JP2006064465A - 3-d drag sensor - Google Patents

3-d drag sensor Download PDF

Info

Publication number
JP2006064465A
JP2006064465A JP2004245544A JP2004245544A JP2006064465A JP 2006064465 A JP2006064465 A JP 2006064465A JP 2004245544 A JP2004245544 A JP 2004245544A JP 2004245544 A JP2004245544 A JP 2004245544A JP 2006064465 A JP2006064465 A JP 2006064465A
Authority
JP
Japan
Prior art keywords
catheter
center hole
strain gauge
thin plate
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004245544A
Other languages
Japanese (ja)
Other versions
JP4350004B2 (en
Inventor
Takashi Iijima
高志 飯島
Sachiko Ito
佐千子 伊藤
Masami Tanaka
真美 田中
Seiji Naganami
征二 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004245544A priority Critical patent/JP4350004B2/en
Publication of JP2006064465A publication Critical patent/JP2006064465A/en
Application granted granted Critical
Publication of JP4350004B2 publication Critical patent/JP4350004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Measurement Of Force In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 3-D drag sensor capable of measuring the contact force between the tip of a catheter and the wall of the living body and the omni-directional attitude of the catheter tip etc., as well as considering the operation of the endoscope or the catheter, matching with the tip of the endoscope or catheter etc., a large center hole capable of accommodate a forceps is provided. <P>SOLUTION: The 3-D drag sensor provided with the center hole, and suitable for mounting on the tip of the endoscope or catheter is characterized by arranging 3 or more strain gauges formed from a thin-film resistive material on the periphery of the center hole with equal intervals on an insulation film. The 3-D sensor is characterized by forming the insulation film from polyimide foil. The 3-D sensor is characterized by forming the strain gauge on an elastic thin plate. The 3-D sensor is characterized by mounting hemispherical elastic body on the strain gauge. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内視鏡又はカテーテルの先端に搭載するのに適したセンターホールを備えた3次元抗力センサに関し、特に、体内壁とセンサの接触力及び接触力の方向の計測が可能な3次元抗力センサに関するものである。   The present invention relates to a three-dimensional drag sensor having a center hole suitable for mounting on the tip of an endoscope or a catheter, and in particular, three-dimensional capable of measuring the contact force and the direction of the contact force between a body wall and the sensor. The present invention relates to a drag sensor.

現在、患者への負担を低減可能とする低侵襲・無侵襲治療が注目されており、その代表的な医療機器として体内管腔部で使用されるカテーテルや内視鏡がある。これらの機器は管腔部の複雑形状の下では使用が困難な場合が多く、そのため先端が体内構造に合わせて自由に変形する能動カテーテル(例えば、非特許文献1参照。)、及び、体内挿入中にリアルタイムで血圧を測定する光ファイバ圧力センサ(例えば、非特許文献2参照。)が開発されている。
また、内視鏡を挿入する際の押し込む力を測定する機器(例えば、非特許文献3参照。)、及び、挿入特性に大きく関わる内視鏡自体の曲げこわさについても研究がなされている(例えば、非特許文献4参照。)。
郭書詳ら、能動カテーテルシステムに関する研究・他自由度カテーテルの構造、実験結果と動作特性の評価、日本ロボット学会誌1996、820-835 J. A.Wehrmeyerら、Colonoscope flexural rigidity measurement Medical & Bilogical Engineering & Computing、July 1998、475-479 C.A.Mosseら、Device for measuring the forces exerted on thee shaft of an endoscope during colonescopy、Medical & Biological Engineering & Computing、March 1998、186-190 芳賀ら、カテーテル搭載用光ファイバ圧力センサ 計測と制御第39巻第4号 2000、292-295
Currently, minimally invasive and non-invasive treatments that can reduce the burden on patients are attracting attention, and typical medical devices include catheters and endoscopes used in the body lumen. These devices are often difficult to use under the complicated shape of the lumen, and therefore, an active catheter (see, for example, Non-Patent Document 1) whose tip freely deforms according to the body structure and insertion into the body. An optical fiber pressure sensor (see, for example, Non-Patent Document 2) that measures blood pressure in real time has been developed.
Research has also been conducted on devices that measure the pushing force when inserting an endoscope (see, for example, Non-Patent Document 3), and bending stiffness of the endoscope itself that greatly affects insertion characteristics (for example, Non-patent document 4).
Details of the outline, research on active catheter systems, structure of catheters with other degrees of freedom, evaluation of experimental results and motion characteristics, Journal of the Robotics Society of Japan 1996, 820-835 J. A. Wehrmeyer et al., Colonoscope flexural rigidity measurement Medical & Bilogical Engineering & Computing, July 1998, 475-479 C. A. Mosse et al., Device for measuring the forces exerted on thee shaft of an involving during colonescopy, Medical & Biological Engineering & Computing, March 1998, 186-190 Haga et al., Fiber Optic Pressure Sensor for Catheter Measurement and Control Vol.39 No.4 2000, 292-295

カテーテルや内視鏡は使用に際して常に体内を過剰に刺激する危険性を有しているため、医師が安全に且つ迅速に治療を行なう上で体内でのカテーテルの状況を知ることが重要である。しかしながら現在のところ、医師がカテーテルの体内状況を知ることができる情報としては、カテーテル操作中に医師が感じるカテーテル根元における手応えとしての力情報と、カテーテル先端部からの体内管腔部画像により得られる視覚的情報が主であり、これらの情報のみではカテーテルを安全に操作するのは一般に困難である。 そこで、カテーテル先端部と体内壁との接触力やカテーテル先端部の全方位姿勢を計測するセンサの開発が進められているが、これらのセンサはカテーテル先端に取り付けられるため、治療用鉗子等の作業の妨げとなるおそれがあり、診断と治療が同時に行なえるカテーテルの利点を十分に活かすことが出来なかった。   Since catheters and endoscopes always have a risk of excessive stimulation when used, it is important for doctors to know the state of catheters in the body for safe and rapid treatment. However, at present, the information that allows the doctor to know the internal state of the catheter is obtained from force information as a response at the catheter root that the doctor feels during the catheter operation and the body lumen image from the distal end of the catheter. Visual information is the main, and it is generally difficult to safely operate the catheter with this information alone. Therefore, sensors that measure the contact force between the catheter tip and the body wall and the omnidirectional posture of the catheter tip are being developed. However, since these sensors are attached to the catheter tip, work such as treatment forceps The advantage of a catheter that can perform diagnosis and treatment at the same time could not be fully utilized.

本発明は、内視鏡やカテーテルの作業を考慮して内視鏡又はカテーテル等の先端と整合して中央に鉗子等が装入できる大きいセンターホールを有するとともに、カテーテル先端部と体内壁との接触力やカテーテル先端部等の全方位姿勢の計測が可能な3次元抗力センサを提供することを目的とするものである。   The present invention has a large center hole in which a forceps or the like can be inserted in the center in alignment with the distal end of the endoscope or catheter in consideration of the operation of the endoscope or catheter, and between the distal end portion of the catheter and the body wall. An object of the present invention is to provide a three-dimensional drag sensor capable of measuring an omnidirectional posture such as contact force and catheter tip.

上記目的を達成するため本発明の3次元抗力センサは、内視鏡又はカテーテル等の先端に搭載するのに適したセンターホールを備えた3次元抗力センサにおいて、絶縁膜上に薄層抵抗材料から形成してなるひずみゲージをセンターホールの周囲に等間隔で3個以上配置してなることを特徴としている。
また、本発明の3次元抗力センサは、絶縁膜をポリイミド箔で形成することを特徴としている。
また、本発明の3次元抗力センサは、ひずみゲージを弾性薄板上に形成することを特徴としている。
また、本発明の3次元抗力センサは、ひずみゲージの上面に半球状の弾性体を装着することを特徴としている。
また、本発明の3次元抗力センサは、内視鏡又はカテーテル等の先端に搭載するのに適したセンターホールを備えた3次元抗力センサにおいて、内視鏡又はカテーテル等に接する側には弾性部材からなりセンターホールを有する基体を備え、該基体上面に貼り付けられたセンターホールを有する弾性薄板上に、絶縁膜上に薄層抵抗材料から形成してなるひずみゲージをセンターホールの周囲に等間隔で3個以上配置し、ひずみゲージの間に配したひずみゲージの厚さよりも厚い弾性薄板を介して基体上面の弾性薄板とひずみゲージの上方に位置する半球状の弾性体の下面に貼り付けられた弾性薄板とを接続してなることを特徴としている。
In order to achieve the above object, a three-dimensional drag sensor according to the present invention is a three-dimensional drag sensor having a center hole suitable for being mounted at the tip of an endoscope or a catheter, etc. It is characterized in that three or more strain gauges formed are arranged at equal intervals around the center hole.
The three-dimensional drag sensor of the present invention is characterized in that the insulating film is formed of a polyimide foil.
The three-dimensional drag sensor of the present invention is characterized in that a strain gauge is formed on an elastic thin plate.
The three-dimensional drag sensor of the present invention is characterized in that a hemispherical elastic body is mounted on the upper surface of the strain gauge.
The three-dimensional drag sensor of the present invention is a three-dimensional drag sensor provided with a center hole suitable for mounting on the tip of an endoscope or a catheter, etc., and an elastic member is provided on the side in contact with the endoscope or the catheter or the like. A strain gauge formed of a thin layer resistance material on an insulating film on an elastic thin plate having a center hole affixed to the upper surface of the substrate and equidistantly arranged around the center hole. 3 or more are attached to the elastic thin plate on the upper surface of the substrate and the lower surface of the hemispherical elastic body located above the strain gauge through an elastic thin plate thicker than the thickness of the strain gauge arranged between the strain gauges. It is characterized by being connected to a thin elastic plate.

本発明の3次元抗力センサは、以下のような優れた効果を奏する。
(1)中央に鉗子等が装入できる大きいセンターホールを有することにより、内視鏡又はカテーテル等の先端に装着した場合にも、治療用鉗子等の作業の妨げとなる恐れがないため、診断と治療が同時に行なえる。
(2)ひずみゲージをセンターホールの周囲に等間隔で3個以上設けることにより、全方位姿勢の計測が可能になる。
(3)ひずみゲージを弾性薄板に貼り付けることにより、精度の良い計測ができる。
(4)ひずみゲージの上面に半球状の弾性体を装着することにより、診断又は治療の対象となる人体等の損傷を防止することができる。
The three-dimensional drag sensor of the present invention has the following excellent effects.
(1) Since it has a large center hole where forceps can be inserted in the center, there is no risk of obstructing the operation of therapeutic forceps even when attached to the tip of an endoscope or catheter. Can be treated at the same time.
(2) By providing three or more strain gauges at equal intervals around the center hole, it is possible to measure the omnidirectional posture.
(3) Accurate measurement can be performed by attaching a strain gauge to an elastic thin plate.
(4) By attaching a hemispherical elastic body to the upper surface of the strain gauge, it is possible to prevent damage to a human body or the like to be diagnosed or treated.

本発明に係る3次元抗力センサを実施するための最良の形態を実施例に基づいて図面を参照して以下に説明する。   The best mode for carrying out the three-dimensional drag sensor according to the present invention will be described below with reference to the drawings based on the embodiments.

図1は、3次元抗力センサの正面図を、また、図2は、図1のA−A断面図を示したものである。なお、図1の上方の図は各部材を説明するため、組み立て前の状態を示しており、また、図1の下方の図は組み立て後の状態を示している。
図1において、3次元抗力センサ1は、内視鏡又はカテーテル20等の先端に搭載するのに適したものであって、内視鏡又はカテーテル20等の中央に形成された鉗子等が装入できる大きいセンターホールと整合するセンターホール2を備えている。本例においては、センターホール2の径は約8〜12mmである。
内視鏡又はカテーテル20に接する側には、ゴム等の弾性材からなりセンターホール2を有する基体3を備え、基体3の上面にはセンターホール2を有する弾性薄板6が貼り付けられている。また、3次元抗力センサ1の先端側には、ゴム等の弾性材からなりセンターホール2を有する半球状の先端部材4を備え、先端部材4の底面には弾性薄板7が貼り付けられている。
1 is a front view of a three-dimensional drag sensor, and FIG. 2 is a cross-sectional view taken along line AA of FIG. In addition, the upper figure of FIG. 1 shows the state before an assembly for demonstrating each member, and the lower figure of FIG. 1 has shown the state after an assembly.
In FIG. 1, a three-dimensional drag sensor 1 is suitable for being mounted on the distal end of an endoscope or catheter 20 or the like, and is loaded with forceps or the like formed at the center of the endoscope or catheter 20 or the like. It has a center hole 2 aligned with a large center hole that can be formed. In this example, the diameter of the center hole 2 is about 8 to 12 mm.
A base 3 made of an elastic material such as rubber and having a center hole 2 is provided on the side in contact with the endoscope or the catheter 20, and an elastic thin plate 6 having the center hole 2 is attached to the upper surface of the base 3. Further, a hemispherical tip member 4 made of an elastic material such as rubber and having a center hole 2 is provided on the tip side of the three-dimensional drag sensor 1, and an elastic thin plate 7 is attached to the bottom surface of the tip member 4. .

図2に示すように、ひずみゲージ5は、センターホール2を中心にしてその周囲に等間隔で3個以上形成されるものであり、図2においては、ひずみゲージ5は120°間隔で3つのひずみゲージパターンを設けた一体型で作製され、これを基体3上面の弾性薄板6に接着剤を用いて貼り付けることで、それらの変形により先端に加わる力および方向を計測可能とする。
先端部材4は、ひずみゲージ5へ加わる力の伝達に影響を与えない硬度を持っており、先端部材4を経由して伝わった接触力によりひずみゲージ5の抵抗が変化し、抵抗変化をホイートストンブリッジならびに動ひずみアンプを用いて電気信号に変換することにより3軸方向の力を検出する。その際、ひずみゲージ5が貼り付けられた基体3上面の弾性薄板6及び先端部材4の底面の弾性薄板7により、ひずみが伝わりやすくなっている。弾性薄板6及び弾性薄板7の間には、小円形の3つの弾性薄板8が120°間隔で3つのひずみゲージパターンの間に等間隔で配置され、上下の弾性薄板に接着等により固定されている。弾性薄板8の厚さはひずみゲージ5の厚さよりも厚くなっており、先端部材4に作用する荷重は、その底面の弾性薄板7及び小円形の弾性薄板8を経由して基体3上面の弾性薄板6に作用し、該弾性薄板6に貼り付けられた3つのひずみゲージパターンに作用するようになっている。
弾性薄板6、7及び8の材料としては、例えば、銅板のような弾性を備えているものが望ましい。
また、基体3、弾性薄板6、弾性薄板7及び先端部材4に、予めセンターホール2を形成するように準備しておき、これらの部品を組み立てることによりセンターホール2を形成する。
As shown in FIG. 2, three or more strain gauges 5 are formed at equal intervals around the center hole 2, and in FIG. 2, there are three strain gauges 5 at 120 ° intervals. It is manufactured as an integral type provided with a strain gauge pattern, and is adhered to the elastic thin plate 6 on the upper surface of the base 3 using an adhesive, whereby the force and direction applied to the tip due to the deformation can be measured.
The tip member 4 has a hardness that does not affect the transmission of the force applied to the strain gauge 5, and the resistance of the strain gauge 5 is changed by the contact force transmitted through the tip member 4, and the resistance change is compensated for the Wheatstone bridge. In addition, the force in the triaxial direction is detected by converting it into an electrical signal using a dynamic strain amplifier. At that time, the strain is easily transmitted by the elastic thin plate 6 on the upper surface of the substrate 3 to which the strain gauge 5 is attached and the elastic thin plate 7 on the bottom surface of the tip member 4. Between the elastic thin plate 6 and the elastic thin plate 7, three small circular elastic thin plates 8 are arranged at equal intervals between three strain gauge patterns at intervals of 120 °, and are fixed to the upper and lower elastic thin plates by adhesion or the like. Yes. The thickness of the elastic thin plate 8 is thicker than the thickness of the strain gauge 5, and the load acting on the tip member 4 is elastic on the upper surface of the substrate 3 through the elastic thin plate 7 on the bottom surface and the small circular elastic thin plate 8. It acts on the thin plate 6 and acts on three strain gauge patterns attached to the elastic thin plate 6.
As a material of the elastic thin plates 6, 7 and 8, for example, a material having elasticity such as a copper plate is desirable.
In addition, the center hole 2 is formed in advance by preparing the center hole 2 in the base 3, the elastic thin plate 6, the elastic thin plate 7 and the tip member 4, and assembling these components.

次に、上記したひずみゲージパターンの作成プロセスの例を説明する。
図3は、リフトオフ法を用いてポリイミド箔上に作製したひずみゲージの作製プロセスを示したものである。
先ず、ポリイミド箔上にレジストを塗布する(図3(a))。
次に、パターニングを行い、パターン形成する(図3(b))。
その後、Cu−Cr合金ターゲットを用い、スパッタ法によりCu−Cr合金膜をレジスト上に一様に形成する(図3(c))。
続いて、アセトン中でレジストと不用なCu−Cr合金膜を除去し、目的のパターンを得る(図3(d))。
なお、合金膜をレジスト上に形成する手段としては、スパッタ法に限らず、蒸着法等でも良く、その際の材料としてはNi−Cr等、ひずみにより抵抗が変化する抵抗材料であれば良い。
Next, an example of the above-described strain gauge pattern creation process will be described.
FIG. 3 shows a process for producing a strain gauge produced on a polyimide foil by using the lift-off method.
First, a resist is applied on the polyimide foil (FIG. 3A).
Next, patterning is performed to form a pattern (FIG. 3B).
Thereafter, using a Cu—Cr alloy target, a Cu—Cr alloy film is uniformly formed on the resist by sputtering (FIG. 3C).
Subsequently, the resist and unnecessary Cu—Cr alloy film are removed in acetone to obtain a target pattern (FIG. 3D).
The means for forming the alloy film on the resist is not limited to the sputtering method, but may be a vapor deposition method or the like. The material at that time may be a resistance material whose resistance changes due to strain, such as Ni—Cr.

図4は、ポリイミド箔上に作製した一体型ひずみゲージを示したものである。
この例では、ポリイミド箔上にパターンを形成したが、ポリイミド箔に限らず他のポリマー、S膜等、絶縁膜であれば良い。また、ひずみゲージのパターンが形成できる手法であれば、リソグラフィー以外、印刷法でも良い。さらに、弾性薄板6上に絶縁膜を形成し、その上にひずみゲージパターンを作製し、弾性薄板−絶縁膜−ひずみゲージを一体としても良い。
FIG. 4 shows an integrated strain gauge fabricated on a polyimide foil.
In the example, a pattern was formed on the polyimide foil, other polymer is not limited to polyimide foil, S i O 2 film, etc., it may be any insulating film. Further, as long as it is a technique capable of forming a strain gauge pattern, a printing method other than lithography may be used. Furthermore, an insulating film may be formed on the elastic thin plate 6, a strain gauge pattern may be formed thereon, and the elastic thin plate-insulating film-strain gauge may be integrated.

先端部材4を経由して伝わった接触力によりひずみゲージ5の抵抗変化をホイートストンブリッジ及び動ひずみアンプを用いて電気信号に変換することにより3軸方向の力を検出する手法について、図5に基づいて説明する。
センターホール2を中心にしてその周囲に120°間隔で3つのひずみゲージパターンを設けた一体型のひずみゲージ5の各ゲージ自体は抵抗体であり、3次元抗力センサが対象物と接触することにより、ひずみゲージI〜IIIは変形し、各々のその抵抗の大きさは微小であるが変化する。この抵抗変化をブリッジボックスを通すことにより、差動電圧として得ることが可能となる。この差動電圧は微小であるため、動ひずみアンプを用いて増幅することが必要となり、得られる各電圧値を用いコンピュータによる計算処理を行うことにより、加重pおよび角度φ、θを求めることができる。
Based on FIG. 5, a method for detecting a force in three axial directions by converting a resistance change of the strain gauge 5 into an electrical signal using a Wheatstone bridge and a dynamic strain amplifier by a contact force transmitted via the tip member 4. I will explain.
Each gauge of the integrated strain gauge 5 provided with three strain gauge patterns around the center hole 2 at intervals of 120 ° is a resistor, and the three-dimensional drag sensor comes into contact with the object. The strain gauges I to III are deformed, and the magnitude of each of the resistances is minute but changes. This resistance change can be obtained as a differential voltage by passing through the bridge box. Since this differential voltage is very small, it is necessary to amplify it using a dynamic strain amplifier, and the weighting p and the angles φ and θ can be obtained by performing calculation processing by a computer using each obtained voltage value. it can.

図6及び図7は、接触状態の荷重p及び角度φ、θを求める際の角度φ、θの関係を示すものであり、図6は正面図、図7は平面図である。

今、図6及び図7に示すように、実験条件として対象面と3次元抗力センサ1は面接触とし、荷重Pは面接触の垂直方向から加わるように設置する。
対象面が3次元抗力センサ1に対してある角度で接触する場合はセンサを横から見たときの垂直線からの角度をφ、真上から見たときのゲージを基準とした角度をθと定義することで、対象面の接触位置を表すことが可能である。
以下に荷重p (N)、角度θ (deg)、及び角度φ(deg)をそれぞれ変化させて3次元抗力センサ1の出力を測定し、その特性を調べることとする。
3つのゲージから得られる出力電圧はそれぞれ120°に近い位相差を持った正弦波形で近似でき、荷重pとφは正弦波の振幅に比例していることが分かっている。 よって、各センサからの出力と対象物との接触荷重pと接触角度θおよびφの関係は、実験的に求めた補正値である、振幅係数A、位相α、平均出力をBの値を用いて以下のように表せる。
=Aφpcos(θ+α)+B
i=1〜3
6 and 7 show the relationship between the loads p and the angles φ and θ when the loads p and the angles φ and θ are obtained, FIG. 6 is a front view, and FIG. 7 is a plan view.

Now, as shown in FIGS. 6 and 7, as an experimental condition, the target surface and the three-dimensional drag sensor 1 are in surface contact, and the load P is installed so as to be applied from the vertical direction of the surface contact.
When the target surface is in contact with the three-dimensional drag sensor 1 at an angle, the angle from the vertical line when the sensor is viewed from the side is φ, and the angle based on the gauge when viewed from directly above is θ. By defining, it is possible to represent the contact position of the target surface.
Hereinafter, the output p of the three-dimensional drag sensor 1 is measured by changing the load p (N), the angle θ (deg), and the angle φ (deg), and the characteristics thereof are examined.
The output voltages obtained from the three gauges can be approximated by sinusoidal waveforms each having a phase difference close to 120 °, and it is known that the loads p and φ are proportional to the amplitude of the sinusoidal wave. Therefore, the relationship between the output from each sensor and the contact load p between the object and the contact angles θ and φ is the experimentally obtained correction values, ie, the amplitude coefficient A i , the phase α i , and the average output of B i . It can be expressed as follows using the value.
Y i = A i φpcos (θ + α i ) + B i p
i = 1 to 3

上記の式を連立して解くことによりpと接触角度θおよびφを求めることができる。 なお、計算は以下の手順の通りである。
=A{B(B−B)+B(B−B)}
=A{B(B−B)+B(B−B)}
=A{B(B−B)+B(B−B)}
=A{B(B−B)+B(B−B)}
D=Qcosα−Qcosα−Qcosα+Qcosα
E=Qsinα−Qsinα−Qsinα+Qsinα
とすると、
Θ=arctan{Qcosα−Qcosα−Qcosα+Qcosα/Qsinα−Qsinα−Qsinα+Qsinα
E<0のとき、 θ=Θ+180°
D<0、E>0のとき、 θ=Θ+360°
それ以外のとき、 θ=Θ
求めたθを用い、p、φを求めると、
p=Acos(θ+α)−Acos(θ+α)/Acos(θ+α)−Acos(θ+α
φ=Y−Bp/Apcos(θ+α
By solving the above equations simultaneously, p and the contact angles θ and φ can be obtained. The calculation is as follows.
Q 1 = A 3 B 1 B 2 {B 3 (B 2 Y 1 -B 1 Y 2) + B 2 (B 1 Y 3 -B 3 Y 1)}
Q 2 = A 1 B 2 B 3 {B 3 (B 2 Y 1 -B 1 Y 2) + B 2 (B 1 Y 3 -B 3 Y 1)}
Q 3 = A 2 B 1 B 3 {B 3 (B 2 Y 1 -B 1 Y 2) + B 1 (B 3 Y 2 -B 2 Y 3)}
Q 4 = A 3 B 1 B 2 {B 3 (B 2 Y 1 -B 1 Y 2) + B 1 (B 3 Y 2 -B 2 Y 3)}
D = Q 4 cos α 3 -Q 3 cos α 2 -Q 2 cos α 1 + Q 1 cos α 3
E = Q 1 sin α 3 −Q 2 sin α 1 −Q 3 sin α 2 + Q 4 sin α 3
Then,
Θ = arctan {Q 4 cos α 3 −Q 3 cos α 2 −Q 2 cos α 1 + Q 1 cos α 3 / Q 1 sin α 3 −Q 2 sin α 1 −Q 3 sin α 2 + Q 4 sin α 3 }
When E <0, θ = Θ + 180 °
When D <0, E> 0, θ = Θ + 360 °
Otherwise, θ = Θ
Using the obtained θ, p and φ are obtained,
p = A 2 Y 1 cos (θ + α 2 ) -A 1 Y 2 cos (θ + α 1 ) / A 2 B 1 cos (θ + α 2 ) -A 1 B 2 cos (θ + α 1 )
φ = Y 1 −B 1 p / A 1 pcos (θ + α 1 )

以上のようにセンサ出力より連立方程式を解くことにより、接触条件p、θおよびφを求めることが可能である。
そこで図6及びず7に示した方法で精度確認実験を行なった。実験方法は上記の特性測定と同様に行い、センサ出力から実験設定値を上記式から求め、設定値との誤差を求めた。得られた結果を表1に示す。結果より、誤差を伴うものの全てのセンサで荷重、角度の情報を特定することが可能であることが確認された。

Figure 2006064465
As described above, the contact conditions p, θ, and φ can be obtained by solving simultaneous equations from the sensor output.
Therefore, an accuracy confirmation experiment was performed by the method shown in FIGS. The experiment method was performed in the same manner as the above characteristic measurement, and an experimental set value was obtained from the sensor output from the above formula, and an error from the set value was obtained. The results obtained are shown in Table 1. From the results, it was confirmed that the load and angle information can be specified by all the sensors with an error.
Figure 2006064465

本発明の実施の形態に係る3次元抗力センサの正面図である。It is a front view of the three-dimensional drag sensor concerning an embodiment of the invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の実施の形態に係るリフトオフ法を用いてポリイミド箔上に作製したひずみゲージの作製プロセスを示したものである。The manufacturing process of the strain gauge produced on the polyimide foil using the lift-off method which concerns on embodiment of this invention is shown. 本発明の実施の形態に係るポリイミド箔上に作製した一体型ひずみゲージを示したものである。1 shows an integrated strain gauge produced on a polyimide foil according to an embodiment of the present invention. ひずみゲージの抵抗変化をホイートストンブリッジ及び動ひずみアンプを用いて電気信号に変換することにより3軸方向の力を検出する手法を説明した図である。It is the figure explaining the method of detecting the force of a triaxial direction by converting the resistance change of a strain gauge into an electric signal using a Wheatstone bridge and a dynamic strain amplifier. 本発明の実施の形態に係る接触状態の荷重p及び角度φ、θを求める際の角度φ、θの関係を示す正面図である。It is a front view which shows the relationship of angle (phi) and (theta) at the time of calculating | requiring the load p of contact state and angle (phi), (theta) which concerns on embodiment of this invention. 本発明の実施の形態に係る接触状態の荷重p及び角度φ、θを求める際の角度φ、θの関係を示す平面図である。It is a top view which shows the relationship of the angle (phi) and (theta) at the time of calculating | requiring the load p of contact state and angle (phi), (theta) which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 3次元抗力センサ
2 センターホール
3 基体
4 先端部材
5 ひずみゲージ
6 弾性薄板
7 弾性薄板
8 小円形弾性薄板
DESCRIPTION OF SYMBOLS 1 3D drag sensor 2 Center hole 3 Base | substrate 4 Tip member 5 Strain gauge 6 Elastic thin plate 7 Elastic thin plate 8 Small circular elastic thin plate

Claims (5)

内視鏡又はカテーテル等の先端に搭載するのに適したセンターホールを備えた3次元抗力センサにおいて、絶縁膜上に薄層抵抗材料から形成してなるひずみゲージをセンターホールの周囲に等間隔で3個以上配置してなることを特徴とする3次元抗力センサ。   In a three-dimensional drag sensor equipped with a center hole suitable for mounting at the tip of an endoscope or catheter, strain gauges formed of a thin layer resistance material on an insulating film are arranged at equal intervals around the center hole. A three-dimensional drag sensor comprising three or more sensors. 絶縁膜をポリイミド箔で形成することを特徴とする請求項1記載の3次元抗力センサ。   The three-dimensional drag sensor according to claim 1, wherein the insulating film is formed of a polyimide foil. ひずみゲージを弾性薄板上に形成することを特徴とする請求項1又は請求項2記載の3次元抗力センサ。   3. The three-dimensional drag sensor according to claim 1, wherein the strain gauge is formed on an elastic thin plate. ひずみゲージの上面に半球状の弾性体を装着することを特徴とする請求項1乃至請求項3のいずれか1項に記載の3次元抗力センサ。   The three-dimensional drag sensor according to any one of claims 1 to 3, wherein a hemispherical elastic body is attached to the upper surface of the strain gauge. 内視鏡又はカテーテル等の先端に搭載するのに適したセンターホールを備えた3次元抗力センサにおいて、内視鏡又はカテーテル等に接する側には弾性部材からなりセンターホールを有する基体を備え、該基体上面に貼り付けられたセンターホールを有する弾性薄板上に、絶縁膜上に薄層抵抗材料から形成してなるひずみゲージをセンターホールの周囲に等間隔で3個以上配置し、ひずみゲージの間に配したひずみゲージの厚さよりも厚い弾性薄板を介して基体上面の弾性薄板とひずみゲージの上方に位置する半球状の弾性体の下面に貼り付けられた弾性薄板とを接続してなることを特徴とする3次元抗力センサ。   In a three-dimensional drag sensor provided with a center hole suitable for being mounted on the tip of an endoscope or a catheter, the side contacting the endoscope or the catheter is provided with a base made of an elastic member and having a center hole. Three or more strain gauges made of a thin layer resistive material on an insulating film are arranged on the elastic thin plate having a center hole attached to the upper surface of the substrate at equal intervals around the center hole. The elastic thin plate on the upper surface of the substrate and the elastic thin plate attached to the lower surface of the hemispherical elastic body located above the strain gauge are connected via an elastic thin plate thicker than the thickness of the strain gauge arranged in A characteristic three-dimensional drag sensor.
JP2004245544A 2004-08-25 2004-08-25 3D drag sensor Expired - Fee Related JP4350004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245544A JP4350004B2 (en) 2004-08-25 2004-08-25 3D drag sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245544A JP4350004B2 (en) 2004-08-25 2004-08-25 3D drag sensor

Publications (2)

Publication Number Publication Date
JP2006064465A true JP2006064465A (en) 2006-03-09
JP4350004B2 JP4350004B2 (en) 2009-10-21

Family

ID=36111084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245544A Expired - Fee Related JP4350004B2 (en) 2004-08-25 2004-08-25 3D drag sensor

Country Status (1)

Country Link
JP (1) JP4350004B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111182A1 (en) * 2006-03-27 2007-10-04 National University Corporation Nagoya Institute Of Technology Apparatus and method for measuring compression force of flexible linear body
WO2008029705A1 (en) * 2006-09-05 2008-03-13 National University Corporation Nagoya Institute Of Technology Compression force measuring device of flexible linear body
WO2008003307A3 (en) * 2006-07-06 2008-03-20 Roland Werthschuetzky Force sensor for the detection of a force vector
US20110184406A1 (en) 2010-01-22 2011-07-28 Selkee Thomas V Catheter having a force sensing distal tip
US8286510B2 (en) 2006-06-29 2012-10-16 Thorsten Meiss Force sensor and method for detecting at least one force component
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US8380276B2 (en) 2010-08-16 2013-02-19 Biosense Webster, Inc. Catheter with thin film pressure sensing distal tip
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US8475450B2 (en) 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8600472B2 (en) 2008-12-30 2013-12-03 Biosense Webster (Israel), Ltd. Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes
US8608735B2 (en) 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US8731859B2 (en) 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
US8852130B2 (en) 2009-12-28 2014-10-07 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8920415B2 (en) 2009-12-16 2014-12-30 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8979772B2 (en) 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
US8990039B2 (en) 2009-12-23 2015-03-24 Biosense Webster (Israel) Ltd. Calibration system for a pressure-sensitive catheter
US9101396B2 (en) 2010-06-30 2015-08-11 Biosense Webster (Israel) Ltd. Pressure sensing for a multi-arm catheter
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US9182302B2 (en) 2012-07-06 2015-11-10 Samsung Electronics Co., Ltd. Apparatus and method for measuring tactile sensation
US9220433B2 (en) 2011-06-30 2015-12-29 Biosense Webster (Israel), Ltd. Catheter with variable arcuate distal section
US9326700B2 (en) 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
US9662169B2 (en) 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
WO2019243597A1 (en) 2018-06-22 2019-12-26 Universität Basel Force sensing device, medical endodevice and process of using such endodevice
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
CN115515847A (en) * 2020-07-21 2022-12-23 法韦罗电子有限责任公司 Bicycle pedal and related manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185937B1 (en) * 2013-03-27 2020-12-02 세미텍 가부시키가이샤 Contact force sensor

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292711A (en) * 2006-03-27 2007-11-08 Nagoya Institute Of Technology Device and method for measuring compression force of flexible linear body
WO2007111182A1 (en) * 2006-03-27 2007-10-04 National University Corporation Nagoya Institute Of Technology Apparatus and method for measuring compression force of flexible linear body
US7984659B2 (en) 2006-03-27 2011-07-26 National Universtiy Corporation Nagoya Device and method for measuring compressive force of flexible linear body
US8286510B2 (en) 2006-06-29 2012-10-16 Thorsten Meiss Force sensor and method for detecting at least one force component
WO2008003307A3 (en) * 2006-07-06 2008-03-20 Roland Werthschuetzky Force sensor for the detection of a force vector
US8312779B2 (en) 2006-07-06 2012-11-20 Thorsten Meiss Force sensor for the detection of a force vector
JP2008064508A (en) * 2006-09-05 2008-03-21 Nagoya Institute Of Technology Apparatus for measuring compressive force of flexible linear element
US8631713B2 (en) 2006-09-05 2014-01-21 National University Corporation Nagoya Institute Of Technology Device for measuring compressive force of flexible linear body
WO2008029705A1 (en) * 2006-09-05 2008-03-13 National University Corporation Nagoya Institute Of Technology Compression force measuring device of flexible linear body
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US8900229B2 (en) 2007-10-08 2014-12-02 Biosense Webster (Israel) Ltd. High-sensitivity pressure-sensing probe
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8784413B2 (en) 2007-10-08 2014-07-22 Biosense Webster (Israel) Ltd. Catheter with pressure sensing
US10357310B2 (en) 2008-06-06 2019-07-23 Biosense Webster (Israel) Ltd. Catheter with bendable tip
US9345533B2 (en) 2008-06-06 2016-05-24 Biosense Webster, Inc. Catheter with bendable tip
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US8818485B2 (en) 2008-06-06 2014-08-26 Biosense Webster, Inc. Catheter with bendable tip
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US9326700B2 (en) 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
US8600472B2 (en) 2008-12-30 2013-12-03 Biosense Webster (Israel), Ltd. Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes
US8475450B2 (en) 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US11383063B2 (en) 2009-11-30 2022-07-12 Biosense Webster (Israel) Ltd. Catheter with pressure measuring tip
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US9131981B2 (en) 2009-12-16 2015-09-15 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8920415B2 (en) 2009-12-16 2014-12-30 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8990039B2 (en) 2009-12-23 2015-03-24 Biosense Webster (Israel) Ltd. Calibration system for a pressure-sensitive catheter
US8852130B2 (en) 2009-12-28 2014-10-07 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8608735B2 (en) 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US20110184406A1 (en) 2010-01-22 2011-07-28 Selkee Thomas V Catheter having a force sensing distal tip
US8374670B2 (en) 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
US8359082B2 (en) 2010-01-22 2013-01-22 Biosense Webster, Inc. Catheter having a force sensing distal tip
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
US9101396B2 (en) 2010-06-30 2015-08-11 Biosense Webster (Israel) Ltd. Pressure sensing for a multi-arm catheter
US9603669B2 (en) 2010-06-30 2017-03-28 Biosense Webster (Israel) Ltd. Pressure sensing for a multi-arm catheter
US8380276B2 (en) 2010-08-16 2013-02-19 Biosense Webster, Inc. Catheter with thin film pressure sensing distal tip
US8731859B2 (en) 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8979772B2 (en) 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
US9220433B2 (en) 2011-06-30 2015-12-29 Biosense Webster (Israel), Ltd. Catheter with variable arcuate distal section
US9717559B2 (en) 2011-06-30 2017-08-01 Biosense Webster (Israel) Ltd. Catheter with adjustable arcuate distal section
US9662169B2 (en) 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
US10751120B2 (en) 2011-07-30 2020-08-25 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
US9182302B2 (en) 2012-07-06 2015-11-10 Samsung Electronics Co., Ltd. Apparatus and method for measuring tactile sensation
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
WO2019243597A1 (en) 2018-06-22 2019-12-26 Universität Basel Force sensing device, medical endodevice and process of using such endodevice
US20210267709A1 (en) * 2018-06-22 2021-09-02 Universität Basel Force sensing device, medical endodevice and process of using such endodevice
CN115515847A (en) * 2020-07-21 2022-12-23 法韦罗电子有限责任公司 Bicycle pedal and related manufacturing method

Also Published As

Publication number Publication date
JP4350004B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4350004B2 (en) 3D drag sensor
US8021361B2 (en) Systems and methods for electrode contact assessment
US9060713B2 (en) Sensing tissue properties
Polygerinos et al. Triaxial catheter-tip force sensor for MRI-guided cardiac procedures
Othman et al. Tactile sensing for minimally invasive surgery: Conventional methods and potential emerging tactile technologies
EP3766449B1 (en) Surgical robot system and surgical instrument thereof
Li et al. Reaction force mapping by 3-axis tactile sensing with arbitrary angles for tissue hard-inclusion localization
Li et al. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery
US20130228018A1 (en) Miniaturized pressure sensor
JP2000508224A (en) Bending response catheter
Koch et al. Skin attachable flexible sensor array for respiratory monitoring
US8596111B2 (en) System for sensing and displaying softness and force
Li et al. Mechanical imaging of soft tissues with a highly compliant tactile sensing array
US20160213280A1 (en) Medical device for contact sensing
Sattayasoonthorn et al. On the feasibility of a liquid crystal polymer pressure sensor for intracranial pressure measurement
Padmanabhan et al. Force sensing technologies for catheter ablation procedures
Koch et al. Stretchable sensor array for respiratory monitoring
Srivastava et al. Design of an ultra thin strain sensor using superelastic nitinol for applications in minimally invasive surgery
Arabagi et al. Simultaneous soft sensing of tissue contact angle and force for millimeter-scale medical robots
CN113483816B (en) Shape-position-force composite sensing unit and measuring method thereof
Yu et al. Tip tracking of surgical navigation stylets using integrated strain sensors
JPWO2020247619A5 (en)
Yang et al. Modelling and characterization of an instrumented medical needle in sight of new microsensor design for its insertion guidance
Hadi-Hosseinabadi et al. Multi-axis force sensing in robotic minimally invasive surgery with no instrument modification
JPH06142031A (en) Medical care tool to be inserted in body and provided with detecting function for amount of self deformation and tactile sense function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees