JP2006056724A - Mold for press molding, and method of manufacturing optical elements - Google Patents

Mold for press molding, and method of manufacturing optical elements Download PDF

Info

Publication number
JP2006056724A
JP2006056724A JP2004237481A JP2004237481A JP2006056724A JP 2006056724 A JP2006056724 A JP 2006056724A JP 2004237481 A JP2004237481 A JP 2004237481A JP 2004237481 A JP2004237481 A JP 2004237481A JP 2006056724 A JP2006056724 A JP 2006056724A
Authority
JP
Japan
Prior art keywords
mold
molding
press
die
upper mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237481A
Other languages
Japanese (ja)
Other versions
JP4490761B2 (en
Inventor
Shinichiro Hirota
慎一郎 広田
Tadayuki Fujimoto
忠幸 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2004237481A priority Critical patent/JP4490761B2/en
Publication of JP2006056724A publication Critical patent/JP2006056724A/en
Application granted granted Critical
Publication of JP4490761B2 publication Critical patent/JP4490761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form high precision optical elements such as a glass lens extremely high in eccentricity precision, thickness precision, and profile irregularity. <P>SOLUTION: In the state where a molding raw stock P is housed between a pair of an upper mold 3 and a lower mold 4 having opposed molding surfaces 3c and 4d respectively, the upper mold 3 and the lower mold 4 are inserted to a barrel mold 2 for regulating the mutual positional relation of the upper and lower molds 3 and 4, and while pressing the upper mold 3 via an interposing member 5 which is placed on the upper surface 3d of the upper mold 3 and provided with a spherical projection 10 at almost the center of its upper surface and a vent hole 5c communicating with the upper surface 3d of the upper mold 3, the lower surface 5a of the interposing member 5 is made to abut on the upper surface 3d of the upper mold 3 and the upper surface 2a of the barrel mold 2, then the mold 1 is cooled, and the upper mold 3 is lowered by its own weight while following the volume shrinkage of the molding raw stock by cooling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ピックアップ、小型撮像機器などに用いる、偏心精度、肉厚精度、面精度が極めて高いガラスレンズなどの高精度の光学素子を成形するためのモールドプレス成形型、及び光学素子の製造方法に関するものである。   The present invention relates to a mold press molding die for molding a high-precision optical element such as a glass lens having extremely high eccentricity accuracy, thickness accuracy, and surface accuracy, which is used for an optical pickup, a small imaging device, and the like, and manufacture of the optical element. It is about the method.

近年、CD/DVD記録再生装置や、携帯電話機に代表される、いわゆるデジタル製品が急速に普及している。CD/DVD記録再生装置に搭載される光ピックアップに用いる対物レンズや、携帯電話機に搭載される小型撮像機器などに用いられる撮像レンズなどの光学素子は、高分解能が求められるなど、光学的要求性能が極めて高い。さらに、装置の小型化や組立の簡略化などのために、レンズ系に用いるレンズの数も制限され、単レンズによる高度の光学性能の実現が求められている。   In recent years, so-called digital products typified by CD / DVD recording / playback apparatuses and mobile phones have rapidly spread. Optical elements such as an objective lens used for an optical pickup mounted on a CD / DVD recording / reproducing apparatus and an imaging lens used for a small imaging device mounted on a cellular phone require high resolution, such as high resolution. Is extremely high. Furthermore, in order to reduce the size of the apparatus and simplify the assembly, the number of lenses used in the lens system is limited, and realization of high optical performance with a single lens is required.

このような状況下、これらの装置には、多くの場合、両非球面形状のレンズが用いられている。特に、記録密度の高い、大容量光記録用ピックアップにおいては、対物レンズの高分解能化のために開口数を大きく(例えば、NA0.6以上など)する必要があり、また、光源波長の短波長化(例えば、450mm以下など)により、球面収差補正が従来にも増して必要になってくるなどの理由から、レンズ面を非球面とすることが強く求められている。   Under such circumstances, these devices often use both aspherical lenses. In particular, in a high-capacity optical recording pickup with a high recording density, it is necessary to increase the numerical aperture (for example, NA 0.6 or more) in order to increase the resolution of the objective lens. Due to the need for spherical aberration correction (for example, 450 mm or less) and the like, it is strongly required to make the lens surface an aspherical surface.

このような光学性能を満たす非球面レンズは、従来のものに比べて曲率半径が小さく、レンズ面の頂点を通る光軸に直交する面に対するレンズ面の傾き角が、開口数が上がるにつれて大きくなる。具体的には、40度以上、場合によっては50度以上となることもある。このため、レンズの製造公差が極めて厳しく、特に、偏心精度が問題となり、レンズの第1面の軸と、第2面の軸の一致性(同軸性)を厳しく管理しなければならない。   An aspheric lens satisfying such optical performance has a smaller radius of curvature than conventional lenses, and the inclination angle of the lens surface with respect to a surface perpendicular to the optical axis passing through the apex of the lens surface increases as the numerical aperture increases. . Specifically, it may be 40 degrees or more, and in some cases 50 degrees or more. For this reason, the manufacturing tolerance of the lens is extremely strict, and in particular, the eccentricity accuracy becomes a problem, and the coincidence (coaxiality) between the axis of the first surface of the lens and the axis of the second surface must be strictly controlled.

ところで、非球面ガラスレンズを製造する技術として、成形面が非球面に加工された成形型を用いて、ガラス素材(プリフォーム)を加熱プレスするモールドプレスといわれる手法が知られている。このような手法で非球面ガラスレンズを製造するには、例えば、胴型内に同軸に挿入された上型と下型とでプリフォームを加熱加圧することにより、上下型に形成された成形面の形状を転写するが(例えば、特許文献1参照)、レンズ面の同軸性を損なわずに正確に転写するには、上下型の同軸性を高い精度で確保しなければならない。このため、上型と胴型、及び下型と胴型のクリアランスを1〜10μm程度、NA0.8のレンズを製造する場合に至っては、0〜5μm程度に抑えた精密加工によって、成形型が作製されることが求められる。   By the way, as a technique for manufacturing an aspheric glass lens, there is known a technique called a mold press in which a glass material (preform) is heated and pressed using a mold whose molding surface is processed into an aspheric surface. In order to manufacture an aspherical glass lens by such a method, for example, molding surfaces formed on the upper and lower molds by heating and pressurizing the preform with an upper mold and a lower mold that are coaxially inserted into the body mold. However, in order to accurately transfer without losing the coaxiality of the lens surface, it is necessary to ensure the coaxiality of the upper and lower molds with high accuracy. For this reason, when manufacturing a lens with an upper mold and a barrel mold, and a lower mold and a barrel mold with a clearance of about 1 to 10 μm and an NA of 0.8, the molding die is made by precision machining with a suppression of about 0 to 5 μm. It is required to be produced.

例えば、特許文献1では、押し板を介して上型を上方から加圧して案内型(胴型)内を滑動させ、押し板の下面を案内型の上面に当接させることによって、上型の上面と案内型の上面とが同一平面を形成するようにしている。これにより、上型と下型の傾きを防止でき、上下型の同軸性が確保されるので、高い面精度のレンズが得られるとしている。   For example, in Patent Document 1, the upper die is pressed from above through a push plate to slide in the guide die (body die), and the lower surface of the push plate is brought into contact with the upper surface of the guide die. The upper surface and the upper surface of the guide mold form the same plane. Thereby, the inclination of the upper mold and the lower mold can be prevented and the coaxiality of the upper and lower molds is secured, so that a lens with high surface accuracy can be obtained.

一方、特許文献2では、固定型(胴型)と上型に摺動嵌合部があると、下型の軸線と上型の軸線を完全に一致させることが困難であるとしている。そして、下型の軸線と上型の軸線が一致しないと、レンズの両機能面の球心が光軸と一致せず、レンズに偏心が生じるという問題を指摘している。このため、特許文献2では、上型を胴型内に挿入することなく、胴型に設けた傾斜輪帯に上型を圧接するとともに、上型にプレス荷重が印加される押圧点が中心からずれても傾斜輪帯への圧接を確保するために、上型の押圧面に押圧突起を設けている。   On the other hand, in Patent Document 2, if there is a sliding fitting portion between the fixed mold (body mold) and the upper mold, it is difficult to completely match the axis of the lower mold with the axis of the upper mold. If the axis of the lower mold does not coincide with the axis of the upper mold, the centroids of both functional surfaces of the lens do not coincide with the optical axis, and the lens is decentered. For this reason, in Patent Document 2, the upper mold is pressed against an inclined ring zone provided on the trunk mold without inserting the upper mold into the trunk mold, and the pressing point at which the press load is applied to the upper mold is centered. A pressing protrusion is provided on the pressing surface of the upper mold in order to ensure the pressure contact with the inclined ring zone even if it is displaced.

特公平2−28460号公報Japanese Patent Publication No. 2-28460 特公平4−42338号公報Japanese Examined Patent Publication No. 4-42338

しかしながら、特許文献1のように、成形型自体の偏心精度が厳しく管理されていても、プレス荷重という大きな外力の影響も配慮しなければならない。プレス荷重によって、プレス動作中に成形型の各部材の相対的な位置関係が崩れてしまうと、レンズ面の同軸性が損なわれ、所定の光学性能を満足するレンズが得られなくなってしまう。   However, even if the eccentric accuracy of the mold itself is strictly controlled as in Patent Document 1, it is necessary to consider the influence of a large external force such as a press load. If the relative positional relationship between the members of the mold is lost during the pressing operation due to the press load, the coaxiality of the lens surface is impaired, and a lens that satisfies the predetermined optical performance cannot be obtained.

さらに、プレス装置のプレス軸は正確に鉛直に動作するとは限らない。むしろ、プレス装置のプレス軸と成形型の軸心との間には、わずかな倒れ(傾き)を生じる場合が多い。また、プレス軸先端は、成形装置内において加熱されるため、プレスヘッドの熱変形についても配慮する必要がある。このように、成形型にプレス荷重を印加する際に、押し板を加圧するプレスヘッドは、必ずしも鉛直方向から押し板に当接するとは限らない。   Furthermore, the press shaft of the press device does not always operate accurately vertically. Rather, there is often a slight tilt (tilt) between the press shaft of the press device and the axis of the mold. Further, since the tip of the press shaft is heated in the molding apparatus, it is necessary to consider thermal deformation of the press head. Thus, when a press load is applied to the mold, the press head that pressurizes the pressing plate does not necessarily contact the pressing plate from the vertical direction.

プレス軸と成形型の軸心との間に傾きが生じるなどして、プレスヘッド面が押し板との間に角度をもって押し付けられ、押し板に対してプレスヘッド面が傾いた状態でプレス荷重が印加されると、プレスヘッド面の傾きに影響されて、押し板及び成形型が傾いてしまうことがある。そして、成形型に軸方向以外の成分をもつ強い外力が働くと、胴型、上型、下型の相対的な位置関係が正確に画定せず、胴型内で上型の倒れが生じるなどの不具合が生じる。その結果として上型と下型の相対的な倒れ(ティルト)によってレンズ面の同軸性が損なわれてしまい、得られるレンズの光学性能が劣化する。   The press head surface is pressed at an angle between the press plate and the press plate due to an inclination between the press shaft and the mold center, and the press load is applied while the press head surface is inclined with respect to the press plate. When applied, the pressing plate and the mold may be inclined due to the inclination of the press head surface. If a strong external force with components other than the axial direction is applied to the mold, the relative positional relationship between the trunk mold, the upper mold, and the lower mold is not accurately defined, and the upper mold falls within the trunk mold. The problem occurs. As a result, the coaxiality of the lens surface is lost due to the relative tilting of the upper mold and the lower mold, and the optical performance of the obtained lens is deteriorated.

また、特許文献2の成形型では、摺動嵌合部を設けず、結果として胴型による上下型の位置規制を行わない。このため、球面レンズの成形には差し支えないが、両非球面レンズを得ることができない。両非球面レンズを得るためには、上型の成形面と、下型の成形面のそれぞれひとつしかない中心軸をいかに一致させるか(上下型の軸のシフトとティルトをどう防止するか)が課題となるが、特許文献2の成形型は、上型の倒れを積極的に許容する構造であって、上記課題については何ら検討されていない。   Moreover, in the shaping | molding die of patent document 2, a sliding fitting part is not provided, but the position control of the up-and-down type | mold by a trunk | drum type is not performed as a result. For this reason, there is no problem in forming a spherical lens, but it is impossible to obtain both aspherical lenses. In order to obtain both aspherical lenses, how to match the center axis that has only one molding surface of the upper mold and the molding surface of the lower mold (how to prevent the shift and tilt of the upper and lower mold axes) Although it becomes a subject, the shaping | molding die of patent document 2 is a structure which accept | permits the fall of an upper mold | type positively, Comprising: The said subject is not examined at all.

高精度の両非球面レンズを成形するためには、上下型の相互の位置規制を厳密に行うとともに、プレス軸から軸方向以外の成分をもつ強い外力を受けたときに、上下型の中心軸が相互にずれること(上下型の軸のシフトとティルト)を防止する方策がさらに必要となる。   In order to mold a high-precision aspherical lens, the upper and lower molds are centered when the position of the upper and lower molds is strictly regulated and a strong external force having components other than the axial direction is received from the press axis. Further measures are necessary to prevent the two from shifting from each other (shifting and tilting of the upper and lower axes).

本発明は、以上のような従来の技術が有する問題を解決するために提案されたものであり、偏心精度、肉厚精度、面精度が極めて高いガラスレンズなどの高精度の光学素子を成形するためのモールドプレス成形型、及び光学素子の製造方法の提供を目的とする。   The present invention has been proposed in order to solve the problems of the conventional techniques as described above, and molds a high-precision optical element such as a glass lens having extremely high eccentricity accuracy, thickness accuracy, and surface accuracy. An object of the present invention is to provide a mold press mold and a method for manufacturing an optical element.

本発明に係るモールドプレス成形型は、対向する成形面を有する一対の上型及び下型と、前記上型及び下型が挿入され前記上型及び下型の相互の水平方向の位置関係を規制する胴型と、前記上型の上面に載置され、その下面が、プレス荷重の印加により前記上型の上面及び前記胴型の上面に当接する介在部材とを備え、前記上型と前記下型との間に成形素材を収容してプレス成形するモールドプレス成形型であって、前記上型の上面と前記胴型の上面とが、前記介在部材の下面に当接する位置にあるときに、前記上型の下降を許容する空隙が、前記上型と前記胴型との間に形成され、前記介在部材には、上面のほぼ中央にプレス荷重印加部を設けるとともに、前記上型の上面を型外の空間に連通させる通気孔を設けた構成としている。   The mold press mold according to the present invention regulates a horizontal positional relationship between a pair of upper mold and lower mold having opposed molding surfaces and the upper mold and lower mold by inserting the upper mold and the lower mold. A body mold that is placed on the upper surface of the upper mold, and a lower surface of the body mold that is in contact with the upper surface of the upper mold and the upper surface of the body mold by applying a press load. A mold press molding die that accommodates and press-molds a molding material between the upper die and the upper surface of the upper die and the upper surface of the barrel die are in positions where they abut against the lower surface of the interposed member. A gap allowing the lowering of the upper die is formed between the upper die and the barrel die, and the interposition member is provided with a press load application portion at substantially the center of the upper surface, and the upper surface of the upper die is provided. It is the structure which provided the vent hole connected to the space outside a type | mold.

このような構成を採用することで、プレス荷重の印加に際し、介在部材が上型の上面と胴型の上面とに当接することにより、上型と胴型の軸方向の相互位置を画定し、さらに、その相互の傾きを規制することで、上下型の同軸性が確保される。これに加え、介在部材のほぼ中央に設けたプレス荷重印加部に、実質的に点接触でプレス荷重を印加するようにすれば、プレス軸の倒れ角の影響による上下型の同軸性の劣化を防止できる。   By adopting such a configuration, when the press load is applied, the interposition member abuts on the upper surface of the upper mold and the upper surface of the trunk mold, thereby defining the mutual position in the axial direction of the upper mold and the trunk mold, Further, by regulating the mutual inclination, vertical coaxiality is ensured. In addition to this, if the press load is applied to the press load application section provided substantially at the center of the interposition member substantially by point contact, the vertical coaxial deterioration due to the tilt angle of the press shaft is reduced. Can be prevented.

また、介在部材の上面のほぼ中央にはプレス荷重印加部が設けられているため、その周囲にはプレス荷重の印加に耐えるだけの肉厚を持たせておかなければならない。そのため、上型と介在部材とで囲まれる部分(上型と介在部材との当接部位を含む)に密閉空間が形成され、上型の自重などによる下降が妨げられてしまう。本発明では、上型の上面を型外の空間に連通させる通気孔を介在部材に設けるが、これにより、上型と介在部材とで囲まれる部分に雰囲気ガスを流入させることができ、加熱プレスされた成形素材の冷却にともなう体積収縮に追従する上型の下降を妨げることなく、成形素材が上型の成形面に密着した状態を維持することができる。   In addition, since the press load application section is provided at the approximate center of the upper surface of the interposition member, the surrounding area must be thick enough to withstand the application of the press load. Therefore, a sealed space is formed in a portion surrounded by the upper mold and the interposed member (including a contact portion between the upper mold and the interposed member), and the lowering due to the weight of the upper mold is hindered. In the present invention, the intervening member is provided with a vent hole that allows the upper surface of the upper mold to communicate with the space outside the mold. This allows the atmosphere gas to flow into the portion surrounded by the upper mold and the intervening member, and the heating press The state in which the molding material is in close contact with the molding surface of the upper mold can be maintained without hindering the lowering of the upper mold following the volume shrinkage accompanying the cooling of the molded material.

また、本発明に係るモールドプレス成形型では、前記介在部材の下面が、前記上型の上面及び前記胴型の上面に当接したときに、前記上型の上面及び前記胴型の上面が同一平面を形成するようにして、上下型の同軸性が確保されるようにするのが加工精度の点から好ましい。   In the mold press mold according to the present invention, when the lower surface of the interposition member comes into contact with the upper surface of the upper mold and the upper surface of the body mold, the upper surface of the upper mold and the upper surface of the body mold are the same. From the viewpoint of processing accuracy, it is preferable to form a flat surface so as to ensure the vertical coaxiality.

このような本発明に係るモールドプレス成形型にあっては、前記プレス荷重印加部が、前記介在部材の上面のほぼ中央に形成された球面突起を備えているのが好ましい。これにより、プレスヘッドが介在部材にプレス荷重を印加するに際して、プレスヘッドは球面突起と実質的に点で接触することなになる。このため、プレス軸と成形型の軸心との間に傾きが生じても、軸方向以外に働く力が小さく、プレスヘッドからのプレス荷重は実質的に介在部材に対して軸方向に作用することになり、上下型の同軸性が損なわれるのを防止できる。   In such a mold press mold according to the present invention, it is preferable that the press load application portion includes a spherical protrusion formed substantially at the center of the upper surface of the interposition member. As a result, when the press head applies a press load to the interposition member, the press head substantially contacts the spherical protrusion at a point. For this reason, even if an inclination occurs between the press shaft and the axis of the mold, the force acting in the direction other than the axial direction is small, and the press load from the press head substantially acts on the interposition member in the axial direction. In other words, it is possible to prevent the vertical type coaxiality from being impaired.

さらに、前記上型の上面に凸部を設けるとともに、前記介在部材の下面には前記凸部を収容する凹部を設けることで、介在部材の位置ずれを防止することができ、これにより、上型と胴型の軸方向の相互位置を画定し、さらに、その相互の傾きを規制する介在部材の機能が損なわれないようにすることができる。   Further, by providing a convex portion on the upper surface of the upper mold and providing a concave portion for accommodating the convex portion on the lower surface of the interposed member, it is possible to prevent the positional displacement of the interposed member. In addition, it is possible to define the mutual positions of the cylinder and the cylinder in the axial direction, and to prevent the function of the interposition member that regulates the mutual inclination from being impaired.

また、前記胴部には、前記上型と前記胴型との間に形成される前記空隙と、型外の空間とを連通する貫通孔を設けておくのが好ましい。成形素材の冷却にともなう体積収縮に追従して上型が下降すると、空隙の容積が減少するが、上記構成を採用することで、空隙内の雰囲気ガスが貫通孔を通じて型外の空間に放出される。これにより、上型の下降がスムーズに行われ、成形素材が上型の成形面に密着した状態をより確実に維持することができる。   Moreover, it is preferable that the body portion is provided with a through hole that communicates the gap formed between the upper mold and the body mold and a space outside the mold. When the upper mold descends following the volume shrinkage accompanying the cooling of the molding material, the volume of the gap decreases, but by adopting the above configuration, the atmospheric gas in the gap is released to the space outside the mold through the through hole. The Thereby, the upper mold is smoothly lowered, and the state where the molding material is in close contact with the molding surface of the upper mold can be more reliably maintained.

一方、本発明に係る光学素子の製造方法は、成形素材を加熱プレスして所定形状に成形する光学素子の製造方法であって、対向する成形面を有する一対の上型及び下型を、前記上型及び下型の相互の水平方向の位置関係を規制する胴型に挿入するとともに、前記上型及び下型の成形面の間に成形素材を供給し、次いで、前記成形素材が加熱された状態で、前記上型の上面に載置された介在部材の上面のほぼ中央に設けられたプレス荷重印加部に実質的に点接触でプレス荷重を印加して、前記介在部材の下面を前記上型の上面及び前記胴型の上面に当接させ、しかる後に成形型を冷却し、冷却による成形素材の体積収縮に追従させて上型を下降させることにより、上型の成形面に成形素材が密着した状態を維持する構成としてある。   On the other hand, an optical element manufacturing method according to the present invention is an optical element manufacturing method in which a molding material is heated and pressed into a predetermined shape, and a pair of upper mold and lower mold having opposed molding surfaces are The molding material is inserted between the molding surfaces of the upper die and the lower die, and inserted into a body die that regulates the horizontal positional relationship between the upper die and the lower die, and then the molding material is heated. In this state, a press load is applied in a substantially point contact to a press load application section provided substantially at the center of the upper surface of the interposition member placed on the upper surface of the upper mold, and the lower surface of the interposition member is The molding material is brought into contact with the upper surface of the mold and the upper surface of the body mold, and then the molding die is cooled, and the upper mold is lowered following the volume shrinkage of the molding material by cooling, whereby the molding material is placed on the molding surface of the upper mold. It is configured to maintain a close contact state.

このように構成することで、偏心精度、肉厚精度、面精度に優れた光学素子を製造することができ、たとえ、製造する光学素子が両非球面レンズであったとしても、第1レンズ面と第2レンズ面との同軸性を損なうことなく、高精度に成形することができる。   With this configuration, it is possible to manufacture an optical element having excellent decentering accuracy, thickness accuracy, and surface accuracy. Even if the optical element to be manufactured is a bi-aspheric lens, the first lens surface And the second lens surface can be molded with high accuracy without impairing the coaxiality.

また、本発明に係る光学素子の製造方法では、前記介在部材に、前記介在部材の下面が当接する前記上型の上面を型外の空間に連通させる通気孔を設け、前記上型が成形素材の体積収縮に追従して下降するときに、前記介在部材と前記上型との間に、前記通気孔から雰囲気ガスを流入させるようにするのが好ましい。これにより、成形素材の体積収縮に追従する上型の下降を妨げることなく、上型の成形面に成形素材が密着した状態を維持させて、得られる光学素子の面精度を良好に維持することができる。   Further, in the method of manufacturing an optical element according to the present invention, the interposition member is provided with a vent hole for communicating the upper surface of the upper mold with which the lower surface of the interposition member abuts with a space outside the mold, and the upper mold is a molding material. It is preferable that an atmospheric gas is caused to flow from the vent hole between the interposition member and the upper mold when descending following the volume shrinkage. This maintains the surface accuracy of the resulting optical element by maintaining the molding material in close contact with the molding surface of the upper mold without hindering the lowering of the upper mold following the volume shrinkage of the molding material. Can do.

さらに、前記上型の下降を許容する空隙が前記上型と前記胴型との間に形成されるとともに、前記空隙と型外の空間とを連通する貫通孔を前記胴部に形成し、前記上型が成形素材の体積収縮に追従して下降する際に、前記空隙内の雰囲気ガスを前記貫通孔から放出させるようにするのが好ましい。このようにすることで、前記空隙内の雰囲気ガスが、貫通孔を通じて型外の空間に放出されるので、介在部材に設けた通気孔との協働により、上型の下降がスムーズに行われ、成形素材が上型の成形面に密着した状態をより確実に維持することができる。これは、成形される光学素子の面精度を高くする上で極めて有利である。   Further, a gap that allows the upper mold to descend is formed between the upper mold and the body mold, and a through hole that communicates the gap and a space outside the mold is formed in the body portion. When the upper mold descends following the volume shrinkage of the molding material, it is preferable to release the atmospheric gas in the gap from the through hole. By doing so, the atmospheric gas in the gap is released to the space outside the mold through the through hole, so that the upper mold can be smoothly lowered by cooperation with the vent hole provided in the interposed member. The state in which the molding material is in close contact with the molding surface of the upper mold can be more reliably maintained. This is extremely advantageous in increasing the surface accuracy of the optical element to be molded.

本発明によれば、介在部材、上下型、胴型との協働により、偏心精度、肉厚精度、面精度に優れた光学素子を製造することができ、たとえ、製造する光学素子が両非球面レンズであったとしても、第1レンズ面と第2レンズ面との同軸性を損なうことなく、高精度に成形することができる。   According to the present invention, an optical element excellent in eccentricity accuracy, wall thickness accuracy, and surface accuracy can be manufactured by cooperation with the interposition member, the upper and lower molds, and the body mold. Even if it is a spherical lens, it can be molded with high accuracy without impairing the coaxiality between the first lens surface and the second lens surface.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。図1は、本発明に係るモールドプレス成形型の一実施形態の概略を示す断面図である。図示する例において、成形型1は、胴型2、上型3、下型4及び介在部材5を備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an outline of an embodiment of a mold press mold according to the present invention. In the illustrated example, the mold 1 includes a body mold 2, an upper mold 3, a lower mold 4, and an interposed member 5.

本実施形態において、胴型2の上面2a及び下面2bには、胴型2の軸心Aに垂直で平滑な平坦面が形成されるように、平面加工が施されている。また、胴型2の上部には、大径内周部6aと小径内周部6bとからなり、胴型2の軸心Aと平行な内周面を備えた上型挿入部6が、胴型2の上面2a側に開口するように形成されている。一方、胴型2の下部には、大径内周部7aと小径内周部7bとからなり、胴型2の軸心Aと平行な内周面を備えた下型挿入部7が、胴型2の下面2b側に開口するように形成されている。なお、上型挿入部6の小径内周部6aと下型挿入部7の小径内周部7bは、胴型2内を貫通して連続するように形成される。   In the present embodiment, the upper surface 2a and the lower surface 2b of the body mold 2 are subjected to planar processing so that a smooth flat surface perpendicular to the axis A of the body mold 2 is formed. In addition, an upper mold insertion portion 6 having an inner peripheral surface which is composed of a large-diameter inner peripheral portion 6a and a small-diameter inner peripheral portion 6b and which is parallel to the axis A of the main die 2 is provided on the upper portion of the barrel mold 2. It is formed so as to open on the upper surface 2 a side of the mold 2. On the other hand, in the lower part of the body mold 2, a lower mold insertion part 7 having an inner peripheral surface which is composed of a large diameter inner peripheral part 7 a and a small diameter inner peripheral part 7 b and which is parallel to the axis A of the body mold 2 is provided. It is formed so as to open on the lower surface 2 b side of the mold 2. The small-diameter inner peripheral portion 6a of the upper mold insertion portion 6 and the small-diameter inner peripheral portion 7b of the lower mold insertion portion 7 are formed so as to pass through the body mold 2 and be continuous.

このように構成される胴型2に対して、本実施形態にあっては、図1に示すように、胴型2の上面2a側から上型挿入部6に上型3が挿入され、さらにその上に介在部材5が載置される。また、下型4は、胴型2の下面2b側から下型挿入部7に挿入される。   In the present embodiment, the upper mold 3 is inserted into the upper mold insertion portion 6 from the upper surface 2a side of the trunk mold 2, as shown in FIG. The interposition member 5 is mounted thereon. The lower mold 4 is inserted into the lower mold insertion portion 7 from the lower surface 2 b side of the trunk mold 2.

胴型2の下面2b側から下型挿入部7に挿入される下型4は、径の異なる三つの円柱を同軸に積み重ねた形状を有し、大径部4a、中径部4b及び小径部4cからなっている。このような形状の下型4において、小径部4cの上型3に対向する面には、得ようとする光学素子の一方の光学面に対応する成形面4dが精密加工により形成されている。そして、少なくとも中径部4b及び小径部4cの外周面は、成形面4dの中心軸と平行となるように形成されている。   The lower mold 4 inserted into the lower mold insertion portion 7 from the lower surface 2b side of the body mold 2 has a shape in which three cylinders having different diameters are coaxially stacked, and has a large diameter portion 4a, a medium diameter portion 4b, and a small diameter portion. 4c. In the lower mold 4 having such a shape, a molding surface 4d corresponding to one optical surface of the optical element to be obtained is formed by precision machining on the surface facing the upper mold 3 of the small diameter portion 4c. At least the outer peripheral surfaces of the medium diameter portion 4b and the small diameter portion 4c are formed to be parallel to the central axis of the molding surface 4d.

また、下型4の中径部4b及び小径部4cの外径は、胴型2の下型挿入部7の大径内周部7a及び小径内周部7bのそれぞれの内径と、ほぼ同一となるように形成される。このとき、中径部4bと下型挿入部7の大径内周部7aとのクリアランスC4は、例えば、10μm以下、好ましくは5μm以下にする。一方、小径部4cと下型挿入部7の小径内周部7bとのクリアランスC3は、50μm以下、好ましくは10μm以下とする。   The outer diameters of the middle diameter portion 4b and the small diameter portion 4c of the lower mold 4 are substantially the same as the inner diameters of the large diameter inner peripheral portion 7a and the small diameter inner peripheral portion 7b of the lower mold insertion portion 7 of the trunk mold 2. Formed to be. At this time, the clearance C4 between the medium diameter part 4b and the large diameter inner peripheral part 7a of the lower mold insertion part 7 is, for example, 10 μm or less, preferably 5 μm or less. On the other hand, the clearance C3 between the small diameter portion 4c and the small diameter inner peripheral portion 7b of the lower mold insertion portion 7 is set to 50 μm or less, preferably 10 μm or less.

さらに、下型4の中径部4bの高さL3は、胴型2の下型挿入部7における大径内周部7aの高さL4よりも若干低くなるように形成する。下型4の大径部4aの上面4eには、成形面4dの中心軸に垂直な平滑面が形成されるように平面加工を施して、胴型2の下面2bとの間で密着するようにする。これにより、胴型2の下型挿入部7に下型4を挿入する際に、胴型2の軸心Aに垂直な平滑面が形成された胴型2の下面2bに、下型4の大径部4aの上面4eを密着させるだけで、成形面4dの中心軸と、胴型2の軸心Aとが一致するように、胴型2と下型4との相互の位置関係を高い精度で画定することができる。   Further, the height L3 of the middle diameter portion 4b of the lower mold 4 is formed to be slightly lower than the height L4 of the large diameter inner peripheral portion 7a in the lower mold insertion portion 7 of the trunk mold 2. The upper surface 4e of the large-diameter portion 4a of the lower mold 4 is flattened so that a smooth surface perpendicular to the central axis of the molding surface 4d is formed so as to be in close contact with the lower surface 2b of the body mold 2. To. Accordingly, when the lower mold 4 is inserted into the lower mold insertion portion 7 of the trunk mold 2, the lower mold 4 is formed on the lower surface 2b of the trunk mold 2 on which a smooth surface perpendicular to the axis A of the trunk mold 2 is formed. By simply bringing the upper surface 4e of the large diameter portion 4a into close contact, the mutual positional relationship between the body mold 2 and the lower mold 4 is high so that the central axis of the molding surface 4d and the axis A of the body mold 2 coincide. It can be defined with accuracy.

一方、胴型2の上面2a側から上型挿入部6に挿入される上型3は、径の異なる二つの円柱を同軸に積み重ねた形状を有し、大径部3a及び小径部3bからなっている。このような形状の上型3において、小径部3bの下型4と対向する面には、得ようとする光学素子の他方の光学面に対応する成形面3cが精密加工により形成されている。そして、大径部3a及び小径部3bの外周面は、成形面3cの中心軸と平行となるように形成されている。   On the other hand, the upper mold 3 inserted into the upper mold insertion portion 6 from the upper surface 2a side of the body mold 2 has a shape in which two cylinders having different diameters are coaxially stacked, and includes a large diameter portion 3a and a small diameter portion 3b. ing. In the upper mold 3 having such a shape, a molding surface 3c corresponding to the other optical surface of the optical element to be obtained is formed by precision machining on the surface facing the lower mold 4 of the small diameter portion 3b. And the outer peripheral surface of the large diameter part 3a and the small diameter part 3b is formed so that it may become parallel to the central axis of the molding surface 3c.

上型3の大径部3a及び小径部3bは、胴型2の上型挿入部6の大径内周部6a及び小径内周部6bのそれぞれと、ほぼ同一の径となるように形成される。このとき、大径部3aと上型挿入部6の大径内周部6aとのクリアランスC1は、例えば、10μm以下、好ましくは5μm以下の範囲で、上型3が胴型2に対して摺動可能となるようにする。一方、小径部3bと上型挿入部6の小径内周部6bとのクリアランスC2は、50μm以下の範囲、好ましくは10μm以下とする。   The large-diameter portion 3a and the small-diameter portion 3b of the upper mold 3 are formed so as to have substantially the same diameter as each of the large-diameter inner peripheral portion 6a and the small-diameter inner peripheral portion 6b of the upper mold insertion portion 6 of the body mold 2. The At this time, the clearance C1 between the large-diameter portion 3a and the large-diameter inner peripheral portion 6a of the upper die insertion portion 6 is, for example, in the range of 10 μm or less, preferably 5 μm or less, and the upper die 3 slides relative to the trunk die 2. To be movable. On the other hand, the clearance C2 between the small-diameter portion 3b and the small-diameter inner peripheral portion 6b of the upper mold insertion portion 6 is set to a range of 50 μm or less, preferably 10 μm or less.

これにより、胴型2の上型挿入部6に上型3を挿入したときに、上型3の成形面3cの中心軸と、胴型2の軸心Aとを一致させることができる。そして、上型3の成形面3cの中心軸と、胴型2の軸心Aとが一致した状態で、上型3が胴型2内を摺動するように、胴型2と上型3との相互の位置関係を高い精度で画定することができる。よって、前述したように、胴型2の軸心Aは、下型4の成形面4dの中心軸とも一致させられるから、上型3の成形面3cの中心軸と、下型4の成形面4dの中心軸との同軸性(上下型の同軸性)が確保されることになる。   Thereby, when the upper mold 3 is inserted into the upper mold insertion portion 6 of the trunk mold 2, the central axis of the molding surface 3 c of the upper mold 3 and the axis A of the trunk mold 2 can be matched. The body mold 2 and the upper mold 3 are slid so that the upper mold 3 slides in the body mold 2 in a state where the central axis of the molding surface 3c of the upper mold 3 and the axis A of the body mold 2 coincide with each other. Can be defined with high accuracy. Therefore, as described above, the axis A of the body mold 2 is made to coincide with the central axis of the molding surface 4d of the lower mold 4, so that the central axis of the molding surface 3c of the upper mold 3 and the molding surface of the lower mold 4 are aligned. Coaxiality with the central axis of 4d (upper and lower type coaxiality) is ensured.

したがって、上型3の上面3dに、上型3の成形面3cの中心軸に垂直な平滑面が形成されるように平面加工を施しておけば、上型3が胴型2内を所定量摺動したときに、図1に示すように、上型3の上面3dと、胴型2の上面2aとにより同一平面が形成される。よって、上型3の成形面3cの中心軸に垂直な上型3の上面3dと、胴型2の軸心Aに垂直な胴型2の上面2aとが同一平面となるようにプレス荷重を印加する限り、上下型の同軸性は確保される。   Accordingly, if the upper die 3 is flattened so that a smooth surface perpendicular to the central axis of the molding surface 3c of the upper die 3 is formed on the upper surface 3d of the upper die 3, the upper die 3 passes through the body die 2 by a predetermined amount. When sliding, the same plane is formed by the upper surface 3d of the upper mold 3 and the upper surface 2a of the body mold 2 as shown in FIG. Therefore, the press load is applied so that the upper surface 3d of the upper mold 3 perpendicular to the central axis of the molding surface 3c of the upper mold 3 and the upper surface 2a of the trunk mold 2 perpendicular to the axis A of the trunk mold 2 are in the same plane. As long as the voltage is applied, vertical coaxiality is ensured.

なお、このとき上型3の上面3dと胴型2の上面2aとが同一平面になく、平行な平面となっていても、その平行な関係が維持されるように介在部材5の形状を加工しておけば、上下型の同軸性は確保される。しかし、後述するように、介在部材5の下面5aが、上型3の上面3dと胴型2の上面2aとの両方に当接したときに、上型3の上面3dと胴型2の上面2aとが同一平面を形成するようにして、上下型の同軸性が確保されるようにするのが加工精度の点から好ましい。   At this time, even if the upper surface 3d of the upper mold 3 and the upper surface 2a of the body mold 2 are not on the same plane but are parallel planes, the shape of the interposition member 5 is processed so that the parallel relationship is maintained. By doing so, the vertical coaxiality is ensured. However, as will be described later, when the lower surface 5a of the interposition member 5 comes into contact with both the upper surface 3d of the upper mold 3 and the upper surface 2a of the trunk mold 2, the upper surface 3d of the upper mold 3 and the upper surface of the trunk mold 2 From the viewpoint of processing accuracy, it is preferable that the upper and lower molds have coaxiality so that 2a forms the same plane.

本実施形態では、上型3の上面3dに介在部材5を載置する。介在部材5は、後述するプレス工程において、プレスヘッドと上型3との間に位置する。また、介在部材5は、上面のほぼ中央がプレス荷重印加部とされ、このプレス荷重印加部にプレスヘッドからのプレス荷重が直接印加される。したがって、介在部材5の下面5aを平坦面としておけば、介在部材5へのプレス荷重の印加により、介在部材5の下面5aを、上型3の上面3dと胴型2の上面2aとの両方に密着した状態で当接させることで、上型3の上面3dと、胴型2の上面2aとを同一平面とすることができる。これにより、上型3と胴型2の間の小さなクリアランス内で許容され得る相互の傾きでさえも規制され、プレス荷重時における上下型の同軸性を確保することができる。   In the present embodiment, the interposition member 5 is placed on the upper surface 3 d of the upper mold 3. The interposition member 5 is located between the press head and the upper die 3 in a press process described later. Further, the intermediate member 5 has a substantially central portion on the upper surface serving as a press load application portion, and a press load from the press head is directly applied to the press load application portion. Therefore, if the lower surface 5a of the interposing member 5 is a flat surface, both the upper surface 3d of the upper die 3 and the upper surface 2a of the trunk die 2 are changed by applying a press load to the interposing member 5. The upper surface 3d of the upper mold 3 and the upper surface 2a of the body mold 2 can be made to be in the same plane. Thereby, even the mutual inclination which can be permitted within the small clearance between the upper die 3 and the barrel die 2 is restricted, and the coaxiality of the upper and lower dies at the time of press load can be ensured.

また、このときの上型3の成形面3cと下型4の成形面4dとの相対距離により、成形素材の肉厚がいったん画定される。このとき、上下型の同軸性が確保されているから、成形素材の肉厚は精度よく画定される。したがって、後述する冷却工程において成形素材の体積が収縮するが、上記段階での肉厚の画定により高い肉厚精度が得られる。   Further, the thickness of the molding material is once defined by the relative distance between the molding surface 3c of the upper mold 3 and the molding surface 4d of the lower mold 4 at this time. At this time, since the coaxiality of the upper and lower molds is ensured, the thickness of the molding material is accurately defined. Therefore, although the volume of the molding material shrinks in the cooling step described later, high wall thickness accuracy can be obtained by defining the wall thickness at the above stage.

このように、介在部材5は、プレス荷重を印加する際に、上下型の同軸性が確保されるように、上型3の上面3dと胴型2の上面2aとを同一平面とする機能を有する。したがって、介在部材5の下面5aは、少なくとも上型3の上面3dと胴型2の上面2aの隣接部分に、全周にわたって接触しているのが好ましく、介在部材5の位置ずれによって、接触範囲が不足すると、上記機能が損なわれる。   Thus, the interposition member 5 has a function of making the upper surface 3d of the upper mold 3 and the upper surface 2a of the body mold 2 in the same plane so that the coaxiality of the upper and lower molds is ensured when a press load is applied. Have. Accordingly, it is preferable that the lower surface 5a of the interposition member 5 is in contact with at least an adjacent portion of the upper surface 3d of the upper mold 3 and the upper surface 2a of the body mold 2 over the entire circumference. If the amount is insufficient, the above functions are impaired.

このため、本実施形態にあっては、このような介在部材5の機能を損なわない範囲で、図1に示すように、上型3の上面3dに凸部9を設けるとともに、介在部材5の下面5aには、凸部9を収容する凹部5bを設けることにより、介在部材5の位置ずれを防止するのが好ましい。これにより、例えば、成形型1の搬送を高速ロボットで行う場合などに、介在部材5の位置ずれや、滑り落ちなどが完全に防止される。   For this reason, in this embodiment, as long as the function of the interposed member 5 is not impaired, as shown in FIG. It is preferable to prevent the interposition member 5 from being displaced by providing the lower surface 5a with a concave portion 5b for accommodating the convex portion 9. Thereby, for example, when the mold 1 is transported by a high-speed robot, the displacement of the interposed member 5 and the slipping-off are completely prevented.

さらに、上型3の上面3dに凸部9を形成しておくことにより、例えば、ロボットで成形型1を組み立てる際に、凸部9を上型3の持ち手として機能させることもでき、また、位置精度を高く加工することで、上型3を胴型2内に挿入する際の位置検出部としても用いることができる。   Furthermore, by forming the convex portion 9 on the upper surface 3d of the upper mold 3, for example, when the molding die 1 is assembled by a robot, the convex portion 9 can function as a handle of the upper mold 3. By processing with high positional accuracy, it can also be used as a position detection unit when the upper mold 3 is inserted into the body mold 2.

また、本実施形態では、介在部材5の上面のほぼ中央に、図1に示すような球面突起10が形成されている。球面突起10はプレス荷重印加部として機能するものであり、球面突起10にプレスヘッドが当接することによって、介在部材5にプレス荷重が印加される。ここで、球面突起10とは、プレスヘッドに対して実質的に点接触可能な面を有する突起をいい、本実施形態では、球体(又はほぼ球体状の立体)の一部を水平面で切り取った形状を有する突起としている。   Further, in the present embodiment, a spherical protrusion 10 as shown in FIG. 1 is formed at substantially the center of the upper surface of the interposed member 5. The spherical protrusion 10 functions as a press load application unit, and a press load is applied to the interposition member 5 when the press head contacts the spherical protrusion 10. Here, the spherical protrusion 10 refers to a protrusion having a surface that can substantially make point contact with the press head. In this embodiment, a part of a sphere (or a substantially spherical solid) is cut off in a horizontal plane. The protrusion has a shape.

このような球面突起10を介在部材5の上面に形成することで、プレスヘッドが介在部材5にプレス荷重を印加するに際して、プレスヘッドは球面突起10と実質的に点で接触することになる。このため、プレス軸と成形型の軸心との間に傾きが生じても、軸方向以外に働く力が小さく、すなわち、プレスヘッドからのプレス荷重は球面突起10の径方向に作用することになるが、このとき軸方向に直交する成分は小さくなる。したがって、プレスヘッドからのプレス荷重は、実質的に介在部材5に対して軸方向に作用することになり、上下型の同軸性が損なわれるのを防止できる。   By forming such a spherical protrusion 10 on the upper surface of the interposition member 5, the press head substantially contacts the spherical protrusion 10 at a point when the press head applies a press load to the interposition member 5. For this reason, even if an inclination occurs between the press shaft and the axis of the mold, the force acting in the direction other than the axial direction is small, that is, the press load from the press head acts in the radial direction of the spherical protrusion 10. However, at this time, the component orthogonal to the axial direction becomes smaller. Therefore, the press load from the press head substantially acts in the axial direction with respect to the interposition member 5, and it is possible to prevent the upper and lower molds from being damaged.

さらに、本実施形態では、上型3の大径部の高さL1は、胴型2の上型挿入部6における大径内周部6aの高さL2に対し、相対的に低くなるように形成する。すなわち、図1に示すように、胴型2の上面2aと、上型3の上面3dとを同一平面に位置させたときに、上型3の大径部3aの下面3eと、胴型2の上型挿入部6における大径内周部6aの底面6cの間に、空隙Gが形成されるようにする。このとき、胴型2の上記空隙Gが形成される高さ付近には、空隙G内の雰囲気ガスを放出させるために、胴型2を肉厚方向に貫通するガス抜き用の貫通孔8を設けておく。   Furthermore, in the present embodiment, the height L1 of the large-diameter portion of the upper mold 3 is relatively lower than the height L2 of the large-diameter inner peripheral portion 6a in the upper mold insertion portion 6 of the trunk mold 2. Form. That is, as shown in FIG. 1, when the upper surface 2a of the body mold 2 and the upper surface 3d of the upper mold 3 are positioned on the same plane, the lower surface 3e of the large-diameter portion 3a of the upper mold 3 and the body mold 2 A gap G is formed between the bottom surface 6 c of the large-diameter inner peripheral portion 6 a in the upper mold insertion portion 6. At this time, in the vicinity of the height where the gap G of the body mold 2 is formed, in order to release the atmospheric gas in the space G, a through hole 8 for venting gas that penetrates the body mold 2 in the thickness direction is provided. Keep it.

後述するプレス工程において、上型3の成形面3cと下型4の成形面4dとに挟まれ、所定形状に成形されるガラスプリフォームなどの成形素材は、プレス工程が終了した後に冷却されるが、このような空隙Gを形成しておけば、成形素材の冷却による体積収縮にともなって上型3が自重などにより下降し、上型3の成形面3cが成形素材に密着した状態を維持することができる。これにより、成形面3cの形状を、精度良く成形素材に転写することができ、得られる光学素子の面精度を良好に維持することができる。   In a pressing process to be described later, a molding material such as a glass preform that is sandwiched between the molding surface 3c of the upper mold 3 and the molding surface 4d of the lower mold 4 and molded into a predetermined shape is cooled after the pressing process is completed. However, if such a gap G is formed, the upper die 3 is lowered by its own weight or the like as the volume shrinks due to cooling of the molding material, and the molding surface 3c of the upper die 3 is kept in close contact with the molding material. can do. Thereby, the shape of the molding surface 3c can be accurately transferred to the molding material, and the surface accuracy of the obtained optical element can be maintained well.

ところで、本実施形態では、前述したように介在部材5の下面5aを、上型3の上面3dに密着した状態で当接させるが、そうすると、上型3の下降に伴って上型3と介在部材5とで囲まれた部分(具体的には、介在部材5の下面5aと、上型3の上面3d上型との当接部位、及び介在部材5の下面5aに設けた凹部5bと、上型3の上面3dに設けた凸部9との間に形成される空間)の体積が増えて当該部分が負圧状態となり、成形素材の体積収縮に追従する上型3の下降を妨げてしまう。   By the way, in the present embodiment, as described above, the lower surface 5a of the interposed member 5 is brought into contact with the upper surface 3d of the upper mold 3 in close contact with each other. A portion surrounded by the member 5 (specifically, a contact portion between the lower surface 5a of the interposed member 5 and the upper surface 3d of the upper die 3 and a recess 5b provided on the lower surface 5a of the interposed member 5; The volume of the space formed between the convex portion 9 provided on the upper surface 3d of the upper mold 3 is increased and the portion is in a negative pressure state, preventing the upper mold 3 from descending following the volume shrinkage of the molding material. End up.

特に、介在部材5には、上面のほぼ中央に球面突起10が形成され、この球面突起10にプレス荷重が印加されるから、球面突起10の周囲にはプレス荷重の印加に耐えるだけの肉厚を持たせておかなければならない。このため、上型3と介在部材5とで囲まれた部分は必然的に密閉空間となってしまう。このため、本実施形態では、介在部材5を厚み方向に貫通し、上型3の上面3dを型外の空間に連通させる通気孔5cを介在部材5に設けておく。すなわち、介在部材5を厚み方向に貫通し、一方の端部が成形型1の外方に向かって開口するとともに、他方の端部が、上型3の上面3dに向かって開口する通気孔5cを介在部材5に設ける。   In particular, since the spherical protrusion 10 is formed in the center of the upper surface of the interposing member 5 and a press load is applied to the spherical protrusion 10, the wall thickness around the spherical protrusion 10 is sufficient to withstand the application of the press load. Must be kept. For this reason, the part enclosed by the upper mold | type 3 and the interposition member 5 will necessarily become a sealed space. For this reason, in this embodiment, the intervening member 5 is provided with a vent hole 5c that penetrates the interposition member 5 in the thickness direction and communicates the upper surface 3d of the upper mold 3 with the space outside the mold. That is, the vent hole 5c that penetrates the interposition member 5 in the thickness direction, has one end opening toward the outside of the mold 1 and the other end opening toward the upper surface 3d of the upper mold 3. Is provided on the interposing member 5.

このような通気孔5cを介在部材5に設けることで、上型3と介在部材5とで囲まれた部分が密閉空間にならず、当該部分に、雰囲気ガスを流入させることができる。これにより、上型3の下降を妨げることなく、上型3の成形面3cが成形素材に密着した状態を維持することができる。なお、介在部材5に設ける通気孔5cは、図1に示すような態様に限らず、上型3の上面3dとの面接触性を損なわない範囲で、介在部材5の下面5aに溝や切り欠きを形成することによって、通気孔5cを設けることもできる。   By providing such an air hole 5c in the interposition member 5, the portion surrounded by the upper mold 3 and the interposition member 5 does not become a sealed space, and atmospheric gas can be allowed to flow into the portion. Thereby, the state where the molding surface 3c of the upper mold 3 is in close contact with the molding material can be maintained without hindering the lowering of the upper mold 3. The vent hole 5c provided in the interposition member 5 is not limited to the form shown in FIG. 1, and a groove or a cut is formed in the lower surface 5a of the interposition member 5 as long as the surface contact with the upper surface 3d of the upper mold 3 is not impaired. The vent hole 5c can be provided by forming a notch.

次に、本発明の一実施形態に係る光学素子の製造方法を、前述した成形型1を用いて光学素子を成形する場合を例に挙げて説明する。図2は、本発明の一実施形態に係る光学素子の製造方法における成形工程の一例を示す概略図である。   Next, a method for manufacturing an optical element according to an embodiment of the present invention will be described by taking as an example a case where an optical element is molded using the mold 1 described above. FIG. 2 is a schematic diagram illustrating an example of a molding step in the method for manufacturing an optical element according to an embodiment of the present invention.

本実施形態に係る光学素子の製造方法にしたがって光学素子を製造するには、成形に先立ち、成形型1内にガラスプリフォームなどの成形素材Pを供給する。具体的には、胴型2の上型挿入部6に上型3が挿入され、その上に介在部材5が載置された状態で、下型4を下降させて胴型2から抜き出す。そして、下型4の成形面4dの上に、例えば、図示しない吸着パッド付きオートハンドなどにより、成形素材Pを供給する(図2(a))。このとき、成形素材Pは室温で供給してもよく、所定温度に加熱してから供給してもよい。   In order to manufacture an optical element according to the method for manufacturing an optical element according to the present embodiment, a molding material P such as a glass preform is supplied into the mold 1 prior to molding. Specifically, the upper mold 3 is inserted into the upper mold insertion portion 6 of the trunk mold 2 and the interposed member 5 is placed thereon, the lower mold 4 is lowered and extracted from the trunk mold 2. Then, the molding material P is supplied onto the molding surface 4d of the lower mold 4 by, for example, an unillustrated auto hand with a suction pad (FIG. 2A). At this time, the molding material P may be supplied at room temperature or may be supplied after being heated to a predetermined temperature.

次いで、下型4を上昇させて胴型2の下型挿入部7に下面2b側から挿入し(図2(b))、下型4の大径部4aの上面4eを胴型2の下面2bに密着させる。このとき、成形素材Pの厚みのため、上型3の上面3dが胴型2の上面2aに対して上方にはみ出し、その上型3の上に介在部材5が載置された状態となる(図2(c))。これ以降、成形型1全体は、図示しない水平な載置台の上に載置される。   Next, the lower mold 4 is raised and inserted into the lower mold insertion portion 7 of the trunk mold 2 from the lower surface 2b side (FIG. 2B), and the upper surface 4e of the large-diameter portion 4a of the lower mold 4 is used as the lower surface of the trunk mold 2. Adhere to 2b. At this time, due to the thickness of the molding material P, the upper surface 3d of the upper mold 3 protrudes upward with respect to the upper surface 2a of the body mold 2, and the interposition member 5 is placed on the upper mold 3 ( FIG. 2 (c)). Thereafter, the entire mold 1 is placed on a horizontal placing table (not shown).

成形型1内への成形素材Pの供給が完了すると、成形素材Pを収容した成形型1は加熱工程に送られる。加熱工程における加熱条件は、用いる成形素材Pによっても異なるが、成形素材Pの温度が、プレス成形に適した温度域、例えば、粘度にして10〜10dPa・s相当の温度となるような条件とする。加熱工程での加熱処理が行われた後、水平な載置台に載置された成形型1は、そのままの状態でプレス工程に送られる。 When the supply of the molding material P into the molding die 1 is completed, the molding die 1 containing the molding material P is sent to the heating process. The heating conditions in the heating step vary depending on the molding material P to be used, but the temperature of the molding material P is a temperature range suitable for press molding, for example, a viscosity equivalent to 10 6 to 10 9 dPa · s. It is a condition. After the heat treatment in the heating process is performed, the mold 1 placed on the horizontal placing table is sent to the pressing process as it is.

プレス工程では、エアシリンダ又は油圧シリンダなどで駆動するプレスヘッド(図示せず)を備えたプレス手段により、成形型1の上方からプレスヘッドを介在部材5に当接させ、プレス荷重を印加する。このときのプレス荷重は、通常50〜200kgf/cm程度である。加熱工程における加熱処理により、成形素材Pは十分軟化した状態にあるため、上型3が胴型2内を摺動しながら押し下げられる。これにより、上型3と下型4とに挟まれた成形素材Pは、成形面3c,4dの形状が転写され、所定の形状に成形される。 In the pressing step, the pressing means is provided with a press head (not shown) driven by an air cylinder or a hydraulic cylinder, and the press head is brought into contact with the interposition member 5 from above the mold 1 to apply a press load. The press load at this time is usually about 50 to 200 kgf / cm 2 . Since the molding material P is sufficiently softened by the heat treatment in the heating process, the upper mold 3 is pushed down while sliding in the body mold 2. Thus, the molding material P sandwiched between the upper mold 3 and the lower mold 4 is molded into a predetermined shape by transferring the shapes of the molding surfaces 3c and 4d.

そして、介在部材5の下面5aが胴型2の上面2aに当接したところで、上型3による成形素材Pへの加圧は実質的に停止され、成形素材Pの肉厚が再現性よく決定される。このとき、上型3の上面3dと胴型2の上面2aが同一平面を形成するため、上型3の胴型2に対する倒れ(ティルト)は実質的にゼロとなる(図2(d))。その結果、得られる光学素子の肉厚精度を良好なものとすることができる。   When the lower surface 5a of the interposition member 5 comes into contact with the upper surface 2a of the body mold 2, the pressing of the molding material P by the upper mold 3 is substantially stopped, and the thickness of the molding material P is determined with good reproducibility. Is done. At this time, since the upper surface 3d of the upper mold 3 and the upper surface 2a of the trunk mold 2 form the same plane, the tilt of the upper mold 3 with respect to the trunk mold 2 is substantially zero (FIG. 2 (d)). . As a result, the thickness accuracy of the obtained optical element can be improved.

この際、プレス荷重の印加によって、胴型2は下型4の大径部4aに強く圧接され、下型4と胴型2の相互の位置関係も正確に維持される。その結果、プレス荷重の印加によるタイトな圧接が、下型4と胴型2の相互の位置関係、及び胴型2と上型3の相互の位置関係を決めることとなり、上下型の同軸性が確保される。   At this time, by applying a press load, the body mold 2 is strongly pressed against the large-diameter portion 4a of the lower mold 4, and the mutual positional relationship between the lower mold 4 and the body mold 2 is accurately maintained. As a result, the tight pressure contact due to the application of the press load determines the mutual positional relationship between the lower die 4 and the barrel die 2 and the mutual positional relationship between the barrel die 2 and the upper die 3, and the upper and lower dies are coaxial. Secured.

さらに、介在部材5の上面のほぼ中央には、球面突起10が形成されているため、プレスヘッドと介在部材5とが実質的に点で接触することになる。このため、プレス軸と成形型の軸心との間に傾きがあったとしても、プレスヘッドからのプレス荷重は、実質的に介在部材5に対して軸方向に作用することになり、上記したプレス荷重印加時の各部材間のタイトな圧接も有効に機能して、上下型の同軸性が損なわれるのを防止できる。これにより、得られる光学素子の偏心精度を良好なものとすることができる。   Furthermore, since the spherical protrusion 10 is formed at substantially the center of the upper surface of the interposition member 5, the press head and the interposition member 5 are substantially in contact with each other at a point. For this reason, even if there is an inclination between the press shaft and the axis of the mold, the press load from the press head substantially acts on the interposition member 5 in the axial direction. Tight pressure contact between each member at the time of applying a press load also functions effectively, and it is possible to prevent the upper and lower molds from being damaged. Thereby, the eccentric accuracy of the obtained optical element can be made favorable.

このあと、成形素材Pを収容した状態で、成形型1を冷却し、成形素材Pのガラス転移点付近、又はそれ以下の温度まで降温する(図2(e))。この際、成形型1内の成形素材Pは冷却されて体積が収縮するが、このとき、成形素材Pと成形面との密着が解かれると面精度が悪化する。   Thereafter, the molding die 1 is cooled in a state in which the molding material P is accommodated, and the temperature is lowered to a temperature near or below the glass transition point of the molding material P (FIG. 2 (e)). At this time, the molding material P in the molding die 1 is cooled and its volume shrinks. At this time, if the adhesion between the molding material P and the molding surface is released, the surface accuracy deteriorates.

しかし、前述したように上型3の大径部3aの下面3eと、胴型2の上型挿入部6における大径内周部6aの底面6cの間には空隙Gが形成されるとともに、この位置付近には貫通孔8が設けられている。このため、上型3の下降とともに体積が小さくなる空隙Gの雰囲気ガスを、貫通孔8を通じて放出できるようになっている。一方、上型3の上面3dと介在部材5の下面5aは密着しているが、介在部材5には、雰囲気ガスの流入を許容する通気孔5cが設けられている。このため、上型3と介在部材5とで囲まれた空間が負圧にならずに、上型3がスムーズに成形素材Pの収縮に追従して下降する(図2(e)参照)。これにより、成形素材Pと上下型の成形面3c,4dとの密着を維持した状態で冷却されるため、面精度を良好に維持することができる。   However, as described above, a gap G is formed between the lower surface 3e of the large-diameter portion 3a of the upper mold 3 and the bottom surface 6c of the large-diameter inner peripheral portion 6a of the upper mold insertion portion 6 of the trunk mold 2, A through hole 8 is provided in the vicinity of this position. For this reason, the atmospheric gas in the gap G whose volume decreases as the upper mold 3 descends can be released through the through hole 8. On the other hand, the upper surface 3d of the upper mold 3 and the lower surface 5a of the interposition member 5 are in close contact with each other, but the interposition member 5 is provided with a vent hole 5c that allows inflow of atmospheric gas. For this reason, the space surrounded by the upper mold 3 and the interposition member 5 does not become negative pressure, and the upper mold 3 smoothly descends following the contraction of the molding material P (see FIG. 2E). Thereby, since it cools in the state which maintained close_contact | adherence with the shaping | molding raw material P and the shaping | molding surfaces 3c and 4d of an up-and-down type | mold, surface precision can be maintained favorable.

このような冷却工程を終えた後に、下型4を下降させて胴型2から抜き取り(図3(f))、下型4の成形面4d上の成形体Sを取り出す。このようなモールドプレスにより、成形素材Pに成形を施すことで、偏心精度、肉厚精度、面精度に優れた光学素子を製造することができ、たとえ、製造する光学素子が両非球面レンズであったとしても、第1レンズ面と第2レンズ面との同軸性を損なうことなく、高精度に成形することができる。特に、NA0.6以上の光ピックアップ用対物レンズ、小型撮像機器用撮像レンズなどの精密光学素子に要求される光学性能を満足する高精度の成形が可能となる。   After finishing such a cooling step, the lower mold 4 is lowered and extracted from the body mold 2 (FIG. 3 (f)), and the molded body S on the molding surface 4d of the lower mold 4 is taken out. By molding the molding material P with such a mold press, an optical element having excellent eccentricity accuracy, thickness accuracy, and surface accuracy can be manufactured. Even if it exists, it can shape | mold with high precision, without impairing the coaxial property of a 1st lens surface and a 2nd lens surface. In particular, high-precision molding that satisfies the optical performance required for precision optical elements such as an optical pickup objective lens having an NA of 0.6 or more and an imaging lens for a small imaging device is possible.

次に、本実施形態の変形例を図面に基づいて説明する。図3は第一変形例の概略を示す断面図であり、図4は第二変形例の概略を示す断面図である。   Next, a modification of the present embodiment will be described with reference to the drawings. FIG. 3 is a sectional view showing an outline of the first modification, and FIG. 4 is a sectional view showing an outline of the second modification.

図1に示す例では、上型3の上面3dに凸部9を設けるとともに、介在部材5の下面5aには、凸部9を収容する凹部5bを設けているが、このような凹部5bと凸部9は、図3に示すように、必要に応じて省略することもできる。   In the example shown in FIG. 1, the convex portion 9 is provided on the upper surface 3 d of the upper mold 3, and the concave portion 5 b that accommodates the convex portion 9 is provided on the lower surface 5 a of the interposition member 5. The convex part 9 can also be abbreviate | omitted as needed, as shown in FIG.

また、図1に示す例では、介在部材5の上面のほぼ中央に球面突起10を形成することで、プレス荷重を印加する際に、プレスヘッドと介在部材5とを点で接触させている。本実施形態では、介在部材5の上面のほぼ中央のプレス荷重印加部に、プレスヘッドが実質的に点で接触し、プレス軸と成形型の軸心との間に傾きが生じても、上下型の同軸性が損なわれるのを防止できればよく、例えば、介在部材5の上面に球面突起10を設ける代わりに、図4に示すように、プレスヘッド11のプレス面11aのほぼ中央に球面突起11bを設けるなどしてもよい。この場合、介在部材5の上面のプレス荷重印加部は、図4に示すように、平面に形成する。   In the example shown in FIG. 1, the spherical protrusion 10 is formed at substantially the center of the upper surface of the interposition member 5 so that the press head and the interposition member 5 are in contact with each other when a press load is applied. In the present embodiment, even if the press head substantially contacts the press load application portion at the center of the upper surface of the interposition member 5 at a point and an inclination occurs between the press shaft and the axis of the molding die, For example, instead of providing the spherical protrusion 10 on the upper surface of the interposition member 5, as shown in FIG. 4, a spherical protrusion 11b is provided at substantially the center of the press surface 11a of the press head 11, as long as the coaxiality of the mold can be prevented. May be provided. In this case, the press load application part on the upper surface of the interposition member 5 is formed in a plane as shown in FIG.

以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることはいうまでもない。   Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. Nor.

以上説明したように、本発明は、光ピックアップ、小型撮像機器などに用いる、偏心精度、肉厚精度、面精度が極めて高いガラスレンズなどの光学素子を高精度で製造することができる。   As described above, according to the present invention, an optical element such as a glass lens having extremely high eccentricity accuracy, thickness accuracy, and surface accuracy, which is used for an optical pickup, a small imaging device, and the like can be manufactured with high accuracy.

本発明に係るモールドプレス成形型の一実施形態の概略を示す断面図である。It is sectional drawing which shows the outline of one Embodiment of the mold press molding die which concerns on this invention. 本発明に係る光学素子の製造方法における成形工程の一例を示す概略図である。It is the schematic which shows an example of the shaping | molding process in the manufacturing method of the optical element which concerns on this invention. 本発明に係るモールドプレス成形型の一実施形態の第一変形例の概略を示す断面図である。It is sectional drawing which shows the outline of the 1st modification of one Embodiment of the mold press molding die which concerns on this invention. 本発明に係るモールドプレス成形型の一実施形態の第二変形例の概略を示す断面図である。It is sectional drawing which shows the outline of the 2nd modification of one Embodiment of the mold press molding die which concerns on this invention.

符号の説明Explanation of symbols

1 成形型
2 胴型
2a 上面
3 上型
3c 成形面
3d 上面
4 下型
4d 成形面
5 介在部材
5a 下面
5b 凹部
5c 通気孔
8 貫通孔
9 凸部
10 球面突起
A 軸心
G 空隙
DESCRIPTION OF SYMBOLS 1 Molding die 2 Body die 2a Upper surface 3 Upper die 3c Molding surface 3d Upper surface 4 Lower die 4d Molding surface 5 Interposition member 5a Lower surface 5b Recessed portion 5c Venting hole 8 Through hole 9 Protruding portion 10 Spherical protrusion A Axis center G Gap

Claims (8)

対向する成形面を有する一対の上型及び下型と、前記上型及び下型が挿入され前記上型及び下型の相互の水平方向の位置関係を規制する胴型と、前記上型の上面に載置され、その下面が、プレス荷重の印加により前記上型の上面及び前記胴型の上面に当接する介在部材とを備え、前記上型と前記下型との間に成形素材を収容してプレス成形するモールドプレス成形型であって、
前記上型の上面と前記胴型の上面とが、前記介在部材の下面に当接する位置にあるときに、前記上型の下降を許容する空隙が、前記上型と前記胴型との間に形成され、
前記介在部材には、上面のほぼ中央にプレス荷重印加部を設けるとともに、前記上型の上面を型外の空間に連通させる通気孔を設けたことを特徴とするモールドプレス成形型。
A pair of upper and lower molds having opposing molding surfaces; a body mold into which the upper mold and the lower mold are inserted to restrict the horizontal positional relationship between the upper mold and the lower mold; and an upper surface of the upper mold The lower surface of the upper die and the upper surface of the barrel die by an application of a press load, and a molding material is accommodated between the upper die and the lower die. A mold press mold for press molding,
When the upper surface of the upper mold and the upper surface of the trunk mold are in contact with the lower surface of the interposition member, a gap allowing the lowering of the upper mold is between the upper mold and the trunk mold. Formed,
A mold press molding die characterized in that the interposed member is provided with a press load application portion at substantially the center of the upper surface, and a vent hole for communicating the upper surface of the upper die with a space outside the die.
前記介在部材の下面が、前記上型の上面及び前記胴型の上面に当接したときに、前記上型の上面及び前記胴型の上面が同一平面を形成する請求項1に記載のモールドプレス成形型。   2. The mold press according to claim 1, wherein the upper surface of the upper mold and the upper surface of the barrel mold form the same plane when the lower surface of the interposition member contacts the upper surface of the upper mold and the upper surface of the barrel mold. Mold. 前記プレス荷重印加部が、前記介在部材の上面のほぼ中央に形成された球面突起を備えている請求項1又は2に記載のモールドプレス成形型。   3. The mold press mold according to claim 1, wherein the press load application section includes a spherical protrusion formed substantially at the center of the upper surface of the interposition member. 前記上型の上面に凸部を設けるとともに、前記介在部材の下面には前記凸部を収容する凹部を設けた請求項1〜3のいずれかに記載のモールドプレス成形型。   The mold press mold according to any one of claims 1 to 3, wherein a convex portion is provided on an upper surface of the upper mold, and a concave portion for accommodating the convex portion is provided on a lower surface of the interposition member. 前記上型と前記胴型との間に形成される前記空隙と、型外の空間とを連通する貫通孔を前記胴部に設けた請求項1〜4のいずれかに記載のモールドプレス成形型。   The mold press molding die in any one of Claims 1-4 which provided the through-hole which connects the said space | gap formed between the said upper mold | type and the said trunk | drum, and the space outside a type | mold in the said trunk | drum. . 成形素材を加熱プレスして所定形状に成形する光学素子の製造方法であって、
対向する成形面を有する一対の上型及び下型を、前記上型及び下型の相互の水平方向の位置関係を規制する胴型に挿入するとともに、前記上型及び下型の成形面の間に成形素材を供給し、
次いで、前記成形素材が加熱された状態で、前記上型の上面に載置された介在部材の上面のほぼ中央に設けられたプレス荷重印加部に実質的に点接触でプレス荷重を印加して、前記介在部材の下面を前記上型の上面及び前記胴型の上面に当接させ、
しかる後に成形型を冷却し、冷却による成形素材の体積収縮に追従させて上型を下降させることにより、上型の成形面に成形素材が密着した状態を維持することを特徴とする光学素子の製造方法。
A method of manufacturing an optical element that heats and presses a molding material into a predetermined shape,
A pair of upper and lower molds having opposed molding surfaces are inserted into a barrel mold that regulates the horizontal positional relationship between the upper mold and the lower mold, and between the molding surfaces of the upper mold and the lower mold. Supply molding materials to
Next, in a state where the molding material is heated, a press load is applied substantially by point contact to a press load application unit provided at substantially the center of the upper surface of the interposition member placed on the upper surface of the upper mold. The lower surface of the interposition member is brought into contact with the upper surface of the upper mold and the upper surface of the trunk mold,
After that, the molding die is cooled, and the upper die is moved down following the volume shrinkage of the molding material due to cooling, thereby maintaining the state where the molding material is in close contact with the molding surface of the upper die. Production method.
前記介在部材に、前記介在部材の下面が当接する前記上型の上面を型外の空間に連通させる通気孔を設け、前記上型が成形素材の体積収縮に追従して下降するときに、前記介在部材と前記上型との間に、前記通気孔から雰囲気ガスを流入させる請求項6に記載の光学素子の製造方法。   The interposition member is provided with a vent hole that communicates the upper surface of the upper mold with which the lower surface of the interposition member abuts the space outside the mold, and when the upper mold descends following the volume shrinkage of the molding material, The method for manufacturing an optical element according to claim 6, wherein an atmospheric gas is caused to flow from the vent hole between the interposition member and the upper mold. 前記上型の下降を許容する空隙が前記上型と前記胴型との間に形成されるとともに、前記空隙と型外の空間とを連通する貫通孔を前記胴部に形成し、前記上型が成形素材の体積収縮に追従して下降する際に、前記空隙内の雰囲気ガスを前記貫通孔から放出させる請求項6又は7に記載の光学素子の製造方法。   A gap that allows the upper mold to descend is formed between the upper mold and the trunk mold, and a through hole that communicates the gap and a space outside the mold is formed in the trunk portion, and the upper mold The manufacturing method of the optical element according to claim 6 or 7, wherein when the gas descends following the volume shrinkage of the molding material, the atmospheric gas in the gap is released from the through hole.
JP2004237481A 2004-08-17 2004-08-17 Mold press mold and optical element manufacturing method Active JP4490761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237481A JP4490761B2 (en) 2004-08-17 2004-08-17 Mold press mold and optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237481A JP4490761B2 (en) 2004-08-17 2004-08-17 Mold press mold and optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2006056724A true JP2006056724A (en) 2006-03-02
JP4490761B2 JP4490761B2 (en) 2010-06-30

Family

ID=36104511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237481A Active JP4490761B2 (en) 2004-08-17 2004-08-17 Mold press mold and optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4490761B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313930B2 (en) * 2002-12-04 2008-01-01 Fuji Electric Device Technology Co., Ltd Method and apparatus for manufacturing glass substrate for storage medium
CN111646675A (en) * 2019-03-04 2020-09-11 Hoya株式会社 Press molding device
CN112351957A (en) * 2018-07-10 2021-02-09 Hoya株式会社 Disassembling and assembling device for forming die and forming device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159228A (en) * 1986-12-24 1988-07-02 Hoya Corp Mold for formed glass article
JPH0228460A (en) * 1988-07-18 1990-01-30 Sintokogio Ltd Resin sheet cutting-out device
JPH0442338A (en) * 1990-06-07 1992-02-12 Fuji Xerox Co Ltd Accessable object deciding means for garbage collection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159228A (en) * 1986-12-24 1988-07-02 Hoya Corp Mold for formed glass article
JPH0228460A (en) * 1988-07-18 1990-01-30 Sintokogio Ltd Resin sheet cutting-out device
JPH0442338A (en) * 1990-06-07 1992-02-12 Fuji Xerox Co Ltd Accessable object deciding means for garbage collection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313930B2 (en) * 2002-12-04 2008-01-01 Fuji Electric Device Technology Co., Ltd Method and apparatus for manufacturing glass substrate for storage medium
CN112351957A (en) * 2018-07-10 2021-02-09 Hoya株式会社 Disassembling and assembling device for forming die and forming device
CN112351957B (en) * 2018-07-10 2023-09-01 Hoya株式会社 Disassembly and assembly device of forming die and forming device
CN111646675A (en) * 2019-03-04 2020-09-11 Hoya株式会社 Press molding device

Also Published As

Publication number Publication date
JP4490761B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4666677B2 (en) Mold press mold and optical element manufacturing method
US11525982B2 (en) Lens unit and manufacturing method of lens unit
JP2007290903A (en) Device and method for molding optical element
JP5317962B2 (en) Method for producing glass molded body and mold press molding apparatus
JP2003104739A (en) Mold for forming optical element with lens barrel
JP4490761B2 (en) Mold press mold and optical element manufacturing method
JP4549820B2 (en) Mold press mold, method for manufacturing the same, and method for manufacturing optical element
KR20170099768A (en) Press-forming die and method for manufacturing optical element
KR100847967B1 (en) Mold press forming mold and method for producing optical element
US7561355B2 (en) Optical lens unit including lens barrel containing lens and method for producing optical lens unit
JP4786387B2 (en) Method for manufacturing composite optical element and molding die therefor
JP4668657B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP4792140B2 (en) Mold press mold and optical element manufacturing method
JP4508804B2 (en) Optical element molding method
JP3618983B2 (en) Optical element molding method and apparatus
JP6037795B2 (en) Optical element mold
JP7407528B2 (en) glass lens mold
JP4832939B2 (en) Method for manufacturing optical element molding die
JP5112120B2 (en) Optical element manufacturing method and mold assembly for manufacturing the same
JPH11157853A (en) Method for forming optical element and forming mold therefor
JP3209722B2 (en) Method for molding optical element and optical element
JPH06256025A (en) Mold for molding optical element, method for molding the same and molding apparatus therefor
JP2007297229A (en) Method for manufacturing optical device
JP5312968B2 (en) Optical component and method of manufacturing optical component
JPH0379300B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4490761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250