JP2006062899A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP2006062899A
JP2006062899A JP2004245779A JP2004245779A JP2006062899A JP 2006062899 A JP2006062899 A JP 2006062899A JP 2004245779 A JP2004245779 A JP 2004245779A JP 2004245779 A JP2004245779 A JP 2004245779A JP 2006062899 A JP2006062899 A JP 2006062899A
Authority
JP
Japan
Prior art keywords
pair
electrodes
metal parts
catalyst metal
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004245779A
Other languages
Japanese (ja)
Other versions
JP4821101B2 (en
Inventor
Hideo Nagahama
英雄 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004245779A priority Critical patent/JP4821101B2/en
Publication of JP2006062899A publication Critical patent/JP2006062899A/en
Application granted granted Critical
Publication of JP4821101B2 publication Critical patent/JP4821101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon nanotubes by which the controllability of the growth direction of the carbon nanotubes can be improved in comparison with a conventional one. <P>SOLUTION: At least a couple of electrodes 3, 3 are formed on a surface of an insulating layer 2 provided on a substrate 1 so that the opposing surfaces of the couple of electrodes 3, 3 becomes parallel. Then, a couple of catalyst metal parts 4, 4 each brought into contact with respective electrodes 3, 3 are formed in an area where an electric field is formed when a prescribed voltage is applied between the couple of electrodes 3, 3. Thereafter, the carbon nanotubes are grown between the couple of catalyst metal parts 4, 4 by a CVD method by applying voltage between the couple of electrodes 3, 3 and at the same time, supplying a raw material gas containing carbon onto the surface side of the insulating layer 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーボンナノチューブの製造方法に関するものである。   The present invention relates to a method for producing carbon nanotubes.

近年、所謂ナノテクノロジーの分野において注目されているカーボンナノチューブを用いた種々のカーボンナノチューブ応用デバイス(例えば、電子放出素子、ディスプレイ、電界効果型トランジスタ、メモリ、半導体圧力センサ、半導体加速度センサなど)や、カーボンナノチューブの製造方法が各所で研究開発されている。   Various carbon nanotube application devices using carbon nanotubes that have been attracting attention in the field of so-called nanotechnology in recent years (for example, electron-emitting devices, displays, field-effect transistors, memories, semiconductor pressure sensors, semiconductor acceleration sensors, etc.) Carbon nanotube production methods are being researched and developed at various locations.

ここにおいて、カーボンナノチューブの成長方向を制御可能なカーボンナノチューブの製造方法としては、絶縁層の一表面に平行な面内で所望の方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法が提案されている。このようなカーボンナノチューブの製造方法としては、例えば、図8(a),(b)に示すように、基板1上の絶縁層2上に対となる電極(電極層)3,3を形成してから、各電極3,3上に触媒金属部(触媒金属薄膜)4,4を形成した後、対となる電極3,3間に直流電源Eから電圧を印加した状態でCVD法により触媒金属部4,4間にカーボンナノチューブを成長させる方法が提案されている。この製造方法では、対となる電極3,3の先端部および対となる触媒金属部4,4の先端部を、絶縁層2の上記一表面に平行な面内で先端同士が対向する尖突状に形成しており、触媒金属部4,4の先端同士を結ぶ直線上にカーボンナノチューブを成長することができる。   Here, as a carbon nanotube manufacturing method capable of controlling the growth direction of carbon nanotubes, a carbon nanotube manufacturing method capable of growing carbon nanotubes in a desired direction within a plane parallel to one surface of an insulating layer has been proposed. Yes. As a method for producing such a carbon nanotube, for example, as shown in FIGS. 8A and 8B, a pair of electrodes (electrode layers) 3 and 3 are formed on an insulating layer 2 on a substrate 1. After forming the catalytic metal portions (catalytic metal thin films) 4 and 4 on the electrodes 3 and 3, the catalytic metal is formed by the CVD method with a voltage applied from the DC power source E between the pair of electrodes 3 and 3. A method of growing carbon nanotubes between the portions 4 and 4 has been proposed. In this manufacturing method, the tip portions of the pair of electrodes 3 and 3 and the tip portions of the pair of catalytic metal portions 4 and 4 are pointed so that the tips face each other in a plane parallel to the one surface of the insulating layer 2. The carbon nanotubes can be grown on a straight line connecting the tips of the catalytic metal parts 4 and 4.

また、絶縁層の一表面に平行な面内で所望の方向にカーボンナノチューブを成長可能なカーボンナノチューブの製造方法としては、図9に示すように、絶縁層2上に触媒金属部4,4の対を形成し、絶縁層2上で対となる触媒金属部4,4よりも外側に配置された一対の電極3,3間に電圧を印加した状態でCVD法により触媒金属部4,4間にカーボンナノチューブ5を成長させる方法も提案されている(例えば、特許文献1参照)
特表2003−504857号公報(段落〔0046〕,〔0049〕および図3)
Further, as a method for producing carbon nanotubes capable of growing carbon nanotubes in a desired direction within a plane parallel to one surface of the insulating layer, as shown in FIG. 9, the catalyst metal portions 4 and 4 are formed on the insulating layer 2. A pair is formed, and a voltage is applied between the pair of electrodes 3 and 3 disposed outside the catalytic metal parts 4 and 4 that are paired on the insulating layer 2, and the catalytic metal parts 4 and 4 are formed by a CVD method. A method of growing carbon nanotubes 5 on the surface has also been proposed (see, for example, Patent Document 1).
Japanese translation of PCT publication No. 2003-504857 (paragraphs [0046], [0049] and FIG. 3)

しかしながら、図8を参照しながら説明したカーボンナノチューブの製造方法では、対となる電極3,3の先端部および対となる触媒金属部4,4の先端部を、絶縁層2の上記一表面に平行な面内で先端同士が対向する尖突状に形成しているので、対となる電極3,3間に電圧が印加された状態において、図8(a)中に一点鎖線で示すような等電位面が形成されて電極3,3間に生じる電界分布が不均一になり、対となる電極3,3の並設方向とは異なる電位勾配方向(図8(a)中の矢印の向き)へもカーボンナノチューブが成長してしまうことがあった。要するに、対となる触媒金属部4,4の並設方向をカーボンナノチューブの所望の成長方向としたいにもかかわらず、触媒金属部4,4から所望の成長方向以外の方向にもカーボンナノチューブが成長してしまうことがあった。   However, in the carbon nanotube manufacturing method described with reference to FIG. 8, the tip portions of the pair of electrodes 3 and 3 and the tip portions of the catalyst metal portions 4 and 4 are paired on the one surface of the insulating layer 2. Since the tips are formed in a pointed shape facing each other in a parallel plane, as shown by the alternate long and short dash line in FIG. 8A when a voltage is applied between the pair of electrodes 3 and 3. An equipotential surface is formed and the electric field distribution generated between the electrodes 3 and 3 becomes non-uniform, and the potential gradient direction differs from the parallel direction of the paired electrodes 3 and 3 (the direction of the arrow in FIG. 8A). ) Also grew carbon nanotubes. In short, the carbon nanotubes grow from the catalyst metal parts 4 and 4 in directions other than the desired growth direction even though the parallel arrangement directions of the catalyst metal parts 4 and 4 as a pair are desired to be the desired growth direction of the carbon nanotubes. I had to do it.

また、上記特許文献1に提案されているカーボンナノチューブの製造方法では、一対の電極3,3間に電圧を印加したときに電界が形成される領域内において電極3,3から離間した位置に対となる触媒金属部4,4を形成しているので、一対の電極3,3間に電圧を印加した状態において触媒金属部4,4自身にも電位勾配が発生し、図9中に一点鎖線で示すように一方の触媒金属部4における他方の触媒金属部4との対向面とは異なる側面からカーボンナノチューブ5が成長してしまう恐れがある。要するに、上記特許文献1に提案されたカーボンナノチューブの製造方法でも、対となる触媒金属部4,4の並設方向をカーボンナノチューブの所望の成長方向としたいにもかかわらず、触媒金属部4,4から所望の成長方向以外の方向にもカーボンナノチューブが成長してしまう恐れがあった。   Further, in the carbon nanotube manufacturing method proposed in Patent Document 1, a pair of electrodes 3 and 3 are placed at positions separated from the electrodes 3 and 3 in a region where an electric field is formed when a voltage is applied between the pair of electrodes 3 and 3. Since the catalytic metal portions 4 and 4 are formed, a potential gradient is also generated in the catalytic metal portions 4 and 4 themselves when a voltage is applied between the pair of electrodes 3 and 3. As shown in FIG. 1, there is a possibility that the carbon nanotube 5 may grow from a side surface different from the surface facing the other catalyst metal portion 4 in one catalyst metal portion 4. In short, even in the carbon nanotube manufacturing method proposed in Patent Document 1, the catalyst metal portions 4, 4 are arranged in spite of the desired parallel growth direction of the carbon nanotubes 4, 4. The carbon nanotubes may grow in directions other than the desired growth direction from 4.

本発明は上記事由に鑑みて為されたものであり、その目的は、従来に比べてカーボンナノチューブの成長方向の制御性を向上可能なカーボンナノチューブの製造方法を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a carbon nanotube production method capable of improving the controllability of the growth direction of carbon nanotubes as compared with the prior art.

請求項1の発明は、絶縁層の一表面上に少なくとも一対の電極を対となる電極同士の対向面が平行となる形で形成してから、対となる電極間に電圧を印加するときに電界が形成される領域において各電極それぞれに接する触媒金属部の対を形成した後、対となる電極間に電圧を印加し且つ絶縁層の前記一表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とする。   According to the first aspect of the present invention, when at least a pair of electrodes is formed on one surface of the insulating layer so that opposing surfaces of the pair of electrodes are parallel to each other, and then a voltage is applied between the pair of electrodes. After forming a pair of catalytic metal portions in contact with each electrode in a region where an electric field is formed, a voltage is applied between the pair of electrodes and a source gas containing carbon is supplied to the one surface side of the insulating layer. Carbon nanotubes are grown between a pair of catalytic metal parts.

この発明によれば、カーボンナノチューブを成長させる際、対となる電極間に電圧を印加することにより電極間に均一な電位分布を発生させることができ、電極間に形成される電界分布の均一性が高くなって、対となる電極間での電位勾配方向のばらつきが少なくなり、しかも、対となる触媒金属部が電極間への電圧印加時に電界が形成される領域に設けられ、対となる触媒金属部がそれぞれ接している電極と同電位となっているので、対となる触媒金属部の並設方向へ安定してカーボンナノチューブを成長させることが可能となり、従来に比べてカーボンナノチューブの成長方向の制御性が向上する。   According to the present invention, when carbon nanotubes are grown, a uniform potential distribution can be generated between the electrodes by applying a voltage between the pair of electrodes, and the uniformity of the electric field distribution formed between the electrodes. And the variation in potential gradient direction between the pair of electrodes is reduced, and the pair of catalytic metal parts is provided in a region where an electric field is formed when a voltage is applied between the electrodes. Since the catalytic metal parts are at the same potential as the electrodes in contact with each other, it becomes possible to grow carbon nanotubes stably in the direction in which the paired catalytic metal parts are arranged side by side. Direction controllability is improved.

請求項2の発明は、請求項1の発明において、触媒金属部の対の形成にあたっては、対となる触媒金属部同士の互いの対向面が対となる電極同士の互いの対向面と平行になる形状の触媒金属部を、対となる電極における互いの対向面側の端部上に形成することを特徴とする。   In the invention of claim 2, in the invention of claim 1, in the formation of the pair of catalyst metal parts, the opposed surfaces of the paired catalyst metal parts are parallel to the opposed surfaces of the paired electrodes. The catalyst metal part having a shape as described above is formed on the end part on the opposite surface side of the pair of electrodes.

この発明によれば、対となる触媒金属部を対となる電極における互いの対向面側の端部から比較的離れて電界が作用しにくい位置に形成する場合に比べて、対となる触媒金属部間に生じる電界分布の均一性を高めることができ、対となる触媒金属部の並設方向へより安定してカーボンナノチューブを成長させることが可能となる。   According to the present invention, the catalyst metal part to be paired is formed as compared with the case where the catalyst metal part to be paired is formed at a position that is relatively far from the end portions of the paired electrodes on the opposite surface side and is unlikely to act on the electric field. The uniformity of the electric field distribution generated between the portions can be improved, and the carbon nanotubes can be more stably grown in the direction in which the catalyst metal portions to be paired are arranged side by side.

請求項3の発明は、請求項1の発明において、触媒金属部の対の形成にあたっては、対となる触媒金属部同士の互いの対向面が対となる電極同士の対向面と同一平面内に揃う形状の触媒金属部を、対となる電極それぞれの上に形成することを特徴とする。   In the invention of claim 3, in the invention of claim 1, in the formation of the pair of catalyst metal parts, the opposed surfaces of the paired catalyst metal parts are in the same plane as the opposed surfaces of the paired electrodes. The catalyst metal parts having a uniform shape are formed on each pair of electrodes.

この発明によれば、対となる触媒金属部同士の互いの対向面が対となる電極同士の対向面と同一平面内に揃わない形で各電極上に形成されている場合に比べて、対となる触媒金属部間に生じる電界分布の均一性を高めることができ、対となる触媒金属部の並設方向へより安定してカーボンナノチューブを成長させることが可能となる。   According to the present invention, compared to the case where the opposing surfaces of the pair of catalytic metal parts are formed on each electrode in a form that does not align with the opposing surfaces of the pair of electrodes in the same plane. The uniformity of the electric field distribution generated between the catalytic metal parts can be improved, and the carbon nanotubes can be more stably grown in the direction in which the paired catalytic metal parts are arranged side by side.

請求項4の発明は、請求項1の発明において、触媒金属部の対の形成にあたっては、対となる触媒金属部同士の互いの対向面が対となる電極同士の互いの対向面と平行になる形状の触媒金属部を、電極上と電極間の空間における絶縁層上とに跨って形成することを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, in forming the pair of catalytic metal parts, the opposed surfaces of the paired catalytic metal parts are parallel to the opposed surfaces of the paired electrodes. The catalyst metal part having a shape as described above is formed across the electrodes and the insulating layer in the space between the electrodes.

この発明によれば、カーボンナノチューブの成長時に、対となる触媒金属部間に形成される電界分布の均一性がより高くなり、対となる触媒金属部間では電位勾配方向が対となる触媒金属部の並設方向に揃うこととなるので、対となる触媒金属部の並設方向へより安定してカーボンナノチューブを成長させることが可能となる。   According to the present invention, the uniformity of the electric field distribution formed between the pair of catalyst metal parts is increased during the growth of the carbon nanotube, and the catalyst metal in which the potential gradient direction is paired between the pair of catalyst metal parts. Therefore, the carbon nanotubes can be grown more stably in the direction in which the pair of catalyst metal portions are arranged side by side.

請求項5の発明は、請求項1ないし請求項4の発明において、触媒金属部の対の形成にあたっては、絶縁層の前記一表面に平行な面内で対となる電極同士を結ぶ直線に直交する方向において各触媒金属部それぞれが複数個ずつの小領域に分離された形で触媒金属部の対を形成することを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, when forming the pair of catalytic metal parts, the pair of electrodes in a plane parallel to the one surface of the insulating layer is orthogonal to the straight line. In this direction, each of the catalytic metal portions is separated into a plurality of small regions to form a pair of catalytic metal portions.

この発明によれば、カーボンナノチューブの成長時に、触媒金属部から対となる電極の並設方向とは異なる方向へカーボンナノチューブが成長し始めたとしても、他のカーボンナノチューブに干渉して絡み合うのを防止することができる。   According to the present invention, when carbon nanotubes grow, even if the carbon nanotubes start to grow in a direction different from the direction in which the pair of electrodes are juxtaposed from the catalytic metal part, they interfere with and intertwine with other carbon nanotubes. Can be prevented.

請求項6の発明は、請求項2または請求項3の発明において、触媒金属部の対の形成にあたっては、絶縁層の前記一表面に平行な面内で対となる電極同士を結ぶ直線に直交する方向において各触媒金属部それぞれが複数個ずつの多角形状の小領域に分離され且つ対となる小領域それぞれの1つの角同士が対向する形で触媒金属部の対を形成することを特徴とする。   According to a sixth aspect of the present invention, in forming the pair of catalytic metal portions according to the second or third aspect of the present invention, the pair of electrodes is orthogonal to a straight line connecting the paired electrodes in a plane parallel to the one surface of the insulating layer. Each of the catalytic metal parts is separated into a plurality of polygonal small areas in the direction of the catalyst, and a pair of catalytic metal parts is formed such that one corner of each of the paired small areas is opposed to each other. To do.

この発明によれば、対となる電極の並設方向において対向する小領域間には1本のカーボンナノチューブのみが成長することとなり、対となる触媒金属部間に成長するカーボンナノチューブ同士が干渉して絡み合うのを防止することができる。   According to this invention, only one carbon nanotube grows between the small regions facing each other in the direction in which the paired electrodes are arranged side by side, and the carbon nanotubes grown between the paired catalytic metal portions interfere with each other. Entanglement can be prevented.

請求項7の発明は、請求項2または請求項3の発明において、触媒金属部の対の形成にあたっては、絶縁層の前記一表面に平行な面内で対となる電極同士を結ぶ直線に直交する方向において各触媒金属部それぞれが複数個ずつの円形状の小領域に分離された形で触媒金属部の対を形成することを特徴とすることを特徴とする。   According to a seventh aspect of the present invention, in forming the pair of catalytic metal portions according to the second or third aspect of the present invention, the pair of electrodes is orthogonal to a straight line connecting pairs of electrodes in a plane parallel to the one surface of the insulating layer. In this direction, each of the catalyst metal parts is formed into a plurality of circular small regions, and a pair of catalyst metal parts is formed.

この発明によれば、対となる電極の並設方向において対向する小領域間には1本のカーボンナノチューブのみが成長することとなり、対となる触媒金属部間に成長するカーボンナノチューブ同士が干渉して絡み合うのを防止することができる。   According to this invention, only one carbon nanotube grows between the small regions facing each other in the direction in which the paired electrodes are arranged side by side, and the carbon nanotubes grown between the paired catalytic metal portions interfere with each other. Entanglement can be prevented.

請求項1の発明では、対となる触媒金属部の並設方向へ安定してカーボンナノチューブを成長させることが可能となり、従来に比べてカーボンナノチューブの成長方向の制御性が向上するという効果がある。   According to the first aspect of the present invention, it becomes possible to stably grow carbon nanotubes in the direction in which the catalyst metal parts forming a pair are arranged side by side, and there is an effect that controllability of the growth direction of the carbon nanotubes is improved as compared with the conventional case. .

(実施形態1)
以下、本実施形態のカーボンナノチューブの製造方法について図1を参照しながら説明する。
(Embodiment 1)
Hereinafter, the manufacturing method of the carbon nanotube of this embodiment is demonstrated, referring FIG.

まず、シリコン基板からなる基板1上のSiO膜からなる絶縁層2の一表面(図1(b)における上面)上に、少なくとも一対(図示例では一対のみ)の電極3,3を対となる電極3,3同士の対向面が平行となる形で形成する。ここに、電極3,3を形成するにあたっては、絶縁層2の上記一表面上に例えばスパッタ法や蒸着法などによって電極3,3の構成材料(例えば、アルミニウムなど)からなる導電層を成膜し、リソグラフィ技術およびエッチング技術を利用して導電層をパターニングすることによってそれぞれ導電層の一部からなる電極3,3を形成する。なお、電極3,3の平面形状は矩形状としてあるが、電極3,3同士の対向面が平行となる形状であればよく、矩形状の形状に限定するものではない。 First, at least one pair (only one pair in the illustrated example) of electrodes 3 and 3 is paired on one surface (upper surface in FIG. 1B) of the insulating layer 2 made of a SiO 2 film on the substrate 1 made of a silicon substrate. The electrodes 3 and 3 are formed so that the opposing surfaces thereof are parallel to each other. Here, when the electrodes 3 and 3 are formed, a conductive layer made of a constituent material of the electrodes 3 and 3 (for example, aluminum) is formed on the one surface of the insulating layer 2 by, for example, sputtering or vapor deposition. Then, by patterning the conductive layer using the lithography technique and the etching technique, the electrodes 3 and 3 each consisting of a part of the conductive layer are formed. In addition, although the planar shape of the electrodes 3 and 3 is made into the rectangular shape, it should just be a shape where the opposing surfaces of the electrodes 3 and 3 become parallel, and is not limited to a rectangular shape.

電極3,3の形成後、対となる電極3,3間に所定の電圧(直流電圧)を印加するときに電界が形成される領域において各電極3,3それぞれに接する触媒金属部4,4の対を形成する。触媒金属部4,4の対の形成にあたっては、絶縁層2の上記一表面側にカーボンナノチューブを成長させるための触媒金属材料(例えば、鉄、ニッケル、コバルトなど)からなる触媒金属薄膜を成膜し、リソグラフィ技術およびエッチング技術を利用して触媒金属薄膜をパターニングすることによってそれぞれ触媒金属薄膜の一部からなる触媒金属部4,4を形成するようにし、対となる触媒金属部4,4同士の互いの対向面が電極3,3同士の互いの対向面と平行になる形状の触媒金属部4,4を、対となる電極3,3における互いの対向面側の端部(図1(b)の左側の電極3では右端部、図1(b)の右側の電極3では左端部)上に形成する。なお、触媒金属部4,4の平面形状は細長の長方形状の形状として、触媒金属部4,4の長手方向を絶縁層2の上記一表面に平行な面内で触媒金属部4,4の並設方向と直交する方向に一致させてある。   After the formation of the electrodes 3, 3, the catalytic metal portions 4, 4 that are in contact with the electrodes 3, 3 in a region where an electric field is formed when a predetermined voltage (DC voltage) is applied between the pair of electrodes 3, 3. Form a pair. In forming the pair of catalytic metal portions 4 and 4, a catalytic metal thin film made of a catalytic metal material (for example, iron, nickel, cobalt, etc.) for growing carbon nanotubes on the one surface side of the insulating layer 2 is formed. Then, by patterning the catalyst metal thin film using lithography technology and etching technology, the catalyst metal portions 4 and 4 each consisting of a part of the catalyst metal thin film are formed, and the catalyst metal portions 4 and 4 which are paired with each other The catalytic metal parts 4 and 4 having a shape in which the opposing surfaces of the electrodes 3 and 3 are parallel to the opposing surfaces of the electrodes 3 and 3 are connected to the ends of the opposing electrodes 3 and 3 on the side of the opposing surfaces (FIG. 1 ( The electrode 3 is formed on the right end of the left electrode 3 of b) and on the left end of the right electrode 3 of FIG. The planar shape of the catalyst metal portions 4 and 4 is an elongated rectangular shape, and the longitudinal direction of the catalyst metal portions 4 and 4 is within the plane parallel to the one surface of the insulating layer 2. It is made to correspond to the direction orthogonal to the juxtaposed direction.

触媒金属部4,4の形成後、対となる電極3,3間に所定の電圧を印加し且つ絶縁層2の上記一表面側に炭素を含む原料ガス(例えば、炭化水素を含むCガス、Cガス、CHガスなど)を供給して例えばCVD法によって対となる触媒金属部4,4間にカーボンナノチューブ5(図2参照)を成長させる(対となる触媒金属部4,4の一方の触媒金属部4から他方の触媒金属部4へ向かってカーボンナノチューブ5を成長させる)。なお、CVD法によってカーボンナノチューブを成長させる際の基板温度は、原料ガスおよび触媒金属材料の種類に応じて例えば500℃〜1000℃の範囲で適宜設定すればよい。 After the formation of the catalytic metal parts 4 and 4, a predetermined voltage is applied between the pair of electrodes 3 and 3, and a source gas containing carbon on the one surface side of the insulating layer 2 (for example, C 2 H containing hydrocarbons) 2 gas, C 2 H 4 gas, CH 4 gas, etc.) are supplied to grow carbon nanotubes 5 (see FIG. 2) between the paired catalyst metal parts 4 and 4 by, for example, CVD method (paired catalyst metal) The carbon nanotubes 5 are grown from one catalyst metal part 4 of the parts 4 and 4 toward the other catalyst metal part 4). In addition, what is necessary is just to set the substrate temperature at the time of growing a carbon nanotube by CVD method suitably in the range of 500 to 1000 degreeC according to the kind of source gas and a catalyst metal material, for example.

カーボンナノチューブ5を成長させた後、対となる電極3,3それぞれを下部電極として、各下部電極3,3それぞれの一表面(図1(b)の上面)側に上部電極6,6を形成する。この上部電極6,6を形成することにより、触媒金属部4,4は下部電極3,3と上部電極6,6との間に介在することとなる。なお、上部電極6,6の材料は下部電極3,3と同じ材料でもよいし、異なる材料でもよい。また、上部電極6,6は必ずしも設ける必要はなく、必要に応じて設ければよい。   After the carbon nanotubes 5 are grown, the upper electrodes 6 and 6 are formed on one surface (the upper surface of FIG. 1B) of each of the lower electrodes 3 and 3 using the paired electrodes 3 and 3 as lower electrodes. To do. By forming the upper electrodes 6 and 6, the catalyst metal parts 4 and 4 are interposed between the lower electrodes 3 and 3 and the upper electrodes 6 and 6. The material of the upper electrodes 6 and 6 may be the same material as that of the lower electrodes 3 and 3 or may be a different material. Further, the upper electrodes 6 and 6 are not necessarily provided, and may be provided as necessary.

以上説明したカーボンナノチューブの製造方法によれば、カーボンナノチューブを成長させる際、対となる電極3,3間に所定の電圧を印加することにより電極3,3間には均一な電位分布を発生させることができ、電極3,3間に形成される電界分布の均一性が高くなって、対となる電極3,3間での電位勾配方向のばらつきが少なくなり(電位勾配方向が一方向に揃いやすくなり)、しかも、対となる触媒金属部4,4が電極3,3間への電圧印加時に電界が形成される領域内に設けられ、対となる触媒金属部4,4がそれぞれ接している電極3,3と同電位となっているので、対となる触媒金属部4,4の並設方向へ安定してカーボンナノチューブ5を成長させることが可能となる(図1(a)の左右方向を長手方向とするカーボンナノチューブ5を成長させることが可能となる)。しかして、従来に比べてカーボンナノチュー5の成長方向の制御性が向上する。また、対となる触媒金属部4,4の形成にあたって、対となる触媒金属部4,4同士の互いの対向面が電極3,3同士の互いの対向面と平行になる形状(本実施形態では、対となる触媒金属部4,4同士の互いの対向面が電極3,3同士の対向面と同一平面内に揃う形状)の触媒金属部4,4を、対となる電極3,3における互いの対向面側の端部上に形成しているので、対となる触媒金属部4,4を対となる電極3,3における互いの対向面側の端部から比較的離れて電界が作用しにくい位置に形成する場合に比べて、対となる触媒金属部4,4間に生じる電界分布の均一性を高めることができ、対となる触媒金属部4,4の並設方向へより安定してカーボンナノチューブを成長させることが可能となる。   According to the carbon nanotube manufacturing method described above, a uniform potential distribution is generated between the electrodes 3 and 3 by applying a predetermined voltage between the pair of electrodes 3 and 3 when growing the carbon nanotubes. The uniformity of the electric field distribution formed between the electrodes 3 and 3 is increased, and the variation in the potential gradient direction between the paired electrodes 3 and 3 is reduced (the potential gradient direction is aligned in one direction). In addition, the pair of catalytic metal portions 4 and 4 are provided in a region where an electric field is formed when a voltage is applied between the electrodes 3 and 3, and the pair of catalytic metal portions 4 and 4 are in contact with each other. Since the potentials are the same as those of the electrodes 3 and 3, the carbon nanotubes 5 can be stably grown in the direction in which the catalyst metal portions 4 and 4 forming a pair are arranged side by side (FIG. 1 (a)). Carbon na with the direction as the longitudinal direction It is possible to grow a tube 5). Therefore, the controllability of the growth direction of the carbon nanochu 5 is improved as compared with the conventional case. Further, when forming the pair of catalyst metal parts 4, 4, a shape in which the opposed surfaces of the pair of catalyst metal parts 4, 4 are parallel to the opposed surfaces of the electrodes 3, 3 (this embodiment) Then, the catalytic metal portions 4 and 4 having a shape in which the opposing surfaces of the pair of catalytic metal portions 4 and 4 are aligned in the same plane as the opposing surfaces of the electrodes 3 and 3 are used as the pair of electrodes 3 and 3. Are formed on the end portions on the opposite surface side of each other, so that the pair of catalytic metal portions 4, 4 is relatively far away from the end portions on the opposite surface side of the pair of electrodes 3, 3. Compared to the case where it is difficult to act, the uniformity of the electric field distribution generated between the pair of catalyst metal parts 4 and 4 can be improved, and the direction in which the pair of catalyst metal parts 4 and 4 are arranged side by side. It becomes possible to grow carbon nanotubes stably.

ところで、対となる触媒金属部4,4の平面形状が上述のような細長の長方形状の形状となって且つ対となる触媒金属部4,4の互いの対向面が平面となっている場合、対となる触媒金属部4,4間には多数のカーボンナノチューブが成長するが、成長時に触媒金属部4,4から所望の成長方向とは異なる方向へ成長し始めたカーボンナノチューブが存在すると、近接したカーボンナノチューブ間に分子間力が作用してカーボンナノチューブ同士が干渉して絡み合い、成長方向の制御が困難となってしまう。しかしながら、本実施形態の製造方法によれば、上述のように触媒金属部4,4間の電界分布の均一性が高い状態で各カーボンナノチューブを成長させるので、各カーボンナノチューブの成長初期から成長終了まで各カーボンナノチューブの成長方向を安定して制御することができ、成長途中のカーボンナノチューブ同士が干渉して絡み合うのを防止することができる。   By the way, when the planar shape of the catalyst metal parts 4 and 4 which become a pair becomes the above-mentioned elongate rectangular shape, and the mutual opposing surface of the catalyst metal parts 4 and 4 which become a pair becomes a plane A large number of carbon nanotubes grow between the pair of catalytic metal parts 4 and 4, but when there are carbon nanotubes that start to grow in a direction different from the desired growth direction from the catalytic metal parts 4 and 4 at the time of growth, Intermolecular forces act between adjacent carbon nanotubes, and the carbon nanotubes interfere with each other and become entangled, making it difficult to control the growth direction. However, according to the manufacturing method of the present embodiment, each carbon nanotube is grown in a state where the uniformity of the electric field distribution between the catalytic metal parts 4 and 4 is high as described above. Thus, the growth direction of each carbon nanotube can be stably controlled, and the carbon nanotubes in the middle of growth can be prevented from interfering with each other.

(実施形態2)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態1の製造方法と同じであり、触媒金属部4,4の対の形成にあたって、図3(a),(b)に示すように、絶縁層2の上記一表面(図3(b)における上面)に平行な面内で対となる電極3,3同士を結ぶ直線に直交する方向(図3(a)における上下方向)において各触媒金属部4,4それぞれを複数個(図示例では、4個)ずつの小領域4aに分離した形で触媒金属部4,4の対を形成している点が相違するだけである。要するに、本実施形態の製造方法では、対となる電極3,3の一方の電極3上に形成した複数個の小領域4aにより一方の触媒金属部4を構成し、他方の電極3上に形成した複数個の小領域4aにより他方の触媒金属部4を構成している。ここに、本実施形態では、各小領域4aの平面形状を矩形状の形状として、各小領域4aの一側面が電極3,3同士の対向面と同一平面上に揃うように各小領域4aをパターニングしているが、各小領域4aの一側面が電極3,3同士の対向面と平行であればよい。
(Embodiment 2)
The manufacturing method of the carbon nanotube of this embodiment is basically the same as the manufacturing method of Embodiment 1, and in forming the pair of catalytic metal parts 4 and 4, as shown in FIGS. 3 (a) and 3 (b). In the direction (vertical direction in FIG. 3A) orthogonal to the straight line connecting the paired electrodes 3 and 3 in a plane parallel to the one surface (the upper surface in FIG. 3B) of the insulating layer 2 The only difference is that a pair of catalyst metal parts 4 and 4 is formed in a form in which each of the catalyst metal parts 4 and 4 is separated into a plurality (four in the illustrated example) of small regions 4a. In short, in the manufacturing method of the present embodiment, one catalytic metal portion 4 is constituted by a plurality of small regions 4 a formed on one electrode 3 of the pair of electrodes 3, 3 and formed on the other electrode 3. The other catalytic metal portion 4 is constituted by the plurality of small regions 4a. Here, in the present embodiment, the planar shape of each small region 4a is a rectangular shape, and each small region 4a is arranged so that one side surface of each small region 4a is flush with the opposing surfaces of the electrodes 3 and 3. However, it is only necessary that one side surface of each small region 4a is parallel to the opposing surface of the electrodes 3 and 3.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、対となる電極3,3の並設方向(図3(a)における左右方向)において対向する小領域4a,4a間にカーボンナノチューブが成長することとなるので、各触媒金属部4,4それぞれにおいて隣り合う小領域4a,4a間(図3(a)の上下方向において隣り合う小領域4a.4a間)の距離を適宜設定しておくことにより、隣り合う小領域4a,4aそれぞれから成長するカーボンナノチューブ間に分子間力が作用する可能性を低くでき、カーボンナノチューブの成長時に、絶縁層2の上記一表面に平行な面内において対となる触媒金属部4,4の並設方向(図3(a)における左右方向)とは異なる方向へ成長し始めたカーボンナノチューブが存在しても、他のカーボンナノチューブに干渉して絡み合う可能性を低減できる。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, the carbon nanotubes are formed between the small regions 4a and 4a facing each other in the juxtaposed direction of the paired electrodes 3 and 3 (left and right direction in FIG. 3A). Therefore, the distance between the adjacent small regions 4a and 4a in each of the catalytic metal portions 4 and 4 (between the adjacent small regions 4a and 4a in the vertical direction of FIG. 3A) is appropriately set. In this case, it is possible to reduce the possibility that an intermolecular force acts between the carbon nanotubes grown from the adjacent small regions 4a and 4a, and in the plane parallel to the one surface of the insulating layer 2 during the growth of the carbon nanotubes. Even if carbon nanotubes that have started to grow in a direction different from the direction in which the catalytic metal parts 4 and 4 are paired (the left-right direction in FIG. 3A) exist, Possible to reduce the possibility of entanglement interfere with nanotubes.

(実施形態3)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態2の製造方法と同じであり、触媒金属部4,4の対の形成にあたって、図4(a),(b),(c)に示すように、対となる触媒金属部4,4を構成する複数個ずつの小領域4a,4aを、電極3,3上と電極3,3間の空間における絶縁層2上とに跨って形成している点が相違するだけである。要するに、本実施形態では、対となる触媒金属部4,4同士の互いの対向面が電極3,3同士の互いの対向面と平行になる形状の触媒金属部4,4を、電極3,3上と電極3,3間の空間における絶縁層2上とに跨って形成している。言い換えれば、対となる電極3,3間の空間に各電極3,3それぞれと接する各触媒金属部4,4それぞれの一部を入り込ませている。
(Embodiment 3)
The manufacturing method of the carbon nanotube of the present embodiment is basically the same as the manufacturing method of the second embodiment, and in forming the pair of the catalytic metal parts 4 and 4, FIGS. 4 (a), (b), (c) As shown in FIG. 4, a plurality of small regions 4a and 4a constituting the catalyst metal parts 4 and 4 to be paired are straddled over the electrodes 3 and 3 and the insulating layer 2 in the space between the electrodes 3 and 3. The only difference is the formation. In short, in the present embodiment, the catalytic metal portions 4 and 4 having a shape in which the opposing surfaces of the pair of catalytic metal portions 4 and 4 are parallel to the opposing surfaces of the electrodes 3 and 3 are connected to the electrodes 3 and 3. 3 over the insulating layer 2 in the space between the electrodes 3 and 3. In other words, a part of each of the catalytic metal portions 4 and 4 in contact with each of the electrodes 3 and 3 is inserted into the space between the pair of electrodes 3 and 3.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、カーボンナノチューブの成長時に、対となる触媒金属部4,4の小領域4a,4a間に形成される電界分布の均一性がより高くなり、対となる触媒金属部4,4間では電位勾配方向が対となる触媒金属部4,4の小領域4a,4aの並設方向に揃っているので、対となる触媒金属部4,4の並設方向へより安定してカーボンナノチューブを成長させることが可能となる。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, the uniformity of the electric field distribution formed between the small regions 4a and 4a of the catalyst metal parts 4 and 4 that form a pair is higher during the growth of the carbon nanotubes. In other words, the potential gradient direction between the paired catalyst metal portions 4 and 4 is aligned with the direction in which the small regions 4a and 4a of the paired catalyst metal portions 4 and 4 are arranged side by side. Thus, it becomes possible to grow the carbon nanotubes more stably in the parallel direction of the four.

なお、実施形態1の製造方法において対となる触媒金属部4,4を形成するにあたって、対となる触媒金属部4,4同士の互いの対向面が電極3,3同士の互いの対向面と平行になる形状の触媒金属部4,4を、電極3,3上と電極3,3間の空間における絶縁層2上とに跨って形成してもよく、この場合には、実施形態1に比べて、対となる触媒金属部4,4の並設方向へより安定してカーボンナノチューブを成長させることが可能となる。   In addition, in forming the catalyst metal parts 4 and 4 to be paired in the manufacturing method of Embodiment 1, the mutually facing surfaces of the paired catalyst metal parts 4 and 4 are opposite to the mutually facing surfaces of the electrodes 3 and 3. The catalytic metal parts 4 and 4 having a parallel shape may be formed across the electrodes 3 and 3 and the insulating layer 2 in the space between the electrodes 3 and 3. In comparison, it becomes possible to grow the carbon nanotubes more stably in the direction in which the pair of catalyst metal parts 4 and 4 are arranged side by side.

(実施形態4)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態2の製造方法と同じであり、触媒金属部4,4の対の形成にあたって、図5(a),(b)に示すように、対となる触媒金属部4,4を構成する複数個ずつの小領域4a,4aを、対となる小領域4a,4aそれぞれの1つの角同士が対向する形で形成している点が相違するだけである。ここにおいて、対となる触媒金属部4,4は、対となる小領域4a,4aそれぞれの1つの角が対となる電極3,3同士の互いの対向面を含む平面上に位置するように形成してある。
(Embodiment 4)
The manufacturing method of the carbon nanotube of this embodiment is basically the same as the manufacturing method of Embodiment 2, and in forming the pair of catalytic metal parts 4 and 4, as shown in FIGS. 5 (a) and 5 (b). The difference is that a plurality of small regions 4a and 4a constituting the catalyst metal parts 4 and 4 forming a pair are formed such that one corner of each of the pair of small regions 4a and 4a is opposed to each other. Just do it. Here, the catalyst metal parts 4 and 4 to be paired are positioned so that one corner of each of the paired small regions 4a and 4a is located on a plane including the opposing surfaces of the paired electrodes 3 and 3. It is formed.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、対となる電極3,3の並設方向(図5(a)における左右方向)において対向する小領域4a,4a間には小領域4a,4aの対向する角同士の間に1本のカーボンナノチューブのみが成長することとなり、対となる触媒金属部4,4間に所望の本数のカーボンナノチューブを高い位置精度で成長させることが可能となるとともに、対となる触媒金属部4,4間に成長するカーボンナノチューブ同士が干渉して絡み合うのを防止することができる。このような製造方法を採用する場合、カーボンナノチューブを配置したい直線上に対となる小領域4a,4aそれぞれの角が位置し且つ当該2つの角間の距離がカーボンチューブの長さ寸法分だけ離間するように小領域4a,4aを形成すれば、所望の長さのカーボンチューブを所望の直線上に配設することができるのである。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, there is a small area between the small areas 4a and 4a facing each other in the parallel arrangement direction of the electrodes 3 and 3 (the left-right direction in FIG. 5A). Only one carbon nanotube grows between the opposite corners of 4a and 4a, and a desired number of carbon nanotubes can be grown with high positional accuracy between the catalyst metal parts 4 and 4 as a pair. In addition, the carbon nanotubes grown between the pair of catalyst metal parts 4 and 4 can be prevented from interfering with each other. When such a manufacturing method is adopted, the corners of the paired small regions 4a and 4a are positioned on a straight line on which the carbon nanotubes are to be arranged, and the distance between the two corners is separated by the length of the carbon tube. If the small regions 4a and 4a are formed as described above, a carbon tube having a desired length can be arranged on a desired straight line.

なお、本実施形態では、絶縁層2の上記一表面(図5(b)における上面)に平行な面内における各小領域4aの平面形状を矩形状(つまり、四角形状)の形状としてあるが、各小領域4aの平面形状は四角形状の形状に限らず、対となる小領域4a,4aそれぞれの1つの角同士が対向する形で形成される多角形状の形状であればよく、例えば、図6(a),(b)に示すような三角形状の平面形状としてもよい。   In the present embodiment, the planar shape of each small region 4a in a plane parallel to the one surface (the upper surface in FIG. 5B) of the insulating layer 2 is a rectangular shape (that is, a rectangular shape). The planar shape of each small region 4a is not limited to a rectangular shape, and may be a polygonal shape formed such that one corner of each of the paired small regions 4a and 4a faces each other. It is good also as a triangular planar shape as shown to Fig.6 (a), (b).

(実施形態5)
本実施形態のカーボンナノチューブの製造方法は基本的には実施形態2の製造方法と同じであり、触媒金属部4,4の対の形成にあたって、図7(a),(b)に示すように、対となる触媒金属部4,4を構成する複数個ずつの小領域4a,4aの平面形状を円形状の形状としている点が相違するだけである。ここで、対となる触媒金属部4,4は、絶縁層2の上記一表面(図7(b)における上面)に平行な面内における各小領域4aの1本の接線が、対となる電極3,3同士の互いの対向面を含む平面上に位置するように形成してある。
(Embodiment 5)
The manufacturing method of the carbon nanotube of the present embodiment is basically the same as the manufacturing method of the second embodiment, and in forming the pair of the catalytic metal parts 4 and 4, as shown in FIGS. The only difference is that the planar shape of each of the plurality of small regions 4a and 4a constituting the catalyst metal parts 4 and 4 to be paired is a circular shape. Here, a pair of catalytic metal portions 4 and 4 is paired with one tangent of each small region 4a in a plane parallel to the one surface of the insulating layer 2 (upper surface in FIG. 7B). It forms so that it may be located on the plane containing the mutually opposing surface of electrodes 3 and 3. FIG.

本実施形態では、カーボンナノチューブは、絶縁層2の上記一表面に平行な面内において対となる円形状の小領域4a,4aそれぞれの中心を通る各直線上に、当該各直線と長手方向が一致するように成長する。   In the present embodiment, the carbon nanotubes are arranged on the straight lines passing through the centers of the circular small regions 4a and 4a that form a pair in a plane parallel to the one surface of the insulating layer 2, and the straight lines and the longitudinal directions thereof. Grow to match.

しかして、本実施形態のカーボンナノチューブの製造方法によれば、対となる電極3,3の並設方向(図7(a)における左右方向)において対向する小領域4a,4a間には1本のカーボンナノチューブのみが成長することとなり、対となる触媒金属部4,4間に成長するカーボンナノチューブ同士が干渉して絡み合うのを防止することができる。   Thus, according to the carbon nanotube manufacturing method of the present embodiment, there is one between the small regions 4a and 4a facing each other in the direction in which the paired electrodes 3 and 3 are juxtaposed (the horizontal direction in FIG. 7A). Therefore, it is possible to prevent the carbon nanotubes growing between the pair of catalytic metal parts 4 and 4 from interfering with each other.

なお、上記各実施形態で説明したカーボンナノチューブの製造方法は、絶縁層2の一表面に平行な面内で長手方向を所望の方向に一致させる必要のある種々のカーボンナノチューブ応用デバイスの製造方法に適用できる。ここに、上記各実施形態では、基板1としてシリコン基板を用いているが、基板1はカーボンナノチューブ応用デバイスの仕様に応じて適宜選定すればよく、シリコン基板以外の半導体基板(例えば、GaAs基板、InP基板、SiC基板など)や、所謂SOI基板などを用いてもよいし、絶縁性基板を用いて当該絶縁性基板自体が絶縁層2を構成するようにしてもよい。   Note that the carbon nanotube manufacturing method described in each of the above embodiments is a method for manufacturing various carbon nanotube applied devices that require the longitudinal direction to coincide with a desired direction in a plane parallel to one surface of the insulating layer 2. Applicable. Here, in each of the above embodiments, a silicon substrate is used as the substrate 1, but the substrate 1 may be appropriately selected according to the specifications of the carbon nanotube application device, and a semiconductor substrate other than the silicon substrate (for example, a GaAs substrate, InP substrates, SiC substrates, etc.) or so-called SOI substrates may be used, or the insulating substrate itself may constitute the insulating layer 2 using an insulating substrate.

実施形態1におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。2A and 2B are explanatory diagrams of a carbon nanotube manufacturing method according to Embodiment 1, wherein FIG. 3A is a plan view of a main process, and FIG. 同上におけるカーボンナノチューブの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in the same as the above. 実施形態2におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 2, Comprising: (a) is a main process top view, (b) is a main process sectional drawing. 実施形態3におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図、(c)は(b)の要部拡大図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 3, Comprising: (a) is a main process top view, (b) is main process sectional drawing, (c) is the principal part enlarged view of (b). 実施形態4におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in Embodiment 4, Comprising: (a) is a main process top view, (b) is a main process sectional drawing. 同上における他の製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。It is explanatory drawing of the other manufacturing method in the same as the above, Comprising: (a) is a main process top view, (b) is main process sectional drawing. 実施形態5におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。FIG. 6 is an explanatory diagram of a carbon nanotube production method according to Embodiment 5, wherein (a) is a plan view of the main process and (b) is a cross-sectional view of the main process. 従来例におけるカーボンナノチューブの製造方法の説明図であって、(a)は主要工程平面図、(b)は主要工程断面図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in a prior art example, Comprising: (a) is a main process top view, (b) is main process sectional drawing. 他の従来例におけるカーボンナノチューブの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the carbon nanotube in another prior art example.

符号の説明Explanation of symbols

1 基板
2 絶縁層
3,3 電極
4,4 触媒金属部
1 Substrate 2 Insulating layer 3, 3 Electrode 4, 4 Catalyst metal part

Claims (7)

絶縁層の一表面上に少なくとも一対の電極を対となる電極同士の対向面が平行となる形で形成してから、対となる電極間に電圧を印加するときに電界が形成される領域において各電極それぞれに接する触媒金属部の対を形成した後、対となる電極間に電圧を印加し且つ絶縁層の前記一表面側に炭素を含む原料ガスを供給して対となる触媒金属部間にカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの製造方法。   In a region where an electric field is formed when a voltage is applied between the pair of electrodes after forming at least a pair of electrodes on one surface of the insulating layer so that opposing surfaces of the pair of electrodes are parallel to each other After forming a pair of catalytic metal parts in contact with each electrode, a voltage is applied between the pair of electrodes and a source gas containing carbon is supplied to the one surface side of the insulating layer to form a pair between the catalytic metal parts A method for producing carbon nanotubes, comprising growing carbon nanotubes on a substrate. 触媒金属部の対の形成にあたっては、対となる触媒金属部同士の互いの対向面が対となる電極同士の互いの対向面と平行になる形状の触媒金属部を、対となる電極における互いの対向面側の端部上に形成することを特徴とする請求項1記載のカーボンナノチューブの製造方法。   When forming a pair of catalyst metal parts, the catalyst metal parts having a shape in which the opposing surfaces of the pair of catalyst metal parts are parallel to the opposing surfaces of the pair of electrodes are connected to each other in the pair of electrodes. The carbon nanotube production method according to claim 1, wherein the carbon nanotube is formed on an end portion of the opposite surface side of the carbon nanotube. 触媒金属部の対の形成にあたっては、対となる触媒金属部同士の互いの対向面が対となる電極同士の対向面と同一平面内に揃う形状の触媒金属部を、対となる電極それぞれの上に形成することを特徴とする請求項1記載のカーボンナノチューブの製造方法。   In forming the pair of catalyst metal parts, the catalyst metal parts having a shape in which the opposing surfaces of the pair of catalyst metal parts are aligned in the same plane as the opposing surfaces of the pair of electrodes are arranged on each of the pair of electrodes. The method for producing carbon nanotubes according to claim 1, wherein the carbon nanotubes are formed on the surface. 触媒金属部の対の形成にあたっては、対となる触媒金属部同士の互いの対向面が対となる電極同士の互いの対向面と平行になる形状の触媒金属部を、電極上と電極間の空間における絶縁層上とに跨って形成することを特徴とする請求項1記載のカーボンナノチューブの製造方法。   In forming a pair of catalyst metal parts, a catalyst metal part having a shape in which the opposed surfaces of the pair of catalyst metal parts are parallel to the opposed surfaces of the paired electrodes is formed on the electrode and between the electrodes. 2. The method for producing a carbon nanotube according to claim 1, wherein the carbon nanotube is formed across an insulating layer in a space. 触媒金属部の対の形成にあたっては、絶縁層の前記一表面に平行な面内で対となる電極同士を結ぶ直線に直交する方向において各触媒金属部それぞれが複数個ずつの小領域に分離された形で触媒金属部の対を形成することを特徴とする請求項1ないし請求項4のいずれかに記載のカーボンナノチューブの製造方法。   In forming a pair of catalyst metal parts, each of the catalyst metal parts is separated into a plurality of small regions in a direction perpendicular to a straight line connecting the pair of electrodes in a plane parallel to the one surface of the insulating layer. The method for producing carbon nanotubes according to any one of claims 1 to 4, wherein a pair of catalytic metal parts is formed in a shape. 触媒金属部の対の形成にあたっては、絶縁層の前記一表面に平行な面内で対となる電極同士を結ぶ直線に直交する方向において各触媒金属部それぞれが複数個ずつの多角形状の小領域に分離され且つ対となる小領域それぞれの1つの角同士が対向する形で触媒金属部の対を形成することを特徴とする請求項2または請求項3記載のカーボンナノチューブの製造方法。   In forming the catalyst metal part pair, each of the catalyst metal parts has a plurality of polygonal small regions in a direction perpendicular to a straight line connecting the paired electrodes in a plane parallel to the one surface of the insulating layer. 4. The method for producing a carbon nanotube according to claim 2, wherein the pair of catalytic metal parts are formed in such a manner that one corner of each of the small regions which are separated into a pair faces each other. 触媒金属部の対の形成にあたっては、絶縁層の前記一表面に平行な面内で対となる電極同士を結ぶ直線に直交する方向において各触媒金属部それぞれが複数個ずつの円形状の小領域に分離された形で触媒金属部の対を形成することを特徴とすることを特徴とする請求項2または請求項3記載のカーボンナノチューブの製造方法。   In the formation of the pair of catalyst metal portions, a plurality of circular small regions each having a plurality of catalyst metal portions in a direction perpendicular to a straight line connecting the pair of electrodes in a plane parallel to the one surface of the insulating layer. 4. The method for producing a carbon nanotube according to claim 2, wherein the pair of catalytic metal parts is formed in a separated form.
JP2004245779A 2004-08-25 2004-08-25 Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus Expired - Fee Related JP4821101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245779A JP4821101B2 (en) 2004-08-25 2004-08-25 Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245779A JP4821101B2 (en) 2004-08-25 2004-08-25 Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006062899A true JP2006062899A (en) 2006-03-09
JP4821101B2 JP4821101B2 (en) 2011-11-24

Family

ID=36109700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245779A Expired - Fee Related JP4821101B2 (en) 2004-08-25 2004-08-25 Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4821101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982055B1 (en) 2007-10-26 2010-09-14 재단법인서울대학교산학협력재단 Method For Manufacturing Nanowire
US10961618B2 (en) 2014-07-16 2021-03-30 Imperial College Innovations Limited Process for producing carbon-nanotube grafted substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282924A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Photo detector and method of manufacturing the same
JP2004163373A (en) * 2002-11-15 2004-06-10 Matsushita Electric Works Ltd Semiconductor type physical quantity sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282924A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Photo detector and method of manufacturing the same
JP2004163373A (en) * 2002-11-15 2004-06-10 Matsushita Electric Works Ltd Semiconductor type physical quantity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982055B1 (en) 2007-10-26 2010-09-14 재단법인서울대학교산학협력재단 Method For Manufacturing Nanowire
US10961618B2 (en) 2014-07-16 2021-03-30 Imperial College Innovations Limited Process for producing carbon-nanotube grafted substrate

Also Published As

Publication number Publication date
JP4821101B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4912600B2 (en) Carbon nanotube horizontal growth method and device including carbon nanotube
CN110009107B (en) Method for forming a qubit device
TWI461350B (en) Triodes using nanofabric articles and methods of making the same
KR100645410B1 (en) Methods and structures for promoting stable synthesis of carbon nanotubes
DE112011100901B4 (en) Method of making graphene / nanostructure FET with self-aligned contact and gate zone and graphene / nanostructure FET
CN100490180C (en) Vertical field effect transistor and method for fabricating the same
EP2586744A1 (en) Nanostructure and precursor formation on conducting substrate
US20090020399A1 (en) Electromechanical switch and method of manufacturing the same
JP5157074B2 (en) Field effect transistor and manufacturing method thereof
JP2010283343A (en) Semiconductor structure and method of producing the same
US8377323B2 (en) Mold having nanometric features, method for realizing such a mold and corresponding use of it in a method for realizing an array of carbon nanotubes
JP2006114494A (en) Carbon nanotube emitter and its manufacturing method as well as field emission element adopting the same and its manufacturing method
EP2587514B1 (en) Nanostructure-based electron beam writer
KR20080086111A (en) Transistor and method of manufacturing the same
CN100467367C (en) Carbon nanometer tube array structure and its preparation method
CN105742156A (en) Method Of Forming A Graphene Structure
JP5886547B2 (en) Carbon nanowall array and method for producing carbon nanowall
US7790242B1 (en) Method for electrostatic deposition of graphene on a substrate
JP4821101B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
US7329115B2 (en) Patterning nanoline arrays with spatially varying pitch
KR20020003782A (en) fabrication method of carbon nanotubes
Jang et al. Lateral growth of aligned mutilwalled carbon nanotubes under electric field
KR100829573B1 (en) Electronic device, field effect transistor, and method of fabricating the same
KR100855882B1 (en) Single crystal nanowire array having heterojunction and method for manufacturing the same
KR100434272B1 (en) Method for developing carbon nanotube horizontally

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees