JP2006057186A - Method for manufacturing nickel material strip having excellent solderability - Google Patents

Method for manufacturing nickel material strip having excellent solderability Download PDF

Info

Publication number
JP2006057186A
JP2006057186A JP2005262100A JP2005262100A JP2006057186A JP 2006057186 A JP2006057186 A JP 2006057186A JP 2005262100 A JP2005262100 A JP 2005262100A JP 2005262100 A JP2005262100 A JP 2005262100A JP 2006057186 A JP2006057186 A JP 2006057186A
Authority
JP
Japan
Prior art keywords
nickel material
less
nickel
solderability
material strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262100A
Other languages
Japanese (ja)
Other versions
JP4264901B2 (en
Inventor
Hideki Mori
英樹 森
Hitoshi Iwata
仁志 岩田
Hideya Yamada
英矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005262100A priority Critical patent/JP4264901B2/en
Publication of JP2006057186A publication Critical patent/JP2006057186A/en
Application granted granted Critical
Publication of JP4264901B2 publication Critical patent/JP4264901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nickel material strip capable of imparting excellent solderability as the one for a nickel material to be soldered such as a lead of an Li ion secondary battery. <P>SOLUTION: Regarding the method for manufacturing a nickel material strip to be soldered having excellent solderability, a nickel material strip composed of ≥99 mass% nickel is annealed in a reducing atmosphere having a dew point of ≤-30°C, and final cold rolling is thereafter applied at a draft in the range of 2 to 30%, thus a nickel material strip having a hardness of 80 to 190 Hv is obtained. Preferably, the nickel material has a composition comprising ≤0.03% C, ≤0.01% Si and ≤0.04% Mn, and the balance Ni with inevitable impurities. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハンダ付け性に優れたニッケル材料帯の製造方法に関するものである。   The present invention relates to a method for producing a nickel material band excellent in solderability.

例えば、モバイルパソコンや携帯電話に代表される携帯可能な電子機器には充電式の二次電池が使用されてきているが、機器の高機能化による消費電力の増大と長時間使用の要求から電池にはエネルギー密度の増大と長寿命化が求められている。
特に近年では携帯電話の爆発的な普及により、その待ち受け時間の長時間要求から充電式二次電池としては特にエネルギー密度が高いLiイオン二次電池の採用が増加しており、このLiイオン二次電池は反応活物質を鉄またはAl製の缶の中に封入し、この缶の周囲に電気の流れる道となる板状のリードと呼ばれるニッケル材料でなる部品を配置している。
このニッケル材料に関しては特開平11−61302号(特許文献1参照)に、冷間での型打鍛造による成形が容易なニッケル材料として、重量で、C:0.010%以下、かつN:0.010%以下であり、残部が実質上Niからなる冷間成形性のすぐれたニッケル材料が提案されている。
For example, rechargeable secondary batteries have been used for portable electronic devices such as mobile personal computers and mobile phones. Is required to increase the energy density and extend the life.
In particular, due to the explosive spread of mobile phones in recent years, the adoption of Li-ion secondary batteries with particularly high energy density is increasing as rechargeable secondary batteries due to the long request for standby time. In a battery, a reaction active material is enclosed in a can made of iron or Al, and a part made of a nickel material called a plate-like lead serving as a path for electricity to flow is disposed around the can.
Regarding this nickel material, Japanese Patent Application Laid-Open No. 11-61302 (see Patent Document 1) describes a nickel material that can be easily formed by cold stamping and forging. C: 0.010% or less by weight and N: 0 A nickel material having an excellent cold formability of 0.010% or less and the balance being substantially Ni is proposed.

特開平11−61302号公報JP-A-11-61302

上述した特許文献1に示されたニッケル材料は、冷間での型打鍛造による成形が容易なニッケル材料を実現することを目的とするものである。
例えば上述のLiイオン二次電池のリードにニッケル材料が使用される場合、ニッケル材料帯はプレスによる打抜き加工や、曲げ加工が施されると共に優れたハンダ付け性求められるが、優れたハンダ付け性を付与できるニッケル材料帯の製造方法については、何ら検討がなされていないのが現状である。
本発明の目的は、例えばLiイオン二次電池のリードのようにハンダ付けされるニッケル材料用として、優れたハンダ付け性を付与できるニッケル材料帯の製造方法を提供することである。
The nickel material disclosed in Patent Document 1 described above is intended to realize a nickel material that can be easily formed by cold stamping forging.
For example, when a nickel material is used for the lead of the above-described Li-ion secondary battery, the nickel material band is required to be stamped or bent by a press and to have excellent solderability, but excellent solderability. At present, no study has been made on a method for producing a nickel material band that can be imparted.
The objective of this invention is providing the manufacturing method of the nickel material belt | band | zone which can provide the outstanding solderability, for example for the nickel material soldered like the lead | read | reed of a Li ion secondary battery.

本発明者等は、例えばLiイオン二次電池のリード(以下、単にリードと記す)のようなハンダ付けされるニッケル材料に対して、優れたハンダ付け性を付与できる製造条件を鋭意検討した結果、最後の冷間圧延の前に還元性雰囲気中で連続焼鈍を行うことで、リードにも適用可能なニッケル材料帯に優れたハンダ付け性を付与できることを見出し、本発明に到達した。
即ち本発明は、ハンダ付けされるニッケル材料の製造方法であって、質量%99%以上がニッケルからなるニッケル材料帯材を、露点−30℃以下の還元性雰囲気中で焼鈍を行った後、圧下率2〜30%の範囲で最後の冷間圧延を適用し、硬さをHv80〜190のニッケル材料帯材とするハンダ付け性に優れたニッケル材料帯の製造方法である。
好ましくは、上述のニッケル材料は、C:0.03%以下、Si:0.01%以下、Mn:0.04%以下を含有し、残部はNi及び不可避的不純物でなるハンダ付け性に優れたニッケル材料帯の製造方法である。
As a result of intensive studies on manufacturing conditions capable of imparting excellent solderability to a nickel material to be soldered, such as a lead of a Li-ion secondary battery (hereinafter simply referred to as a lead), for example, the present inventors The present inventors have found that by performing continuous annealing in a reducing atmosphere before the last cold rolling, excellent solderability can be imparted to a nickel material band that can also be applied to leads.
That is, the present invention is a method for manufacturing a nickel material to be soldered, and after annealing a nickel material strip having a mass% of 99% or more made of nickel in a reducing atmosphere having a dew point of −30 ° C. or less, This is a method for producing a nickel material strip excellent in solderability by applying the last cold rolling within a range of 2-30% reduction and making the nickel material strip having a hardness of Hv 80-190.
Preferably, the above nickel material contains C: 0.03% or less, Si: 0.01% or less, Mn: 0.04% or less, and the balance is excellent in solderability including Ni and inevitable impurities. This is a method for manufacturing a nickel material band.

本発明に従えば、優れたなハンダ付け性が得ることができるだけでなく、優れたプレス打抜き性と曲げ加工性を兼備するニッケル材料帯が得られる。   According to the present invention, not only excellent solderability can be obtained, but also a nickel material band having excellent press punching properties and bending workability can be obtained.

本発明の重要な特徴は、優れたハンダ付け性を付与できる製造条件として、最後の冷間圧延の前に還元性雰囲気中で焼鈍を行うことにある。
先ず、本発明で用いるニッケル材料は質量%で99%以上がニッケルとする。これは、優れたハンダ付け性が求められるニッケル材料帯のうちの一つの用途にリードがあり、このリードにも適用可能とするには、低電気抵抗である必要があるためである。
そして、本発明では製造工程の最終段階の、焼鈍及び最後の冷間圧延の二つの工程を規定した。この理由は、ニッケル材料帯の硬度の調整が冷間圧延と焼鈍との組合せで可能なためである。
つまり、中間段階での工程で硬度を調整するよりも、最終段階での硬度調整が所望の硬度に調整し易いためである。
An important feature of the present invention is that annealing is performed in a reducing atmosphere before the final cold rolling as a manufacturing condition that can provide excellent solderability.
First, the nickel material used in the present invention is 99% or more by mass of nickel. This is because a lead is used in one of the nickel material bands that require excellent solderability, and in order to be applicable to this lead, it is necessary to have a low electrical resistance.
And in this invention, two processes, annealing and the last cold rolling of the last stage of a manufacturing process, were prescribed | regulated. The reason for this is that the hardness of the nickel material band can be adjusted by a combination of cold rolling and annealing.
That is, it is because it is easier to adjust the hardness in the final stage to the desired hardness than in the intermediate stage.

中でも、上述したリードの用途に用いるためには、ハンドリング性やプレス打抜き性、曲げ加工性の3つの特性を満足させる必要がある。そのためには、Hv80〜190範囲内の硬さに調整しなければならない。そのため、この範囲の硬さに容易に調整することか可能となる最終段階の二つの工程を規定した。
なお、ニッケル材料帯の硬さをHv80〜190の範囲から外れる場合、ハンドリングが困難(Hv80未満の場合)になったり、打抜き性や曲げ加工性が阻害される(Hv190を超える場合)ことになり、例えばリードの用途に不向きになる。そのため、本発明ではニッケル材料帯の硬さをHv80〜190の範囲としている。
In particular, in order to use for the above-described lead application, it is necessary to satisfy three characteristics of handling property, press punching property, and bending workability. For that purpose, it is necessary to adjust the hardness within the range of Hv 80 to 190. Therefore, two final steps were defined that could easily be adjusted to this range of hardness.
In addition, when the hardness of the nickel material band is out of the range of Hv80 to 190, handling becomes difficult (when it is less than Hv80), and punchability and bending workability are hindered (when it exceeds Hv190). For example, it becomes unsuitable for the use of leads. Therefore, in the present invention, the hardness of the nickel material band is in the range of Hv 80 to 190.

そして、この最終段階の工程で行う焼鈍を還元性ガス雰囲気とした理由は、ここで適用する焼鈍は過度に酸化する雰囲気とした場合、材料表面に硬質な酸化被膜が厚く形成され、プレスによる打抜き性や曲げ加工性が阻害されるため、還元性ガス雰囲気とする必要があるためである。
好ましくは、還元性ガス雰囲気中で帯材を連続焼鈍できる還元性ガス雰囲気とするのが良く、HガスやHとNとの混合ガス(通称AXガス)雰囲気での焼鈍は過度の酸化層形成を最小限に抑制でき、帯材表面の還元も行えて表面の清浄化の効果もあり、更に上述のように帯材を連続で焼鈍できることから特に望ましい。
And the reason why the annealing performed in the final stage process is a reducing gas atmosphere is that when the annealing applied here is an atmosphere that excessively oxidizes, a hard oxide film is formed thick on the material surface, and punching by press This is because a reducing gas atmosphere is required because the properties and bending workability are hindered.
Preferably, a reducing gas atmosphere that allows continuous annealing of the strip in a reducing gas atmosphere is preferable, and annealing in an atmosphere of H 2 gas or a mixed gas of H 2 and N 2 (commonly referred to as AX gas) is excessive. The formation of an oxide layer can be minimized, the surface of the strip can be reduced, the surface can be cleaned, and the strip can be annealed continuously as described above, which is particularly desirable.

また、前述の還元性雰囲気中での焼鈍時に、露点の最適化を行うことでより確実にニッケル材料表面の酸化層を最小限に抑制することができる。そのための、適正な露点の範囲は−30℃以下とすると良く、好ましくは露点を−35℃以下であり、更に好ましくは−40℃以下とすると良い。
なお、露点の下限は特に限定しないが、−60℃以下の露点とするためには用いるガスの高純度化を図ったり、配管を変更する場合も生じて、生産コストを上昇させるので、望ましい下限値は−60℃とすれば十分である。
In addition, the optimization of the dew point during annealing in the reducing atmosphere described above can more reliably suppress the oxide layer on the nickel material surface to a minimum. For this purpose, the proper dew point range is −30 ° C. or lower, preferably the dew point is −35 ° C. or lower, and more preferably −40 ° C. or lower.
The lower limit of the dew point is not particularly limited. However, in order to obtain a dew point of −60 ° C. or lower, the gas used may be highly purified or the piping may be changed, which increases production costs. A value of −60 ° C. is sufficient.

ところで、この焼鈍と最後の冷間圧延を行うタイミングには二通りの方法があり、第一の方法として最後の冷間圧延を行った後、上記の還元性雰囲気中で焼鈍を行うと、例えばリードの用途に好適なHv80〜190の硬さに容易に調整することが可能となり、ハンドリング性やプレス打抜き性、曲げ加工性の3つの特性を満足させる。
還元性雰囲気中の焼鈍条件は、最後の冷間圧延の圧下率によっても左右される場合があるが、温度範囲として500〜900℃、時間は0.5〜5分であれば、上記の硬さに容易に調整することが可能である。
By the way, there are two ways to perform this annealing and the last cold rolling, and after performing the last cold rolling as the first method, if annealing is performed in the reducing atmosphere, for example, It becomes possible to easily adjust to a hardness of Hv 80 to 190 suitable for the use of the lead, and satisfies the three characteristics of handling property, press punching property and bending workability.
The annealing conditions in the reducing atmosphere may depend on the final cold rolling reduction, but if the temperature range is 500 to 900 ° C. and the time is 0.5 to 5 minutes, It is possible to adjust easily.

次に、第二の方法として還元性雰囲気中で焼鈍を行った後、圧下率2〜30%の最後の冷間圧延を行っても、例えばリードの用途に好適なHv80〜190の硬さに容易に調整することか可能となると共に、上述の第一の方法では得られない効果を得ることができる。具体的には良好なハンダ付け性の確保であり、これが本発明方法である。
つまり、最終の圧延後に還元性雰囲気中で焼鈍を行う第一の方法では、表面には僅かながら酸化膜が形成される場合がある。形成された酸化膜は、その後、特別な酸化膜除去処理を施すか、或いは、新たなハンダ付けを良好にする層を形成しなければならない場合が生じる。
Next, after annealing in a reducing atmosphere as the second method, even if the final cold rolling with a reduction ratio of 2 to 30% is performed, the hardness of Hv80 to 190 suitable for the use of leads, for example, It becomes possible to adjust easily, and effects that cannot be obtained by the first method described above can be obtained. Specifically, ensuring good solderability is the method of the present invention.
That is, in the first method of annealing in a reducing atmosphere after the final rolling, a slight oxide film may be formed on the surface. The formed oxide film may be subjected to a special oxide film removing process or a new soldering layer may be formed after that.

一方で、還元性雰囲気中での焼鈍を行った後、最後の冷間圧延を行う本発明方法においては、良好なハンダ付け性を付与できる。
この理由は明らかではないが、次のように推測している。
還元性雰囲気中での焼鈍を行った後、最後の冷間圧延を行うと、還元性雰囲気での焼鈍時に形成された硬質な酸化層が圧延により破壊され、一部に新生面が露出する。
この新生面を露出させることがハンダ付け性に良好な結果を及ぼすものと推測している。そのため、本発明方法を用いれば、良好なハンダ付け性を確保でき、例えばリードの製造方法として最適である。
On the other hand, in the method of the present invention in which the final cold rolling is performed after annealing in a reducing atmosphere, good solderability can be imparted.
The reason for this is not clear, but is presumed as follows.
When the final cold rolling is performed after annealing in a reducing atmosphere, the hard oxide layer formed during annealing in the reducing atmosphere is broken by rolling, and a new surface is exposed in part.
It is speculated that exposing this new surface has good results on solderability. Therefore, if the method of the present invention is used, good solderability can be ensured, and for example, it is optimal as a lead manufacturing method.

この本発明方法では還元性雰囲気中での焼鈍時に形成された硬質な酸化層を圧延により破壊させることが重要なため、Hv80〜190の硬さに調整することが可能で、且つ硬質な酸化層を圧延により破壊させることができる適正な圧下率で最後の冷間圧延を行うと良い。
そのため、本発明方法を適用するには、還元性雰囲気中で焼鈍条件にも左右されるが、最後の冷間圧延の圧下率を2〜30%とするのが良い。圧下率が2%未満であれば、リードに求められる硬さに満たない場合、或いは更に表面の硬質な酸化層の破壊が十分に行なえない場合がある。一方で、圧下率が30%を超えると、リードに求められる硬さの上限(Hv190)を超えてしまい、リード用途に不向きとなる。そのため、本発明の第二の製造方法では圧下率を2〜30%の範囲とした。好ましくは2〜30%の範囲である。
なお、本発明方法を適用する場合、最後の冷間圧延前に行う還元性雰囲気中で焼鈍の条件は温度範囲として500℃〜900℃、時間は0.5〜5分であれば良い。
In the method of the present invention, since it is important to break the hard oxide layer formed during annealing in a reducing atmosphere by rolling, it is possible to adjust the hardness to Hv 80 to 190, and the hard oxide layer It is preferable to perform the final cold rolling at an appropriate reduction ratio that can be broken by rolling.
Therefore, in order to apply the method of the present invention, although it depends on annealing conditions in a reducing atmosphere, it is preferable that the rolling reduction of the last cold rolling is 2 to 30%. If the rolling reduction is less than 2%, the hardness required for the lead may not be achieved, or the hard oxide layer on the surface may not be sufficiently destroyed. On the other hand, if the rolling reduction exceeds 30%, it exceeds the upper limit of hardness (Hv190) required for the lead, which is unsuitable for lead applications. Therefore, in the second production method of the present invention, the rolling reduction is set in the range of 2 to 30%. Preferably it is 2 to 30% of range.
In addition, when applying the method of this invention, the conditions of annealing in the reducing atmosphere performed before the last cold rolling should just be 500 to 900 degreeC as time range, and time should be 0.5 to 5 minutes.

次に、本発明では以下の範囲で好ましい化学組成を規定した。その理由を以下に述べる。
C:0.03%以下
Cは溶解工程において不可避的に混入される元素であるが、この元素には脱酸元素としての特徴がある。すなわち、Cはある程度の量が入っているとCOやCo2ガスとして溶湯中の酸素量を低減させる働きがある。
更に、溶湯中の酸素量を低減させる働きを持つ元素としてAl、Si、Mn、Cr、Ti、Mg、Ca等が知られているが、Cをある程度入れておくことでこれら脱酸元素の使用量を抑える効果もあり、結果としてニッケル材料を高純度に保てる。
Next, in the present invention, a preferable chemical composition is defined in the following range. The reason is described below.
C: 0.03% or less C is an element inevitably mixed in the melting step, and this element is characterized as a deoxidizing element. That is, when a certain amount of C is contained, it serves to reduce the amount of oxygen in the molten metal as CO or Co2 gas.
Furthermore, Al, Si, Mn, Cr, Ti, Mg, Ca, etc. are known as elements that have the function of reducing the amount of oxygen in the molten metal. There is also an effect of reducing the amount, and as a result, the nickel material can be kept in high purity.

また、従来から知られているC量では0.01mass%以下としているものが殆どであるが、Cをむしろ若干高目にしてでもSi、Mn等の添加を抑える方が、ニッケル材料製のリードとした時の材料表面の酸化膜厚さを一定量以下に抑えることが可能となり、最表面近傍のO量の調整が行い易い。
そこで本発明ではCは若干高めとすることが最適であることを確認し、敢えてC量は0.03mass%以下の管理とした。望ましくは0.008〜0.020mass%の範囲である。
In addition, most of the conventionally known C amounts are 0.01 mass% or less, but the lead made of nickel material is better to suppress the addition of Si, Mn, etc. even if C is made slightly higher. It is possible to suppress the oxide film thickness on the material surface to a certain amount or less, and the amount of O in the vicinity of the outermost surface can be easily adjusted.
Therefore, in the present invention, it was confirmed that it is optimal to slightly increase C, and the amount of C was dared to be controlled to 0.03 mass% or less. Desirably, it is the range of 0.008-0.020 mass%.

Si:0.01%以下
Siはニッケルの溶解の際にも脱酸元素として重要な働きをしている。しかしながら、Siの含有量が増えるとニッケル材料の表面に硬いSiOの酸化膜が形成され易く、ハンダ付け性を阻害し易くなるだけでなく、プレス加工性や、曲げ加工性が劣化し易くなる。そこでSiは0.01mass%以下で管理することとした。
Mn:0.04%以下
Mnは同じく溶湯中の酸素を低減する脱酸剤として使用されるが、Mnの添加量が多くなるとSiと同様にニッケル材料の表面にMnの酸化膜を厚く形成され易く、ハンダ付け性を阻害し易くなるだけでなく、プレス打ち抜き性に悪影響を及ぼしたり、プレス金型を傷つけたりして、結果的に金型の寿命を低下させるという問題を生じ易くなる。
このためMn量は0.04mass%以下とした。
Si: 0.01% or less Si also plays an important role as a deoxidizing element when nickel is dissolved. However, when the Si content increases, a hard SiO 2 oxide film is likely to be formed on the surface of the nickel material, which not only hinders solderability but also tends to deteriorate press workability and bending workability. . Therefore, Si was managed at 0.01 mass% or less.
Mn: 0.04% or less Mn is also used as a deoxidizer to reduce oxygen in the molten metal. However, as the amount of Mn added increases, a Mn oxide film is formed thickly on the surface of the nickel material as with Si. Not only does it easily hinder solderability, but it also tends to cause problems such as adversely affecting the press punchability or damaging the press mold, resulting in a decrease in the life of the mold.
For this reason, the amount of Mn was made into 0.04 mass% or less.

なお、本発明のニッケル材料において、以下の元素はハンダ付け性を阻害しない範囲で含有しても良い。質量%として示す。
P:0.003%以下、S:0.003%以下、Cr:0.005%以下、Mo:0.05%以下、Cu:0.05%以下、Al:0.05%以下、Ti:0.05%以下、Fe:0.05%以下、Mg:0.002%以下、Ca:0.002%以下、H:5ppm以下、N:20ppm以下、O:30ppm以下
なお、本発明ではニッケルが質量%で99%以上としているが、更に低電気抵抗とするには質量%で99.9%以上がニッケルであるのが好ましく、前述の各元素と上述したC,Si,Mnとの総和を0.1%未満とするのが良い。
In the nickel material of the present invention, the following elements may be contained within a range that does not impair solderability. It is shown as mass%.
P: 0.003% or less, S: 0.003% or less, Cr: 0.005% or less, Mo: 0.05% or less, Cu: 0.05% or less, Al: 0.05% or less, Ti: 0.05% or less, Fe: 0.05% or less, Mg: 0.002% or less, Ca: 0.002% or less, H: 5 ppm or less, N: 20 ppm or less, O: 30 ppm or less In the present invention, nickel Is 99% or more by mass%, but in order to further reduce the electric resistance, it is preferable that 99.9% or more by mass is nickel, and the sum of the above-mentioned elements and the above-mentioned C, Si, Mn. Is preferably less than 0.1%.

電解ニッケルを真空誘導炉で溶解し、インゴットに鋳造した。
このインゴットを熱間圧延により加工して厚さ50mmの直方体形状のスラブにし、更に熱間圧延後、冷間圧延と焼鈍とを繰返した。
そして本発明例用として最後の冷間圧延(仕上げ圧延)前に、還元性雰囲気中(AXガス(H2:N2=3:1))で800℃、1分の連続炉での焼鈍を行い、最後に10%の圧下率で仕上げの冷間圧延を行って板厚0.15mmリチウムイオン二次電池用リード用の帯材に圧延成形した。(以下、本発明工程と記す)
Electrolytic nickel was melted in a vacuum induction furnace and cast into an ingot.
The ingot was processed by hot rolling to form a rectangular parallelepiped slab having a thickness of 50 mm, and after hot rolling, cold rolling and annealing were repeated.
And before the final cold rolling (finish rolling) for the present invention example, annealing is performed in a reducing furnace (AX gas (H2: N2 = 3: 1)) at 800 ° C. for 1 minute in a continuous furnace, Finally, cold rolling was performed at a rolling reduction of 10% to form a strip for a lead for a lithium ion secondary battery having a thickness of 0.15 mm. (Hereinafter referred to as the present invention process)

また、比較例用として、30%の圧下率で仕上げ冷間圧延を行い、還元性雰囲気中(AXガス(H2:N2=3:1))で600℃、0.5分の連続炉での焼鈍を行い板厚0.15mmリチウムイオン二次電池用リード用の材料に圧延成形した。(以下、比較工程と記す)
なお、化学組成を表1に示すが、本発明例ニッケル材料と比較例用ニッケル材料の化学組成は同一であり、上述した二つの実施例ともに還元性ガス雰囲気での焼鈍時の露点は−40℃である。
In addition, as a comparative example, finish cold rolling is performed at a reduction rate of 30%, and in a reducing furnace (AX gas (H2: N2 = 3: 1)) at 600 ° C. for 0.5 minutes in a continuous furnace. It annealed and rolled and formed into the material for lead | read | reed for plate | board thickness 0.15mm lithium ion secondary battery. (Hereafter referred to as the comparison process)
The chemical composition is shown in Table 1. The nickel composition of the present invention and the nickel material for the comparative example have the same chemical composition, and the dew point during annealing in a reducing gas atmosphere is -40 in both of the above-described examples. ° C.

Figure 2006057186
Figure 2006057186

次に、上述の本発明の二工程で得られたニッケル材料帯の硬さをビッカース硬度計にて硬さを測定した。測定結果を表2に示す。
更に、ハンダ付け性テストを行った。テストは長さ20mm×幅5mmの試験片を5枚作製し、フラックスにはFN101Cを用いて、温度235℃のハンダ曹に浸漬し、引き上げる試験とした。ハンダ曹に浸漬した面積のうち、面積率で90%を超える面積にハンダが付いたものに○印を、80〜90%のものは△印、80%未満のものは×印を付して示す。試験結果を表2に示す。
Next, the hardness of the nickel material band obtained in the above-described two steps of the present invention was measured with a Vickers hardness meter. The measurement results are shown in Table 2.
Further, a solderability test was performed. In the test, five test pieces each having a length of 20 mm and a width of 5 mm were prepared, and FN101C was used as a flux. The test was immersed in soldering soda at 235 ° C. and pulled up. Of the areas immersed in soldering soda, those with solder on areas exceeding 90% in area ratio are marked with ○, those with 80-90% are marked with △, and those with less than 80% are marked with ×. Show. The test results are shown in Table 2.

Figure 2006057186
Figure 2006057186

表2の結果から、二つの工程で得られたニッケル材料帯は、硬度がHv150程度となっているため、優れたプレス打抜き性及び曲げ加工性を有し、ハンドリング性も良好であることが分かる。
これに加えて、本発明工程Aで製造したニッケル材料帯では優れたハンダ付け性を有しており、優れたハンダ付け性が求められる用途に供されるニッケル材料帯として最適である。
From the results in Table 2, it can be seen that the nickel material band obtained in the two steps has an excellent press punchability and bending workability because the hardness is about Hv150, and the handling property is also good. .
In addition to this, the nickel material band produced in the step A of the present invention has excellent solderability, and is optimal as a nickel material band used for applications requiring excellent solderability.

Claims (2)

ハンダ付けされるニッケル材料の製造方法であって、質量%99%以上がニッケルからなるニッケル材料帯材を、露点−30℃以下の還元性雰囲気中で焼鈍を行った後、圧下率2〜30%の範囲で最後の冷間圧延を適用し、硬さをHv80〜190のニッケル材料帯材とすることを特徴とするハンダ付け性に優れたニッケル材料帯の製造方法。 A method of manufacturing a nickel material to be soldered, wherein a nickel material strip having a mass% of 99% or more made of nickel is annealed in a reducing atmosphere having a dew point of −30 ° C. or less, and then a reduction rate of 2 to 30 % Of the range, and a nickel material strip having excellent solderability, characterized in that the last cold rolling is applied in the range of% and a nickel material strip having a hardness of Hv 80 to 190 is used. ニッケル材料材は、C:0.03%以下、Si:0.01%以下、Mn:0.04%以下を含有し、残部はNi及び不可避的不純物でなることを特徴とする請求項1に記載のハンダ付け性に優れたニッケル材料帯の製造方法。 The nickel material material contains C: 0.03% or less, Si: 0.01% or less, Mn: 0.04% or less, and the balance is made of Ni and inevitable impurities. The manufacturing method of the nickel material band excellent in the solderability of description.
JP2005262100A 2005-09-09 2005-09-09 Method for producing nickel material strip with excellent solderability Expired - Lifetime JP4264901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262100A JP4264901B2 (en) 2005-09-09 2005-09-09 Method for producing nickel material strip with excellent solderability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262100A JP4264901B2 (en) 2005-09-09 2005-09-09 Method for producing nickel material strip with excellent solderability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003075885A Division JP3741311B2 (en) 2003-03-19 2003-03-19 Method for manufacturing nickel material strip for lead of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006057186A true JP2006057186A (en) 2006-03-02
JP4264901B2 JP4264901B2 (en) 2009-05-20

Family

ID=36104898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262100A Expired - Lifetime JP4264901B2 (en) 2005-09-09 2005-09-09 Method for producing nickel material strip with excellent solderability

Country Status (1)

Country Link
JP (1) JP4264901B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047869A1 (en) * 2006-10-20 2008-04-24 Sumitomo Metal Industries, Ltd. Nickel material for chemical plant
JP2010090438A (en) * 2008-10-08 2010-04-22 Sumitomo Metal Ind Ltd Pure nickel sheet and method for producing pure nickel sheet
WO2010064642A1 (en) * 2008-12-02 2010-06-10 住友金属工業株式会社 Nickel material and method for producing nickel material
JP2011012330A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Ind Ltd Nickel material and method for producing nickel material
JP2011074437A (en) * 2009-09-30 2011-04-14 Dowa Metaltech Kk Nickel rolled material, method for producing the same, and electrode of cold cathode fluorescent lamp
JP2013522456A (en) * 2010-03-05 2013-06-13 シュトゥート テオドア Nickel strip manufacturing method
KR20190067837A (en) * 2016-10-07 2019-06-17 닛폰세이테츠 가부시키가이샤 Manufacturing method of nickel material and nickel material
CN110140236A (en) * 2016-12-27 2019-08-16 日立金属株式会社 The manufacturing method of cathode lead material and cathode lead material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047869A1 (en) * 2006-10-20 2008-04-24 Sumitomo Metal Industries, Ltd. Nickel material for chemical plant
JP5035250B2 (en) * 2006-10-20 2012-09-26 住友金属工業株式会社 Nickel materials for chemical plants
US8986470B2 (en) 2006-10-20 2015-03-24 Nippon Steel & Sumitomo Metal Corporation Nickel material for chemical plant
JP2010090438A (en) * 2008-10-08 2010-04-22 Sumitomo Metal Ind Ltd Pure nickel sheet and method for producing pure nickel sheet
WO2010064642A1 (en) * 2008-12-02 2010-06-10 住友金属工業株式会社 Nickel material and method for producing nickel material
JP2011012330A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Ind Ltd Nickel material and method for producing nickel material
JP2011074437A (en) * 2009-09-30 2011-04-14 Dowa Metaltech Kk Nickel rolled material, method for producing the same, and electrode of cold cathode fluorescent lamp
JP2013522456A (en) * 2010-03-05 2013-06-13 シュトゥート テオドア Nickel strip manufacturing method
KR20190067837A (en) * 2016-10-07 2019-06-17 닛폰세이테츠 가부시키가이샤 Manufacturing method of nickel material and nickel material
KR102149992B1 (en) 2016-10-07 2020-08-31 닛폰세이테츠 가부시키가이샤 Nickel material and manufacturing method of nickel material
CN110140236A (en) * 2016-12-27 2019-08-16 日立金属株式会社 The manufacturing method of cathode lead material and cathode lead material

Also Published As

Publication number Publication date
JP4264901B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4264901B2 (en) Method for producing nickel material strip with excellent solderability
JP4510911B2 (en) Method for producing high-frequency non-oriented electrical steel slabs
WO2006109727A1 (en) Austenitic stainless steel
TW201319273A (en) Non-grain-oriented magnetic steel sheet
WO2019058409A1 (en) Stainless steel sheet and production method therefor, separator for solid polymer fuel battery, solid polymer fuel battery cell and solid polymer fuel battery
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
JP3741311B2 (en) Method for manufacturing nickel material strip for lead of lithium ion secondary battery
JP2014185365A (en) Non-oriented electromagnetic steel sheet excellent in high frequency iron loss property
JP5263012B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5316938B2 (en) Pure nickel sheet and method for producing pure nickel sheet
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP2005336503A (en) Non-oriented silicon steel sheet having excellent core loss and its production method
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
TWI813701B (en) Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
JP2004277804A (en) Nickel material
JP2005293987A (en) Metal plate material for metal separator, and metal separator material using it
JP2005082886A (en) Method for producing pure nickel rolling stock
JP2006131939A (en) Non-oriented electromagnetic steel sheet with excellently low iron loss
KR101971415B1 (en) Clad material for anode current collector of secondary battery and manufacturing method thereof
JPS6270541A (en) Cu-alloy lead material for semiconductor device
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JP2003027195A (en) Nonoriented silicon steel sheet having excellent blanking workability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

R150 Certificate of patent or registration of utility model

Ref document number: 4264901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

EXPY Cancellation because of completion of term