JP2006064037A - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP2006064037A
JP2006064037A JP2004245771A JP2004245771A JP2006064037A JP 2006064037 A JP2006064037 A JP 2006064037A JP 2004245771 A JP2004245771 A JP 2004245771A JP 2004245771 A JP2004245771 A JP 2004245771A JP 2006064037 A JP2006064037 A JP 2006064037A
Authority
JP
Japan
Prior art keywords
inner ring
crowning
axis direction
length
effective contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004245771A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawase
達夫 川瀬
Hiroki Fujiwara
宏樹 藤原
Mitsuo Sasabe
光男 笹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004245771A priority Critical patent/JP2006064037A/en
Publication of JP2006064037A publication Critical patent/JP2006064037A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose an inner diameter side shape of an inner ring capable of preventing the application of an edge load to the inner ring. <P>SOLUTION: A contour line of a crowning part 117 in cross section in the axial direction of the inner ring 11 is a logarithmic curve expressed by an expression (I). The ratio Z of the maximum drop amount z<SB>m</SB>relative to the axis diameter of the crowning part 117 is set to be Z≥(0.4L'+0.083)×10<SP>-3</SP>, where L' is the ratio of the length y<SB>m</SB>in the axial direction of the crowning part 117 relative to the length L in the y-axis direction of the effective contact part of the inner ring 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内輪と外輪との間に複数の転動体を介在させた転がり軸受に関するものである。   The present invention relates to a rolling bearing in which a plurality of rolling elements are interposed between an inner ring and an outer ring.

従来の転がり軸受について、鉄道車両の車軸支持に使用される複列円すいころ軸受を挙げて説明する。図20は、鉄道車両の車軸支持に使用される複列円すいころ軸受の一例を示している。この複列円すいころ軸受は、車軸1に嵌合させる一対の内輪11,11と、図示外の軸箱に嵌合固定される外輪12と、一対の内輪11,11及び外輪12間に転動自在に介在する転動体としての複列の円すいころ13,13と、各列の円すいころ13,13を軸受周方向に所定の間隔で保持する保持器14,14とを主要な構成要素としている。なお、図中の符号15は後蓋で、符号16は油切りである。後蓋15及び油切り16は、内輪11の外側端部に隣接するように車軸1に嵌合され、内輪11と共に回転する部材である。また、符号17,17は密封装置で、外輪12の端部に嵌合固定され、弾性体シール17a,17aを後蓋15又は油切り16に摺接させて軸受内部を密封するものである。   A conventional rolling bearing will be described with reference to a double row tapered roller bearing used for supporting an axle of a railway vehicle. FIG. 20 shows an example of a double-row tapered roller bearing used for supporting an axle of a railway vehicle. This double-row tapered roller bearing rolls between a pair of inner rings 11 and 11 fitted to the axle 1, an outer ring 12 fitted and fixed to a shaft box (not shown), and the pair of inner rings 11 and 11 and the outer ring 12. The main components are double-row tapered rollers 13 and 13 as rolling elements that are freely interposed, and cages 14 and 14 that hold the tapered rollers 13 and 13 in each row at predetermined intervals in the bearing circumferential direction. . In addition, the code | symbol 15 in a figure is a rear cover, and the code | symbol 16 is an oil drain. The rear lid 15 and the oil drain 16 are members that are fitted to the axle 1 so as to be adjacent to the outer end of the inner ring 11 and rotate together with the inner ring 11. Reference numerals 17 and 17 denote sealing devices which are fitted and fixed to the end portions of the outer ring 12, and the elastic seals 17a and 17a are brought into sliding contact with the rear lid 15 or the oil drain 16 to seal the inside of the bearing.

ところで、鉄道車両は重量物であるため、その荷重が負荷される車軸1には撓みが生じる。車軸1が撓んだ状態で回転駆動されると、車軸1と内輪11,11の間に接触不良が発生する。詳しくは、内輪11,11に対して車軸1が傾いて、内輪11,11の内径側端部に集中荷重(エッジロード)が負荷される。このエッジロードにより、内輪11,11の疲労寿命が低下する一方、車軸1と内輪11,11の間に滑りが生じて車軸1の表面に円周方向の傷が付く。   By the way, since the railway vehicle is heavy, the axle 1 to which the load is applied is bent. When the axle 1 is rotated while being bent, a contact failure occurs between the axle 1 and the inner rings 11 and 11. Specifically, the axle 1 is inclined with respect to the inner rings 11, 11, and a concentrated load (edge load) is applied to the inner diameter side ends of the inner rings 11, 11. This edge load reduces the fatigue life of the inner rings 11, 11, while slipping occurs between the axle 1 and the inner rings 11, 11 and the surface of the axle 1 is damaged in the circumferential direction.

従来は、内輪11,11のエッジロードを抑制するため、各内輪11,11の内径側の端部を円すい面状に面取り加工したり、或いは略球面状にR加工したものが提案されている(例えば特許文献1〜4参照)。なお、図20では、便宜上、各内輪11,11の内径側の端部にR加工を施したものを示している。   Conventionally, in order to suppress the edge load of the inner rings 11, 11, the inner ring side ends of the inner rings 11, 11 have been chamfered into a conical shape or R-shaped into a substantially spherical shape. (For example, refer patent documents 1-4). In FIG. 20, for the sake of convenience, the inner ring 11, 11 on the inner diameter side is subjected to R processing.

特開2003−314566号公報JP 2003-314666 A 特開2003−314570号公報JP 2003-314570 A 特開2004−011715号公報JP 2004-0111715 A 特開2004−011716号公報JP 2004-011716 A

内輪11,11の内径側端部に面取り加工やR加工を施すと、車軸1を撓ませるような大きな荷重が負荷されたときに、内輪11,11の内径面が弾性的に微小変形し、面取り加工又はR加工された部位の一部が車軸1に接触する。これにより、車軸1との接触で内輪11,11の内径面に負荷される面圧が分散され、内輪11,11のエッジロードが抑制される。しかし、面取り加工の傾斜角やR加工の曲率、或いはこれらの加工領域が過小又は過大であると、内輪11,11のエッジロードを軽減させることができず、車軸1や内輪11,11の耐久性が低下する。   When chamfering or R machining is performed on the inner diameter side ends of the inner rings 11, 11, the inner diameter surfaces of the inner rings 11, 11 are elastically minutely deformed when a large load is applied to bend the axle 1. A part of the chamfered or R-machined portion contacts the axle 1. As a result, the contact pressure applied to the inner diameter surfaces of the inner rings 11 and 11 due to contact with the axle 1 is dispersed, and the edge load of the inner rings 11 and 11 is suppressed. However, if the inclination angle of the chamfering process, the curvature of the R process, or these process areas are too small or too large, the edge load of the inner rings 11 and 11 cannot be reduced, and the durability of the axle 1 and the inner rings 11 and 11 cannot be reduced. Sex is reduced.

本発明は、かかる実情に鑑み創案されたものであって、その目的は、内輪にエッジロードが負荷されるのを防止し得る内輪の内径側形状を提案することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to propose an inner ring inner side shape that can prevent an edge load from being applied to the inner ring.

本発明に係る転がり軸受は、上記目的を達成するため、軸に嵌合させる内輪と、外輪と、内輪及び外輪間に転動自在に介在する複数の転動体とを具備し、内輪の内径側に、内輪の軸線方向断面における輪郭線を式(1)で表される対数曲線とするクラウニング部を設けたことを特徴としている。   In order to achieve the above object, a rolling bearing according to the present invention comprises an inner ring fitted to a shaft, an outer ring, and a plurality of rolling elements interposed between the inner ring and the outer ring so as to be freely rollable. Further, the present invention is characterized in that a crowning portion is provided in which the contour line in the axial section of the inner ring is a logarithmic curve represented by the formula (1).

Figure 2006064037

但し、A=2K1Q/πLE’とする。
Figure 2006064037

However, A = 2K 1 Q / πLE ′.

ここで「クラウニング」とは、接触物体の接触面に膨らみを持たせることであり、内輪軸方向のほぼ全域に形成されるクラウニングをフルクラウニングといい、内輪の軸方向端部に形成されるクラウニングをカットクラウニング(パーシャルクラウニング)という。上記のクラウニング部は、内輪の内径側端部に丸みを持たせるという点で図20に示すR加工された部位と共通する概念であるが、R加工された部位の領域が内輪内径側端部に限定されているのに対し、クラウニング部の領域は内輪の内径側全域に及ぶことが許容されており、この点でR加工された部位とは相違するものである。   Here, “crowning” is to make the contact surface of the contact object bulge, and the crowning that is formed in almost the entire area of the inner ring axial direction is called full crowning, and the crowning that is formed at the axial end of the inner ring. Is called cut crowning (partial crowning). The above-mentioned crowning part is a concept common to the R-processed part shown in FIG. 20 in that the inner ring-side end of the inner ring is rounded, but the region of the R-processed part is the inner ring inner-end part. On the other hand, the area of the crowning portion is allowed to extend over the entire inner diameter side of the inner ring, which is different from the R-processed portion.

ところで、線接触する二円筒の最適なクラウニング曲線に関しては、Johns,P.M. and Gohar,R.が、“Roller bearings under radial and eccentric loads”(TRIBOLOGY international June 1981 pp.131〜136)において、式(2)で示される最適転動体曲線(以下、Johns-Gohar曲線という。)を提唱している。   By the way, as for the optimal crowning curve of two cylinders in line contact, Johns, PM and Gohar, R., in “Roller bearings under radial and eccentric loads” (TRIBOLOGY international June 1981 pp.131-136), ) Is proposed (hereinafter referred to as Johns-Gohar curve).

Figure 2006064037
Figure 2006064037

式(2)のJohns-Gohar曲線は、図1に示すように、原点Oを頂点とし、y=±L/2(1−0.3033b/a)-1/2を漸近線とする曲線で、通常、軸受軌道輪(内輪又は外輪)と線接触する転動体(円筒ころ、円すいころ、針状ころなど)の転動面に形成されるクラウニング部の設計に使用されている。 As shown in FIG. 1, the Johns-Gohar curve of the equation (2) is a curve having an origin O as a vertex and y = ± L / 2 (1−0.3033b / a) −1/2 as an asymptote. Usually, it is used for the design of a crowning portion formed on the rolling surface of a rolling element (cylindrical roller, tapered roller, needle roller, etc.) in line contact with a bearing race (inner ring or outer ring).

図2は、式(2)のJohns-Gohar曲線を適用した円筒ころ21の一例を示している。この円筒ころ21は、両端部にR部22を有し、R部22の相互間に式(2)のJohns-Gohar曲線からなるクラウニング部23を設けたものである。なお、図中の一点鎖線は、クラウニング部23を形成していない場合の円筒ころを示している。図2のXYZ座標系は、円筒ころ21の母線上であって図示しない軸受軌道輪との接触領域24の中央部に原点Oをとり、円筒ころ21の母線に直交する接線方向にX軸を、円筒ころ21の母線方向にY軸を、円筒ころ21’の半径方向にZ軸をとったものである。   FIG. 2 shows an example of the cylindrical roller 21 to which the Johns-Gohar curve of the formula (2) is applied. This cylindrical roller 21 has R portions 22 at both ends, and a crowning portion 23 formed of a Johns-Gohar curve of the formula (2) is provided between the R portions 22. In addition, the dashed-dotted line in the figure has shown the cylindrical roller in case the crowning part 23 is not formed. The XYZ coordinate system of FIG. 2 has an origin O at the center of the contact area 24 with the bearing race ring (not shown) on the generatrix of the cylindrical roller 21, and the X axis in the tangential direction perpendicular to the generatrix of the cylindrical roller 21. The Y axis is taken in the generatrix direction of the cylindrical roller 21, and the Z axis is taken in the radial direction of the cylindrical roller 21 '.

式(2)において、z(y)は円筒ころ21に形成されるクラウニング部23のY軸方向位置yにおけるドロップ量(Z軸方向変位)、Qは荷重、Lは円筒ころ21の有効接触部25のY軸方向長さ、E’は等価弾性係数、bはヘルツの接触半幅、aは原点Oから有効接触部25の端部までのY軸方向長さである。   In equation (2), z (y) is the drop amount (displacement in the Z-axis direction) at the position y in the Y-axis direction of the crowning portion 23 formed on the cylindrical roller 21, Q is the load, and L is the effective contact portion of the cylindrical roller 21. 25 is the Y-axis direction length, E ′ is the equivalent elastic modulus, b is the Hertzian contact half width, and a is the Y-axis direction length from the origin O to the end of the effective contact part 25.

有効接触部25は、二次元接触を仮定したときの接触領域で、実際の接触領域24とは相違する。有効接触部25のY軸方向長さLは、図中の一点鎖線のように、クラウニング部23を形成していない場合の円筒ころの円筒面領域のY軸方向長さである。なお、有効接触部25のY軸方向長さLは、円筒ころ21の端部に面取り加工又はR加工を施してある場合、円筒ころ21のY軸方向全長から面取り加工又はR加工された部位(例えば図2のR部22,22)のY軸方向長さを減じた長さで、円筒ころ21の端部に面取り加工又はR加工を施していない場合、円筒ころ21のY軸方向全長と一致する。また、有効接触部25のX軸方向幅をヘルツの接触幅といい、その半幅がヘルツの接触半幅bである。なお、ヘルツの接触半幅bは、下記の式(3)で求められる。   The effective contact portion 25 is a contact area when two-dimensional contact is assumed, and is different from the actual contact area 24. The length L in the Y-axis direction of the effective contact portion 25 is the length in the Y-axis direction of the cylindrical surface region of the cylindrical roller when the crowning portion 23 is not formed, as indicated by the alternate long and short dash line in the figure. The length L of the effective contact portion 25 in the Y-axis direction is a portion chamfered or rounded from the entire length of the cylindrical roller 21 in the Y-axis direction when the end of the cylindrical roller 21 is chamfered or rounded. When the end of the cylindrical roller 21 is not chamfered or rounded with a length obtained by reducing the length in the Y-axis direction (for example, the R portions 22 and 22 in FIG. 2), the total length in the Y-axis direction of the cylindrical roller 21 Matches. Further, the X-axis direction width of the effective contact portion 25 is referred to as a Hertz contact width, and the half width is the Hertz contact half width b. In addition, the contact half width b of Hertz is calculated | required by following formula (3).

Figure 2006064037
Figure 2006064037

式(3)において、Rは等価半径で、円筒ころ21の半径をR1とし、図示しない軸受軌道輪の軌道面の半径をR2とすると、下記の式(4)で求められる。 In the formula (3), R in the equivalent radius, the radius of the cylindrical rollers 21 and R 1, and the radius of the raceway surface of the bearing ring (not shown) and R 2, obtained by the following formula (4).

Figure 2006064037
Figure 2006064037

また、円筒ころ21の弾性係数をE1、ポアソン比をν1とし、図示しない軸受軌道輪の弾性係数をE2、ポアソン比をν2とすると、等価弾性係数E’は下記の式(5)で求められる。 If the elastic coefficient of the cylindrical roller 21 is E 1 , the Poisson's ratio is ν 1 , the elastic coefficient of a bearing race (not shown) is E 2 , and the Poisson's ratio is ν 2 , the equivalent elastic coefficient E ′ is expressed by the following equation (5 ).

Figure 2006064037
Figure 2006064037

本発明者らは、軸と軸に嵌合される内輪も、線接触する二円筒と考えられることから、式(2)のJohns-Gohar曲線からなるクラウニング部を内輪内径面に適用しようと考えた。しかし、式(2)に基づいて設計されたクラウニング部について解析すると、クラウニング部の端部で接触圧力がやや高くなるという結果が得られた。しかも、接触物体(軸と内輪)の傾きを考慮すると、エッジロードが発生しやすくなると考えられるので、式(2)のJohns-Gohar曲線をそのまま内輪内径面のクラウニング部に適用することはできない。そこで、本発明者らは、式(2)の定数項に係数K1,K2’を導入してパラメータ化し、下記の式(6)とした。 The present inventors consider that the inner ring fitted to the shaft is also considered to be a two-cylinder in line contact, so that the crowning portion composed of the Johns-Gohar curve of the formula (2) is applied to the inner ring inner surface. It was. However, when the crowning part designed based on the formula (2) is analyzed, the result that the contact pressure is slightly increased at the end of the crowning part is obtained. Moreover, since it is considered that edge loading is likely to occur when the inclination of the contact object (the shaft and the inner ring) is taken into account, the Johns-Gohar curve of Equation (2) cannot be applied to the crowning portion of the inner ring inner diameter surface as it is. Therefore, the present inventors introduced coefficients K 1 and K 2 ′ into the constant term of equation (2) and parameterized them to obtain the following equation (6).

Figure 2006064037
Figure 2006064037

式(6)は、係数K1,K2’を適宜設定することによって、クラウニング部の端部で接触圧力がやや高くなるのを防止できるように、式(2)を改良したものである。式(6)の曲線は、図1のJohns-Gohar曲線と同様に、原点Oを頂点とする曲線であるため、原則として、正負線対称のフルクラウニングを表すものである。式(6)の曲線をカットクラウニングに適用する場合は、式(6)の曲線をY軸方向に平行移動すると共に、その頂点から正側又は負側の領域のみをクラウニング部の輪郭線として採用する。 Expression (6) is obtained by improving Expression (2) so that the contact pressure can be prevented from being slightly increased at the end of the crowning portion by appropriately setting the coefficients K 1 and K 2 ′. Since the curve of the equation (6) is a curve having the origin O as a vertex, like the Johns-Gohar curve of FIG. 1, in principle, it represents a full crowning that is symmetric with respect to positive and negative lines. When applying the curve of equation (6) to cut crowning, the curve of equation (6) is translated in the Y-axis direction and only the positive or negative region from the apex is adopted as the contour of the crowning part. To do.

図3は、式(6)の曲線をY軸方向に平行移動したものを示している。図3の曲線の頂点O1のYZ座標を(s,0)とすると、式(6)は式(7)のように書き換えられる。 FIG. 3 shows a curve obtained by translating the curve of Expression (6) in the Y-axis direction. If the YZ coordinate of the vertex O 1 of the curve in FIG. 3 is (s, 0), Equation (6) can be rewritten as Equation (7).

Figure 2006064037
Figure 2006064037

式(7)の曲線の頂点座標(s,0)は、原点Oから有効接触部の端部までの母線方向長さaと、クラウニング部の母線方向長さymを用いて、(s,0)=(a−ym,0)と表すことができる。これにより式(7)は、式(8)のように書き換えることができる。 Wherein vertex coordinates (s, 0) of the curve (7), using the generatrix direction length a from the origin O to the end of the effective contact portion, the generatrix direction length y m of the crowning portion, (s, 0) = (a−y m , 0). As a result, equation (7) can be rewritten as equation (8).

Figure 2006064037
Figure 2006064037

一方、式(8)における係数K1は、荷重Qに掛けられていることから、物理的な意味合いとして荷重Qの倍率と解釈することができ、また、K2’,ymを定めてK1を変化させていくと、式(8)で表される曲線の曲率が変化していくことから、幾何学的にはクラウニング部の曲率を定めるパラメータと解釈することができる。これに対し、係数K2’は、その物理的な意味合いが不明確である。このため、式(8)から係数K2’を消去して物理的意味合いのあるパラメータを導入することとした。 On the other hand, the coefficient K 1 in the formula (8), since it has been subjected to a load Q, can be interpreted as a ratio of the load Q as a physical sense, also, K 2 ', defines a y m K As 1 is changed, the curvature of the curve represented by the equation (8) changes, so geometrically, it can be interpreted as a parameter for determining the curvature of the crowning portion. On the other hand, the physical meaning of the coefficient K 2 ′ is unclear. For this reason, the coefficient K 2 ′ is eliminated from the equation (8) and parameters having physical significance are introduced.

式(8)において、有効接触部の端部におけるY座標はaであるから、有効接触部の端部におけるドロップ量をzm(以下、最大ドロップ量という。)として、y=a,z(y)=zmを式(8)に代入すると、式(9)が得られる。 In equation (8), since the Y coordinate at the end of the effective contact portion is a, the drop amount at the end of the effective contact portion is z m (hereinafter referred to as the maximum drop amount), and y = a, z ( Substituting y) = z m into equation (8) yields equation (9).

Figure 2006064037
Figure 2006064037

式(9)から得られる係数K2’を式(8)に代入して整理すると、下記の式(10)が得られる。 Substituting the coefficient K 2 ′ obtained from Equation (9) into Equation (8) and rearranging results in the following Equation (10).

Figure 2006064037
Figure 2006064037

ここで、原点から有効接触部の端部までのY軸方向長さaに対する各クラウニング部のY軸方向長さymの割合をK2と定義し(K2=ym/a)、ym=K2aを式(10)に代入すると、式(10)は、式(11)のように書き換えることができる。 Here, the proportion of the Y-axis direction length y m of each crowning portion with respect to the Y-axis direction length a to the end of the effective contact portion from the origin is defined as K 2 (K 2 = y m / a), y By substituting m = K 2 a into equation (10), equation (10) can be rewritten as equation (11).

Figure 2006064037
Figure 2006064037

式(11)において、2K1Q/πLE’=Aと簡略化したものが、上記の式(1)である。 In the equation (11), the above equation (1) is simplified as 2K 1 Q / πLE ′ = A.

式(1)又は式(11)は、K1,K2,zmを設計パラメータとし、これらを除く他のパラメータ(Q,L,E’,a)は、設計条件として定数で与えられる。したがって、式(1)によれば、内輪にエッジロードが負荷されないように、三つの設計パラメータK1,K2,zmを最適化すれば、所望のクラウニング部を設計することができる。 In Expression (1) or Expression (11), K 1 , K 2 , and z m are design parameters, and other parameters (Q, L, E ′, a) other than these are given as design conditions as constants. Therefore, according to Equation (1), a desired crowning portion can be designed by optimizing the three design parameters K 1 , K 2 , and z m so that the edge load is not applied to the inner ring.

設計パラメータK1,K2,zmを変えて式(1)から得られる複数のクラウニング曲線の各々について、内輪に負荷される最大面圧を調べると、内輪にエッジロードが負荷されないような設計パラメータK1,K2,zmの組合せが得られる。そして、クラウニング部のY軸方向長さymを決定すれば、上記の設計パラメータK1,K2,zmの組合せに基づいて、最大ドロップ量zmの最小値を求めることができる。このクラウニング部のY軸方向長さymと、これに対応する最大ドロップ量zmの最小値との関係を、軸径に対する最大ドロップ量zmの割合をZ、有効接触部のY軸方向長さLに対するクラウニング部のY軸方向長さymの割合をL’として表すと、Z≧(0.4L’+0.083)×10-3となる。すなわち、式(1)において、Z≧(0.4L’+0.083)×10-3を満たすように、設計パラメータK1,K2,zmを設定すると、エッジロードが負荷されないような内輪のクラウニング部の形状が得られる。 When the maximum surface pressure applied to the inner ring is examined for each of the plurality of crowning curves obtained from Expression (1) by changing the design parameters K 1 , K 2 , and z m , the design is such that the edge load is not applied to the inner ring. A combination of parameters K 1 , K 2 , z m is obtained. If the length y m of the crowning portion in the Y-axis direction is determined, the minimum value of the maximum drop amount z m can be obtained based on the combination of the design parameters K 1 , K 2 , and z m . And Y-axis direction length y m of the crowning portion, the relationship between the minimum value of the maximum drop amount z m corresponding thereto, a ratio of the maximum drop amount z m for the shaft diameter Z, the effective contact portions Y-axis direction When the ratio of the length y m in the Y-axis direction of the crowning portion to the length L is expressed as L ′, Z ≧ (0.4L ′ + 0.083) × 10 −3 . That is, when the design parameters K 1 , K 2 , and z m are set so as to satisfy Z ≧ (0.4L ′ + 0.083) × 10 −3 in the expression (1), the inner ring is not loaded with an edge load. The shape of the crowning part is obtained.

本発明に係る転がり軸受によれば、内輪の内径側に上記の式(1)で表されるクラウニング部を形成してあるから、内輪にエッジロードが発生するのを防止することが可能になる。これにより、内輪の耐久性を向上させることができると共に、内輪を嵌合した軸に傷が付くのを防止することもできる。   According to the rolling bearing of the present invention, since the crowning portion represented by the above formula (1) is formed on the inner diameter side of the inner ring, it is possible to prevent the edge load from being generated in the inner ring. . As a result, it is possible to improve the durability of the inner ring and to prevent the shaft on which the inner ring is fitted from being damaged.

以下、添付図面を参照しつつ本発明に係る転がり軸受の一実施形態について説明する。なお、本実施形態では、従来例と同一部位には同一符号を付して説明する。   Hereinafter, an embodiment of a rolling bearing according to the present invention will be described with reference to the accompanying drawings. In the present embodiment, the same parts as those in the conventional example will be described with the same reference numerals.

図4は、本発明に係る転がり軸受の一実施形態を例示する縦断面図であって、本発明を鉄道車両の車軸支持に使用される複列円すいころ軸受に適用した場合を示している。この複列円すいころ軸受は、従来例と同様に、一対の内輪11,11、外輪12、複列の円すいころ13,13,…及び保持器14,14を主要な構成要素としている。なお、この実施形態では、内輪11,11の相互間に、スペーサ部材18を配設してある。スペーサ部材18は、内輪11よりも弾性のある材料で構成されており、内輪11,11の端面の摩耗を抑制する役割を果たしている。   FIG. 4 is a longitudinal sectional view illustrating an embodiment of a rolling bearing according to the present invention, and shows a case where the present invention is applied to a double row tapered roller bearing used for supporting an axle of a railway vehicle. This double row tapered roller bearing has a pair of inner rings 11, 11, outer ring 12, double row tapered rollers 13, 13,... And retainers 14, 14 as main components, as in the conventional example. In this embodiment, a spacer member 18 is disposed between the inner rings 11 and 11. The spacer member 18 is made of a material that is more elastic than the inner ring 11 and plays a role of suppressing wear on the end faces of the inner rings 11 and 11.

この実施形態では、外輪12、複列の円すいころ13,13,…及び保持器14,14として、従来例に示したものと同様のものを適用できるから、これらについては詳しい説明を省略し、以下、図5を参照して内輪11の構成について詳述する。   In this embodiment, as the outer ring 12, the double-row tapered rollers 13, 13,... And the retainers 14, 14, the same as those shown in the conventional example can be applied. Hereinafter, the configuration of the inner ring 11 will be described in detail with reference to FIG.

この実施形態における内輪11は、図5に示すように、外径側に円すいころ13を転動させる円すい面状の軌道面111を有し、内径側に車軸1を嵌合させる略円筒面状の嵌合面112を有する。   As shown in FIG. 5, the inner ring 11 in this embodiment has a conical surface raceway surface 111 that rolls the tapered roller 13 on the outer diameter side, and a substantially cylindrical surface shape that fits the axle 1 on the inner diameter side. The fitting surface 112 is provided.

軌道面111の内方側には小鍔部113が形成され、軌道面111の外方側には大鍔部114が形成され、小鍔部113と大鍔部114の間に円すいころ13が嵌め込まれる。   A small collar portion 113 is formed on the inner side of the raceway surface 111, a large collar portion 114 is formed on the outer side of the raceway surface 111, and the tapered rollers 13 are provided between the small collar portion 113 and the large collar portion 114. It is inserted.

嵌合面112の両端部には、輪郭線形状が円弧状であるR部115を形成してある。小鍔側のR部115は、スペーサ部材18との接触で小鍔側端面118にエッジロードが負荷されるのを防止するためのものである。他方、大鍔側のR部115は、車軸1との接触で嵌合面112の大鍔側にエッジロードが負荷されるのを防止すると共に、図示しない後蓋15又は油切り16(図4参照)との接触で大鍔側端面119にエッジロードが負荷されるのを防止するためのものである。   At both ends of the fitting surface 112, R portions 115 having a circular arc shape are formed. The small rib side R portion 115 is for preventing edge load from being applied to the small edge side end surface 118 due to contact with the spacer member 18. On the other hand, the R portion 115 on the large collar side prevents the edge load from being loaded on the large collar side of the fitting surface 112 due to contact with the axle 1, and the rear lid 15 or oil drain 16 (not shown) (FIG. 4). This is for preventing the edge load 119 from being loaded on the large heel side end surface 119 due to contact with the reference.

R部115の相互間には、円筒面状のストレート部116が形成され、小鍔側のR部115とストレート部116の境界部分にクラウニング部117を設けてある。   A cylindrical straight portion 116 is formed between the R portions 115, and a crowning portion 117 is provided at a boundary portion between the small portion R portion 115 and the straight portion 116.

クラウニング部117は、その軸線方向(Y軸方向)断面における輪郭線が下記の式(12)で表される対数曲線になっている。   The crowning portion 117 has a logarithmic curve whose contour line in the cross section in the axial direction (Y-axis direction) is represented by the following formula (12).

Figure 2006064037

但し、A=2K1Q/πLE’とする。
Figure 2006064037

However, A = 2K 1 Q / πLE ′.

式(12)は、クラウニング部117を形成していない場合における内輪11のストレート部116(内径側円筒面)上の任意の位置に原点Oをとり、内輪11の軸線方向にY軸、内輪11の半径方向にZ軸をとったYZ座標系において、YZ座標(a−K2a,0)を頂点とする左右線対称の曲線を表している(図3参照)。 The expression (12) is obtained by taking the origin O at an arbitrary position on the straight portion 116 (inner diameter side cylindrical surface) of the inner ring 11 when the crowning part 117 is not formed, and the Y axis and the inner ring 11 in the axial direction of the inner ring 11. In the YZ coordinate system having the Z axis in the radial direction, a left-right symmetric curve having a vertex at the YZ coordinate (a−K 2 a, 0) is represented (see FIG. 3).

式(12)において、z(y)はY軸方向位置yにおけるクラウニング部117のドロップ量(Z軸方向変位)、K1はクラウニング部117の曲率を定めるパラメータ、Qは荷重、Lは車軸1に対する内輪11の有効接触部のY軸方向長さ(図5参照)、E’は等価弾性係数、zmは有効接触部の端部におけるドロップ量、aは原点Oから有効接触部の端部までのY軸方向長さ、K2は原点Oから有効接触部の端部までのY軸方向長さaに対するクラウニング部117のY軸方向長さym(図5参照)の割合である。 In equation (12), z (y) is the drop amount (displacement in the Z-axis direction) of the crowning portion 117 at the y-axis direction position y, K 1 is a parameter that determines the curvature of the crowning portion 117, Q is the load, and L is the axle 1 , The length of the effective contact portion of the inner ring 11 in the Y-axis direction (see FIG. 5), E ′ is the equivalent elastic modulus, z m is the drop amount at the end of the effective contact portion, and a is the end of the effective contact portion from the origin O. Y 2 in the Y-axis direction, and K 2 is the ratio of the Y-axis direction length y m (see FIG. 5) of the crowning portion 117 to the Y-axis direction length a from the origin O to the end of the effective contact portion.

なお、内輪11の有効接触部は、車軸1に対する内輪11の二次元接触を仮定したときの接触領域で、そのY軸方向長さLは、内輪11にクラウニング部117を形成していないと仮定したときのストレート部116のY軸方向長さと同じである。   The effective contact portion of the inner ring 11 is a contact region when the two-dimensional contact of the inner ring 11 with the axle 1 is assumed, and the length L in the Y-axis direction is assumed that the crowning portion 117 is not formed on the inner ring 11. This is the same as the length of the straight portion 116 in the Y-axis direction.

原点Oは、内輪11の内径側円筒面の母線上(その延長線上を含む。)の任意の位置にとることができ、図5では、便宜上、内輪11の有効接触部の中央部に原点Oをとっている。この実施形態では、クラウニング部117を形成していない場合における各R部115のY軸方向長さが等しいので、有効接触部の中央部と内輪11のY軸方向中央部は一致している。   The origin O can be set at an arbitrary position on the generatrix (including its extension) on the inner diameter side cylindrical surface of the inner ring 11. In FIG. 5, for convenience, the origin O is located at the center of the effective contact portion of the inner ring 11. Have taken. In this embodiment, since the lengths in the Y-axis direction of the respective R portions 115 when the crowning portion 117 is not formed are equal, the central portion of the effective contact portion and the central portion of the inner ring 11 in the Y-axis direction coincide with each other.

クラウニング部117のY軸方向長さymは、式(12)の曲線の頂点O1から有効接触部の端部までの長さである。この実施形態では、内輪11の端部にR部115を設けてあり、クラウニング部117を有効接触部の端部からR部115との交点Isまで延長してあるので、ymが実際のクラウニング部117のY軸方向長さよりも短くなっている。 The length y m of the crowning portion 117 in the Y-axis direction is the length from the vertex O 1 of the curve of Expression (12) to the end of the effective contact portion. In this embodiment, the end portion of the inner ring 11 is provided with an R portion 115, the crowning portion 117 from the end of the effective contact portion so are extended to the intersection I s and R 115, y m is the actual The length of the crowning portion 117 is shorter than the length in the Y-axis direction.

式(12)におけるQ,L,E’は設計条件として与えられ、aは原点Oの位置によって定められる。他方、K1,K2,zmは設計パラメータとして使用され、これらの値は、内輪11の嵌合面112にエッジロードが負荷されないように適宜設定される。この実施形態では、車軸1の軸径d(図4参照)に対するクラウニング部117の最大ドロップ量zmの割合をZ、有効接触部のY軸方向長さLに対するクラウニング部117のY軸方向長さymの割合をL’とし、Z≧(0.4L’+0.083)×10-3を満たすように、式(12)の設計パラメータK1,K2,zmを設定してある。 Q, L, and E ′ in Expression (12) are given as design conditions, and a is determined by the position of the origin O. On the other hand, K 1 , K 2 , and z m are used as design parameters, and these values are appropriately set so that the edge load is not applied to the fitting surface 112 of the inner ring 11. In this embodiment, the ratio of the maximum drop amount z m of the crowning portion 117 to the shaft diameter d (see FIG. 4) of the axle 1 is Z, and the length of the crowning portion 117 in the Y-axis direction length L with respect to the Y-axis direction length L of the effective contact portion. is 'a, Z ≧ (0.4 L' the ratio of y m L so as to satisfy the + 0.083) × 10 -3, there to set the design parameters K 1, K 2, z m of formula (12) .

図6は、式(12)に適当な設計パラメータK2,zmを与え、設計パラメータK1を変化させて得られる複数のクラウニング曲線を示すものである。詳しくは、車軸1の軸径d、有効接触部のY軸方向長さL、荷重Q、ミスアライメントが下記の表1のようになっている場合について、K2=1,zm=50μmとし、K1を10〜200までの範囲で変化させたときのクラウニング曲線である。 FIG. 6 shows a plurality of crowning curves obtained by giving appropriate design parameters K 2 and z m to Equation (12) and changing the design parameter K 1 . Specifically, in the case where the shaft diameter d of the axle 1, the length L in the Y-axis direction of the effective contact portion, the load Q, and misalignment are as shown in Table 1 below, K 2 = 1, z m = 50 μm , K 1 is a crowning curve when changed in a range of 10 to 200.

Figure 2006064037





なお、ミスアライメントは、例えば両端が2つの軸受で支持された軸系において、両端の軸受中心が軸心に対して半径方向にずれて取り付けられることなどによって、軸と軸受が相対的に傾斜している度合いを示すものである。
Figure 2006064037





Misalignment is caused, for example, in a shaft system in which both ends are supported by two bearings, and the shaft and the bearing are relatively inclined due to the fact that the bearing centers at both ends are mounted so as to be displaced in the radial direction with respect to the shaft center. It shows the degree of being.

図6によると、K1が概ね40以上になると、式(12)で表されるクラウニング曲線にそれ程大きな変化が表れないことが分かる。したがって、K1は下限値を40とすることができる。 According to FIG. 6, it can be seen that when K 1 is approximately 40 or more, the crowning curve represented by the equation (12) does not change so much. Therefore, K 1 can have a lower limit value of 40.

図7乃至図16は、K2を0.1〜1.0の範囲でパラメータとして扱い、横軸にzmを、縦軸にK1をとって車軸1と内輪11の最大接触面圧Pmaxの計算結果を等圧線図として示したものである。図7乃至図16から明らかなように、K1が概ね40以上であれば、車軸1と内輪11の最大接触面圧Pmaxに大きな変化が表れないので、K1をその下限値である40とすることができる。 7 to 16 show that K 2 is treated as a parameter in the range of 0.1 to 1.0, z m on the horizontal axis and K 1 on the vertical axis, and the maximum contact surface pressure P between the axle 1 and the inner ring 11. The calculation result of max is shown as an isobaric diagram. As apparent from FIGS. 7 to 16, if K 1 is approximately 40 or more, the maximum contact surface pressure P max between the axle 1 and the inner ring 11 does not change significantly, and therefore K 1 is the lower limit value 40. It can be.

図7乃至図16によると、K2が大きくなるにつれて最大接触面圧Pmaxの小さい領域が広がっている。但し、K2が大きくても最大ドロップ量zmが小さいと、最大接触面圧Pmaxが増大して良い結果が得られない。なお、図7乃至図16において、zmが小さい場合に、最大接触面圧Pmaxが増大しているのは、内輪11にエッジロードが発生しているからである。他方、図8乃至図14において、zmが大きい場合に最大接触面圧Pmaxが増大しているのは、zmの増加に伴ってクラウニング部117の曲率が大きくなったための面圧増加で、エッジロードの発生によるものではない。 According to FIGS. 7 to 16, the region where the maximum contact surface pressure P max is small increases as K 2 increases. However, even if K 2 is large, if the maximum drop amount z m is small, the maximum contact surface pressure P max increases and a good result cannot be obtained. In FIGS. 7 to 16, the maximum contact surface pressure P max increases when z m is small because an edge load is generated in the inner ring 11. On the other hand, in FIGS. 8 to 14, the maximum contact surface pressure P max increases when z m is large because the surface pressure increases because the curvature of the crowning portion 117 increases as z m increases. This is not due to the occurrence of edge loading.

図17は、K1=40とし、K2,zmと最大接触面圧Pmaxとの関係を表す等圧線図である。図17によれば、K1=40とした場合、K2は概ね0.2以上必要であり、K2が大きくなるほどzmの最小値も大きくなることが分かる。すなわち、内輪11にエッジロードが負荷されないようなK2,zmの座標領域が存在していることが分かる。そして、クラウニング部117の軸方向長さymを決定すれば、上記の座標領域に基づいて、内輪11にエッジロードが負荷されないようなzmの最小値を求めることができる。 FIG. 17 is an isobaric diagram showing the relationship between K 2 , z m and the maximum contact surface pressure P max where K 1 = 40. As can be seen from FIG. 17, when K 1 = 40, K 2 needs to be approximately 0.2 or more, and the minimum value of z m increases as K 2 increases. That is, it can be seen that there is a coordinate region of K 2 and z m so that the edge load is not applied to the inner ring 11. Then, when determining the axial length y m of the crowning portion 117, based on the coordinate region, it is possible to determine the minimum value of z m as edge load can not be loaded on the inner ring 11.

図18は、クラウニング部117の軸方向長さymと、これに対応する最大ドロップ量zmの最小値との関係を、クラウニング部117の軸径dに対する最大ドロップ量zmの割合Zと、有効接触部のY軸方向長さLに対するクラウニング部117の軸方向長さymの割合L’とを用いて表したものである。図18において、L’=0は内輪11の有効接触部全幅に亘ってストレート部116が形成されている状態を表し、L’=1は内輪11の有効接触部全幅に亘ってクラウニング部117が形成されている状態を表している。図18によれば、0.1<L’<0.6の範囲で、軸径dに対する最大ドロップ量zmの割合Zを、Z≧(0.4L’+0.083)×10-3とすれば、内輪11にエッジロードが負荷されないことが分かる。このように内輪11の内径側に形成されるクラウニング部117の輪郭線形状を設定すると、内輪11の耐久性を向上できると共に、車軸1の外周面に円周方向の傷が付くのも防止することができる。 Figure 18 is an axial length y m of the crowning portion 117, the relationship between the minimum value of the maximum drop amount z m corresponding thereto, and the ratio Z of the maximum drop amount z m for the shaft diameter d of the crowning portion 117 is a representation using the ratio L 'of the axial length y m of the crowning portion 117 relative to the Y-axis direction length L of the effective contact portion. In FIG. 18, L ′ = 0 represents a state in which the straight portion 116 is formed over the entire effective contact portion width of the inner ring 11, and L ′ = 1 represents the crowning portion 117 over the entire effective contact portion width of the inner ring 11. It shows the state of being formed. According to FIG. 18, in the range of 0.1 <L ′ <0.6, the ratio Z of the maximum drop amount z m to the shaft diameter d is Z ≧ (0.4L ′ + 0.083) × 10 −3 . Then, it can be seen that the edge load is not applied to the inner ring 11. When the contour shape of the crowning portion 117 formed on the inner diameter side of the inner ring 11 is set as described above, the durability of the inner ring 11 can be improved and the outer circumferential surface of the axle 1 can be prevented from being damaged in the circumferential direction. be able to.

以上、本発明の一実施形態につき説明したが、本発明は上記実施形態に限定されることなく種々の変形が可能である。例えば上記実施形態では、内輪11の嵌合面112のうち小鍔部113側にのみクラウニング部117を設けてあるが、図19に示すように、内輪11の嵌合面112には左右対称的にクラウニング部117,117を設けることも可能である。この場合、内輪11の有効接触部のY軸方向長さLに対する各クラウニング部117,117のY軸方向長さymの割合L’は、0.1<L’≦0.5の範囲内で設定される。L’=0.5のとき、各クラウニング部117,117のY軸方向長さymが内輪11の有効接触部のY軸方向長さLの1/2となり、内輪11の有効接触部の全域にクラウニング部117,117が形成されるフルクラウニングとなる。この場合、クラウニング部117,117の相互間にストレート部116は形成されず、内輪11の内径面全体が膨らみを持つ。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the crowning portion 117 is provided only on the small flange portion 113 side of the fitting surface 112 of the inner ring 11, but as shown in FIG. It is also possible to provide crowning portions 117, 117. In this case, the ratio L ′ of the length y m of the crowning portions 117 and 117 to the length L of the effective contact portion of the inner ring 11 is within the range of 0.1 <L ′ ≦ 0.5. Set by. When L ′ = 0.5, the length y m in the Y-axis direction of each crowning portion 117, 117 is ½ of the length L in the Y-axis direction of the effective contact portion of the inner ring 11. A full crowning in which the crowning portions 117 and 117 are formed in the entire area. In this case, the straight portion 116 is not formed between the crowning portions 117 and 117, and the entire inner diameter surface of the inner ring 11 has a bulge.

また、上記実施形態では、本発明を鉄道車両の車軸支持に使用される複列円すいころ軸受に適用した場合について説明しているが、本発明は、ボール、針状ころ又は円筒ころなどの転動体を内輪及び外輪間に単列又は複列で配設した他の転がり軸受にも適用可能であり、また、鉄道車両の車軸支持を除く他の用途に使用される他の転がり軸受にも適用可能である。詳しくは、内輪11を嵌合させる軸が撓むように大きな荷重が負荷される用途、即ちミスアライメント状態で使用される用途であれば、如何なる用途にも適用可能である。   In the above embodiment, the case where the present invention is applied to a double-row tapered roller bearing used for supporting an axle of a railway vehicle has been described. However, the present invention is not limited to a roller such as a ball, a needle roller, or a cylindrical roller. Applicable to other rolling bearings in which moving bodies are arranged in a single or double row between inner and outer rings, and also applicable to other rolling bearings used for other purposes except axle support for railway vehicles Is possible. Specifically, the present invention can be applied to any application as long as it is an application in which a large load is applied so that the shaft for fitting the inner ring 11 is bent, that is, an application used in a misalignment state.

Johns-Gohar曲線を例示するYZ座標図である。It is a YZ coordinate diagram which illustrates a Johns-Gohar curve. Johns-Gohar曲線を適用した転動体を例示する図である。It is a figure which illustrates the rolling element to which a Johns-Gohar curve is applied. 本発明に係る転がり軸受の内輪のクラウニング部の輪郭線として適用される曲線を例示するYZ座標図である。It is a YZ coordinate figure which illustrates the curve applied as an outline of the crowning part of the inner ring of the rolling bearing concerning the present invention. 本発明に係る転がり軸受の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the rolling bearing which concerns on this invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 係数K2=1,最大ドロップ量zm=50μmとして、係数K1を10〜200の範囲で変化させたときのクラウニング部の輪郭線形状を表す対数曲線を示すグラフ図である。Factor K 2 = 1, the maximum drop amount z m = 50 [mu] m, is a graph showing a logarithmic curve representing the contour shape of the crowning portion when changing the coefficient K 1 in the range of 10 to 200. 係数K2=0.1としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.1. 係数K2=0.2としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.2. 係数K2=0.3としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.3. 係数K2=0.4としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.4. 係数K2=0.5としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.5. 係数K2=0.6としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 is 0.6. 係数K2=0.7としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.7. 係数K2=0.8としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 = 0.8. 係数K2=0.9としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure loaded on the inner ring when the coefficient K 2 is 0.9. 係数K2=1.0としたときの内輪に負荷される最大面圧の等圧線図である。FIG. 5 is an isobaric diagram of the maximum surface pressure applied to the inner ring when the coefficient K 2 is 1.0. 係数K1=40としたときの内輪に負荷される最大面圧の等圧線図である。It is an isobaric diagram of the maximum surface pressure applied to the inner ring when the coefficient K 1 is 40. クラウニング部の軸径に対する最大ドロップ量zmの割合Zと、内輪幅に対するクラウニング部の軸方向長さymの割合L’との関係を示すグラフ図である。And the ratio Z of the maximum drop amount z m relative to the axis diameter of the crowned portion is a graph showing the relationship between the ratio L 'of the axial length y m of the crowning portion against the inner ring width. 本発明に係る転がり軸受の他の実施形態を示す要部拡大縦断面図である。It is a principal part expanded longitudinal sectional view which shows other embodiment of the rolling bearing which concerns on this invention. 従来の複列ころ軸受の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the conventional double row roller bearing.

符号の説明Explanation of symbols

1 車軸
11 内輪
12 外輪
13 円すいころ(転動体)
14 保持器
15 後蓋
16 油切り
17 シール装置
17a 弾性体シール
18 スペーサ部材
111 軌道面
112 嵌合面
113 小鍔部
114 大鍔部
115 R部
116 ストレート部
117 クラウニング部
118 小鍔側端面
119 大鍔側端面
1 Axle 11 Inner ring 12 Outer ring 13 Tapered roller (rolling element)
14 Cage 15 Rear cover 16 Oil drainer 17 Sealing device 17a Elastic body seal 18 Spacer member 111 Raceway surface 112 Fitting surface 113 Small flange portion 114 Large flange portion 115 R portion 116 Straight portion 117 Crowning portion 118 Small flange side end surface 119 Large鍔 side end face

Claims (3)

軸に嵌合させる内輪と、外輪と、内輪及び外輪間に転動自在に介在する複数の転動体とを具備し、内輪の内径側に、内輪の軸線方向断面における輪郭線を式(I)で表される対数曲線とするクラウニング部を設けたことを特徴とする転がり軸受;
Figure 2006064037

但し、A=2K1Q/πLE’とし、式(I)におけるz(y)は、クラウニング部を形成していない場合における内輪の内径側円筒面上に原点をとり、内輪の軸線方向にY軸、内輪の半径方向にZ軸をとったYZ座標系において、Y軸方向位置yにおけるクラウニング部のドロップ量を意味し、また、K1はクラウニング部の曲率を定めるパラメータ、Qは荷重、Lは軸に対する内輪の有効接触部のY軸方向長さ、E’は等価弾性係数、zmは有効接触部端部のドロップ量、aは原点から有効接触部の端部までのY軸方向長さ、K2は原点から有効接触部の端部までのY軸方向長さaに対するクラウニング部のY軸方向長さの割合である。
An inner ring to be fitted to the shaft, an outer ring, and a plurality of rolling elements interposed between the inner ring and the outer ring so as to be freely rollable. A contour line in an axial section of the inner ring is represented by the formula (I) on the inner diameter side of the inner ring. A rolling bearing characterized by providing a crowning portion having a logarithmic curve represented by:
Figure 2006064037

However, it is assumed that A = 2K 1 Q / πLE ′, and z (y) in the formula (I) takes the origin on the inner cylindrical surface of the inner ring when the crowning portion is not formed, and Y in the axial direction of the inner ring In the YZ coordinate system having the Z axis in the radial direction of the shaft and inner ring, it means the drop amount of the crowning portion at the position y in the Y axis direction, K 1 is a parameter that determines the curvature of the crowning portion, Q is the load, L Is the length in the Y-axis direction of the effective contact portion of the inner ring with respect to the shaft, E ′ is the equivalent elastic modulus, z m is the drop amount at the end of the effective contact portion, and a is the length in the Y-axis direction from the origin to the end of the effective contact portion. K 2 is the ratio of the length in the Y-axis direction of the crowning portion to the length a in the Y-axis direction from the origin to the end of the effective contact portion.
軸径に対する有効接触部端部のドロップ量zmの割合Zを、Z≧(0.4L’+0.083)×10-3に設定したことを特徴とする請求項1に記載の転がり軸受;
但し、L’は内輪の有効接触部のY軸方向長さLに対するクラウニング部のY軸方向長さの割合とする。
The rolling bearing according to claim 1, wherein the ratio Z of the drop amount z m of the effective contact portion end with respect to the shaft diameter is set to be Z ≧ (0.4L ′ + 0.083) × 10 −3 .
However, L ′ is the ratio of the length in the Y-axis direction of the crowning portion to the length L in the Y-axis direction of the effective contact portion of the inner ring.
軸に嵌合させる一対の内輪と、外輪と、一対の内輪及び外輪間に転動自在に介在する複列の転動体とを具備し、鉄道車両の車軸支持に使用されることを特徴とする請求項1又は2に記載の転がり軸受。   A pair of inner rings to be fitted to the shaft, an outer ring, and a double row rolling element interposed between the pair of inner rings and the outer ring so as to freely roll, and used for supporting an axle of a railway vehicle. The rolling bearing according to claim 1 or 2.
JP2004245771A 2004-08-25 2004-08-25 Roller bearing Withdrawn JP2006064037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245771A JP2006064037A (en) 2004-08-25 2004-08-25 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245771A JP2006064037A (en) 2004-08-25 2004-08-25 Roller bearing

Publications (1)

Publication Number Publication Date
JP2006064037A true JP2006064037A (en) 2006-03-09

Family

ID=36110708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245771A Withdrawn JP2006064037A (en) 2004-08-25 2004-08-25 Roller bearing

Country Status (1)

Country Link
JP (1) JP2006064037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106975A (en) * 2008-10-30 2010-05-13 Nsk Ltd Rolling bearing
JP2017187071A (en) * 2016-04-01 2017-10-12 Ntn株式会社 Tapered roller bearing
CN111412216A (en) * 2019-01-08 2020-07-14 斯凯孚公司 Rolling element bearing unit, cage and mounting method
CN112955671A (en) * 2018-10-25 2021-06-11 蒂森克虏伯罗特艾德德国有限公司 Rolling bearing device and wind power installation
CN115213742A (en) * 2021-04-18 2022-10-21 无锡市新裕滚针轴承有限公司 Large-convexity long roller pin multistage throwing string processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106975A (en) * 2008-10-30 2010-05-13 Nsk Ltd Rolling bearing
JP2017187071A (en) * 2016-04-01 2017-10-12 Ntn株式会社 Tapered roller bearing
CN112955671A (en) * 2018-10-25 2021-06-11 蒂森克虏伯罗特艾德德国有限公司 Rolling bearing device and wind power installation
CN112955671B (en) * 2018-10-25 2023-07-25 蒂森克虏伯罗特艾德德国有限公司 Rolling bearing device and wind power plant
CN111412216A (en) * 2019-01-08 2020-07-14 斯凯孚公司 Rolling element bearing unit, cage and mounting method
CN111412216B (en) * 2019-01-08 2024-04-05 斯凯孚公司 Rolling element bearing unit, cage and mounting method
CN115213742A (en) * 2021-04-18 2022-10-21 无锡市新裕滚针轴承有限公司 Large-convexity long roller pin multistage throwing string processing method

Similar Documents

Publication Publication Date Title
JP6798780B2 (en) Tapered roller bearing
EP2952763B1 (en) Multipoint contact ball bearing
JP2006315424A (en) Bearing device for wheel
JPWO2018190134A1 (en) Tapered roller bearing
JP2010106974A (en) Tapered roller bearing
JP2006064037A (en) Roller bearing
JP2006009891A (en) Roller bearing
US8757886B2 (en) Rolling bearing
JP2007139154A (en) Needle roller bearing and crankshaft supporting structure
JP6472671B2 (en) Tapered roller bearing
JP4364610B2 (en) Roller bearing
JP5251432B2 (en) Rolling bearing
JP2006300130A (en) Bearing structure
JP4429841B2 (en) Roller bearing
JP2009156450A (en) Bearing device for wheel
JP5163512B2 (en) Rolling bearing
JP2006266464A (en) Self-aligning roller bearing
JP2004060860A (en) Roller bearing, roller for roller bearing and manufacturing method
JP4269809B2 (en) Spherical roller bearing
JP4397794B2 (en) Double row spherical roller bearings with guide wheels
JP4196709B2 (en) Cylindrical roller bearing and spindle unit
WO2016121419A1 (en) Tapered roller bearing
JPH04351314A (en) Conical roller bearing
JP2007106412A (en) Bearing device for vehicle wheel
JP2016205443A (en) Bearing for railway vehicle axle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106