JP2006063400A - Aluminum-based composite material - Google Patents

Aluminum-based composite material Download PDF

Info

Publication number
JP2006063400A
JP2006063400A JP2004247971A JP2004247971A JP2006063400A JP 2006063400 A JP2006063400 A JP 2006063400A JP 2004247971 A JP2004247971 A JP 2004247971A JP 2004247971 A JP2004247971 A JP 2004247971A JP 2006063400 A JP2006063400 A JP 2006063400A
Authority
JP
Japan
Prior art keywords
aluminum
composite material
vol
ceramic
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004247971A
Other languages
Japanese (ja)
Inventor
Katsuo Arai
勝男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Research and Development Centre Ltd filed Critical Akebono Research and Development Centre Ltd
Priority to JP2004247971A priority Critical patent/JP2006063400A/en
Publication of JP2006063400A publication Critical patent/JP2006063400A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy-based composite material having heat resistance, wear resistance and strength more excellent than those of the aluminum-based composite materials proposed heretofore. <P>SOLUTION: The aluminum-based composite material is obtained by sintering a mixture in which 35 to 60 vol% of at least one or more kinds of ceramic particles selected from alumina, silicon carbide, aluminum nitride, silicon nitride or the like, and 5 to 30 vol% of at least one or more kinds of ceramic fibers selected from alumina, silicon carbide, aluminum nitride, silicon nitride or the like in such a manner that the total of the ceramic particles and the ceramic fibers is controlled to 40 to 65 vol% are added to a base material composed of aluminum or aluminum alloy powder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウムベース複合材料に関し、詳細には耐熱性、耐摩耗性及び強度に優れたアルミニウムベース複合材料に関する。   The present invention relates to an aluminum base composite material, and more particularly to an aluminum base composite material having excellent heat resistance, wear resistance and strength.

最近、地球環境保護の観点からあらゆる分野で省エネルギーが叫ばれるようになってきた。その結果、自動車の燃費向上のために自動車部品の軽量化も必要になり、当然のことながらディスクキャリパ、サポート、ロータ等のブレーキ関連部品の軽量化も要求されるようになった。   Recently, energy conservation has been screamed in all fields from the viewpoint of global environmental protection. As a result, it is necessary to reduce the weight of automobile parts in order to improve the fuel efficiency of automobiles, and naturally, the weight of brake-related parts such as disc calipers, supports, and rotors has also been required.

ところで、これまでブレーキ関連部品の材料として一般に鋳鉄が多く使用されているが、鋳鉄は比重が大きいために軽量化の度合いは限定されている。
そこで大幅な軽量化を図るため、軽量材料であるアルミニウム合金や、アルミニウム合金をベースとし、アルミナや炭化珪素などのセラミックス粒子を添加したアルミニウムベース複合材を素材としたブレーキ関連部品が開発され、実用化されつつある。
By the way, cast iron is generally used as a material for brake-related parts so far. However, cast iron has a high specific gravity, so the degree of weight reduction is limited.
Therefore, in order to achieve significant weight reduction, brake-related parts have been developed and put into practical use, which are aluminum alloys, which are lightweight materials, and aluminum-based composite materials based on aluminum alloys with ceramic particles such as alumina and silicon carbide added. It is becoming.

本発明者は、先に特許文献1で、5〜20vol.%のセラミックス粒子、60〜90vol.%のアルミニウム合金粉末、5〜20vol.%の純アルミニウム粉末を含む混合粉を熱間又は半溶融温度領域で加圧成形したことを特徴とするアルミニウム基複合材で、ブレーキ用ロータを作ることを提案した。
さらに、特許文献2には、Fe,Cr,Ni,Zr,Mnの遷移金属元素より選ばれる1種ないし2種以上の元素:1〜15wt%,Si: 10〜30wt%,Cu:0.5〜5wt%,Mg:1〜5wt%,残部実質的にAlからなり、結晶粒径2μm以下,粉体粒子径50μm以上である加工性にすぐれた高強度アルミニウム合金粉末に、粒径5μm以下のセラミックス粉末1〜10vol%を配合された混合粉末である加工性にすぐれた高強度アルミニウム合金粉末を用いて、自動車用ピストン部材などを作ることが提案されているが、いずれもセラミックス粉末の含有量が少ないものである。
特開平7−41883号公報 特開平11−209839号公報
The present inventor previously described in Patent Document 1, 5 to 20 vol. % Ceramic particles, 60-90 vol. % Aluminum alloy powder, 5-20 vol. It has been proposed to make a rotor for a brake with an aluminum-based composite material characterized in that a mixed powder containing 1% pure aluminum powder is pressure-formed in a hot or semi-molten temperature range.
Furthermore, in Patent Document 2, one or more elements selected from transition metal elements of Fe, Cr, Ni, Zr, and Mn: 1 to 15 wt%, Si: 10 to 30 wt%, Cu: 0.5 ~ 5wt%, Mg: 1 ~ 5wt%, the balance is essentially made of Al, the crystal grain size is 2μm or less, the powder particle size is 50μm or more, and the high-strength aluminum alloy powder with excellent workability has the particle size of 5μm or less It has been proposed to make piston members for automobiles using high-strength aluminum alloy powder with excellent workability, which is a mixed powder containing ceramic powder 1 to 10 vol%. There are few things.
JP 7-41883 A Japanese Patent Laid-Open No. 11-209839

しかし、アルミニウム合金は耐摩耗性が非常に劣り、またこれまでの鋳造法で開発されたアルミニウムベース複合材は、セラミックス粒子の量が多くなると溶湯の粘度が大きくなり、溶湯が速やかに流れにくくなるため、セラミックス粒子の量をあまり多く添加できない。また、これまでの粉末冶金法で開発されたことから、アルミニウムベース複合材料は、使用するセラミックスが粒子のみであり、その量を多くするとバインダの働きをしているアルミニウム又はアルミニウム合金の量が不足し、強度は低下するためセラミックス粒子の量をあまり多く添加できない。以上のことから、耐熱性、耐摩耗性、強度などに依然として問題が残されている。
特に熱的に厳しいディスクロータへ適用する場合、一部の軽負荷仕様に限定され、耐熱性、耐摩耗性、強度の優れた軽量材料の開発が望まれている。
However, the aluminum alloy has very poor wear resistance, and the aluminum base composite material developed by conventional casting methods increases the viscosity of the melt as the amount of ceramic particles increases, making it difficult for the melt to flow quickly. Therefore, the amount of ceramic particles cannot be added too much. In addition, since it was developed by conventional powder metallurgy, the ceramics used in the aluminum-based composite material are only particles, and if the amount is increased, the amount of aluminum or aluminum alloy acting as a binder is insufficient. However, since the strength decreases, the amount of ceramic particles cannot be added too much. From the above, problems still remain in heat resistance, wear resistance, strength, and the like.
In particular, when applied to thermally strict disk rotors, it is limited to some light load specifications, and development of lightweight materials with excellent heat resistance, wear resistance, and strength is desired.

本発明は、上記の事情に鑑み、自動車、二輪車、鉄道車両、産業機械等のブレーキ関連部品を鋳鉄等の鉄系材料からアルミニウム合金に変えることにより軽量化することを課題としてなされたものであり、これまでに提案された粉末冶金法によるアルミニウムベース複合材料よりも耐熱性、耐摩耗性及び強度に優れたアルミニウム合金系の複合材料を提供することを目的とする。   In view of the above circumstances, the present invention has been made to reduce the weight by changing brake-related parts such as automobiles, motorcycles, railway vehicles, and industrial machines from iron-based materials such as cast iron to aluminum alloys. An object of the present invention is to provide an aluminum alloy-based composite material that is superior in heat resistance, wear resistance, and strength to an aluminum-based composite material that has been proposed so far by powder metallurgy.

本発明者は、本発明の前記課題を解決するべく鋭意研究を進めた結果、アルミニウム又はアルミニウム合金に、セラミックス粒子及びセラミックス繊維を分散・含有させてなる合金複合材料において、前記粒子及び繊維の種類及び添加量を適正化することにより、ブレーキ関連部品としての良好な特性を有する複合材料を得ることができるとの知見を得て、この知見に基づき本発明を完成させたものである。   As a result of diligent research to solve the above-mentioned problems of the present invention, the inventor of the present invention is an alloy composite material in which ceramic particles and ceramic fibers are dispersed and contained in aluminum or an aluminum alloy. In addition, the inventors have obtained the knowledge that a composite material having good characteristics as a brake-related component can be obtained by optimizing the addition amount, and the present invention has been completed based on this finding.

すなわち、本発明は、下記の手段によって上記の課題を解決することができた。
(1)アルミニウム又はアルミニウム合金粉末からなるベース材料に、アルミナ、炭化珪素、窒化アルミニウム、窒化珪素等から選ばれるセラミックス粒子の少なくとも1種類以上を35〜60vol%と、アルミナ、炭化珪素、窒化アルミニウム、窒化珪素等から選ばれるセラミックス繊維の少なくとも1種類以上を5〜30vol%、かつ前記セラミックス粒子とセラミックス繊維を合計して40〜65vol%添加した混合物を、焼結して得たことを特徴とするアルミニウムベース複合材料。
(2)前記焼結は、加圧力を加えながら行われる加圧焼結であることを特徴とする前記(1)記載のアルミニウムベース複合材料。
(3)前記セラミックス繊維は、繊維長0.1〜2mm、かつアスペクト比(繊維長/繊維径)10以上としたことを特徴とする前記(1)又は(2)記載のアルミニウムベース複合材料。
That is, the present invention was able to solve the above problems by the following means.
(1) 35-60 vol% of at least one kind of ceramic particles selected from alumina, silicon carbide, aluminum nitride, silicon nitride, etc., and alumina, silicon carbide, aluminum nitride, It is obtained by sintering a mixture in which at least one kind of ceramic fibers selected from silicon nitride or the like is added in an amount of 5 to 30 vol%, and the ceramic particles and the ceramic fibers are added in an amount of 40 to 65 vol%. Aluminum base composite material.
(2) The aluminum-based composite material according to (1), wherein the sintering is pressure sintering performed while applying pressure.
(3) The aluminum base composite material according to (1) or (2), wherein the ceramic fiber has a fiber length of 0.1 to 2 mm and an aspect ratio (fiber length / fiber diameter) of 10 or more.

本発明のアルミニウムベース複合材料は、セラミックス粒子とセラミックス繊維を併用し、粉末冶金法による製造方法により得られるものであるため、セラミックス粒子とセラミックス繊維を任意の量だけ多量に添加できる。その特徴を生かし、本発明品はセラミックス粒子を最大60vol%、セラミックス繊維を最大30vol%(セラミックス粒子とセラミックス繊維の合計は最大65vol%)と多量に添加することによって、これまでのアルミニウムベース複合材に比較して耐熱性、耐摩耗性、強度に優れたアルミニウムベース複合材が得られた。   Since the aluminum-based composite material of the present invention is obtained by a powder metallurgy method using ceramic particles and ceramic fibers in combination, ceramic particles and ceramic fibers can be added in a large amount by an arbitrary amount. Taking advantage of its features, the product of the present invention adds up to a large amount of ceramic particles up to 60 vol% and ceramic fibers up to 30 vol% (the total of ceramic particles and ceramic fibers is up to 65 vol%). As a result, an aluminum base composite material excellent in heat resistance, wear resistance and strength was obtained.

本発明の複合材料は、母材となるアルミニウム又はアルミニウム合金のマトリックスにSiC、Al、AlN、Si等のセラミックス粒子及びセラミックス繊維を分散させたものである。アルミニウム又はアルミニウム合金にこれらを分散させることによって、ブレーキ関連部品の軽量化とともに、その耐熱性、耐摩耗性及び強度を改善することができる。
その母材、いわゆるマトリクスとなるアルミニウム又はアルミニウム合金は、その組成を特に限定するものではなく、AlならびにAl−Cu、Al−Si、Al−Mn、Al−Mg、Al−Znの2元系等を基本とし、それらを組み合わせた3元系、4元系等、さらには、少量のNi、Cr、Zr、Ti等を目的に応じて添加した合金系のものを使用できる。
The composite material of the present invention is obtained by dispersing ceramic particles and ceramic fibers such as SiC, Al 2 O 3 , AlN, and Si 3 N 4 in a matrix of aluminum or aluminum alloy as a base material. By dispersing these in aluminum or aluminum alloy, it is possible to reduce the weight of the brake-related parts and improve the heat resistance, wear resistance and strength thereof.
The base material, so-called matrix aluminum or aluminum alloy is not particularly limited in its composition, and Al and Al—Cu, Al—Si, Al—Mn, Al—Mg, Al—Zn binary systems, etc. Ternary system, quaternary system, etc., which are a combination of these, and alloy systems to which a small amount of Ni, Cr, Zr, Ti or the like is added depending on the purpose can be used.

セラミックス粒子及びセラミックス繊維の代表的なものはSiC、Al、AlN、及びSiがあり、これらのセラミックス粒子及びセラミックス繊維をそれぞれ1種又は2種以上の合計で40〜65vol%添加し、マトリックスに分散させることが必要である。
上記の添加成分のうち、セラミックス繊維は、アルミニウムベース複合材料の強度の向上に大きく寄与するものである。
Typical examples of the ceramic particles and ceramic fibers include SiC, Al 2 O 3 , AlN, and Si 3 N 4 , and these ceramic particles and ceramic fibers are each one kind or a total of two or more kinds in a total amount of 40 to 65 vol%. It is necessary to add and disperse in the matrix.
Among the above additive components, the ceramic fiber greatly contributes to the improvement of the strength of the aluminum-based composite material.

本発明のアルミニウムベース複合材料において、セラミックス粒子及びセラミックス繊維の添加量を限定した理由について以下に説明する。セラミックス粒子の添加量が35vol%未満では従来材に対する耐熱性、耐摩耗性の向上が顕著でなく、またセラミックス繊維が5vol%未満では強度の向上が顕著でない。特許請求の範囲内の添加量ならば、セラミックス粒子やセラミックス繊維の量が多いほど耐熱性、耐摩耗性、強度は向上するが、セラミックス粒子とセラミックス繊維の合計が65vol%を越えると、結合材の働きをしているアルミニウム又はアルミニウム合金の量が不足するため強度が急激に低下する。
従って、上記に規定した配合割合が耐熱性、耐摩耗性、強度に優れたアルミニウムベース複合材料にとって適当である。
The reason why the amount of ceramic particles and ceramic fibers added in the aluminum-based composite material of the present invention is limited will be described below. When the amount of the ceramic particles added is less than 35 vol%, the heat resistance and wear resistance of the conventional material are not significantly improved, and when the ceramic fiber is less than 5 vol%, the strength is not significantly improved. If the addition amount is within the scope of the claims, the greater the amount of ceramic particles and ceramic fibers, the better the heat resistance, wear resistance and strength. However, if the total of ceramic particles and ceramic fibers exceeds 65 vol%, the binder Since the amount of aluminum or aluminum alloy serving as the above is insufficient, the strength rapidly decreases.
Therefore, the blending ratio specified above is appropriate for an aluminum-based composite material having excellent heat resistance, wear resistance, and strength.

上記した種類と添加量のセラミックス粒子とセラミックス繊維とを併用して添加したので、それぞれが有する補強作用が総合される結果、これら2つの補強成分をアルミニウム又はアルミニウム合金母材に分散して複合化させた本発明のアルミニウムベース複合材料は、安価であって、耐熱性、耐摩耗性及び強度が改善されたアルミニウムベース複合材となる。   Since the ceramic particles and ceramic fibers of the above types and addition amounts are added in combination, the reinforcing action of each is combined, and as a result, these two reinforcing components are dispersed and combined in the aluminum or aluminum alloy base material. The aluminum base composite material of the present invention is an aluminum base composite material that is inexpensive and has improved heat resistance, wear resistance, and strength.

本発明に使用されるアルミニウム又はアルミニウム合金は、そのセラミックス粒子とセラミックス繊維との配合に当っては、混合を均一とするためにも、通常粉末状で混合することが行われ、アルミニウム又はアルミニウム合金粉末の粒子径は、5〜100μmの範囲とするのがよく、20μm程度であることが好ましい。それは粉末の圧縮性、成形性及び塑性変形能を良好にするためである。
また、セラミックス粒子は、粒径が1〜20μmの範囲とするのがよく、粒径10μm以下の微細粒子であることが望ましい。これよりも粗大な粒径では、仕上げ加工(機械加工)が困難となるからである。セラミックス繊維は、繊維長0.1〜2mm、アスペクト比(繊維長/繊維径)10以上とするのがよい。繊維長が0.1mm未満及びアスペクト比10未満では繊維による補強効果が十分でなく、繊維長が2mmを超えると均一に分散させることが困難になるからである。
The aluminum or aluminum alloy used in the present invention is usually mixed in powder form in order to make the mixing uniform when mixing the ceramic particles and the ceramic fibers. The particle diameter of the powder is preferably in the range of 5 to 100 μm, and preferably about 20 μm. This is to improve the compressibility, moldability and plastic deformability of the powder.
Further, the ceramic particles may have a particle diameter in the range of 1 to 20 μm, and are desirably fine particles having a particle diameter of 10 μm or less. This is because a grain size larger than this makes finishing (machining) difficult. The ceramic fiber may have a fiber length of 0.1 to 2 mm and an aspect ratio (fiber length / fiber diameter) of 10 or more. This is because if the fiber length is less than 0.1 mm and the aspect ratio is less than 10, the reinforcing effect by the fibers is not sufficient, and if the fiber length exceeds 2 mm, it is difficult to disperse uniformly.

本発明の複合材料は、例えば、下記の方法で製造することができる。
(粉末冶金法)
これは、アトマイズ法によって製造された急冷凝固アルミニウム合金粉末と、セラミックス粒子とを混合した後、ホットプレス等により緻密化させる方法である。
The composite material of the present invention can be produced, for example, by the following method.
(Powder metallurgy)
This is a method in which rapidly solidified aluminum alloy powder produced by an atomizing method and ceramic particles are mixed and then densified by hot pressing or the like.

まず、所定の化学組成を有するアルミニウム合金溶湯を、空気又は窒素等によるガスアトマイズ法などで急冷凝固させてアルミニウム合金粉末を作製する。
この粉末の粒度は、高強度と高靭性を得るためにも、セラミックス粒子を均一に分散させるためにも微細である方が望ましい。次に、これと所定のセラミックス粒子を各種の撹拌式混合機あるいはボールミル等の粉砕機によって混合する。この後、アルミニウム合金粉末の表面に吸着している水分やガスを除去するために脱ガス処理をする。これは、混合粉末を缶に充填し400〜500℃で真空吸引するか、混合粉を冷間圧縮した予備成形体を不活性雰囲気又は真空中で400〜500℃に加熱することによって行われる。脱ガス後、300〜500℃でホットプレスして混合粉を相対密度100%程度に近いところまで緻密化させる。更に、必要に応じて鍛造加工を行えば最終製品に近い形までの成形と高強度化ができる。最後に切削加工を行い製品とする。
上記工程を経て製造された本発明のアルミニウムベース複合材料は、所定の機械加工等を施して製品として完成される。
First, an aluminum alloy powder having a predetermined chemical composition is rapidly cooled and solidified by a gas atomizing method using air or nitrogen to produce an aluminum alloy powder.
The particle size of the powder is desirably fine in order to obtain high strength and high toughness and to uniformly disperse the ceramic particles. Next, this and predetermined ceramic particles are mixed by various stirring mixers or a pulverizer such as a ball mill. Thereafter, degassing treatment is performed to remove moisture and gas adsorbed on the surface of the aluminum alloy powder. This is done by filling the can with the mixed powder and vacuum suction at 400 to 500 ° C., or by heating the pre-formed body obtained by cold compression of the mixed powder to 400 to 500 ° C. in an inert atmosphere or vacuum. After degassing, hot pressing is performed at 300 to 500 ° C. to densify the mixed powder to a place where the relative density is close to about 100%. Furthermore, if forging is performed as necessary, it is possible to form a shape close to the final product and increase the strength. Finally, cutting is performed to obtain a product.
The aluminum-based composite material of the present invention manufactured through the above steps is completed as a product by performing predetermined machining or the like.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to only these examples.

実施例1〜6及び比較例1〜8
1)粒径約20μmのアルミニウム合金(Al−1%Mg)粉末に、平均粒径約4.5μmのアルミナ粒子と長さ約1mm、かつアスペクト比約100(繊維径で約10μm)のアルミナ繊維を第1表に示す割合で配合、混合して混合物を得た。
2)上記混合物を150℃に予熱後、100MPaで予備成形を行った。
3)この予備成形体を超硬合金製の金型に投入し、ホットプレスで30〜40MPa、500〜550℃、5〜10min保持して焼結を行い、アルミニウムベース複合材を得た。
Examples 1-6 and Comparative Examples 1-8
1) An aluminum alloy (Al-1% Mg) powder having a particle size of about 20 μm, alumina particles having an average particle size of about 4.5 μm, an alumina fiber having a length of about 1 mm and an aspect ratio of about 100 (fiber diameter of about 10 μm) Were mixed and mixed in the ratio shown in Table 1 to obtain a mixture.
2) The mixture was preheated to 150 ° C. and then preformed at 100 MPa.
3) This preform was put into a cemented carbide mold and sintered by hot pressing at 30 to 40 MPa, 500 to 550 ° C. for 5 to 10 minutes to obtain an aluminum base composite material.

4)これらの複合材(本発明の実施例1〜6及び比較例1〜8)と、これまでに開発された鋳造法で作製した複合材(従来品)から摩擦試験片と曲げ試験片を作製し、耐熱限界摩擦試験と三点曲げ試験を実施した。
摩擦試験は、ブレーキ制動初期温度300℃で5回制動後、初期温度を10℃上昇させて5回制動、その後も10℃上昇、5回制動を繰り返し、試験片の溶融等により制動不可になるまでの温度(耐熱限界温度)まで試験を継続した。
4) Friction test pieces and bending test pieces from these composite materials (Examples 1 to 6 and Comparative Examples 1 to 8 of the present invention) and composite materials (conventional products) produced by the casting methods developed so far. A heat-resistant limit friction test and a three-point bending test were performed.
In the friction test, after braking five times at an initial brake braking temperature of 300 ° C., the initial temperature is increased by 10 ° C. and braking is performed five times. Thereafter, 10 ° C. is increased and braking is repeated five times. The test was continued up to the temperature up to (heat limit temperature).

5)摩擦試験の結果
従来品は制動初期温度420℃で一部溶融し始めたため制動不可(耐熱限界温度420℃)になった。
一方、本発明の実施例品はアルミナ粒子、アルミナ繊維の量が増すに従い耐熱限界は上昇し、最高で制動初期温度520℃まで制動可能であった。また耐熱限界温度が高いほど、耐摩耗性も良好であった。
比較例1〜5の場合、従来品と比較した耐熱性、耐摩耗性、強度の向上は顕著でなかった。さらに、比較例6〜8の場合、結合材として作用するアルミニウム又はアルミニウム合金の量が不足したため、耐熱限界は上昇したものの曲げ強さが著しく低下した。
6)曲げ試験の結果
セラミックス粒子とセラミックス繊維の合計が65vol%以下ならば、繊維量の増加に従い曲げ強さは向上したが、65vol%を越えると曲げ強さは急激に低下した。
5) Result of friction test The conventional product started to melt partially at an initial braking temperature of 420 ° C, so braking became impossible (heat-resistant limit temperature: 420 ° C).
On the other hand, the heat resistance limit of the example product of the present invention increased as the amount of alumina particles and alumina fibers increased, and braking was possible up to the initial braking temperature of 520 ° C. Also, the higher the heat resistant limit temperature, the better the wear resistance.
In the case of Comparative Examples 1 to 5, the improvement in heat resistance, wear resistance, and strength compared with the conventional products was not remarkable. Furthermore, in the case of Comparative Examples 6-8, since the amount of aluminum or aluminum alloy acting as a binder was insufficient, the bending strength was significantly reduced although the heat resistance limit was increased.
6) Result of bending test When the total of the ceramic particles and the ceramic fiber was 65 vol% or less, the bending strength was improved as the amount of the fiber was increased, but when it exceeded 65 vol%, the bending strength was rapidly decreased.

Figure 2006063400
Figure 2006063400

本発明のアルミニウムベース複合材料は、優れた耐熱性、耐摩耗性及び強度を有するのでディスクキャリパ、サポート、ロータ等のブレーキ関連部品を初めとする種々の工業用材料として有用であり、さらにニッケルを全く含有しないため、金属アレルギーによる用途の制限がないので、広汎な用途に有用である。   Since the aluminum-based composite material of the present invention has excellent heat resistance, wear resistance and strength, it is useful as various industrial materials including brake-related parts such as disc calipers, supports, and rotors. Since it is not contained at all, there is no limitation on the use due to metal allergy, so it is useful for a wide range of uses.

Claims (3)

アルミニウム又はアルミニウム合金粉末からなるベース材料に、アルミナ、炭化珪素、窒化アルミニウム、窒化珪素等から選ばれるセラミックス粒子の少なくとも1種類以上を35〜60vol%と、アルミナ、炭化珪素、窒化アルミニウム、窒化珪素等から選ばれるセラミックス繊維の少なくとも1種類以上を5〜30vol%、かつ前記セラミックス粒子とセラミックス繊維を合計して40〜65vol%添加した混合物を、焼結して得たことを特徴とするアルミニウムベース複合材料。   35-60 vol% of at least one kind of ceramic particles selected from alumina, silicon carbide, aluminum nitride, silicon nitride, etc., and alumina, silicon carbide, aluminum nitride, silicon nitride, etc. An aluminum-based composite obtained by sintering a mixture in which at least one kind of ceramic fibers selected from 5 to 30 vol% and a total of 40 to 65 vol% of the ceramic particles and ceramic fibers are added material. 前記焼結は、加圧力を加えながら行われる加圧焼結であることを特徴とする請求項1記載のアルミニウムベース複合材料。   2. The aluminum-based composite material according to claim 1, wherein the sintering is pressure sintering performed while applying pressure. 前記セラミックス繊維は、繊維長0.1〜2mm、かつアスペクト比(繊維長/繊維径)10以上としたことを特徴とする請求項1又は請求項2記載のアルミニウムベース複合材料。   The aluminum-based composite material according to claim 1 or 2, wherein the ceramic fiber has a fiber length of 0.1 to 2 mm and an aspect ratio (fiber length / fiber diameter) of 10 or more.
JP2004247971A 2004-08-27 2004-08-27 Aluminum-based composite material Withdrawn JP2006063400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247971A JP2006063400A (en) 2004-08-27 2004-08-27 Aluminum-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247971A JP2006063400A (en) 2004-08-27 2004-08-27 Aluminum-based composite material

Publications (1)

Publication Number Publication Date
JP2006063400A true JP2006063400A (en) 2006-03-09

Family

ID=36110141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247971A Withdrawn JP2006063400A (en) 2004-08-27 2004-08-27 Aluminum-based composite material

Country Status (1)

Country Link
JP (1) JP2006063400A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948593B1 (en) 2009-11-06 2010-03-23 다이섹(주) Manufacturing method of Ceramic composite material
CN101255538B (en) * 2007-03-01 2011-07-20 中国科学院金属研究所 High-strength low thermal expansion A1N nano wire and A1 composite material
GB2483373A (en) * 2010-09-03 2012-03-07 Nexeon Ltd Electroactive composition for anode
CN104152763A (en) * 2014-07-07 2014-11-19 马鞍山市万鑫铸造有限公司 Colloidal graphite powder contained aluminum-based composite heat radiating material for LED
CN104152756A (en) * 2014-07-08 2014-11-19 蚌埠市英路光电有限公司 Aluminum-based composite heat radiating material containing modified bentonite for LED (Light-emitting Diode)
CN104164596A (en) * 2014-07-22 2014-11-26 安徽冠宇光电科技有限公司 LED aluminum-based composite heat-dissipating material containing modified fly ash
CN104164595A (en) * 2014-07-07 2014-11-26 马鞍山市万鑫铸造有限公司 An aluminum-based composite heat dissipation material with good optical properties for LEDs
CN104164592A (en) * 2014-07-07 2014-11-26 马鞍山市万鑫铸造有限公司 A light temperature-resistant aluminum-based composite heat dissipation material used for LEDs
CN104789823A (en) * 2015-04-12 2015-07-22 芜湖市神龙新能源科技有限公司 Aluminum-based composite heat dissipation material for LED
CN105624478A (en) * 2016-02-29 2016-06-01 苏州莱特复合材料有限公司 Magnesium stearate reinforced aluminum matrix composite and preparation method thereof
CN105803271A (en) * 2016-03-18 2016-07-27 南京航空航天大学 Aluminium-based nanocomposite based on SLM forming and preparation method of nanocomposite
CN107779792A (en) * 2017-09-29 2018-03-09 平果富邑智能板有限公司 A kind of ceramic aluminium sheet and preparation method thereof
CN108715980A (en) * 2018-05-24 2018-10-30 江苏理工学院 A kind of fire resistant aluminum alloy composite material and preparation method
CN108754358A (en) * 2018-05-29 2018-11-06 江苏理工学院 A kind of low temperature resistant Al alloy composite and preparation method thereof
CN111471943A (en) * 2020-05-14 2020-07-31 湖南工程学院 High-electric-conductivity and heat-conduction aluminum-based composite material and preparation method thereof
CN115725881A (en) * 2022-12-06 2023-03-03 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255538B (en) * 2007-03-01 2011-07-20 中国科学院金属研究所 High-strength low thermal expansion A1N nano wire and A1 composite material
KR100948593B1 (en) 2009-11-06 2010-03-23 다이섹(주) Manufacturing method of Ceramic composite material
GB2483373A (en) * 2010-09-03 2012-03-07 Nexeon Ltd Electroactive composition for anode
GB2483373B (en) * 2010-09-03 2015-03-18 Nexeon Ltd Electrode for a Lithium Ion Battery
CN104164592A (en) * 2014-07-07 2014-11-26 马鞍山市万鑫铸造有限公司 A light temperature-resistant aluminum-based composite heat dissipation material used for LEDs
CN104152763A (en) * 2014-07-07 2014-11-19 马鞍山市万鑫铸造有限公司 Colloidal graphite powder contained aluminum-based composite heat radiating material for LED
CN104164595A (en) * 2014-07-07 2014-11-26 马鞍山市万鑫铸造有限公司 An aluminum-based composite heat dissipation material with good optical properties for LEDs
CN104152756A (en) * 2014-07-08 2014-11-19 蚌埠市英路光电有限公司 Aluminum-based composite heat radiating material containing modified bentonite for LED (Light-emitting Diode)
CN104164596A (en) * 2014-07-22 2014-11-26 安徽冠宇光电科技有限公司 LED aluminum-based composite heat-dissipating material containing modified fly ash
CN104789823A (en) * 2015-04-12 2015-07-22 芜湖市神龙新能源科技有限公司 Aluminum-based composite heat dissipation material for LED
CN105624478A (en) * 2016-02-29 2016-06-01 苏州莱特复合材料有限公司 Magnesium stearate reinforced aluminum matrix composite and preparation method thereof
CN105803271A (en) * 2016-03-18 2016-07-27 南京航空航天大学 Aluminium-based nanocomposite based on SLM forming and preparation method of nanocomposite
CN107779792A (en) * 2017-09-29 2018-03-09 平果富邑智能板有限公司 A kind of ceramic aluminium sheet and preparation method thereof
CN108715980A (en) * 2018-05-24 2018-10-30 江苏理工学院 A kind of fire resistant aluminum alloy composite material and preparation method
CN108715980B (en) * 2018-05-24 2020-01-07 江苏理工学院 High-temperature-resistant aluminum alloy composite material and preparation method thereof
CN108754358A (en) * 2018-05-29 2018-11-06 江苏理工学院 A kind of low temperature resistant Al alloy composite and preparation method thereof
CN111471943A (en) * 2020-05-14 2020-07-31 湖南工程学院 High-electric-conductivity and heat-conduction aluminum-based composite material and preparation method thereof
CN115725881A (en) * 2022-12-06 2023-03-03 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof
CN115725881B (en) * 2022-12-06 2023-11-24 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006063400A (en) Aluminum-based composite material
US20050034559A1 (en) Sinterable metal powder mixture for the production of sintered components
JPH08253826A (en) Sintered friction material, composite copper alloy powder used therefor and their production
CN101530918B (en) Method for preparing composite component with strengthened TiB based on titanium alloy via powder metallurgy method
US20050036899A1 (en) Method for producing sintered components from a sinterable material
CN111286642B (en) Copper-based friction material suitable for carbon-ceramic brake disc and preparation method thereof
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
CN109321767A (en) A kind of method that compound augmentation prepares aluminium based composite material enhanced by miscellaneous granules
US5460775A (en) Nitrogen-combined aluminum sintered alloys and method of producing the same
JP2002178130A (en) Hybrid metal matrix composition and method of manufacturing the same
JP4686690B2 (en) Magnesium-based composite powder, magnesium-based alloy material, and production method thereof
WO2018168968A1 (en) Sintered friction material for brake
US20040202883A1 (en) Metal-ceramic composite material and method for production thereof
JPH04325648A (en) Production of sintered aluminum alloy
JP4270973B2 (en) Iron-based sintered body for valve seats with excellent light metal alloy castability
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
CN109136723B (en) Self-propagating synthesis and application of iron-based composite powder
JPH029099B2 (en)
JP3413031B2 (en) Composite material for railway vehicle brake discs
JPH10137920A (en) Production of brake disk composite material for railway vehicle
JP2000355685A (en) Friction material
WO2023157637A1 (en) Sintered metal friction material, and method for manufacturing same
JP2002194458A (en) Bench-type rotor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080725