative self-bias was applied. Films are formed by accelerated collision of ions with the cathode. The CN film may be formed using C 2 H 4 gas and N 2 gas as the reaction gas. The DLC film has a high blocking effect against oxygen and can suppress oxidation of the electroluminescent layer 188. Therefore, the problem that the electroluminescent layer 188 is oxidized during the subsequent sealing process can be prevented.

本実施の形態で作製した表示装置の画素領域の上面図を図18に示す。図18において、画素2702は、薄膜トランジスタ501、薄膜トランジスタ502、容量504、発光素子503、ゲート配線層506、ソース及びドレイン配線層505、電源線507から構成されている。     FIG. 18 is a top view of a pixel region of the display device manufactured in this embodiment mode. In FIG. 18, a pixel 2702 includes a thin film transistor 501, a thin film transistor 502, a capacitor 504, a light emitting element 503, a gate wiring layer 506, a source / drain wiring layer 505, and a power supply line 507.

このように発光素子190が形成された基板100と、封止基板195とをシール材192によって固着し、発光素子を封止する(図1参照。)。断面からの水分の侵入がシール材によって遮断されるので、発光素子の劣化が防止でき、表示装置の信頼性が向上する。シール材192としては、代表的には可視光硬化性、紫外線硬化性または熱硬化性の樹脂を用いるのが好ましい。例えば、ビスフェノールA型液状樹脂、ビスフェノールA型固形樹脂、含ブロムエポキシ樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、フェノール型樹脂、クレゾール型樹脂、ノボラック型樹脂、環状脂肪族エポキシ樹脂、エピビス型エポキシ樹脂、グリシジルエステル樹脂、グリジシルアミン系樹脂、複素環式エポキシ樹脂、変性エポキシ樹脂等のエポキシ樹脂を用いることができる。なお、シール材で囲まれた領域には充填材193を充填してもよく、窒素雰囲気下で封止することによって、窒素等を封入してもよい。本実施の形態は、下面出射型のため、充填材193は透光性を有する必要はないが、充填材193を透過して光を取り出す構造の場合は、透光性を有する必要がある。代表的には可視光硬化、紫外線硬化または熱硬化のエポキシ樹脂を用いればよい。以上の工程において、本実施の形態における、発光素子を用いた表示機能を有する表示装置が完成する。また充填材は、液状の状態で滴下し、表示装置内に充填することもできる。     The substrate 100 over which the light-emitting element 190 is formed in this manner and the sealing substrate 195 are fixed with a sealant 192 to seal the light-emitting element (see FIG. 1). Since intrusion of moisture from the cross section is blocked by the sealing material, deterioration of the light emitting element can be prevented and the reliability of the display device is improved. As the sealant 192, it is typically preferable to use a visible light curable resin, an ultraviolet curable resin, or a thermosetting resin. For example, bisphenol A type liquid resin, bisphenol A type solid resin, bromine-containing epoxy resin, bisphenol F type resin, bisphenol AD type resin, phenol type resin, cresol type resin, novolac type resin, cyclic aliphatic epoxy resin, epibis type epoxy Epoxy resins such as resins, glycidyl ester resins, glycidylamine resins, heterocyclic epoxy resins, and modified epoxy resins can be used. Note that a region surrounded by the sealant may be filled with a filler 193, or nitrogen or the like may be sealed by sealing in a nitrogen atmosphere. Since this embodiment mode is a bottom emission type, the filler 193 does not need to have translucency, but in the case of a structure in which light is extracted through the filler 193, the filler 193 needs to have translucency. Typically, a visible light curable, ultraviolet curable, or thermosetting epoxy resin may be used. Through the above steps, a display device having a display function using a light-emitting element in this embodiment is completed. Further, the filler can be dropped in a liquid state and filled in the display device.

ディスペンサ方式を採用した滴下注入法を、図19を用いて説明する。図19の滴下注入法は、制御装置40、撮像手段42、ヘッド43、充填材33、マーカー35、マーカー45は、バリア層34、シール材32、TFT基板30、対向基板20からなる。シール材32で閉ループを形成し、その中にヘッド43より充填材33を1回若しくは複数回滴下する。充填材材料の粘性が高い場合は、連続的に吐出され、繋がったまま被形成領域に付着する。一方、充填材材料の粘性が低い場合には、図19のように間欠的に吐出され充填材が滴下される。そのとき、シール材32と充填材33とが反応することを防ぐため、バリア層34を設けてもよい。続いて、真空中で基板を貼り合わせ、その後紫外線硬化を行って、充填材が充填された状態とする。この充填剤として、乾燥剤などの吸湿性を含む物質を用いると、さらなる吸水効果が得られ、素子の劣化を防ぐことができる。     A dropping injection method employing a dispenser method will be described with reference to FIG. In the dropping injection method of FIG. 19, the control device 40, the imaging means 42, the head 43, the filler 33, the marker 35, and the marker 45 are composed of the barrier layer 34, the sealing material 32, the TFT substrate 30, and the counter substrate 20. A closed loop is formed by the sealing material 32, and the filler 33 is dropped from the head 43 once or a plurality of times. When the viscosity of the filler material is high, the filler material is discharged continuously and adheres to the formation region while being connected. On the other hand, when the viscosity of the filler material is low, the filler material is intermittently discharged and the filler is dropped as shown in FIG. At that time, a barrier layer 34 may be provided to prevent the sealing material 32 and the filler 33 from reacting. Then, a board | substrate is bonded together in a vacuum, and ultraviolet curing is performed after that, and it is set as the state with which the filler was filled. When a hygroscopic substance such as a desiccant is used as the filler, a further water absorption effect can be obtained and deterioration of the element can be prevented.

EL表示パネル内には素子の水分による劣化を防ぐため、乾燥剤を設置される。本実施の形態では、乾燥剤は、画素領域を取り囲むように封止基板に形成された凹部に設置され、薄型化を妨げない構成とする。また、ゲート配線層に対応する領域にも乾燥剤を形成し、吸水面積を広く取っているので、吸水効果が高い。また、直接発光しないゲート配線層上に乾燥剤を形成しているので、光取り出し効率を低下させることもない。     A desiccant is installed in the EL display panel in order to prevent deterioration of the element due to moisture. In this embodiment mode, the desiccant is provided in a recess formed in the sealing substrate so as to surround the pixel region, and the thickness is not hindered. Moreover, since the desiccant is formed also in the area | region corresponding to a gate wiring layer and the water absorption area is taken wide, the water absorption effect is high. Further, since the desiccant is formed on the gate wiring layer that does not emit light directly, the light extraction efficiency is not lowered.

なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理とは、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させる場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けても良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。     Note that in this embodiment mode, a case where a light-emitting element is sealed with a glass substrate is shown; however, the sealing process is a process for protecting the light-emitting element from moisture and is mechanically sealed with a cover material. Either a method, a method of encapsulating with a thermosetting resin or an ultraviolet light curable resin, or a method of encapsulating with a thin film having a high barrier ability such as a metal oxide or a nitride is used. As the cover material, glass, ceramics, plastic, or metal can be used. However, when light is emitted to the cover material side, it must be translucent. In addition, the cover material and the substrate on which the light emitting element is formed are bonded together using a sealing material such as a thermosetting resin or an ultraviolet light curable resin, and the resin is cured by heat treatment or ultraviolet light irradiation treatment to form a sealed space. Form. It is also effective to provide a hygroscopic material typified by barium oxide in this sealed space. This hygroscopic material may be provided in contact with the sealing material, or may be provided on the partition wall or in the peripheral portion so as not to block light from the light emitting element. Further, the space between the cover material and the substrate on which the light emitting element is formed can be filled with a thermosetting resin or an ultraviolet light curable resin. In this case, it is effective to add a moisture absorbing material typified by barium oxide in the thermosetting resin or the ultraviolet light curable resin.

本実施の形態では、外部端子接続領域202において、端子電極層178に異方性導電層196によってFPC194を接続し、外部と電気的に接続する構造とする。     In this embodiment mode, the FPC 194 is connected to the terminal electrode layer 178 with the anisotropic conductive layer 196 in the external terminal connection region 202 so as to be electrically connected to the outside.

本実施の形態では、上記のような回路で形成するが、本発明はこれに限定されず、周辺駆動回路としてICチップを前述したCOG方式やTAB方式によって実装したものでもよい。また、ゲート線駆動回路、ソース線駆動回路は複数であっても単数であっても良い。     In this embodiment mode, the circuit is formed as described above. However, the present invention is not limited to this, and an IC chip may be mounted as a peripheral driver circuit by the above-described COG method or TAB method. Further, the gate line driver circuit and the source line driver circuit may be plural or singular.

また、本発明の表示装置において、画面表示の駆動方法は特に限定されず、例えば、点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、表示装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。     In the display device of the present invention, the screen display driving method is not particularly limited. For example, a dot sequential driving method, a line sequential driving method, a surface sequential driving method, or the like may be used. Typically, a line sequential driving method is used, and a time-division gray scale driving method or an area gray scale driving method may be used as appropriate. The video signal input to the source line of the display device may be an analog signal or a digital signal, and a drive circuit or the like may be designed in accordance with the video signal as appropriate.

さらに、ビデオ信号がデジタルの表示装置において、画素に入力されるビデオ信号が定電圧(CV)のものと、定電流(CC)のものとがある。ビデオ信号が定電圧のもの(CV)には、発光素子に印加される電圧が一定のもの(CVCV)と、発光素子に印加される電流が一定のもの(CVCC)とがある。また、ビデオ信号が定電流のもの(CC)には、発光素子に印加される電圧が一定のもの(CCCV)と、発光素子に印加される電流が一定のもの(CCCC)とがある。     Furthermore, in a display device in which a video signal is digital, there are a video signal input to a pixel having a constant voltage (CV) and a constant current (CC). A video signal having a constant voltage (CV) includes a constant voltage (CVCV) applied to the light emitting element and a constant current (CVCC) applied to the light emitting element. In addition, a video signal having a constant current (CC) includes a constant voltage (CCCV) applied to the light emitting element and a constant current (CCCC) applied to the light emitting element.

本発明を用いると、信頼性の高い表示装置を簡略化した工程で作製することができる。よって、高精細、高画質な表示装置を低いコストで歩留まり良く製造することができる。     By using the present invention, a highly reliable display device can be manufactured through a simplified process. Therefore, a high-definition and high-quality display device can be manufactured at a low cost and with a high yield.

(実施の形態2)
本発明の実施の形態を、図7乃至図9を用いて説明する。本実施の形態は、実施の形態1で作製した表示装置において、第2の層間絶縁層を形成しない例を示す。よって、同一部分又は同様な機能を有する部分の繰り返しの説明は省略する。
(Embodiment 2)
An embodiment of the present invention will be described with reference to FIGS. This embodiment shows an example in which the second interlayer insulating layer is not formed in the display device manufactured in Embodiment 1. Therefore, repetitive description of the same portion or a portion having a similar function is omitted.

実施の形態1で示したように、基板100上に薄膜トランジスタ173、薄膜トランジスタ174、薄膜トランジスタ175、薄膜トランジスタ176、導電層177を形成し、絶縁膜167、絶縁膜168を形成する。各薄膜トランジスタには半導体層のソース領域又はドレイン領域に接続するソース電極層又はドレイン電極層が形成されている。画素領域206に設けられた薄膜トランジスタ176におけるソース電極層又はドレイン電極層172bに接して第1の電極層395を形成する(図7(A)参照。)。     As described in Embodiment 1, the thin film transistor 173, the thin film transistor 174, the thin film transistor 175, the thin film transistor 176, and the conductive layer 177 are formed over the substrate 100, and the insulating film 167 and the insulating film 168 are formed. Each thin film transistor is provided with a source electrode layer or a drain electrode layer connected to a source region or a drain region of the semiconductor layer. A first electrode layer 395 is formed in contact with the source or drain electrode layer 172b in the thin film transistor 176 provided in the pixel region 206 (see FIG. 7A).

第1の電極層395は画素電極として機能し、実施の形態1における第1の電極層185と同様な材料と工程で形成すればよい。本実施の形態でも実施の形態1と同様に第1の電極層中を光を通過させて取り出すために、透明導電膜であるITSOを第1の電極層395に用いてパターニングし形成する。     The first electrode layer 395 functions as a pixel electrode and may be formed using a material and a process similar to those of the first electrode layer 185 in Embodiment 1. In this embodiment mode, similarly to Embodiment Mode 1, in order to pass light through the first electrode layer and extract it, ITSO which is a transparent conductive film is patterned using the first electrode layer 395 and formed.

第1の電極層395の端部及び薄膜トランジスタを覆うように絶縁物186を形成する(図7(B)参照。)。絶縁物186には本実施の形態ではアクリルを用いる。第1の電極層上に電界発光層188を形成し、第2の電極層189を積層することによって発光素子190を形成する。第2の電極層189は接続領域205において配線層156と電気的に接続し、外部端子接続領域202においては端子電極層178を異方性導電層196を介してFPC194が接着される。第2の電極層189を覆うようにパッシベーション膜191を形成する。基板100はシール材192によって封止基板195と張り合わされ、表示装置内には充填材193が充填されている(図8参照。)。     An insulator 186 is formed so as to cover the end portion of the first electrode layer 395 and the thin film transistor (see FIG. 7B). In this embodiment mode, acrylic is used for the insulator 186. The electroluminescent layer 188 is formed over the first electrode layer, and the second electrode layer 189 is stacked, whereby the light emitting element 190 is formed. The second electrode layer 189 is electrically connected to the wiring layer 156 in the connection region 205, and the FPC 194 is bonded to the terminal electrode layer 178 through the anisotropic conductive layer 196 in the external terminal connection region 202. A passivation film 191 is formed so as to cover the second electrode layer 189. The substrate 100 is bonded to the sealing substrate 195 with a sealant 192, and the display device is filled with a filler 193 (see FIG. 8).

また図9における表示装置は、第1の電極層395を、薄膜トランジスタ176と接続するソース電極層又はドレイン電極層172bの形成前に、絶縁膜168上に選択的に形成することもできる。この場合、本実施の形態とはソース電極層又はドレイン電極層172bと、第1の電極層395の接続構造が、第1の電極層395の上にソース電極層又はドレイン電極層172bが積層する構造となる。第1の電極層395をソース電極層又はドレイン電極層172bより先に形成すると、平坦な形成領域に形成できるので、被覆性がよく、CMPなどの研磨処理も十分に行えるので平坦性よく形成できる利点がある。     In the display device in FIG. 9, the first electrode layer 395 can be selectively formed over the insulating film 168 before the source electrode layer or the drain electrode layer 172 b connected to the thin film transistor 176 is formed. In this case, the connection structure of the source or drain electrode layer 172b and the first electrode layer 395 is different from that in this embodiment, and the source or drain electrode layer 172b is stacked over the first electrode layer 395. It becomes a structure. When the first electrode layer 395 is formed before the source electrode layer or the drain electrode layer 172b, the first electrode layer 395 can be formed in a flat formation region. Therefore, the first electrode layer 395 can be formed in a flat formation region. There are advantages.

本発明を用いると、信頼性の高い表示装置を簡略化した工程で作製することができる。よって、高精細、高画質な表示装置を低いコストで歩留まり良く製造することができる。     By using the present invention, a highly reliable display device can be manufactured through a simplified process. Therefore, a high-definition and high-quality display device can be manufactured at a low cost and with a high yield.

(実施の形態3)
本発明の実施の形態を、図10を用いて説明する。本実施の形態は、実施の形態1で作製した表示装置において、薄膜トランジスタのゲート電極層の構造が異なる例を示す。よって、同一部分又は同様な機能を有する部分の繰り返しの説明は省略する。
(Embodiment 3)
An embodiment of the present invention will be described with reference to FIG. This embodiment shows an example in which the structure of the gate electrode layer of the thin film transistor is different in the display device manufactured in Embodiment 1. Therefore, repetitive description of the same portion or a portion having a similar function is omitted.

図10(A)乃至(C)は、作製工程にある表示装置であり、実施の形態1で示した図4(B)の表示装置と対応している。     10A to 10C illustrate a display device in a manufacturing process, which corresponds to the display device in FIG. 4B described in Embodiment Mode 1.

図10(A)において、周辺駆動回路領域214に薄膜トランジスタ273及び薄膜トランジスタ274が、接続領域215に導電層277が、画素領域216に薄膜トランジスタ275及び薄膜トランジスタ276が設けられている。図10(A)における薄膜トランジスタのゲート電極層は2層の導電膜の積層で構成され、上層のゲート電極層が下層のゲート電極層より幅が細くパターニングされている。下層のゲート電極層はテーパー形状を有しているが、上層のゲート電極層はテーパー形状を有していない。このように、ゲート電極層はテーパー形状を有していても良いし、側面の角度が垂直に近い形状、いわゆるテーパー形状を有さない形状でもよい。     10A, a thin film transistor 273 and a thin film transistor 274 are provided in the peripheral driver circuit region 214, a conductive layer 277 is provided in the connection region 215, and a thin film transistor 275 and a thin film transistor 276 are provided in the pixel region 216. The gate electrode layer of the thin film transistor in FIG. 10A includes a stack of two conductive films, and the upper gate electrode layer is patterned to be narrower than the lower gate electrode layer. The lower gate electrode layer has a tapered shape, but the upper gate electrode layer does not have a tapered shape. As described above, the gate electrode layer may have a tapered shape, or may have a shape in which the side surface angle is nearly vertical, that is, a shape without a so-called tapered shape.

図10(B)において、周辺駆動回路領域214に薄膜トランジスタ373及び薄膜トランジスタ374が、接続領域215に導電層377が、画素領域216に薄膜トランジスタ375及び薄膜トランジスタ376が設けられている。図10(B)における薄膜トランジスタのゲート電極層も2層の導電膜の積層で構成されているが、上層のゲート電極層と下層のゲート電極層は連続的なテーパー形状を有している。     10B, a thin film transistor 373 and a thin film transistor 374 are provided in the peripheral driver circuit region 214, a conductive layer 377 is provided in the connection region 215, and a thin film transistor 375 and a thin film transistor 376 are provided in the pixel region 216. The gate electrode layer of the thin film transistor in FIG. 10B is also formed of a stack of two conductive films, but the upper gate electrode layer and the lower gate electrode layer have a continuous taper shape.

図10(C)において、周辺駆動回路領域214に薄膜トランジスタ473及び薄膜トランジスタ474が、接続領域215に導電層477が、画素領域216に薄膜トランジスタ475及び薄膜トランジスタ476が設けられている。図10(C)における薄膜トランジスタのゲート電極層は、単層構造でありテーパー形状を有している。このようにゲート電極層は単層構造でもよい。     10C, a thin film transistor 473 and a thin film transistor 474 are provided in the peripheral driver circuit region 214, a conductive layer 477 is provided in the connection region 215, and a thin film transistor 475 and a thin film transistor 476 are provided in the pixel region 216. The gate electrode layer of the thin film transistor in FIG. 10C has a single-layer structure and has a tapered shape. Thus, the gate electrode layer may have a single layer structure.

以上のように、ゲート電極層はその構成と形状によって様々な構造をとりうる。よって作製される表示装置も様々な構造を示す。半導体層中の不純物領域は、ゲート電極層をマスクとして自己整合的に形成される場合、ゲート電極層の構造によってその不純物領域の構造や濃度分布が変化する。以上のことも考慮して設計を行うと所望の機能を有する薄膜トランジスタを作製することができる。     As described above, the gate electrode layer can have various structures depending on its configuration and shape. Therefore, display devices manufactured also have various structures. When the impurity region in the semiconductor layer is formed in a self-aligned manner using the gate electrode layer as a mask, the structure and concentration distribution of the impurity region vary depending on the structure of the gate electrode layer. When designing is performed in consideration of the above, a thin film transistor having a desired function can be manufactured.

本実施の形態は、実施の形態1及び2とそれぞれと組み合わせて用いることが可能である。     This embodiment mode can be used in combination with each of Embodiment Modes 1 and 2.

(実施の形態4)
本発明を適用して発光素子を有する表示装置を形成することができるが、該発光素子から発せられる光は、下面放射、上面放射、両面放射のいずれかを行う。本実施の形態では、両面出射型、上面出射型の例を、図11及び図12を用いて説明する。
(Embodiment 4)
Although a display device having a light-emitting element can be formed by applying the present invention, light emitted from the light-emitting element performs any one of bottom emission, top emission, and dual emission. In this embodiment mode, examples of a dual emission type and a top emission type will be described with reference to FIGS.

図12に示す表示装置は、素子基板1300、薄膜トランジスタ1355、薄膜トランジスタ1365、薄膜トランジスタ1375、第1の電極層1317、電界発光層1319、第2の電極層1320、透明導電膜1321、充填材1322、シール材1325、ゲート絶縁層1310、絶縁膜1311、絶縁膜1312、絶縁膜1313、絶縁膜1309、絶縁物1314、封止基板1323、配線層1375、端子電極層1381、異方性導電層1382、FPC1383によって構成されている。表示装置は、切り離し領域221、外部端子接続領域222、配線領域223、周辺駆動回路領域224、画素領域226を有している。充填剤1322は、図19の滴下法のように、液状の組成物にして、滴下法によって形成することができる。滴下法によって充填剤が形成された素子基板1300と封止基板1323を張り合わして発光表示装置を封止する。     12 includes an element substrate 1300, a thin film transistor 1355, a thin film transistor 1365, a thin film transistor 1375, a first electrode layer 1317, an electroluminescent layer 1319, a second electrode layer 1320, a transparent conductive film 1321, a filler 1322, and a seal. Material 1325, gate insulating layer 1310, insulating film 1311, insulating film 1312, insulating film 1313, insulating film 1309, insulator 1314, sealing substrate 1323, wiring layer 1375, terminal electrode layer 1381, anisotropic conductive layer 1382, FPC 1383 It is constituted by. The display device includes a separation region 221, an external terminal connection region 222, a wiring region 223, a peripheral driver circuit region 224, and a pixel region 226. The filler 1322 can be formed into a liquid composition by a dropping method as in the dropping method of FIG. The element substrate 1300 on which a filler is formed and the sealing substrate 1323 are attached to each other by a dropping method to seal the light-emitting display device.

図12の表示装置は、両面出射型であり、矢印の方向に素子基板1300側からも、封止基板1323側からも光を出射する構造である。なお本実施の形態では、透明導電膜を成膜し、所望の形状にエッチングすることで第1の電極層1317を形成する。第1の電極層1317として透明導電膜を用いることができる。第1の電極層1317として上記透明導電膜の他に、窒化チタン膜またはチタン膜を用いても良い。この場合、透明導電膜を成膜した後に、窒化チタン膜またはチタン膜を、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で成膜する。本実施の形態では、第1の電極層1317としてITSOを用いている。     The display device in FIG. 12 is a dual emission type and has a structure in which light is emitted from both the element substrate 1300 side and the sealing substrate 1323 side in the direction of the arrow. Note that in this embodiment, the first electrode layer 1317 is formed by forming a transparent conductive film and etching it into a desired shape. A transparent conductive film can be used as the first electrode layer 1317. In addition to the transparent conductive film, a titanium nitride film or a titanium film may be used as the first electrode layer 1317. In this case, after forming the transparent conductive film, the titanium nitride film or the titanium film is formed with a thickness enough to transmit light (preferably, about 5 nm to 30 nm). In this embodiment mode, ITSO is used as the first electrode layer 1317.

次に、電界発光層1319の上には導電膜からなる第2の電極層1320が設けられる。第2の電極層1320としては、仕事関数の小さい材料(Al、Ag、Li、Ca、またはこれらの合金MgAg、MgIn、AlLi、化合物CaF2、CaN)を用いればよい。図12の表示装置では、発光が透過するように、第2の電極層1320として膜厚を薄くした金属薄膜(MgAg:膜厚10nm)と、透明導電膜1321として、膜厚100nmのITSOとの積層を用いる。透明導電膜1321として上述の第1の電極層1317と同様なものを用いることができる。 Next, a second electrode layer 1320 made of a conductive film is provided over the electroluminescent layer 1319. As the second electrode layer 1320, a material with a low work function (Al, Ag, Li, Ca, or an alloy thereof, MgAg, MgIn, AlLi, compound CaF 2 , CaN) may be used. In the display device of FIG. 12, a thin metal film (MgAg: film thickness of 10 nm) is formed as the second electrode layer 1320 so that light is transmitted, and ITSO with a film thickness of 100 nm is formed as the transparent conductive film 1321. Use lamination. As the transparent conductive film 1321, the same material as the above-described first electrode layer 1317 can be used.

図11の表示装置は、片面出射型であり、矢印の方向に上面出射する構造である。図11に示す表示装置は、素子基板1600、薄膜トランジスタ1655、薄膜トランジスタ1665、薄膜トランジスタ1675、反射性を有する金属層1624、第1の電極層1617、電界発光層1619、第2の電極層1620、透明導電膜1621、充填材1622、シール材1625、ゲート絶縁層1610、絶縁膜1611、絶縁膜1612、絶縁膜1613、絶縁膜1609、絶縁物1614、封止基板1623、配線層1675、端子電極層1681、異方性導電層1682、FPC1683によって構成されている。図11における表示装置において、端子電極層1681に積層していた絶縁層はエッチングによって除去されている。このように端子電極層の周囲に透湿性を有する絶縁層を設けない構造であると信頼性がより向上する。また、表示装置は、切り離し領域231、外部端子接続領域232、配線領域233、周辺駆動回路領域234、画素領域236を有している。この場合、前述の図12で示した両面出射型の表示装置において、第1の電極層1317(図11においては第1の電極層1617)の下に、反射性を有する金属層1624を形成する。反射性を有する金属層1624の上に陽極として機能する透明導電膜からなる第1の電極層1617を形成する。金属層1624としては、反射性を有すればよいので、Ta、W、Ti、Mo、Al、Cuなどを用いればよい。好ましくは、可視光の領域で反射性が高い物質を用いることがよく、本実施の形態では、TiN膜を用いる。また、絶縁層1609及び隔壁1614に本発明を適用しており、絶縁層1609の均一な膜厚分布、良好な平坦性により、発光素子による表示は、高繊細で表示ムラがない。     The display device of FIG. 11 is a single-sided emission type and has a structure in which the top surface is emitted in the direction of the arrow. 11 includes an element substrate 1600, a thin film transistor 1655, a thin film transistor 1665, a thin film transistor 1675, a reflective metal layer 1624, a first electrode layer 1617, an electroluminescent layer 1619, a second electrode layer 1620, and a transparent conductive layer. A film 1621, a filler 1622, a sealant 1625, a gate insulating layer 1610, an insulating film 1611, an insulating film 1612, an insulating film 1613, an insulating film 1609, an insulator 1614, a sealing substrate 1623, a wiring layer 1675, a terminal electrode layer 1681, An anisotropic conductive layer 1682 and an FPC 1683 are included. In the display device in FIG. 11, the insulating layer stacked over the terminal electrode layer 1681 is removed by etching. As described above, the reliability is further improved when the insulating layer having moisture permeability is not provided around the terminal electrode layer. In addition, the display device includes a separation region 231, an external terminal connection region 232, a wiring region 233, a peripheral driver circuit region 234, and a pixel region 236. In this case, a reflective metal layer 1624 is formed under the first electrode layer 1317 (the first electrode layer 1617 in FIG. 11) in the dual emission display device shown in FIG. . A first electrode layer 1617 made of a transparent conductive film functioning as an anode is formed over the reflective metal layer 1624. As the metal layer 1624, it is only necessary to have reflectivity, so that Ta, W, Ti, Mo, Al, Cu, or the like may be used. Preferably, a substance having high reflectivity in the visible light region is used. In this embodiment, a TiN film is used. In addition, the present invention is applied to the insulating layer 1609 and the partition wall 1614. Due to the uniform film thickness distribution and good flatness of the insulating layer 1609, display with a light-emitting element is highly delicate and free from display unevenness.

電界発光層1619の上には導電膜からなる第2の電極層1620が設けられる。第2の電極層1620としては、陰極として機能させるので仕事関数の小さい材料(Al、Ag、Li、Ca、またはこれらの合金MgAg、MgIn、AlLi、化合物CaF2、またはCaN)を用いればよい。本実施の形態では、発光が透過するように、第2の電極層1620として膜厚を薄くした金属薄膜(MgAg:膜厚10nm)と、透明導電膜1621として、膜厚110nmのITSOとの積層を用いる。 A second electrode layer 1620 made of a conductive film is provided over the electroluminescent layer 1619. As the second electrode layer 1620, a material having a low work function (Al, Ag, Li, Ca, or an alloy thereof, MgAg, MgIn, AlLi, compound CaF 2 , or CaN) may be used because it functions as a cathode. In this embodiment mode, a stack of a thin metal film (MgAg: film thickness of 10 nm) as the second electrode layer 1620 and ITSO with a film thickness of 110 nm as the transparent conductive film 1621 so that light is transmitted is transmitted. Is used.

本実施の形態において適用できる発光素子の形態を図13に示す。発光素子は、電界発光層860を第1の電極層870と第2の電極層850で挟んだ構成になっている。第1の電極層及び第2の電極層は仕事関数を考慮して材料を選択する必要があり、そして第1の電極層及び第2の電極層は、画素構成によりいずれも陽極、又は陰極となりうる。本実施の形態では、駆動用TFTの極性がpチャネル型である場合、第1の電極層を陽極、第2の電極層を陰極とするとよい。また、駆動用TFTの極性がNチャネル型であるため、第1の電極層を陰極、第2の電極層を陽極とすると好ましい。     A mode of a light-emitting element which can be applied in this embodiment mode is shown in FIG. The light-emitting element has a structure in which an electroluminescent layer 860 is sandwiched between a first electrode layer 870 and a second electrode layer 850. It is necessary to select materials for the first electrode layer and the second electrode layer in consideration of the work function, and the first electrode layer and the second electrode layer are both anodes or cathodes depending on the pixel configuration. sell. In this embodiment mode, when the polarity of the driving TFT is a p-channel type, the first electrode layer may be an anode and the second electrode layer may be a cathode. Further, since the polarity of the driving TFT is an N-channel type, it is preferable that the first electrode layer be a cathode and the second electrode layer be an anode.

図13(A)及び(B)は、第1の電極層870が陽極であり、第2の電極層850が陰極である場合であり、電界発光層860は、第1の電極層870側から、HIL(ホール注入層)HTL(ホール輸送層)804、EML(発光層)803、ETL(電子輸送層)EIL(電子注入層)802、第2の電極層850の順に積層するのが好ましい。図13(A)は第1の電極層870から光を放射する構成であり、第1の電極層870は透光性を有する酸化物導電性材料からなる電極層805で構成し、第2の電極層は電界発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されている。図13(B)は第2の電極層850から光を放射する構成であり、第1の電極層は、アルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃度で窒素を含む金属材料で形成する電極層807と、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成する第2の電極層806より構成されている。第2の電極層は、第2の電極層は電界発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されているがいずれの層も100nm以下の厚さとして光を透過可能な状態としておくことで、第2の電極層850から光を放射することが可能となる。     FIGS. 13A and 13B show the case where the first electrode layer 870 is an anode and the second electrode layer 850 is a cathode. The electroluminescent layer 860 is formed from the first electrode layer 870 side. , HIL (hole injection layer) HTL (hole transport layer) 804, EML (light emitting layer) 803, ETL (electron transport layer) EIL (electron injection layer) 802, and second electrode layer 850 are preferably stacked in this order. FIG. 13A illustrates a structure in which light is emitted from the first electrode layer 870. The first electrode layer 870 includes an electrode layer 805 formed using a light-transmitting oxide conductive material, The electrode layer includes an electrode layer 801 containing an alkali metal or alkaline earth metal such as LiF or MgAg and an electrode layer 800 formed of a metal material such as aluminum from the electroluminescent layer 860 side. FIG. 13B illustrates a structure in which light is emitted from the second electrode layer 850. The first electrode layer is formed using a metal such as aluminum or titanium or nitrogen at a concentration equal to or lower than the stoichiometric composition ratio with the metal. An electrode layer 807 formed of a metal material containing silicon, and a second electrode layer 806 formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic%. The second electrode layer is composed of an electrode layer 801 containing an alkali metal or alkaline earth metal such as LiF or MgAg and an electrode layer 800 formed of a metal material such as aluminum from the electroluminescent layer 860 side. However, it is possible to emit light from the second electrode layer 850 by setting each layer to a thickness of 100 nm or less so that light can be transmitted.

図13(C)及び(D)は、第1の電極層870が陰極であり、第2の電極層850が陽極である場合であり、電界発光層860は、陰極側からEIL(電子注入層)ETL(電子輸送層)802、EML(発光層)803、HTL(ホール輸送層)HIL(ホール注入層)804、陽極である第2の電極層850の順に積層するのが好ましい。図13(C)は第1の電極層870から光を放射する構成であり、第1の電極層870は電界発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されているがいずれの層も100nm以下の厚さとして光を透過可能な状態としておくことで、第1の電極層870から光を放射することが可能となる。第2の電極層は、電界発光層860側から、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成する第2の電極層806、アルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃度で窒素を含む金属材料で形成する電極層807より構成されている。図13(D)は第2の電極層850から光を放射する構成であり、第1の電極層870は電界発光層860側から、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む電極層801とアルミニウムなどの金属材料で形成する電極層800より構成されており、膜厚は電界発光層860で発光した光を反射可能な程度に厚く形成している。第2の電極層850は、透光性を有する酸化物導電性材料からなる電極層805で構成されている。なお電界発光層は、積層構造以外に単層構造、又は混合構造をとることがでる。     FIGS. 13C and 13D show the case where the first electrode layer 870 is a cathode and the second electrode layer 850 is an anode, and the electroluminescent layer 860 has an EIL (electron injection layer) from the cathode side. ) ETL (electron transport layer) 802, EML (light emitting layer) 803, HTL (hole transport layer) HIL (hole injection layer) 804, and second electrode layer 850 which is an anode are preferably stacked in this order. FIG. 13C illustrates a structure in which light is emitted from the first electrode layer 870. The first electrode layer 870 includes an electrode layer containing an alkali metal or an alkaline earth metal such as LiF or MgAg from the electroluminescent layer 860 side. 801 and an electrode layer 800 formed of a metal material such as aluminum, but each layer emits light from the first electrode layer 870 by setting the thickness to 100 nm or less so that light can be transmitted. It becomes possible to do. The second electrode layer includes, from the electroluminescent layer 860 side, a second electrode layer 806 formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic%, a metal such as aluminum or titanium, or the The electrode layer 807 is formed of a metal material containing nitrogen at a concentration equal to or lower than the stoichiometric composition ratio of metal. FIG. 13D illustrates a structure in which light is emitted from the second electrode layer 850, and the first electrode layer 870 includes an electrode layer containing an alkali metal or an alkaline earth metal such as LiF or MgAg from the electroluminescent layer 860 side. 801 and an electrode layer 800 formed of a metal material such as aluminum. The film thickness is large enough to reflect light emitted from the electroluminescent layer 860. The second electrode layer 850 includes an electrode layer 805 made of a light-transmitting oxide conductive material. The electroluminescent layer can have a single layer structure or a mixed structure in addition to the laminated structure.

また、電界発光層として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。     In addition, as the electroluminescent layer, materials that emit red (R), green (G), and blue (B) light are selectively formed by an evaporation method using an evaporation mask, respectively. A material that emits red (R), green (G), and blue (B) light can be formed by a droplet discharge method (such as a low-molecular or high-molecular material) in the same manner as a color filter. In this case, a mask is not used. Both are preferable because RGB can be separately applied.

また上面放射型の場合で、第2の電極層に透光性を有するITOやITSOを用いる場合、ベンゾオキサゾール誘導体(BzOs)にLiを添加したBzOs−Liなどを用いることができる。また例えばEMLは、R、G、Bのそれぞれの発光色に対応したドーパント(Rの場合DCM等、Gの場合DMQD等)をドープしたAlq3を用いればよい。 In the case of a top emission type, when light-transmitting ITO or ITSO is used for the second electrode layer, BzOs—Li in which Li is added to a benzoxazole derivative (BzOs) or the like can be used. Further, for example, EML may be Alq 3 doped with a dopant corresponding to each emission color of R, G, and B (DCM in the case of R, DMQD in the case of G).

なお、電界発光層は上記材料に限定されない。例えば、CuPcやPEDOTの代わりに酸化モリブデン(MoOx:x=2〜3)等の酸化物とα−NPDやルブレンを共蒸着して形成し、ホール注入性を向上させることもできる。また電界発光層の材料は、有機材料(低分子又は高分子を含む)、又は有機材料と無機材料の複合材料として用いることができる。以下発光素子を形成する材料について詳細に述べる。     Note that the electroluminescent layer is not limited to the above materials. For example, instead of CuPc or PEDOT, an oxide such as molybdenum oxide (MoOx: x = 2 to 3) and α-NPD or rubrene can be co-evaporated to improve the hole injection property. The material of the electroluminescent layer can be used as an organic material (including a low molecule or a polymer), or a composite material of an organic material and an inorganic material. Hereinafter, materials for forming the light emitting element will be described in detail.

電荷注入輸送物質のうち、特に電子輸送性の高い物質としては、例えばトリス(8−キノリノラト)アルミニウム(略称:Alq3)、トリス(5−メチル−8−キノリノラト)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]−キノリナト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリノラト)−4−フェニルフェノラト−アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等が挙げられる。また正孔輸送性の高い物質としては、例えば4,4'−ビス[N−(1−ナフチル)−N−フェニル−アミノ]−ビフェニル(略称:α−NPD)や4,4'−ビス[N−(3−メチルフェニル)−N−フェニル−アミノ]−ビフェニル(略称:TPD)や4,4',4''−トリス(N,N−ジフェニル−アミノ)−トリフェニルアミン(略称:TDATA)、4,4',4''−トリス[N−(3−メチルフェニル)−N−フェニル−アミノ]−トリフェニルアミン(略称:MTDATA)などの芳香族アミン系(即ち、ベンゼン環−窒素の結合を有する)の化合物が挙げられる。 Among the charge injecting and transporting materials, materials having a particularly high electron transporting property include, for example, tris (8-quinolinolato) aluminum (abbreviation: Alq 3 ), tris (5-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), Bis (10-hydroxybenzo [h] -quinolinato) beryllium (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) -4-phenylphenolato-aluminum (abbreviation: BAlq), quinoline skeleton or benzoquinoline Examples thereof include metal complexes having a skeleton. As a substance having a high hole-transport property, for example, 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] -biphenyl (abbreviation: α-NPD), 4,4′-bis [ N- (3-methylphenyl) -N-phenyl-amino] -biphenyl (abbreviation: TPD) or 4,4 ′, 4 ″ -tris (N, N-diphenyl-amino) -triphenylamine (abbreviation: TDATA) ), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenyl-amino] -triphenylamine (abbreviation: MTDATA) (ie, benzene ring-nitrogen) And a compound having a bond of

また、電荷注入輸送物質のうち、特に電子注入性の高い物質としては、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又はアルカリ土類金属の化合物が挙げられる。また、この他、Alq3のような電子輸送性の高い物質とマグネシウム(Mg)のようなアルカリ土類金属との混合物であってもよい。 Among the charge injecting and transporting materials, materials having particularly high electron injecting properties include alkali metals or alkaline earths such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ) and the like. Metal compounds can be mentioned. In addition, a mixture of a substance having a high electron transport property such as Alq 3 and an alkaline earth metal such as magnesium (Mg) may be used.

電荷注入輸送物質のうち、正孔注入性の高い物質としては、例えば、モリブデン酸化物(MoOx)やバナジウム酸化物(VOx)、ルテニウム酸化物(RuOx)、タングステン酸化物(WOx)、マンガン酸化物(MnOx)等の金属酸化物が挙げられる。また、この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPc)等のフタロシアニン系の化合物が挙げられる。 Among the charge injecting and transporting materials, examples of the material having a high hole injecting property include molybdenum oxide (MoOx), vanadium oxide (VOx), ruthenium oxide (RuOx), tungsten oxide (WOx), and manganese oxide. Examples thereof include metal oxides such as (MnOx). In addition, phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (CuPc) can be given.

発光層は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルターを設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図ることができる。フィルターを設けることで、従来必要であるとされていた円偏光版などを省略することが可能となり、発光層から放射される光の損失を無くすことができる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減することができる。     The light emitting layer may be configured to perform color display by forming light emitting layers having different emission wavelength bands for each pixel. Typically, a light emitting layer corresponding to each color of R (red), G (green), and B (blue) is formed. In this case as well, it is possible to improve color purity and prevent mirror reflection (reflection) of the pixel portion by providing a filter that transmits light in the emission wavelength band on the light emission side of the pixel. Can do. By providing the filter, it is possible to omit a circularly polarized plate that has been conventionally required, and it is possible to eliminate the loss of light emitted from the light emitting layer. Furthermore, a change in color tone that occurs when the pixel portion (display screen) is viewed obliquely can be reduced.

発光材料には様々な材料がある。低分子有機発光材料では、4−ジシアノメチレン−2−メチル−6−[2−(1,1,7,7−テトラメチル−9−ジュロリジル)エテニル]−4H−ピラン(略称:DCJT)、4−ジシアノメチレン−2−t−ブチル−6−[2−(1,1,7,7−テトラメチルジュロリジン−9-イル)エテニル]−4H−ピラン(略称:DCJTB)、ペリフランテン、2,5−ジシアノ−1,4−ビス[2−(10−メトキシ−1,1,7,7−テトラメチルジュロリジン−9−イル)エテニル]ベンゼン、N,N’−ジメチルキナクリドン(略称:DMQd)、クマリン6、クマリン545T、トリス(8−キノリノラト)アルミニウム(略称:Alq3)、9,9’−ビアントリル、9,10−ジフェニルアントラセン(略称:DPA)や9,10−ビス(2−ナフチル)アントラセン(略称:DNA)等を用いることができる。また、この他の物質でもよい。 There are various kinds of light emitting materials. As the low-molecular organic light-emitting material, 4-dicyanomethylene-2-methyl-6- [2- (1,1,7,7-tetramethyl-9-julolidyl) ethenyl] -4H-pyran (abbreviation: DCJT), 4 -Dicyanomethylene-2-t-butyl-6- [2- (1,1,7,7-tetramethyljulolidin-9-yl) ethenyl] -4H-pyran (abbreviation: DCJTB), perifrantene, 2,5 -Dicyano-1,4-bis [2- (10-methoxy-1,1,7,7-tetramethyljulolidin-9-yl) ethenyl] benzene, N, N'-dimethylquinacridone (abbreviation: DMQd), Coumarin 6, Coumarin 545T, Tris (8-quinolinolato) aluminum (abbreviation: Alq 3 ), 9,9′-bianthryl, 9,10-diphenylanthracene (abbreviation: DPA) and 9,10-bis (2-naphthyl) anthrace (Abbreviation: DNA) or the like can be used. Other substances may also be used.

一方、高分子有機発光材料は低分子に比べて物理的強度が高く、素子の耐久性が高い。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。高分子有機発光材料を用いた発光素子の構造は、低分子有機発光材料を用いたときと基本的には同じであり、順に陰極、有機発光層、陽極となる。しかし、高分子有機発光材料を用いた発光層を形成する際には、低分子有機発光材料を用いたときのような積層構造を形成させることは難しく、多くの場合2層構造となる。具体的には、順に陰極、発光層、正孔輸送層、陽極という構造である。     On the other hand, the high molecular organic light emitting material has higher physical strength than the low molecular weight, and the durability of the device is high. In addition, since the film can be formed by coating, the device can be manufactured relatively easily. The structure of a light-emitting element using a high-molecular organic light-emitting material is basically the same as that when a low-molecular organic light-emitting material is used, and sequentially becomes a cathode, an organic light-emitting layer, and an anode. However, when forming a light emitting layer using a polymer organic light emitting material, it is difficult to form a laminated structure as in the case of using a low molecular weight organic light emitting material, and in many cases, a two layer structure is formed. Specifically, the structure is a cathode, a light emitting layer, a hole transport layer, and an anode in this order.

発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を示す発光素子を形成することができる。発光層の形成に用いることができる高分子の電界発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、ポリフルオレン系が挙げられる。     Since the light emission color is determined by the material for forming the light emitting layer, a light emitting element exhibiting desired light emission can be formed by selecting these materials. Examples of the polymer electroluminescent material that can be used for forming the light emitting layer include polyparaphenylene vinylene, polyparaphenylene, polythiophene, and polyfluorene.

ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV] の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−PPV]、ポリ(2−(2'−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキシルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。     The polyparaphenylene vinylene system includes derivatives of poly (paraphenylene vinylene) [PPV], poly (2,5-dialkoxy-1,4-phenylene vinylene) [RO-PPV], poly (2- (2′- Ethyl-hexoxy) -5-methoxy-1,4-phenylenevinylene) [MEH-PPV], poly (2- (dialkoxyphenyl) -1,4-phenylenevinylene) [ROPh-PPV] and the like. The polyparaphenylene series includes derivatives of polyparaphenylene [PPP], poly (2,5-dialkoxy-1,4-phenylene) [RO-PPP], poly (2,5-dihexoxy-1,4-phenylene). ) And the like. The polythiophene series includes polythiophene [PT] derivatives, poly (3-alkylthiophene) [PAT], poly (3-hexylthiophene) [PHT], poly (3-cyclohexylthiophene) [PCHT], poly (3-cyclohexyl). -4-methylthiophene) [PCHMT], poly (3,4-dicyclohexylthiophene) [PDCHT], poly [3- (4-octylphenyl) -thiophene] [POPT], poly [3- (4-octylphenyl) -2,2 bithiophene] [PTOPT] and the like. Examples of the polyfluorene series include polyfluorene [PF] derivatives, poly (9,9-dialkylfluorene) [PDAF], poly (9,9-dioctylfluorene) [PDOF], and the like.

なお、正孔輸送性の高分子有機発光材料を、陽極と発光性の高分子有機発光材料の間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセプター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性の高分子有機発光材料としては、PEDOTとアクセプター材料としてのショウノウスルホン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポリスチレンスルホン酸[PSS]の混合物等が挙げられる。     Note that when a hole-transporting polymer organic light-emitting material is sandwiched and formed between the anode and the light-emitting polymer organic light-emitting material, the hole injection property from the anode can be improved. In general, an acceptor material dissolved in water is applied by spin coating or the like. In addition, since it is insoluble in an organic solvent, it can be stacked with the above-described light-emitting organic light-emitting material. Examples of the hole-transporting polymer organic light-emitting material include a mixture of PEDOT and camphor sulfonic acid (CSA) as an acceptor material, a mixture of polyaniline [PANI] and polystyrene sulfonic acid [PSS] as an acceptor material, and the like.

また、発光層は単色又は白色の発光を呈する構成とすることができる。白色発光材料を用いる場合には、画素の光放射側に特定の波長の光を透過するフィルター(着色層)を設けた構成としてカラー表示を可能にすることができる。     The light emitting layer can be configured to emit monochromatic or white light. In the case of using a white light emitting material, color display can be made possible by providing a filter (colored layer) that transmits light of a specific wavelength on the light emission side of the pixel.

白色に発光する発光層を形成するには、例えば、Alq3、部分的に赤色発光色素であるナイルレッドをドープしたAlq3、Alq3、p−EtTAZ、TPD(芳香族ジアミン)を蒸着法により順次積層することで白色を得ることができる。また、スピンコートを用いた塗布法によりELを形成する場合には、塗布した後、真空加熱で焼成することが好ましい。例えば、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたポリビニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。 To form a light emitting layer that emits white light, for example, Alq 3, Alq 3, Alq 3 doped with Nile Red which is partly red light emitting pigment, p-EtTAZ, by TPD (aromatic diamine) evaporation A white color can be obtained by sequentially laminating. In the case where the EL is formed by a coating method using spin coating, it is preferable that baking is performed by vacuum heating after coating. For example, a poly (ethylenedioxythiophene) / poly (styrenesulfonic acid) aqueous solution (PEDOT / PSS) that acts as a hole injection layer is applied and baked on the entire surface, and then a luminescent center dye (1, 1,4,4-tetraphenyl-1,3-butadiene (TPB), 4-dicyanomethylene-2-methyl-6- (p-dimethylamino-styryl) -4H-pyran (DCM1), Nile Red, Coumarin 6 Etc.) A doped polyvinyl carbazole (PVK) solution may be applied to the entire surface and fired.

発光層は単層で形成することもでき、ホール輸送性のポリビニルカルバゾール(PVK)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。ここで示した白色発光が得られる発光素子の他にも、発光層の材料を適宜選択することによって、赤色発光、緑色発光、または青色発光が得られる発光素子を作製することができる。     The light emitting layer can also be formed as a single layer, and an electron transporting 1,3,4-oxadiazole derivative (PBD) may be dispersed in hole transporting polyvinyl carbazole (PVK). Further, white light emission can be obtained by dispersing 30 wt% PBD as an electron transporting agent and dispersing an appropriate amount of four kinds of dyes (TPB, coumarin 6, DCM1, Nile red). In addition to the light-emitting element that can emit white light as shown here, a light-emitting element that can obtain red light emission, green light emission, or blue light emission can be manufactured by appropriately selecting the material of the light-emitting layer.

さらに、発光層は、一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることができる。     Furthermore, a triplet excitation material containing a metal complex or the like may be used for the light emitting layer in addition to a singlet excitation light emitting material. For example, among red light emitting pixels, green light emitting pixels, and blue light emitting pixels, a red light emitting pixel having a relatively short luminance half time is formed of a triplet excitation light emitting material, and the other A singlet excited luminescent material is used. The triplet excited luminescent material has a feature that the light emission efficiency is good, so that less power is required to obtain the same luminance. That is, when applied to a red pixel, the amount of current flowing through the light emitting element can be reduced, so that reliability can be improved. As a reduction in power consumption, a red light-emitting pixel and a green light-emitting pixel may be formed using a triplet excitation light-emitting material, and a blue light-emitting pixel may be formed using a singlet excitation light-emitting material. By forming a green light-emitting element having high human visibility with a triplet excited light-emitting material, power consumption can be further reduced.

三重項励起発光材料の一例としては、金属錯体をドーパントとして用いたものがあり、第三遷移系列元素である白金を中心金属とする金属錯体、イリジウムを中心金属とする金属錯体などが知られている。三重項励起発光材料としては、これらの化合物に限られることはなく、上記構造を有し、且つ中心金属に周期表の8〜10属に属する元素を有する化合物を用いることも可能である。     Examples of triplet excited luminescent materials include those using a metal complex as a dopant, and metal complexes having a third transition series element platinum as the central metal and metal complexes having iridium as the central metal are known. Yes. The triplet excited light-emitting material is not limited to these compounds, and a compound having the above structure and having an element belonging to group 8 to 10 in the periodic table as a central metal can also be used.

以上に掲げる発光層を形成する物質は一例であり、正孔注入輸送層、正孔輸送層、電子注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機能性の各層を適宜積層することで発光素子を形成することができる。また、これらの各層を合わせた混合層又は混合接合を形成しても良い。発光層の層構造は変化しうるものであり、特定の電子注入領域や発光領域を備えていない代わりに、もっぱらこの目的用の電極層を備えたり、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲において許容されうるものである。     The substances forming the light-emitting layer listed above are examples, and functionalities such as a hole injection transport layer, a hole transport layer, an electron injection transport layer, an electron transport layer, a light emission layer, an electron block layer, and a hole block layer are included. A light emitting element can be formed by appropriately stacking each layer. Moreover, you may form the mixed layer or mixed junction which combined these each layer. The layer structure of the light-emitting layer can be changed, and instead of having a specific electron injection region or light-emitting region, an electrode layer for this purpose is provided, or a light-emitting material is dispersed. Modifications can be made without departing from the spirit of the present invention.

上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマトリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ、発光装置の信頼性を向上させることができる。また、デジタル駆動、アナログ駆動どちらでも適用可能である。     A light-emitting element formed using the above materials emits light by being forward-biased. A pixel of a display device formed using a light-emitting element can be driven by a simple matrix method or an active matrix method. In any case, each pixel emits light by applying a forward bias at a specific timing, but is in a non-light emitting state for a certain period. By applying a reverse bias during this non-light emitting time, the reliability of the light emitting element can be improved. The light emitting element has a degradation mode in which the light emission intensity decreases under a constant driving condition and a degradation mode in which the non-light emitting area is enlarged in the pixel and the luminance is apparently decreased. However, alternating current that applies a bias in the forward and reverse directions. By performing a typical drive, the progress of deterioration can be slowed and the reliability of the light emitting device can be improved. Further, either digital driving or analog driving can be applied.

よって、封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は、蒸着法や液滴吐出法によって形成することができ、カラーフィルタ(着色層)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光スペクトルにおいてブロードなピークを、鋭いピークになるように補正できるからである。     Therefore, a color filter (colored layer) may be formed on the sealing substrate. The color filter (colored layer) can be formed by an evaporation method or a droplet discharge method. When the color filter (colored layer) is used, high-definition display can be performed. This is because the color filter (colored layer) can correct a broad peak in the emission spectrum of each RGB so as to be a sharp peak.

以上、各RGBの発光を示す材料を形成する場合を説明したが、単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば第2の基板(封止基板)に形成し、基板へ張り合わせればよい。     As described above, the case where a material that emits light of each RGB is formed has been described. However, full color display can be performed by forming a material that emits light of a single color and combining a color filter and a color conversion layer. The color filter (colored layer) and the color conversion layer may be formed, for example, on the second substrate (sealing substrate) and attached to the substrate.

もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。     Of course, monochromatic light emission may be displayed. For example, an area color type display device may be formed using monochromatic light emission. As the area color type, a passive matrix type display unit is suitable, and characters and symbols can be mainly displayed.

上記構成において、陰極としては、仕事関数が小さい材料を用いることが可能で、例えば、Ca、Al、CaF、MgAg、AlLi等が望ましい。電界発光層は、単層型、積層型、また層の界面がない混合型のいずれでもよい。またシングレット材料、トリプレット材料、又はそれらを組み合わせた材料や、有機化合物又は無機化合物を含む電荷注入輸送物質及び発光材料で形成し、その分子数から低分子有機化合物、中分子有機化合物(昇華性を有さず、且つ分子数が20以下、又は連鎖する分子の長さが10μm以下の有機化合物を指していう)、高分子有機化合物から選ばれた一種又は複数種の層を含み、電子注入輸送性又は正孔注入輸送性の無機化合物と組み合わせてもよい。第1の電極層は光を透過する透明導電膜を用いて形成し、例えばITO、ITSOの他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した透明導電膜を用いる。なお、第1の電極層を形成する前に、酸素雰囲気中でのプラズマ処理や真空雰囲気下での加熱処理を行うとよい。隔壁(土手ともいう)は、珪素を含む材料、有機材料及び化合物材料を用いて形成する。また、多孔質膜を用いても良い。但し、アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成すると、その側面は曲率半径が連続的に変化する形状となり、上層の薄膜が段切れせずに形成されるため好ましい。本実施の形態は、上記の実施の形態と自由に組み合わせることが可能である。     In the above configuration, a material having a small work function can be used as the cathode, and for example, Ca, Al, CaF, MgAg, AlLi, or the like is desirable. The electroluminescent layer may be any of a single layer type, a laminated type, and a mixed type having no layer interface. It is also formed from singlet materials, triplet materials, or a combination of these materials, charge injection transport materials including organic compounds or inorganic compounds, and light-emitting materials. An organic compound having a molecule number of 20 or less, or a chained molecule length of 10 μm or less), including one or more layers selected from macromolecular organic compounds, and having an electron injecting and transporting property Alternatively, it may be combined with a hole injection / transport inorganic compound. The first electrode layer is formed using a transparent conductive film that transmits light. For example, in addition to ITO and ITSO, a transparent conductive film in which indium oxide is mixed with 2 to 20% zinc oxide (ZnO) is used. Note that plasma treatment in an oxygen atmosphere or heat treatment in a vacuum atmosphere is preferably performed before forming the first electrode layer. A partition wall (also referred to as a bank) is formed using a material containing silicon, an organic material, and a compound material. A porous film may be used. However, it is preferable to use a photosensitive or non-photosensitive material such as acrylic or polyimide because the side surface has a shape in which the radius of curvature continuously changes and the upper thin film is formed without being cut off. This embodiment mode can be freely combined with the above embodiment modes.

本発明を用いると、信頼性の高い表示装置を簡略化した工程で作製することができる。よって、高精細、高画質な表示装置を低いコストで歩留まり良く製造することができる。     By using the present invention, a highly reliable display device can be manufactured through a simplified process. Therefore, a high-definition and high-quality display device can be manufactured at a low cost and with a high yield.

本実施の形態は、実施の形態1乃至3とそれぞれと組み合わせて用いることが可能である。     This embodiment mode can be used in combination with each of Embodiment Modes 1 to 3.

(実施の形態5)
走査線側入力端子部と信号線側入力端子部とに保護ダイオードを設けた一態様について図15を参照して説明する。図15において画素2702にはTFT501、TFT502、容量素子504、発光素子503が設けられている。このTFTは実施の形態1と同様な構成を有している。
(Embodiment 5)
One mode in which protective diodes are provided in the scanning line side input terminal portion and the signal line side input terminal portion will be described with reference to FIG. In FIG. 15, a pixel 2702 is provided with a TFT 501, a TFT 502, a capacitor 504, and a light emitting element 503. This TFT has a configuration similar to that of the first embodiment.

信号線側入力端子部には、保護ダイオード561と保護ダイオード562が設けられている。この保護ダイオードは、TFT501若しくはTFT502と同様な工程で作製され、ゲートとドレイン若しくはソースの一方とを接続することによりダイオードとして動作させている。図15で示す上面図の等価回路図を図14に示している。     A protection diode 561 and a protection diode 562 are provided in the signal line side input terminal portion. This protection diode is manufactured in the same process as the TFT 501 or the TFT 502, and is operated as a diode by connecting the gate and one of the drain or the source. An equivalent circuit diagram of the top view shown in FIG. 15 is shown in FIG.

保護ダイオード561は、ゲート電極層、半導体層、配線層から成っている。保護ダイオード562も同様な構造である。この保護ダイオードと接続する共通電位線554、共通電位線555はゲート電極層と同じ層で形成している。従って、それらと配線層とが電気的に接続するには、絶縁層にコンタクトホールを形成する必要がある。     The protection diode 561 includes a gate electrode layer, a semiconductor layer, and a wiring layer. The protective diode 562 has a similar structure. The common potential line 554 and the common potential line 555 connected to the protection diode are formed in the same layer as the gate electrode layer. Therefore, in order to electrically connect them and the wiring layer, it is necessary to form a contact hole in the insulating layer.

絶縁層へのコンタクトホールは、マスク層を形成し、エッチング加工すれば良い。この場合、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。     The contact hole to the insulating layer may be etched by forming a mask layer. In this case, if an atmospheric pressure discharge etching process is applied, a local electric discharge process is also possible, and it is not necessary to form a mask layer on the entire surface of the substrate.

信号配線層はTFT501におけるソース及びドレイン配線層505と同じ層で形成され、それに接続している信号配線層とソース又はドレイン側が接続する構造となっている。     The signal wiring layer is formed of the same layer as the source and drain wiring layer 505 in the TFT 501, and has a structure in which the signal wiring layer connected thereto and the source or drain side are connected.

走査信号線側の入力端子部も同様な構成である。保護ダイオード563は、ゲート電極層、半導体層、配線層から成っている。保護ダイオード564も同様な構造である。この保護ダイオードと接続する共通電位線556、共通電位線557はソース及びドレイン配線層と同じ層で形成している。入力段に設けられる保護ダイオードを同時に形成することができる。なお、保護ダイオードを挿入する位置は、本実施の形態のみに限定されず、駆動回路と画素との間に設けることもできる。     The input terminal portion on the scanning signal line side has the same configuration. The protective diode 563 includes a gate electrode layer, a semiconductor layer, and a wiring layer. The protective diode 564 has a similar structure. The common potential line 556 and the common potential line 557 connected to the protection diode are formed in the same layer as the source and drain wiring layers. A protection diode provided in the input stage can be formed at the same time. Note that the position at which the protective diode is inserted is not limited to this embodiment mode, and can be provided between the driver circuit and the pixel.

(実施の形態6)
本発明によって形成される表示装置によって、テレビジョン装置を完成させることができる。表示パネルには、図16(A)で示すような構成として画素部のみが形成されて走査線側駆動回路と信号線側駆動回路とが、図17(B)のようなTAB方式により実装される場合と、図17(A)のようなCOG方式により実装される場合と、図16(B)に示すようにSASでTFTを形成し、画素部と走査線側駆動回路を基板上に一体形成し信号線側駆動回路を別途ドライバICとして実装する場合、また図16(C)のように画素部と信号線側駆動回路と走査線側駆動回路を基板上に一体形成する場合などがあるが、どのような形態としても良い。
(Embodiment 6)
A television device can be completed with the display device formed according to the present invention. In the display panel, only a pixel portion is formed as shown in FIG. 16A, and a scanning line side driver circuit and a signal line side driver circuit are mounted by a TAB method as shown in FIG. And a case where the TFT is formed by SAS as shown in FIG. 16B, and the pixel portion and the scanning line side driver circuit are integrated on the substrate. In some cases, the signal line side driver circuit is separately mounted as a driver IC, and the pixel portion, the signal line side driver circuit, and the scanning line side driver circuit are integrally formed over the substrate as shown in FIG. However, any form is acceptable.

その他の外部回路の構成として、映像信号の入力側では、チューナで受信した信号のうち、映像信号を増幅する映像信号増幅回路と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路などからなっている。コントロール回路は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路を設け、入力デジタル信号をm個に分割して供給する構成としても良い。     As other external circuit configurations, on the video signal input side, among the signals received by the tuner, the video signal amplification circuit that amplifies the video signal, and the signal output from it corresponds to each color of red, green, and blue And a control circuit for converting the video signal into the input specification of the driver IC. The control circuit outputs signals to the scanning line side and the signal line side, respectively. In the case of digital driving, a signal dividing circuit may be provided on the signal line side and an input digital signal may be divided into m pieces and supplied.

チューナで受信した信号のうち、音声信号は、音声信号増幅回路に送られ、その出力は音声信号処理回路を経てスピーカに供給される。制御回路は受信局(受信周波数)や音量の制御情報を入力部から受け、チューナや音声信号処理回路に信号を送出する。     Of the signals received by the tuner, the audio signal is sent to the audio signal amplifier circuit, and the output is supplied to the speaker via the audio signal processing circuit. The control circuit receives control information of the receiving station (reception frequency) and volume from the input unit, and sends a signal to the tuner and the audio signal processing circuit.

表示モジュールを、図20(A)、(B)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。FPCまで取り付けられた図1のような表示パネルのことを一般的にはEL表示モジュールともいう。よって図1のようなEL表示モジュールを用いると、ELテレビジョン装置を完成することができる。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカー部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョン装置を完成させることができる。     As shown in FIGS. 20A and 20B, the display module can be incorporated into a housing to complete the television device. The display panel as shown in FIG. 1 attached up to the FPC is generally also referred to as an EL display module. Therefore, when an EL display module as shown in FIG. 1 is used, an EL television device can be completed. A main screen 2003 is formed by the display module, and a speaker portion 2009, operation switches, and the like are provided as other accessory equipment. Thus, a television device can be completed according to the present invention.

また、位相差板や偏光板を用いて、外部から入射する光の反射光を遮断するようにしてもよい。また上面放射型の表示装置ならば、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法などによっても形成することができ、顔料系の黒色樹脂や、ポリイミドなどの樹脂材料に、カーボンブラック等を混合させてもよく、その積層でもよい。液滴吐出法によって、異なった材料を同領域に複数回吐出し、隔壁を形成してもよい。位相差板としてはλ/4板、λ/2板を用い、光を制御できるように設計すればよい。構成としては、順にTFT素子基板、発光素子、封止基板(封止材)、位相差板(λ/4板、λ/2板)、偏光板となり、発光素子から放射された光は、これらを通過し偏光板側より外部に放射される。この位相差板や偏光板は光が放射される側に設置すればよく、両面放射される両面放射型の表示装置であれば両方に設置することもできる。また、偏光板の外側に反射防止膜を有していても良い。これにより、より高繊細で精密な画像を表示することができる。     Moreover, you may make it cut off the reflected light of the light which injects from the outside using a phase difference plate or a polarizing plate. In the case of a top emission display device, an insulating layer serving as a partition may be colored and used as a black matrix. This partition wall can also be formed by a droplet discharge method or the like. Carbon black or the like may be mixed with a pigment-based black resin or a resin material such as polyimide, or may be laminated. A different material may be discharged to the same region a plurality of times by a droplet discharge method to form a partition wall. As the retardation plate, a λ / 4 plate or a λ / 2 plate may be used and designed so that light can be controlled. The structure is TFT element substrate, light emitting element, sealing substrate (sealing material), retardation plate (λ / 4 plate, λ / 2 plate), polarizing plate in order, and the light emitted from the light emitting element is these Is radiated to the outside from the polarizing plate side. The retardation plate and the polarizing plate may be installed on the side from which light is emitted, and may be installed on both sides as long as the display is a double-sided emission type that emits light on both sides. Further, an antireflection film may be provided outside the polarizing plate. This makes it possible to display a higher-definition and precise image.

図20(A)に示すように、筐体2001に表示素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン操作機2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。     As shown in FIG. 20A, a display panel 2002 using a display element is incorporated in a housing 2001, and reception of general television broadcasting is started by a receiver 2005, and a wired or wireless connection is made via a modem 2004. By connecting to a communication network, information communication in one direction (from the sender to the receiver) or in both directions (between the sender and the receiver or between the receivers) can be performed. The operation of the television device can be performed by a switch incorporated in the housing or a separate remote controller 2006, and this remote controller is also provided with a display unit 2007 for displaying information to be output. Also good.

また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このような大型基板を用いて、多くのTFTや電子部品を用いても、信頼性の高い表示装置とすることができる。     In addition, the television device may have a configuration in which a sub screen 2008 is formed using the second display panel in addition to the main screen 2003 to display channels, volume, and the like. In this configuration, the main screen 2003 may be formed using an EL display panel with an excellent viewing angle, and the sub screen may be formed using a liquid crystal display panel that can display with low power consumption. In order to prioritize the reduction in power consumption, the main screen 2003 may be formed using a liquid crystal display panel, the sub screen may be formed using an EL display panel, and the sub screen may blink. When the present invention is used, a highly reliable display device can be obtained even when such a large substrate is used and a large number of TFTs and electronic components are used.

図20(B)は例えば20〜80インチの大型の表示部を有するテレビジョン装置であり、筐体2010、操作部であるキーボード部2012、表示部2011、スピーカー部2013等を含む。本発明は、表示部2011の作製に適用される。図20(B)の表示部は、わん曲可能な物質を用いているので、表示部がわん曲したテレビジョン装置となっている。このように表示部の形状を自由に設計することができるので、所望な形状のテレビジョン装置を作製することができる。     FIG. 20B illustrates a television device having a large display portion of 20 to 80 inches, for example, which includes a housing 2010, a keyboard portion 2012 that is an operation portion, a display portion 2011, a speaker portion 2013, and the like. The present invention is applied to manufacture of the display portion 2011. Since the display portion in FIG. 20B uses a bendable substance, the television set has a curved display portion. Since the shape of the display portion can be freely designed as described above, a television device having a desired shape can be manufactured.

本発明により、簡略な工程で表示装置を形成できるため、コストダウンも達成できる。よって本発明を用いたテレビジョン装置では、大画面の表示部を有しても低いコストで形成できる。よって高性能、高信頼性のテレビジョン装置を歩留まりよく作製することができる。     According to the present invention, since a display device can be formed through a simple process, cost reduction can be achieved. Therefore, a television device using the present invention can be formed at low cost even if it has a large screen display portion. Therefore, a high-performance and highly reliable television device can be manufactured with high yield.

勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など大面積の表示媒体としても様々な用途に適用することができる。     Of course, the present invention is not limited to a television device, but can be applied to various applications such as personal computer monitors, information display boards at railway stations and airports, and advertisement display boards on streets. can do.

(実施の形態7)
本発明を適用して、様々な表示装置を作製することができる。即ち、それら表示装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。
(Embodiment 7)
Various display devices can be manufactured by applying the present invention. That is, the present invention can be applied to various electronic devices in which these display devices are incorporated in a display portion.

その様な電子機器としては、ビデオカメラ、デジタルカメラ等のカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。それらの例を図21に示す。     Such electronic devices include cameras such as video cameras and digital cameras, projectors, head mounted displays (goggles type displays), car navigation systems, car stereos, personal computers, game machines, personal digital assistants (mobile computers, mobile phones or An electronic book), and an image reproducing apparatus (specifically, an apparatus having a display capable of reproducing a recording medium such as a digital versatile disc (DVD) and displaying the image). Examples thereof are shown in FIG.

図21(A)は、コンピュータであり、本体2101、筐体2102、表示部2103、キーボード2104、外部接続ポート2105、ポインティングマウス2106等を含む。本発明を用いると、小型化し、画素が微細化しても、信頼性が高く、高画質な画像を表示するコンピュータを完成させることができる。     FIG. 21A illustrates a computer, which includes a main body 2101, a housing 2102, a display portion 2103, a keyboard 2104, an external connection port 2105, a pointing mouse 2106, and the like. By using the present invention, a computer that displays a high-quality image with high reliability even when the size is reduced and the pixels are miniaturized can be completed.

図21(B)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体2201、筐体2202、表示部A2203、表示部B2204、記録媒体(DVD等)読み込み部2205、操作キー2206、スピーカー部2207等を含む。表示部A2203は主として画像情報を表示し、表示部B2204は主として文字情報を表示する。本発明を用いると、小型化し、画素が微細化しても、信頼性が高く、高画質な画像を表示する画像再生装置を完成させることができる。     FIG. 21B shows an image reproducing device (specifically, a DVD reproducing device) provided with a recording medium, which includes a main body 2201, a housing 2202, a display portion A 2203, a display portion B 2204, and a recording medium (DVD etc.) reading portion 2205. , An operation key 2206, a speaker portion 2207, and the like. The display portion A2203 mainly displays image information, and the display portion B2204 mainly displays character information. By using the present invention, an image reproducing device that displays a high-quality image with high reliability even when the size is reduced and the pixel is miniaturized can be completed.

図21(C)は携帯電話であり、本体2301、音声出力部2302、音声入力部2303、表示部2304、操作スイッチ2305、アンテナ2306等を含む。本発明を用いると、小型化し、画素が微細化しても、信頼性が高く、高画質な画像を表示する携帯電話を完成することができる。     FIG. 21C illustrates a mobile phone, which includes a main body 2301, an audio output portion 2302, an audio input portion 2303, a display portion 2304, operation switches 2305, an antenna 2306, and the like. By using the present invention, a mobile phone that displays a high-quality image with high reliability can be completed even if the device is downsized and pixels are miniaturized.

図21(D)はビデオカメラであり、本体2401、表示部2402、筐体2403、外部接続ポート2404、リモコン受信部2405、受像部2406、バッテリー2407、音声入力部2408、接眼部2409、操作キー2410等を含む。本発明を用いると、小型化し、画素が微細化しても、信頼性が高く、高画質な画像を表示できるビデオカメラを完成することができる。本実施の形態は、上記の実施の形態と自由に組み合わせることができる。     FIG. 21D illustrates a video camera, which includes a main body 2401, a display portion 2402, a housing 2403, an external connection port 2404, a remote control reception portion 2405, an image receiving portion 2406, a battery 2407, an audio input portion 2408, an eyepiece portion 2409, and an operation. Key 2410 and the like. By using the present invention, a video camera that can display a high-quality image with high reliability even when the size is reduced and the pixel is miniaturized can be completed. This embodiment mode can be freely combined with the above embodiment modes.

本発明で用いる第2の層間絶縁層に開口を設けるエッチング工程において、エッチング条件を変化させ実験を行った。以下にその実験結果を示す。     In the etching process of providing an opening in the second interlayer insulating layer used in the present invention, an experiment was performed by changing the etching conditions. The experimental results are shown below.

試料として実施の形態1で示したように、ソース電極層又はドレイン電極層、第2の層間絶縁層を形成し、レジストからなるマスクをその上に形成した状態でエッチングを行い、ソース電極層又はドレイン電極層に達する開口を第2の層間絶縁層に形成した。ソース電極層又はドレイン電極層としてチタン膜を形成し、第2の層間絶縁層として、シロキサン樹脂を用いたアルキル基を含む酸化珪素膜を塗布法により形成した。パターニングのためのマスクを形成し、エッチング条件を条件A乃至Iの9条件に異ならせてエッチングを行った。装置は、ICPエッチング装置を用いた。エッチング後の開口の走査電子顕微鏡(Scanning Electron Microscope:SEM)観察によるSEM写真を図22(A)乃至(I)に示す。開口底面に存在する残渣の状態を3段階のレベルで評価し、残渣なしのものを「レベル1」、残渣が存在するが少ないものを「レベル2」、残渣が多く存在するものを「レベル3」とした。各条件とそれぞれの残渣のレベルを表1に示す。     As shown in Embodiment Mode 1 as a sample, a source electrode layer or a drain electrode layer and a second interlayer insulating layer are formed, and etching is performed in a state where a mask made of a resist is formed thereon. An opening reaching the drain electrode layer was formed in the second interlayer insulating layer. A titanium film was formed as the source electrode layer or the drain electrode layer, and a silicon oxide film containing an alkyl group using a siloxane resin was formed as a second interlayer insulating layer by a coating method. Etching was performed by forming a mask for patterning and changing the etching conditions to nine conditions A to I. An ICP etching apparatus was used as the apparatus. 22A to 22I show SEM photographs of the opening after etching observed with a scanning electron microscope (SEM). The state of the residue existing on the bottom of the opening is evaluated at three levels. “Level 1” indicates that there is no residue, “Level 2” indicates that there is little residue but “Level 3” indicates that there is much residue. " Table 1 shows the conditions and the levels of the respective residues.

図22及び表1から分かるように、条件Bの試料において残渣なく良好な状態の開口を形成することができた。さらに、第2の層間絶縁層を酸化窒化珪素膜とアルキル基を含む酸化珪素膜の2層構造とし、試料をチタン膜、酸化窒化珪素膜、アルキル基を含む酸化珪素膜の積層で形成した。上記試料にレジストからなるマスクを形成し、チタン膜に達する開口をエッチング工程により形成した。エッチング条件は条件J乃至Qの8条件に変化させて各エッチング工程を行った。先ほどの実験と同様に、各条件を表2に、エッチング後の開口のSEM写真を図23(A)乃至(H)に示す。     As can be seen from FIG. 22 and Table 1, the sample in the condition B was able to form an opening in a good state without residue. Further, the second interlayer insulating layer has a two-layer structure of a silicon oxynitride film and a silicon oxide film containing an alkyl group, and the sample is formed by stacking a titanium film, a silicon oxynitride film, and a silicon oxide film containing an alkyl group. A mask made of resist was formed on the sample, and an opening reaching the titanium film was formed by an etching process. Each etching process was performed by changing the etching conditions to 8 conditions J to Q. As in the previous experiment, conditions are shown in Table 2, and SEM photographs of the openings after etching are shown in FIGS.

図23のSEM写真で分かるように、条件O、条件P、条件Qでエッチングした開口が残渣が少なく良好な形状で形成されていることがわかる。また本実験結果より、アルキル基を含む酸化珪素とチタン膜との選択比は、CF4とO2のガス流量比に依存し、O2流量を増やすと選択比が向上する傾向がある。シロキサン樹脂を用いたアルキル基を含む酸化珪素と酸化窒化珪素膜との選択比も同様に、CF4とO2のガス流量比に依存し、O2流量を増やすと選択比が向上する傾向がある。シロキサン樹脂を用いたアルキル基を含む酸化珪素膜のエッチングレートの均一性は、圧力に依存し、圧力を低く高真空にすることで均一性は良くなり向上する。また開口のエッチング不良による残渣は、圧力とCF4とO2のガス流量比に依存し、圧力を高真空、CF4流量を減らすことで残渣を抑制する傾向がある。以上のことを考慮して、エッチング条件を設定することができる。そして、第1の電極層とソース電極層及びドレイン電極層との良好なコンタクトを得ることのできる、平坦性の高い開口を簡略化された工程で形成することができる。 As can be seen from the SEM photograph in FIG. 23, it can be seen that the openings etched under the conditions O, P, and Q are formed in a favorable shape with little residue. From the results of this experiment, the selection ratio between the silicon oxide containing an alkyl group and the titanium film depends on the gas flow ratio of CF 4 and O 2 , and the selection ratio tends to improve as the O 2 flow rate increases. Similarly, the selection ratio between the silicon oxide containing an alkyl group using a siloxane resin and the silicon oxynitride film depends on the gas flow ratio of CF 4 and O 2 , and the selectivity tends to improve as the O 2 flow rate increases. is there. The uniformity of the etching rate of the silicon oxide film containing an alkyl group using a siloxane resin depends on the pressure, and the uniformity is improved and improved by reducing the pressure to a high vacuum. Residue due to poor etching of the opening depends on the pressure and the gas flow ratio of CF 4 and O 2 , and tends to suppress the residue by reducing the pressure to high vacuum and the flow rate of CF 4 . In consideration of the above, etching conditions can be set. Then, an opening with high flatness that can obtain a good contact between the first electrode layer, the source electrode layer, and the drain electrode layer can be formed by a simplified process.

本実施例では、表示装置を構成する絶縁膜を連続的に形成し、膜の界面状態を評価した結果を示す。     In this example, an insulating film constituting a display device is continuously formed, and a result of evaluating an interface state of the film is shown.

本実施例では、絶縁膜としてガラス基板上に第1絶縁膜として窒化酸化珪素(SiNO)を形成し、積層して第2絶縁膜として酸化窒化珪素膜(SiON)を形成した。第1絶縁膜及び第2絶縁膜は、同チャンバー内で真空を破らずに330℃の同一温度下で、反応ガスを切り変えながら連続的に形成する。装置は、プラズマCVD装置を用いた。     In this embodiment, silicon nitride oxide (SiNO) was formed as a first insulating film on a glass substrate as an insulating film, and a silicon oxynitride film (SiON) was formed as a second insulating film. The first insulating film and the second insulating film are continuously formed while switching the reaction gas at the same temperature of 330 ° C. without breaking the vacuum in the same chamber. As the apparatus, a plasma CVD apparatus was used.

本実施例ではガラス基板上に反応ガスとしてSiH4を80sccm、NH3を750sccm、H2を400sccm、N2を400sccm、N2Oを60sccm各流量で用い、圧力65Pa、周波数18.56MHz、730Wのパワーで窒化酸化珪素膜(SiNO)を膜厚200nm形成し、その後連続的に、反応ガスとしてSiH4を75sccm、N2Oを1200sccmを反応ガスとして用い、圧力70Pa、周波数13.56MHz、120Wのパワーで酸化窒化珪素膜(SiON)を膜厚800nm形成する。その後、一度大気中に取り出した後保護のためのキャップ膜として反応ガスSiH4、を220sccm、H2を220sccm各流量で用い、圧力160Pa、周波数13.56MHz、160Wのパワーで非晶質珪素(a−Si)を形成した。 In this embodiment, SiH 4 is used as a reactive gas on a glass substrate at 80 sccm, NH 3 at 750 sccm, H 2 at 400 sccm, N 2 at 400 sccm, and N 2 O at 60 sccm at a flow rate of 65 Pa, a frequency of 18.56 MHz, and 730 W. A silicon nitride oxide film (SiNO) is formed to a thickness of 200 nm with the following power, and then continuously, SiH 4 is used as a reactive gas at 75 sccm, N 2 O is used as a reactive gas at 1200 sccm, pressure 70 Pa, frequency 13.56 MHz, 120 W. A silicon oxynitride film (SiON) is formed to a thickness of 800 nm with the power of After that, after taking it out into the atmosphere, the reactive gas SiH 4 is used as a protective cap film at 220 sccm and H 2 at 220 sccm, and the pressure is 160 Pa, the frequency is 13.56 MHz, and the power is 160 W. a-Si) was formed.

上記順にガラス基板、SiNO、SiON、a−Siを積層した試料に対して、SIMS(二次イオン質量分析法)を用いて分析を行った。SiNO、SiONの積層も、積層の界面状態と各膜中に含まれる(H、C、N、O、F)の不純物濃度を測定した。測定結果を図24乃至図26に示す。図24はデータをSi標準試料により定量したものであり、図25はデータをSiO2標準試料により定量したものであり、図26データをSiN標準試料により定量したものである。 The sample which laminated | stacked the glass substrate, SiNO, SiON, and a-Si in the said order was analyzed using SIMS (secondary ion mass spectrometry). For the stack of SiNO and SiON, the interface state of the stack and the impurity concentration of (H, C, N, O, F) contained in each film were measured. The measurement results are shown in FIGS. FIG. 24 shows the data quantified by the Si standard sample, FIG. 25 shows the data quantified by the SiO 2 standard sample, and FIG. 26 shows the data quantified by the SiN standard sample.

SiNO膜の水素濃度は1.8×1022atoms/cm3、炭素濃度は2.0×1017atoms/cm3、酸素濃度は7.4×1021atoms/cm3、フッ素濃度は1.8×1020atoms/cm3である。SiON膜の水素濃度は2.5×1021atoms/cm3、炭素濃度は2.7×1018atoms/cm3、窒素濃度は2.3×1021atoms/cm3、フッ素濃度は4.4×1020atoms/cm3である。a−Si膜の水素濃度は3.5×1021atoms/cm3、炭素濃度は2.9×1018atoms/cm3、窒素濃度は6.7×1019atoms/cm3、酸素濃度は4.2×1018atoms/cm3、フッ素濃度は6.0×1018atoms/cm3である。 The hydrogen concentration of the SiNO film is 1.8 × 10 22 atoms / cm 3 , the carbon concentration is 2.0 × 10 17 atoms / cm 3 , the oxygen concentration is 7.4 × 10 21 atoms / cm 3 , and the fluorine concentration is 1. 8 × 10 20 atoms / cm 3 . The SiON film has a hydrogen concentration of 2.5 × 10 21 atoms / cm 3 , a carbon concentration of 2.7 × 10 18 atoms / cm 3 , a nitrogen concentration of 2.3 × 10 21 atoms / cm 3 , and a fluorine concentration of 4. 4 × 10 20 atoms / cm 3 . The hydrogen concentration of the a-Si film is 3.5 × 10 21 atoms / cm 3 , the carbon concentration is 2.9 × 10 18 atoms / cm 3 , the nitrogen concentration is 6.7 × 10 19 atoms / cm 3 , and the oxygen concentration is It is 4.2 × 10 18 atoms / cm 3 , and the fluorine concentration is 6.0 × 10 18 atoms / cm 3 .

図24乃至図26から示すように、SiNO膜とSiON膜の界面不純物濃度は、汚染による高濃度不純物が存在すると現れるパイルアップ現象が見られないため、界面状態は良好であることが確認できる。また、SiNO膜の成膜に用いられる反応ガス成分(NH3など)によるSiON膜中への拡散も見られなかった。以上のことから、同チャンバー内で大気に曝さずに連続的に絶縁膜を積層すると、界面が汚染されず、良好な界面状態で形成できることが確認できた。よってこのような絶縁膜を表示装置の構成物質として用いると、表示装置の信頼性も向上することができる。 As shown in FIGS. 24 to 26, it can be confirmed that the interface state between the SiNO film and the SiON film is good because the pile-up phenomenon that appears when high-concentration impurities due to contamination are present is not observed. Further, no diffusion into the SiON film due to the reaction gas component (NH 3 or the like) used for forming the SiNO film was observed. From the above, it was confirmed that when an insulating film is continuously laminated without being exposed to the atmosphere in the same chamber, the interface is not contaminated and can be formed in a good interface state. Therefore, when such an insulating film is used as a constituent material of a display device, the reliability of the display device can be improved.

本発明の表示装置を説明する図。6A and 6B illustrate a display device of the present invention. 本発明の表示装置の作製方法を説明する図。4A to 4D illustrate a method for manufacturing a display device of the present invention. 本発明の表示装置の作製方法を説明する図。4A to 4D illustrate a method for manufacturing a display device of the present invention. 本発明の表示装置の作製方法を説明する図。4A to 4D illustrate a method for manufacturing a display device of the present invention. 本発明の表示装置の作製方法を説明する図。4A to 4D illustrate a method for manufacturing a display device of the present invention. 本発明の表示装置の作製方法を説明する図。4A to 4D illustrate a method for manufacturing a display device of the present invention. 本発明の表示装置の作製方法を説明する図。4A to 4D illustrate a method for manufacturing a display device of the present invention. 本発明の表示装置を説明する図。6A and 6B illustrate a display device of the present invention. 本発明の表示装置を説明する図。6A and 6B illustrate a display device of the present invention. 本発明の表示装置を説明する図。6A and 6B illustrate a display device of the present invention. 本発明の表示装置を説明する図。6A and 6B illustrate a display device of the present invention. 本発明の表示装置を説明する図。6A and 6B illustrate a display device of the present invention. 本発明に適用できる発光素子の構成を説明する図。3A and 3B each illustrate a structure of a light-emitting element that can be applied to the present invention. 図15で説明するEL表示装置の等価回路図。FIG. 16 is an equivalent circuit diagram of the EL display device described in FIG. 15. 本発明の表示装置を説明する上面図。FIG. 6 is a top view illustrating a display device of the present invention. 本発明の表示装置の上面図。The top view of the display apparatus of this invention. 本発明の表示装置の上面図。The top view of the display apparatus of this invention. 本発明の表示装置の上面図。The top view of the display apparatus of this invention. 本発明に適用することのできる滴下注入法を説明する図。The figure explaining the dripping injection method which can be applied to this invention. 本発明が適用される電子機器を示す図。FIG. 11 illustrates an electronic device to which the present invention is applied. 本発明が適用される電子機器を示す図。FIG. 11 illustrates an electronic device to which the present invention is applied. 実施例1において作製した試料のSEM写真。2 is an SEM photograph of a sample produced in Example 1. 実施例1において作製した試料のSEM写真。2 is an SEM photograph of a sample produced in Example 1. 実施例2において作製した試料のSIMS分析結果。The SIMS analysis result of the sample produced in Example 2. 実施例2において作製した試料のSIMS分析結果。The SIMS analysis result of the sample produced in Example 2. 実施例2において作製した試料のSIMS分析結果。The SIMS analysis result of the sample produced in Example 2.

Claims (9)

画素領域、接続領域を有し、
前記画素領域に不純物領域を含む半導体層を有し、
前記半導体層上にはゲート絶縁層を有し、
前記ゲート絶縁層上にはゲート電極層を有し、
前記ゲート電極層上には第1の層間絶縁層を有し、
前記ゲート絶縁層及び前記第1の層間絶縁層は前記不純物領域に達する第1の開口を有し、
前記開口にソース電極層又はドレイン電極層を有し、
前記ソース電極層又は前記ドレイン電極層は、前記第1の層間絶縁層を介して前記ゲート電極層の一部を覆っており、
前記ソース電極層又は前記ドレイン電極層及び前記第1の層間絶縁層上に第2の層間絶縁層を有し、
前記第2の層間絶縁層は前記ソース電極層又は前記ドレイン電極層に達する第2の開口を有し、
前記第2の開口は、前記第1の層間絶縁層を介して前記ゲート電極層の一部を覆っている前記ソース電極層又は前記ドレイン電極層に設けられ、
前記第2の開口に第1の電極層を有し、
前記接続領域に前記第1の層間膜上に設けられた配線層を有し、
前記配線層上に、前記配線層に達する第3の開口が設けられた前記第2の層間絶縁層を有し、
前記第3の開口の上端部は、絶縁層に覆われており、
前記第3の開口に、前記絶縁層に接して第2の電極層を有することを特徴とする表示装置。
A pixel area, a connection area,
A semiconductor layer including an impurity region in the pixel region;
A gate insulating layer on the semiconductor layer;
A gate electrode layer on the gate insulating layer;
A first interlayer insulating layer on the gate electrode layer;
The gate insulating layer and the first interlayer insulating layer have a first opening reaching the impurity region;
A source electrode layer or a drain electrode layer in the opening;
The source electrode layer or the drain electrode layer covers a part of the gate electrode layer through the first interlayer insulating layer,
A second interlayer insulating layer on the source electrode layer or the drain electrode layer and the first interlayer insulating layer;
The second interlayer insulating layer has a second opening reaching the source electrode layer or the drain electrode layer;
The second opening is provided in the source electrode layer or the drain electrode layer covering a part of the gate electrode layer through the first interlayer insulating layer,
A first electrode layer in the second opening;
A wiring layer provided on the first interlayer film in the connection region;
On the wiring layer, the second interlayer insulating layer provided with a third opening reaching the wiring layer,
The upper end of the third opening is covered with an insulating layer,
A display device, wherein the third opening has a second electrode layer in contact with the insulating layer.
請求項1において、前記第1の層間絶縁層は無機絶縁性材料であり、前記第2の層間絶縁層は有機絶縁性材料であることを特徴とする表示装置。     2. The display device according to claim 1, wherein the first interlayer insulating layer is an inorganic insulating material, and the second interlayer insulating layer is an organic insulating material. 請求項1において、前記第2の層間絶縁層は2層の積層構造であることを特徴とする表示装置。     The display device according to claim 1, wherein the second interlayer insulating layer has a two-layer structure. 請求項3において、前記第2の層間絶縁層は無機絶縁性材料と有機絶縁性材料の2層の積層構造であることを特徴とする表示装置。     The display device according to claim 3, wherein the second interlayer insulating layer has a two-layer structure of an inorganic insulating material and an organic insulating material. 画素領域に不純物領域を有する半導体層を形成し、
接続領域及び前記半導体層上にゲート絶縁層を形成し、
前記ゲート絶縁層上にゲート電極層及び導電層を形成し、
前記ゲート電極層上及び前記導電層上に第1の層間絶縁層を形成し、
前記ゲート絶縁層及び前記第1の層間絶縁層は前記不純物領域に達する第1の開口を有し、
前記第1の開口、及び前記ゲート電極層の一部を覆ってソース電極層又はドレイン電極層を形成し、
前記第1の層間絶縁層上に前記導電層を覆って配線層を形成し、
前記第1の層間絶縁層、前記配線層、前記ソース電極層及び前記ドレイン電極層上に第2の層間絶縁層を形成し、
前記第2の層間絶縁層に前記ソース電極層又は前記ドレイン電極層に達する第2の開口、及び前記配線層に達する第3の開口を形成し、
前記第2の開口に第1の電極層を形成し、
前記第2の層間絶縁層の前記第3の開口の上端部及び第1の電極層の一部を覆って絶縁層を形成し、
前記第3の開口に、前記絶縁層に接して第2の電極層を形成することを特徴とする表示装置の作製方法。
Forming a semiconductor layer having an impurity region in the pixel region;
Forming a gate insulating layer on the connection region and the semiconductor layer;
Forming a gate electrode layer and a conductive layer on the gate insulating layer;
Forming a first interlayer insulating layer on the gate electrode layer and the conductive layer;
The gate insulating layer and the first interlayer insulating layer have a first opening reaching the impurity region;
Forming a source electrode layer or a drain electrode layer covering the first opening and a part of the gate electrode layer;
Forming a wiring layer on the first interlayer insulating layer so as to cover the conductive layer;
Forming a second interlayer insulating layer on the first interlayer insulating layer, the wiring layer, the source electrode layer, and the drain electrode layer;
Forming a second opening reaching the source electrode layer or the drain electrode layer and a third opening reaching the wiring layer in the second interlayer insulating layer;
Forming a first electrode layer in the second opening;
An insulating layer is formed to cover an upper end portion of the third opening of the second interlayer insulating layer and a part of the first electrode layer;
A method for manufacturing a display device, wherein a second electrode layer is formed in the third opening in contact with the insulating layer.
請求項5において、前記第1の層間絶縁層を形成した後、加熱処理を行うことを特徴とする表示装置の作製方法。     6. The method for manufacturing a display device according to claim 5, wherein heat treatment is performed after the first interlayer insulating layer is formed. 請求項5において、前記第1の層間絶縁層は無機絶縁材料を用いて形成し、前記第2の層間絶縁層は有機絶縁性材料を塗布法を用いて形成することを特徴とする表示装置の作製方法。     6. The display device according to claim 5, wherein the first interlayer insulating layer is formed using an inorganic insulating material, and the second interlayer insulating layer is formed using an organic insulating material by a coating method. Manufacturing method. 請求項5において、前記第2の層間絶縁層は2層の積層構造であり、酸化窒化膜を形成した後、アルキル基を有する酸化珪素膜を塗布法により形成することを特徴とする表示装置の作製方法。     6. The display device according to claim 5, wherein the second interlayer insulating layer has a two-layer structure, and after forming the oxynitride film, a silicon oxide film having an alkyl group is formed by a coating method. Manufacturing method. 請求項5において、前記第1の層間絶縁層は2層の積層構造であり、窒化酸化珪素膜を形成し、連続的に酸化窒化珪素膜を形成することを特徴とする表示装置の作製方法。
6. The method for manufacturing a display device according to claim 5, wherein the first interlayer insulating layer has a two-layer structure, a silicon nitride oxide film is formed, and a silicon oxynitride film is continuously formed.
JP2005220492A 2004-07-30 2005-07-29 Method for manufacturing display device Active JP5072202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220492A JP5072202B2 (en) 2004-07-30 2005-07-29 Method for manufacturing display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004224660 2004-07-30
JP2004224660 2004-07-30
JP2005220492A JP5072202B2 (en) 2004-07-30 2005-07-29 Method for manufacturing display device

Publications (3)

Publication Number Publication Date
JP2006065320A true JP2006065320A (en) 2006-03-09
JP2006065320A5 JP2006065320A5 (en) 2008-07-10
JP5072202B2 JP5072202B2 (en) 2012-11-14

Family

ID=36111814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220492A Active JP5072202B2 (en) 2004-07-30 2005-07-29 Method for manufacturing display device

Country Status (1)

Country Link
JP (1) JP5072202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262635A (en) * 2009-04-06 2010-11-18 Semiconductor Energy Lab Co Ltd Information processing device, ic card and communication system
CN103135288A (en) * 2011-11-21 2013-06-05 株式会社日本显示器东 Liquid crystal display device
US9263679B2 (en) 2013-12-17 2016-02-16 Samsung Display Co., Ltd. Organic light emitting display and manufacturing method thereof
US9692008B2 (en) 2013-06-11 2017-06-27 Sharp Kabushiki Kaisha Organic electroluminescent display device
JP7466618B2 (en) 2009-10-05 2024-04-12 株式会社半導体エネルギー研究所 Display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102169A (en) * 1999-10-01 2001-04-13 Sanyo Electric Co Ltd El display
JP2002164181A (en) * 2000-09-18 2002-06-07 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
WO2002095834A1 (en) * 2001-05-18 2002-11-28 Sanyo Electric Co., Ltd. Thin film transistor and active matrix type display unit production methods therefor
JP2003308027A (en) * 2002-04-15 2003-10-31 Semiconductor Energy Lab Co Ltd Semiconductor display device
JP2004006243A (en) * 1999-06-04 2004-01-08 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
JP2004047446A (en) * 2002-05-15 2004-02-12 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
JP2004047411A (en) * 2001-11-09 2004-02-12 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
JP2004111361A (en) * 2002-07-08 2004-04-08 Lg Phillips Lcd Co Ltd Active matrix type organic electroluminescent element and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006243A (en) * 1999-06-04 2004-01-08 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
JP2001102169A (en) * 1999-10-01 2001-04-13 Sanyo Electric Co Ltd El display
JP2002164181A (en) * 2000-09-18 2002-06-07 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
WO2002095834A1 (en) * 2001-05-18 2002-11-28 Sanyo Electric Co., Ltd. Thin film transistor and active matrix type display unit production methods therefor
JP2004047411A (en) * 2001-11-09 2004-02-12 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
JP2003308027A (en) * 2002-04-15 2003-10-31 Semiconductor Energy Lab Co Ltd Semiconductor display device
JP2004047446A (en) * 2002-05-15 2004-02-12 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
JP2004111361A (en) * 2002-07-08 2004-04-08 Lg Phillips Lcd Co Ltd Active matrix type organic electroluminescent element and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262635A (en) * 2009-04-06 2010-11-18 Semiconductor Energy Lab Co Ltd Information processing device, ic card and communication system
US8797142B2 (en) 2009-04-06 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Data processing device, IC card and communication system
JP7466618B2 (en) 2009-10-05 2024-04-12 株式会社半導体エネルギー研究所 Display device
CN103135288A (en) * 2011-11-21 2013-06-05 株式会社日本显示器东 Liquid crystal display device
CN103135288B (en) * 2011-11-21 2015-11-25 株式会社日本显示器 Liquid crystal indicator
US9692008B2 (en) 2013-06-11 2017-06-27 Sharp Kabushiki Kaisha Organic electroluminescent display device
US9263679B2 (en) 2013-12-17 2016-02-16 Samsung Display Co., Ltd. Organic light emitting display and manufacturing method thereof

Also Published As

Publication number Publication date
JP5072202B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP6612824B2 (en) Light emitting device
KR101228859B1 (en) Display device and method for manufacturing the same
JP5836447B2 (en) Semiconductor device, display module, and electronic device
JP4879541B2 (en) Method for manufacturing display device
JP2006113568A (en) Display device, and method for manufacturing the same
JP5089027B2 (en) Semiconductor device
JP5072202B2 (en) Method for manufacturing display device
JP2006140140A (en) Display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250