JP2006055746A - Titanium oxide photocatalyst having photocatalytic activity in wide range of wavelength and manufacturing method therefor - Google Patents

Titanium oxide photocatalyst having photocatalytic activity in wide range of wavelength and manufacturing method therefor Download PDF

Info

Publication number
JP2006055746A
JP2006055746A JP2004240230A JP2004240230A JP2006055746A JP 2006055746 A JP2006055746 A JP 2006055746A JP 2004240230 A JP2004240230 A JP 2004240230A JP 2004240230 A JP2004240230 A JP 2004240230A JP 2006055746 A JP2006055746 A JP 2006055746A
Authority
JP
Japan
Prior art keywords
titanium oxide
anatase
photocatalytic activity
wavelength region
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004240230A
Other languages
Japanese (ja)
Other versions
JP4580197B2 (en
Inventor
Taichi Yamaguchi
太一 山口
Yusuke Mizufune
裕介 水舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2004240230A priority Critical patent/JP4580197B2/en
Publication of JP2006055746A publication Critical patent/JP2006055746A/en
Application granted granted Critical
Publication of JP4580197B2 publication Critical patent/JP4580197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce an anatase-type titanium oxide photocatalyst having a high photocatalytic activity in a wide range of wavelengths from ultraviolet light to visible light. <P>SOLUTION: The anatase-type titanium oxide showing a high photocatalystic activity mainly in the ultraviolet light wavelength range and the anatase-type titanium oxide showing a high photocatalytic activity mainly in a visible light are complexed. The complexed titanium photocatalyst is prepared by incorporating metatitanic acid that shows anatase crystallinity into amorphous orthotitanic acid containing an ammonium salt and calcining the resultant product under conditions to produce a nitrogen doped anatase type titanium oxide from the orthotitanic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、紫外線から可視光までの広い波長領域において光触媒活性を示す酸化チタン光触媒およびその製造方法に関する。   The present invention relates to a titanium oxide photocatalyst exhibiting photocatalytic activity in a wide wavelength range from ultraviolet to visible light and a method for producing the same.

酸化チタンのような半導体は、そのバンドギャップ以上のエネルギーを持つ光の照射により、伝導帯に電子を価電子帯に正孔を生じる。生成した電子および正孔は、水と酸素の存在下酸化還元反応を生起させる。この現象を利用して酸化チタンはNO,SO,アンモニア、アルデヒド類、アミン類、メルカプタン類のような有害または悪臭物質の光分解、油、タール、タバコのヤニのような生活汚染物質の光分解、工場排水中の染料、糊剤などの光分解、細菌、カビ、藻類等の有害微生物の殺滅等に利用されている。 A semiconductor such as titanium oxide generates electrons in the conduction band and holes in the valence band when irradiated with light having energy higher than the band gap. The generated electrons and holes cause a redox reaction in the presence of water and oxygen. Titanium oxide by utilizing this phenomenon NO x, SO x, ammonia, aldehydes, amines, photolysis of harmful or malodorous substances such as mercaptans, oil, tar, tobacco life contaminants such as tar It is used for photolysis, photolysis of dyes and pastes in factory effluent, and killing harmful microorganisms such as bacteria, mold and algae.

現在これらの用途に最も多く使用されているのはアナタース形の微粒子酸化チタンである。便宜上以下これを「通常のアナタース形酸化チタン」と呼ぶ。通常のアナタース形酸化チタンが強力な光触媒活性を示すのは紫外線の波長領域である。このため蛍光灯のような光源からの光のように、紫外線が微弱な照射光のもとでは通常のアナタース形酸化チタンはその光触媒を十分に発揮しない。   At present, anatase type fine particle titanium oxide is most frequently used in these applications. For convenience, this is hereinafter referred to as “normal anatase-type titanium oxide”. It is in the ultraviolet wavelength region that normal anatase-type titanium oxide exhibits strong photocatalytic activity. For this reason, ordinary anatase-type titanium oxide does not sufficiently exert its photocatalyst under irradiation light with weak ultraviolet rays, such as light from a light source such as a fluorescent lamp.

S.Sato,CHEMICAL PHYSICS LETTERS Vol.123(1986),p126−128には窒素がドープされたアナタース形酸化チタンが可視光領域においても光触媒活性を示すことが発表され、原料のメタチタン酸に含まれているNHClまたはNHOHが焼成時にNOに酸化され、TiOに対するドーパントとして機能するものと結論している。特開2001−278625,同2001−278626,同2001−302241,同2001−354422は窒素ドープ酸化チタンの製造法を記載する。 S. Sato, CHEMICAL PHYSICS LETTERS Vol. 123 (1986), p126-128, it was announced that anatase-type titanium oxide doped with nitrogen exhibits photocatalytic activity even in the visible light region, and NH 4 Cl or NH 4 OH contained in the raw material metatitanic acid. It is concluded that is oxidized to NO x during firing and functions as a dopant for TiO 2 . JP-A-2001-278625, 2001-278626, 2001-302241, and 2001-354422 describe a method for producing nitrogen-doped titanium oxide.

窒素ドープ酸化チタンの光触媒活性は、窒素不純物によってバンドギャップが狭められる結果可視光波長領域においては高まるものの、紫外線波長領域では通常のアナタース形酸化チタンより低くなるものと考えられる。人工光や、季節、場所によっては太陽光には高い割合の紫外線が含まれているので、紫外線から可視光までの広い波長領域において高い光領域活性を示す酸化チタンの開発が望まれる。   It is considered that the photocatalytic activity of nitrogen-doped titanium oxide is increased in the visible wavelength region as a result of the band gap being narrowed by nitrogen impurities, but is lower than normal anatase-type titanium oxide in the ultraviolet wavelength region. Artificial light and, depending on the season and location, sunlight contains a high proportion of ultraviolet light, so it is desirable to develop titanium oxide that exhibits high light region activity in a wide wavelength region from ultraviolet light to visible light.

前記要望を満たすため、一面において本発明は、主に紫外線波長領域において高い光触媒活性に示すアナタース形酸化チタンと、主に可視光波長領域において高い光触媒活性を示すアナタース形酸化チタンが複合化した粒子よりなる酸化チタン光触媒を提供する。   In order to satisfy the above-described demand, in one aspect, the present invention is a particle in which anatase-type titanium oxide mainly exhibiting high photocatalytic activity in the ultraviolet wavelength region and anatase-type titanium oxide mainly exhibiting high photocatalytic activity in the visible light wavelength region are combined. A titanium oxide photocatalyst is provided.

好ましくは、主に紫外線波長領域において高い光触媒活性を示すアナタース形酸化チタンは「通常のアナタース形酸化チタン」である。主に可視光波長領域において高い光触媒活性を示す酸化チタンはアナタース形窒素ドープ酸化チタンである。   Preferably, the anatase-type titanium oxide exhibiting high photocatalytic activity mainly in the ultraviolet wavelength region is “ordinary anatase-type titanium oxide”. Titanium oxide that exhibits high photocatalytic activity mainly in the visible light wavelength region is anatase nitrogen-doped titanium oxide.

ここで「複合化」とは、両者の単純な混合物ではなく、固溶体のように均一な相として存在するのでもなく、同じ粒子内においてミクロ的に別の相として存在することを意味する。好ましくは、複合化は通常のアナタース形酸化チタンの核がアナタース形の窒素ドープ酸化チタンのマトリックスに強固に結合して存在することを意味する。   Here, “composite” means not a simple mixture of both, but present as a separate phase microscopically in the same particle, rather than present as a uniform phase like a solid solution. Preferably, the composite means that normal anatase-type titanium oxide nuclei are firmly bonded to the anatase-type nitrogen-doped titanium oxide matrix.

他の面において本発明は、通常のアナタース形酸化チタンとアナタース形の窒素ドープ酸化チタンが複合した酸化チタン光触媒の製造方法を提供する。この方法は、アナタースの結晶性を示す酸化チタン水和物を、非晶質酸化チタン水和物に取り込み、非晶質酸化チタン水和物が窒素ドープアナタース形酸化チタンへ転移する条件下で焼成することよりなる。   In another aspect, the present invention provides a method for producing a titanium oxide photocatalyst in which normal anatase-type titanium oxide and anatase-type nitrogen-doped titanium oxide are combined. In this method, hydrated titanium oxide hydrate showing anatase crystallinity is incorporated into amorphous titanium oxide hydrate, and calcined under conditions where amorphous titanium oxide hydrate is transferred to nitrogen-doped anatase-type titanium oxide. Made up of.

さらなる面において本発明は、紫外線から可視光までの波長領域において光触媒活性を発揮する複合酸化チタンの製造方法を提供する。この方法は、
a)アナタース形の結晶性を示すメタチタン酸またはそれを解膠したゾルを用意する工程、
b)用意したメタチタン酸またはそれを解膠したゾルを水溶性チタン(IV)塩の溶液に懸濁する工程、
c)生成した懸濁液をアンモニアで中和して水溶性チタン(IV)塩を非晶質オルソチタン酸へ加水分解する工程、および
d)工程c)からの懸濁液を濾過、水洗し、ケーキを乾燥した後、200〜600℃の温度で焼成する工程とからなる。
In a further aspect, the present invention provides a method for producing a composite titanium oxide that exhibits photocatalytic activity in the wavelength region from ultraviolet to visible light. This method
a) preparing metatitanic acid exhibiting anatase crystallinity or a sol obtained by peptizing the metatitanic acid,
b) suspending the prepared metatitanic acid or the sol obtained by peptizing the metatitanic acid in a water-soluble titanium (IV) salt solution;
c) neutralizing the resulting suspension with ammonia to hydrolyze the water-soluble titanium (IV) salt to amorphous orthotitanic acid, and d) filtering, washing the suspension from step c) And a step of baking the cake at a temperature of 200 to 600 ° C. after drying the cake.

通常のアナタース形酸化チタンは、例えば硫酸チタニルの溶液を熱加水分解して得られる酸化チタン水和物を焼成することによって製造することができる。この時生成する酸化チタン水和物はメタチタン酸またはβ−チタン酸と呼ばれる水に不溶な白色固体である。他方、アンモニウム塩の存在下で焼成することによって窒素ドープ酸化チタンを生成する酸化チタン水和物は非晶質オルソチタン酸である。本発明は、メタチタン酸とオルソチタン酸の間には、アンモニウム塩の存在下焼成によって窒素のドープ容易さの相違、すなわちメタチタン酸よりもオルソチタン酸がドープされ易い現象を基礎としている。   Ordinary anatase-type titanium oxide can be produced, for example, by firing a titanium oxide hydrate obtained by thermal hydrolysis of a solution of titanyl sulfate. The titanium oxide hydrate produced at this time is a white solid insoluble in water called metatitanic acid or β-titanic acid. On the other hand, the titanium oxide hydrate that forms nitrogen-doped titanium oxide by firing in the presence of an ammonium salt is amorphous orthotitanic acid. The present invention is based on the difference in easy doping of nitrogen between metatitanic acid and orthotitanic acid by firing in the presence of an ammonium salt, that is, a phenomenon in which orthotitanic acid is more easily doped than metatitanic acid.

このためあらかじめ水溶性チタン(IV)塩から常法によって製造したメタチタン酸を用意し、これを水溶性チタン(IV)水溶液に懸濁する。次にこの懸濁液をアンモニアで中和し、溶けているチタン塩をオルトチタン酸へ加水分解する。メタチタン酸の核を含んでいる生成したオルソチタン酸の沈澱物を濾過、水洗し、焼成する。この時中和によって生成したアンモニウム塩が濾過ケーキに含まれているので、オルトチタン酸から生成した酸化チタンに選択的に窒素をドープすることができる。   For this purpose, metatitanic acid prepared beforehand by a conventional method from a water-soluble titanium (IV) salt is prepared, and this is suspended in a water-soluble titanium (IV) aqueous solution. The suspension is then neutralized with ammonia to hydrolyze the dissolved titanium salt to orthotitanic acid. The resulting orthotitanic acid precipitate containing metatitanic acid nuclei is filtered, washed with water and calcined. Since the ammonium salt produced | generated by neutralization at this time is contained in the filter cake, the titanium oxide produced | generated from ortho titanic acid can be selectively doped with nitrogen.

アナタース形結晶性を示すメタチタンの製造方法は酸化チタン工業の分野では周知である。典型的には硫酸チタニルの溶液を熱加水分解することによって製造される。メタチタン酸を酸またはアルカリで解膠して用いてもよい。非晶質オルソチタン酸の出発原料となる水溶性チタン(IV)塩の典型例は硫酸チタニルおよび四塩化チタンである。   Methods for producing metatitanium exhibiting anatase crystallinity are well known in the field of titanium oxide industry. It is typically produced by thermal hydrolysis of a solution of titanyl sulfate. Metatitanic acid may be peptized with acid or alkali. Typical examples of water-soluble titanium (IV) salts that are starting materials for amorphous orthotitanic acid are titanyl sulfate and titanium tetrachloride.

複合化したアナタース形酸化チタンは、有意割合の窒素ドープ酸化チタンを含まなければならない。好ましいこの割合は、複合酸化チタン中窒素ドープ酸化チタンが50〜95重量%、より好ましくは70〜95重量%を占め、残りを通常のアナタース形酸化チタンが占める割合である。これはメタチタン酸に対する水溶性チタン塩の仕込み量を調節することによって達成することができる。窒素ドープチタンが95%よりも多い場合は十分に紫外線がある環境下での光触媒活性が通常のアナタース形酸化チタンと比べて低くなり、70%よりも少ない場合は可視光線を含む弱紫外線下での光触媒活性が窒素ドープ酸化チタンと比べて低くなる。   The combined anatase titanium oxide must contain a significant proportion of nitrogen doped titanium oxide. This preferable ratio is a ratio in which the nitrogen-doped titanium oxide in the composite titanium oxide accounts for 50 to 95% by weight, more preferably 70 to 95% by weight, and the rest is occupied by ordinary anatase-type titanium oxide. This can be achieved by adjusting the amount of water-soluble titanium salt charged to metatitanic acid. When the amount of nitrogen-doped titanium is more than 95%, the photocatalytic activity in an environment where there is sufficient ultraviolet light is lower than that of ordinary anatase-type titanium oxide, and when the amount is less than 70%, it is under weak ultraviolet light including visible light. The photocatalytic activity is lower than that of nitrogen-doped titanium oxide.

中和は、アンモニアガスを通ずるか、またはアンモニア水を滴下して行うことができる。中和の終点はpH7.0以上、好ましくは8.0〜9.0の範囲である。このとき液の温度が過度に高くならないように注意すべきである。そのため室温またはそれ以下の温度の懸濁液を攪拌するか、冷却手段によって冷却するか、または両者の併用によって中和熱による温度の上昇を防止することが好ましい。   Neutralization can be performed by passing ammonia gas or dropping aqueous ammonia. The end point of neutralization is pH 7.0 or more, preferably in the range of 8.0 to 9.0. At this time, care should be taken so that the temperature of the liquid does not become excessively high. Therefore, it is preferable to prevent an increase in temperature due to heat of neutralization by stirring a suspension at room temperature or lower, cooling by a cooling means, or using both together.

窒素ドープ酸化チタンを生成させるためにはオルソチタン酸の焼成時にアンモニウム塩の存在が必要である。ここに記載したプロセスの場合、アンモニアで中和後の懸濁液を濾過、水洗して得られるウエットケーキを乾燥することにより、ドープに必要量のアンモニウム塩を濾過ケーキに含ませることができる。   In order to produce nitrogen-doped titanium oxide, the presence of an ammonium salt is necessary during the firing of orthotitanic acid. In the case of the process described here, the amount of ammonium salt required for the dope can be included in the filter cake by drying the wet cake obtained by filtering and washing the suspension after neutralization with ammonia.

焼成は乾燥後のケーキを200〜600℃、好ましくは300〜500℃の温度で行われる。200℃よりも低い場合は窒素がドープされず、600℃よりも高い場合は、窒素のドープ量が減少し、また比表面積が低下するため光触媒活性が低くなる。焼成時間は一般に1〜3時間、好ましくは約2時間である。このときオルソチタン酸が窒素で選択的にドープされ、本発明の複合酸化チタンが得られる。   Baking is performed at a temperature of 200 to 600 ° C., preferably 300 to 500 ° C., after drying the cake. When the temperature is lower than 200 ° C., nitrogen is not doped, and when the temperature is higher than 600 ° C., the doping amount of nitrogen decreases and the specific surface area decreases, so that the photocatalytic activity decreases. The firing time is generally 1 to 3 hours, preferably about 2 hours. At this time, orthotitanic acid is selectively doped with nitrogen to obtain the composite titanium oxide of the present invention.

本発明の複合酸化チタンには貴金属の担持、ガス吸着性を有する無機水和物の被覆、吸着剤との複合化など更に光触媒活性が向上されると考えられる全ての方法が適用できる。本発明の複合酸化チタンは光触媒として通常のアナタース形酸化チタンと同じ態様で同じ用途に使用することができる。例えば複合酸化チタンのコーティング剤化し、塗装する方法がある。コーティング剤化の方法としては本発明で得られた複合酸化チタンのスラリーあるいはゾルを作成し、バインダーと混合するのが一般的である。スラリーの作成方法は通常、媒体と分散剤を混合した溶液に複合酸化チタンを混合し、公知の方法で分散する。媒体は水、アルコール、トルエン等どのような媒体でもかまわない。好ましくは酸化チタンの分散性、バインダーの溶解性の優れたものである。コーティング剤化する場合のバインダーとしては無機系、有機系樹脂の両方を用いることができ、好ましくは光触媒反応によって分解されにくい無機系でさらに好ましくはケイ酸化合物、フッ素樹脂、シリカ、特開2000−302422の実施例1に記載されているリン酸チタンなどである。有機系のバインダーを使用する場合は光触媒用酸化チタンがバインダーを劣化させる可能性があるため劣化を防止するために光触媒活性の無い物質の担持あるいは被覆を行うことも可能である。このようなコーティング剤あるいは複合酸化チタンと粘結力を有する無機物質と混合し、得られた混合物をガラス、建造物の内外壁、道路、フィルター基材、カーテン、ブラインド、床材、天井材、照明器具などに膜状にして担持させ、それに光を照射することにより、その表面のNOx、SOx、アルデヒド類、アンモニア、アミン、メルカプト類などの有害な気体あるいは油、タール、タバコのヤニなどの分解、細菌などの菌類の殺菌、藻類の防藻などを行うことができる。また、複合酸化チタンが担持されたガラスビーズ、多孔質球状セラミック、フィルターあるいはそれ自身を造粒あるいはフィルターの形に成型したものなどに光照射することによってNOx、SOx、アルデヒド類、アンモニア、アミン、メルカプト類などの有害な気体の分解除去が可能であり、水中に存在させた状態で光を照射することで、水中の有害有機物を分解除去することが可能である。   For the composite titanium oxide of the present invention, all methods that are considered to further improve the photocatalytic activity, such as support of a noble metal, coating with an inorganic hydrate having gas adsorbability, and composite with an adsorbent, can be applied. The composite titanium oxide of the present invention can be used for the same application as a photocatalyst in the same manner as ordinary anatase-type titanium oxide. For example, there is a method of forming a composite titanium oxide coating and painting. As a method for forming a coating agent, a composite titanium oxide slurry or sol obtained in the present invention is generally prepared and mixed with a binder. In general, a slurry is prepared by mixing composite titanium oxide in a solution in which a medium and a dispersant are mixed, and dispersing by a known method. The medium may be any medium such as water, alcohol or toluene. Preferably, the titanium oxide has excellent dispersibility and binder solubility. As the binder for forming a coating agent, both inorganic and organic resins can be used, preferably an inorganic system which is not easily decomposed by a photocatalytic reaction, more preferably a silicate compound, a fluororesin, silica, 302422, Example 1 of titanium phosphate. When using an organic binder, titanium oxide for photocatalyst may deteriorate the binder, and therefore it is possible to carry or cover a substance having no photocatalytic activity in order to prevent deterioration. Mixing with such coating agent or composite titanium oxide and inorganic substance having caking force, the resulting mixture is made of glass, building inner and outer walls, roads, filter base materials, curtains, blinds, flooring materials, ceiling materials, By illuminating it with a light fixture, etc., by irradiating it with light, harmful gases such as NOx, SOx, aldehydes, ammonia, amines, mercaptos on the surface, oil, tar, tobacco tar, etc. Decomposition, sterilization of fungi such as bacteria, and algae prevention can be performed. In addition, NOx, SOx, aldehydes, ammonia, amines, etc. can be obtained by irradiating light onto glass beads, porous spherical ceramics, filters, or granules formed by granulating or forming filters themselves. Harmful gases such as mercapto can be decomposed and removed, and harmful organic substances in water can be decomposed and removed by irradiating light in the presence of water.

以下の実施例は本発明の例証であって、限定ではない。これらにおいてパーセントは特記しない限り重量基準による。   The following examples are illustrative of the invention and are not limiting. In these, percentages are based on weight unless otherwise specified.

実施例および比較例で使用したメタチタン酸は、公知の方法で硫酸チタニルを熱加水分解して製造した。110℃で12時間乾燥したこのものについてX線回折装置(日本フィリップス社製X’Pert−Pro MPD)にて結晶形を測定した結果、アナタース形を示した。   The metatitanic acid used in Examples and Comparative Examples was produced by thermal hydrolysis of titanyl sulfate by a known method. As for this thing dried at 110 degreeC for 12 hours, the crystal form was measured with the X-ray-diffraction apparatus (Nippon Philips Co., Ltd. X'Pert-Pro MPD), As a result, the anatase form was shown.

TiOとして50g/Lの濃度に調整したメタチタン酸の水性スラリー80ml(TiOとして4g)を容量1000mlのガラスビーカーに入れた。これにTiOとして50g/Lの濃度の硫酸チタニル水溶液720ml(TiOとして36g)を添加した。この懸濁液へ室温において攪拌しながら25%アンモニア水を滴下し、pHを8.5に調節した。暫らく攪拌を続けた後懸濁液を濾過し、更に2Lの水で洗浄したウェットケーキをそのまま110℃で12時間乾燥した。乾燥したケーキ30gを400℃で2時間焼成し、複合酸化チタン粉体(粉体Aと呼ぶ)を得た。上と同様にX線回折により結晶形を測定したところ、アナタース形であることが確認された。 80 ml of an aqueous slurry of metatitanic acid adjusted to a concentration of 50 g / L as TiO 2 (4 g as TiO 2 ) was placed in a glass beaker having a capacity of 1000 ml. To this was added an aqueous titanyl sulfate solution of concentration of 50 g / L as TiO 2 720ml (36 g as TiO 2). To this suspension, 25% aqueous ammonia was added dropwise with stirring at room temperature to adjust the pH to 8.5. After stirring for a while, the suspension was filtered, and the wet cake washed with 2 L of water was further dried at 110 ° C. for 12 hours. 30 g of the dried cake was baked at 400 ° C. for 2 hours to obtain a composite titanium oxide powder (referred to as powder A). When the crystal form was measured by X-ray diffraction in the same manner as above, it was confirmed to be an anatase form.

硫酸チタニル水溶液をTiOとして50g/Lの濃度の四塩化チタン水溶液に変更したことを除き、実施例1の操作を繰り返した。生成した複合酸化チタン粉体(粉体Bと呼ぶ)の結晶形はアナタース形であることが確認された。 The operation of Example 1 was repeated except that the aqueous solution of titanyl sulfate was changed to TiO 2 and an aqueous solution of titanium tetrachloride having a concentration of 50 g / L. It was confirmed that the crystal form of the produced composite titanium oxide powder (referred to as powder B) was anatase.

メタチタン酸スラリーの量を240ml(TiOとして12g)に変更し、硫酸チタニル水溶液の量を560ml(TiOとして28g)に変更したことを除き、実施例1の操作を繰り返した。生成した複合酸化チタン(粉体Cと呼ぶ)の結晶形はアナタース形であることが確認された。 The procedure of Example 1 was repeated except that the amount of the metatitanic acid slurry was changed to 240 ml (12 g as TiO 2 ) and the amount of the aqueous titanyl sulfate solution was changed to 560 ml (28 g as TiO 2 ). It was confirmed that the crystal form of the produced composite titanium oxide (referred to as powder C) was anatase.

焼成温度を300℃に変更したことを除き、実施例1の操作を繰り返した。生成した複合酸化チタン(粉体Dと呼ぶ)の結晶はアナタース形であることが確認された。   The operation of Example 1 was repeated except that the firing temperature was changed to 300 ° C. It was confirmed that the crystals of the produced composite titanium oxide (referred to as powder D) were anatase.

メタチタン酸スラリーの量を400ml(TiOとして20g)に変更し、硫酸チタニル水溶液の量を400ml(TiOとして20g)に変更したことを除き、実施例1の操作を繰り返した。生成した複合酸化チタン(粉体Eと呼ぶ)の結晶形はアナタース形であることが確認された。 The operation of Example 1 was repeated except that the amount of the metatitanic acid slurry was changed to 400 ml (20 g as TiO 2 ) and the amount of the titanyl sulfate aqueous solution was changed to 400 ml (20 g as TiO 2 ). It was confirmed that the crystal form of the produced composite titanium oxide (referred to as powder E) was anatase.

実施例2において、メタチタン酸水性スラリー80mlを、常法によりメタチタン酸を塩酸で解膠して得られるTiOとして50g/L濃度のゾル80mlに変更したことを除き、実施例2の操作を繰り返した。生成した複合酸化チタン粉体(粉体Fと呼ぶ)はアナタース形であることが確認された。 In Example 2, the operation of Example 2 was repeated except that 80 ml of metatitanic acid aqueous slurry was changed to 80 ml of 50 g / L sol as TiO 2 obtained by peptizing metatitanic acid with hydrochloric acid by a conventional method. It was. It was confirmed that the produced composite titanium oxide powder (referred to as powder F) was anatase type.

比較例1Comparative Example 1

TiOとして50g/Lの濃度に調整したメタチタン酸のスラリー800ml(TiOとして40g)を容量1000mlのガラスビーカーに入れ、攪拌下これに25%アンモニア水を滴下し、pHを8.5に調節した。スラリーを濾過し、更に2Lの水で洗浄したウェットケーキを110℃で乾燥し、乾燥したケーキを400℃で2時間焼成し、アナタース形結晶形の酸化チタン粉体(粉体Gと呼ぶ)を得た。 800 ml of slurry of metatitanic acid adjusted to a concentration of 50 g / L as TiO 2 (40 g as TiO 2 ) was placed in a glass beaker with a capacity of 1000 ml, and 25% aqueous ammonia was added dropwise thereto with stirring to adjust the pH to 8.5. did. The slurry was filtered, and the wet cake washed with 2 L of water was dried at 110 ° C., and the dried cake was baked at 400 ° C. for 2 hours to obtain anatase crystal form titanium oxide powder (referred to as powder G). Obtained.

比較例2Comparative Example 2

TiOとして50g/Lの濃度に調整した硫酸チタニル水溶液800ml(TiOとして40g)を容量1000mlのガラスビーカーに入れ、攪拌下これに25%アンモニア水を滴下し、pHを8.5に調節した。生成した非晶質オルソチタン酸を濾過、更に2Lの水で洗浄して分離し、乾燥後400℃で2時間焼成し、アナタース形結晶形の酸化チタン粉体(粉体Hと呼ぶ)を得た。 800 ml of a titanyl sulfate aqueous solution adjusted to a concentration of 50 g / L as TiO 2 (40 g as TiO 2 ) was placed in a glass beaker having a capacity of 1000 ml, and 25% aqueous ammonia was added dropwise thereto with stirring to adjust the pH to 8.5. . The produced amorphous orthotitanic acid is filtered, further washed with 2 L of water, separated, dried, and calcined at 400 ° C. for 2 hours to obtain anatase crystalline titanium oxide powder (referred to as powder H). It was.

比較例3Comparative Example 3

比較例1の粉体Gと比較例2の粉体Hを重量比で1:9にはかり取り、乳針で5分間混合して混合粉体(粉体Iと呼ぶ)を得た。   The powder G of Comparative Example 1 and the powder H of Comparative Example 2 were weighed 1: 9 and mixed with a nipple for 5 minutes to obtain a mixed powder (referred to as Powder I).

実施例および比較例の粉体A〜Iについて、以下の測定方法によって光触媒活性を評価した。   For the powders A to I of Examples and Comparative Examples, the photocatalytic activity was evaluated by the following measuring method.

1.光触媒活性の測定方法(粉体)
試料0.5gをはかり取り、13.8cmのガラスシャーレに均一にひろげ、におい袋に入れ、250ppmのアセトアルデヒドガス3Lをにおい袋に封入する。暗所で15時間静置して平衡化した後、紫外線吸収膜つき蛍光灯(東芝製紫外線吸収膜つき蛍光ランプ直管ラピッドスタート40型)、あるいはブラックライト(東芝製ブラックライト蛍光ランプ直管ラピッドスタート40型)を用いて光照射を行う。初期(暗所静置後照射前)および一定経過時間におけるアセトアルデヒド濃度を測定し、得られたデータからアセトアルデヒドの分解速度定数kを以下の式によって算出する。
1. Photocatalytic activity measurement method (powder)
0.5 g of the sample is weighed and spread uniformly on a 13.8 cm 2 glass petri dish, placed in a smell bag, and 3 L of 250 ppm acetaldehyde gas is sealed in the smell bag. After standing for 15 hours in a dark place and equilibrating, fluorescent lamp with UV absorbing film (Toshiba fluorescent lamp straight tube rapid start type 40 with UV absorbing film) or black light (Toshiba black light fluorescent lamp straight tube rapid) Light irradiation is performed using a start type 40). The concentration of acetaldehyde at the initial stage (after standing in the dark and before irradiation) and at a certain elapsed time is measured, and the decomposition rate constant k of acetaldehyde is calculated from the obtained data by the following equation.

kt=1n(C/C
:照射時間(hr)
:アセトアルデヒドの初期濃度(ppm)
:光照射後のアセトアルデヒド濃度(ppm)
kt x = 1n (C o / C x )
t x : Irradiation time (hr)
C o : Initial concentration (ppm) of acetaldehyde
C x : concentration of acetaldehyde after light irradiation (ppm)

分解速度定数の値が大きい程光触媒活性が高く、小さい程活性が低い。なお、紫外線吸収膜つき蛍光灯は屋内における紫外線量を、ブラックライトは夏期の屋外太陽光のそれをシミュレートしている。これら光源の紫外線強度(mW/cm)および照度(1x)は下表のとおりである。 The larger the value of the decomposition rate constant, the higher the photocatalytic activity, and the smaller the value, the lower the activity. The fluorescent lamp with an ultraviolet absorbing film simulates the amount of ultraviolet light indoors, and the black light simulates that of outdoor sunlight in summer. The ultraviolet intensity (mW / cm 2 ) and illuminance (1x) of these light sources are as shown in the table below.


光 源 UV強度(mW/cm 照度(1x)
紫外線吸収膜つき蛍光灯 0.005 6700
ブラックライト 1 0

Light source UV intensity (mW / cm 2 ) Illuminance (1x)
Fluorescent lamp with UV absorbing film 0.005 6700
Black light 1 0

2.光触媒活性の測定方法(塗膜)
試料5.0gと、水95.0gと、直径1.5mmのガラスビーズ300gを容量500mlのマヨネーズびんに入れ、ペイントコンディショナーを用いて720rpmで30分間分散する。ガラスビーズを分離した後、分散したスラリー50gを、固形分5%のリン酸チタンバインダー(特開2000−302422実施例1参照)50gと混合し、コーティング組成物を調製する。これを75mm×100mmのガラス板に乾燥重量換算で0.3g/cmの塗布量となるようにスピンコーティングし、乾燥する。塗布したガラス板をにおい袋に直接入れ、その後は方法1と同じ方法によってアセトアルデヒド分解速度定数を求める。
2. Photocatalytic activity measurement method (coating film)
5.0 g of a sample, 95.0 g of water, and 300 g of glass beads having a diameter of 1.5 mm are placed in a mayonnaise bottle having a capacity of 500 ml, and dispersed at 720 rpm for 30 minutes using a paint conditioner. After separating the glass beads, 50 g of the dispersed slurry is mixed with 50 g of a titanium phosphate binder having a solid content of 5% (see JP 2000-302422, Example 1) to prepare a coating composition. This is spin-coated on a 75 mm × 100 mm glass plate so as to give a coating amount of 0.3 g / cm 2 in terms of dry weight, and dried. The coated glass plate is directly placed in the odor bag, and then the acetaldehyde decomposition rate constant is obtained by the same method as in Method 1.

3.結果
それぞれの試料について方法1および2によって測定した結果をまとめて表1に示す。
3. Results Table 1 summarizes the results of each sample measured by methods 1 and 2.

Figure 2006055746
Figure 2006055746

4.考察
表1の結果が示すように、粉体A〜F(実施例1〜6)は、通常のアナタース形酸化チタンでできていると考えられる粉体G(比較例1)に比較して可視光波長領域の光を多く含む紫外線吸収膜つき蛍光灯からの照射光のもとで光触媒活性が高く、可視光波長領域の光を実質上含まないブラックライトからの照射光のもとでは通常のアナタース形酸化チタンに匹敵する光触媒活性を持っている。また全部がアナタース形の窒素ドープ酸化チタンでできている粉体H(比較例2)と比較すると、粉体A〜F(実施例1〜5)はブラックライトから照射光のもとで光触媒活性が高く、粉体E(実施例5)を除いて紫外線吸収膜を備えた蛍光灯からの照射光のもとでも高い活性を持っている。粉体E(実施例5)と粉体A(実施例1)との比較から、複合化酸化チタンの可視光波長領域での活性は窒素ドープ酸化チタンの割合に比例することがわかる。さらに粉体A(実施例1)と粉体I(比較例3)との比較から、複合化酸化チタンは同じ割合で通常のアナタース形酸化チタンと窒素ドープ酸化チタンを含む単純な混合物よりも活性が高い。
4). Discussion As the results in Table 1 show, the powders A to F (Examples 1 to 6) are more visible than the powder G (Comparative Example 1) that is considered to be made of ordinary anatase titanium oxide. Photocatalytic activity is high under the irradiation light from the fluorescent lamp with an ultraviolet absorption film containing a lot of light in the light wavelength region, and it is normal under the irradiation light from the black light that does not substantially contain light in the visible light wavelength region Photocatalytic activity comparable to that of anatase-type titanium oxide. In addition, compared with powder H (Comparative Example 2) made entirely of anatase-type nitrogen-doped titanium oxide, powders A to F (Examples 1 to 5) were photocatalytically active under irradiation light from black light. And high activity even under irradiation light from a fluorescent lamp having an ultraviolet absorbing film except for the powder E (Example 5). Comparison between powder E (Example 5) and powder A (Example 1) shows that the activity of the composite titanium oxide in the visible light wavelength region is proportional to the ratio of nitrogen-doped titanium oxide. Furthermore, from comparison between powder A (Example 1) and powder I (Comparative Example 3), composite titanium oxide is more active than a simple mixture containing normal anatase-type titanium oxide and nitrogen-doped titanium oxide at the same rate. Is expensive.

Claims (8)

主に紫外線波長領域において高い光触媒活性を示すアナタース形酸化チタンと、主に可視光波長領域において高い光触媒活性を示すアナタース形酸化チタンが複合化した粒子よりなる酸化チタン光触媒。   A titanium oxide photocatalyst comprising particles of anatase-type titanium oxide that exhibits high photocatalytic activity mainly in the ultraviolet wavelength region and anatase-type titanium oxide that mainly exhibits high photocatalytic activity in the visible light wavelength region. 主に可視光波長領域において高い光触媒活性を示すアナタース形酸化チタンは、窒素がドープされたアナタース形酸化チタンである請求項1の酸化チタン光触媒。   The titanium oxide photocatalyst according to claim 1, wherein the anatase type titanium oxide exhibiting high photocatalytic activity mainly in the visible light wavelength region is anatase type titanium oxide doped with nitrogen. 主に紫外線波長領域において高い光触媒活性を示すアナタース形酸化チタンの核が、主に可視光波長領域において高い光触媒活性を示すアナタース形酸化チタンのマトリックス中に強固に結合して存在している請求項1または2の酸化チタン光触媒。   An anatase-type titanium oxide nucleus that exhibits high photocatalytic activity mainly in the ultraviolet wavelength region is present in a tightly bound state in a matrix of anatase-type titanium oxide that exhibits high photocatalytic activity mainly in the visible light wavelength region. 1 or 2 titanium oxide photocatalyst. 複合化した粒子に占める主に可視光波長領域において高い光触媒活性を示すアナタース形酸化チタンの割合が70〜95重量%であり、残りが主に紫外線波長領域において高い光触媒活性を示すアナタース形酸化チタンである請求項1ないし3のいずれかの酸化チタン光触媒。   The proportion of anatase-type titanium oxide showing high photocatalytic activity mainly in the visible light wavelength region in the composite particles is 70 to 95% by weight, and the remainder mainly shows high photocatalytic activity in the ultraviolet wavelength region. The titanium oxide photocatalyst according to any one of claims 1 to 3. a)アナタース形の結晶性を示すメタチタン酸またはそれを解膠したゾルを用意する工程、
b)用意したメタチタン酸またはそれを解膠したゾルを水溶性チタン(IV)塩の溶液に懸濁する工程、
c)生成した懸濁液をアンモニアで中和して水溶性チタン(IV)塩を非晶質オルトチタン酸へ加水分解する工程、および
d)工程C)からの懸濁液を濾過、水性し、ケーキを乾燥した後、200〜600℃の温度で焼成する工程、
からなる紫外線から可視光までの波長領域において光触媒活性を有する複合酸化チタンの製造方法。
a) preparing metatitanic acid exhibiting anatase crystallinity or a sol obtained by peptizing the metatitanic acid,
b) suspending the prepared metatitanic acid or the sol obtained by peptizing it in a water-soluble titanium (IV) salt solution;
c) neutralizing the resulting suspension with ammonia to hydrolyze the water-soluble titanium (IV) salt to amorphous orthotitanic acid, and d) filtering the suspension from step C) to make it aqueous. Baked at a temperature of 200 to 600 ° C. after drying the cake,
A method for producing composite titanium oxide having photocatalytic activity in a wavelength region from ultraviolet rays to visible light.
請求項1ないし4のいずれかの酸化チタン光触媒を配合したコーティング剤。   The coating agent which mix | blended the titanium oxide photocatalyst in any one of Claim 1 thru | or 4. 請求項1ないし4のいずれかの酸化チタン光触媒を担持してなる光触媒体。 A photocatalyst comprising the titanium oxide photocatalyst according to any one of claims 1 to 4. 請求項7の光触媒体を使用した有害物質除去方法。   A method for removing harmful substances using the photocatalyst of claim 7.
JP2004240230A 2004-08-20 2004-08-20 Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same Active JP4580197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240230A JP4580197B2 (en) 2004-08-20 2004-08-20 Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240230A JP4580197B2 (en) 2004-08-20 2004-08-20 Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006055746A true JP2006055746A (en) 2006-03-02
JP4580197B2 JP4580197B2 (en) 2010-11-10

Family

ID=36103667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240230A Active JP4580197B2 (en) 2004-08-20 2004-08-20 Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same

Country Status (1)

Country Link
JP (1) JP4580197B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179285A (en) * 2009-02-09 2010-08-19 Catarise Corp Photocatalyst, photocatalyst carrier, and photocatalyst kit
JP2015164944A (en) * 2010-03-30 2015-09-17 ソニー株式会社 Method of producing sterilization agent, method of producing photocatalyst composite material, method of producing absorbent and method of producing purging agent
CN111215030A (en) * 2010-03-30 2020-06-02 索尼公司 Bactericide, photocatalytic composite material, adsorbent and purifying agent
CN113896229A (en) * 2020-07-06 2022-01-07 宁波极微纳新材料科技有限公司 Preparation method of nano titanium dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477066B1 (en) * 2013-06-06 2015-01-06 원광대학교산학협력단 Dental implant including antibiotic coating layer and surface treatment method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197513A (en) * 1998-01-13 1999-07-27 Sumitomo Osaka Cement Co Ltd Fine composite photocatalyst particles, their production and molding of organic material
JP2000140636A (en) * 1998-11-10 2000-05-23 Sharp Corp Formation of photo-catalyst body
WO2001010552A1 (en) * 1999-08-05 2001-02-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic material, photocatalytic article and method for their preparation
JP2001302241A (en) * 2000-04-24 2001-10-31 Sumitomo Chem Co Ltd Method for producing titanium oxide
JP2002110261A (en) * 2000-10-02 2002-04-12 Catalysts & Chem Ind Co Ltd New metal oxide particles and application thereof
JP2002166179A (en) * 1999-10-29 2002-06-11 Sumitomo Chem Co Ltd Photocatalyst, its production method, its using method, and photocatalyst coating agent prepared by using the same
JP2003190816A (en) * 2001-12-25 2003-07-08 Sumitomo Metal Mining Co Ltd Photocatalyst having catalytic activity even in visible light region
JP2004137611A (en) * 2002-10-15 2004-05-13 Komatsu Seiren Co Ltd Functional fiber fabric
JP2004181296A (en) * 2002-11-29 2004-07-02 Kri Inc Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197513A (en) * 1998-01-13 1999-07-27 Sumitomo Osaka Cement Co Ltd Fine composite photocatalyst particles, their production and molding of organic material
JP2000140636A (en) * 1998-11-10 2000-05-23 Sharp Corp Formation of photo-catalyst body
WO2001010552A1 (en) * 1999-08-05 2001-02-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic material, photocatalytic article and method for their preparation
JP2002166179A (en) * 1999-10-29 2002-06-11 Sumitomo Chem Co Ltd Photocatalyst, its production method, its using method, and photocatalyst coating agent prepared by using the same
JP2001302241A (en) * 2000-04-24 2001-10-31 Sumitomo Chem Co Ltd Method for producing titanium oxide
JP2002110261A (en) * 2000-10-02 2002-04-12 Catalysts & Chem Ind Co Ltd New metal oxide particles and application thereof
JP2003190816A (en) * 2001-12-25 2003-07-08 Sumitomo Metal Mining Co Ltd Photocatalyst having catalytic activity even in visible light region
JP2004137611A (en) * 2002-10-15 2004-05-13 Komatsu Seiren Co Ltd Functional fiber fabric
JP2004181296A (en) * 2002-11-29 2004-07-02 Kri Inc Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179285A (en) * 2009-02-09 2010-08-19 Catarise Corp Photocatalyst, photocatalyst carrier, and photocatalyst kit
JP2015164944A (en) * 2010-03-30 2015-09-17 ソニー株式会社 Method of producing sterilization agent, method of producing photocatalyst composite material, method of producing absorbent and method of producing purging agent
JP2017125058A (en) * 2010-03-30 2017-07-20 ソニー株式会社 Production method of antimicrobial agent and production method of photocatalyst composite material
CN111215030A (en) * 2010-03-30 2020-06-02 索尼公司 Bactericide, photocatalytic composite material, adsorbent and purifying agent
CN111215030B (en) * 2010-03-30 2023-01-10 索尼公司 Bactericide, photocatalytic composite material, adsorbent and purifying agent
US11707068B2 (en) 2010-03-30 2023-07-25 Sony Corporation Fungicide, photo catalytic composite material, adsorbent, and depurative
CN113896229A (en) * 2020-07-06 2022-01-07 宁波极微纳新材料科技有限公司 Preparation method of nano titanium dioxide
CN113896229B (en) * 2020-07-06 2023-08-11 极微纳(福建)新材料科技有限公司 Preparation method of nano titanium dioxide

Also Published As

Publication number Publication date
JP4580197B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
TWI490037B (en) Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same
JP3949374B2 (en) Titanium oxide, photocatalyst and photocatalyst coating using the same
KR20090083239A (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
KR20210016527A (en) Nitrogen-doped TiO2 nanoparticles and their use in photocatalysts
JP2004026553A (en) Titanium oxide dispersion and preservation container for the same
JP5473324B2 (en) Visible light responsive photocatalyst, production method thereof, photocatalyst coating agent and photocatalyst dispersion using the same
JP2004283646A (en) Photocatalyst and method for producing photocatalyst
JP4580197B2 (en) Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
JP5537356B2 (en) Photocatalyst, coating agent, interior material, and method for producing photocatalyst
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2004073910A (en) Visible light-responsive photocatalyst, method of producing the same, and photocatalytic body using the same
JP2004305947A (en) Anatase-type titanium-dioxide photo-catalyst carrying silica gel and its manufacturing method
JP2006289356A (en) Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product
JP4577682B2 (en) Photocatalyst carrying platinum compound and method for producing the same
JP2008062237A (en) Photocatalytic body, method for producing the same and photocatalytic body coating agent produced by using the same
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP3550947B2 (en) Method for producing and using photocatalytic multifunctional member
JP2011020033A (en) Visible light-responsive photocatalyst, method for producing the same and photocatalyst coating agent and photocatalyst dispersion obtained by using the same
JP2008043833A (en) Water purification method by photocatalyst covered with silicon oxide membrane
JP2006187677A (en) Visible light responsible photocatalyst and its manufacturing method
JP4849862B2 (en) Novel heteropolyacid salt, photocatalyst using the same, and photocatalytic functional member
JP2005263598A (en) Anatase/brookite junction type titanium dioxide, its use and manufacturing method
JP3908717B2 (en) How to remove air pollutants
RU2789160C2 (en) NITROGEN-DOPED TiO2 NANOPARTICLES AND THEIR USE IN PHOTOCATALYSIS
JP3944152B2 (en) Method for removing water pollutant organic substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250