JP2006054205A - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
JP2006054205A
JP2006054205A JP2005321413A JP2005321413A JP2006054205A JP 2006054205 A JP2006054205 A JP 2006054205A JP 2005321413 A JP2005321413 A JP 2005321413A JP 2005321413 A JP2005321413 A JP 2005321413A JP 2006054205 A JP2006054205 A JP 2006054205A
Authority
JP
Japan
Prior art keywords
column
cell
cells
metal film
row direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321413A
Other languages
Japanese (ja)
Other versions
JP4040058B2 (en
Inventor
Kazuki Takagi
一樹 高木
Tadayoshi Kosaka
忠義 小坂
Fumihiro Namiki
文博 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plasma Patent Licensing Co Ltd
Original Assignee
Hitachi Plasma Patent Licensing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Patent Licensing Co Ltd filed Critical Hitachi Plasma Patent Licensing Co Ltd
Priority to JP2005321413A priority Critical patent/JP4040058B2/en
Publication of JP2006054205A publication Critical patent/JP2006054205A/en
Application granted granted Critical
Publication of JP4040058B2 publication Critical patent/JP4040058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce electrostatic capacity between the electrodes, and improve luminous efficiency by reducing discharge current. <P>SOLUTION: This is a plasma display panel in which the coloring of the cells is identical in a column of cells constituting the column of a matrix display and which has a screen of a delta pattern format in which the positions of cells in column direction are shifted among the adjoining column of cells and each cell is demarcated by barrier ribs. Each of a plurality of main electrodes for constituting a pair of electrodes for surface discharge is constructed of a belt-shape metal film which extends crossing the barrier ribs by straddling over the adjoining cells in row direction of the screen and a belt-shape transparent conductive film which overlaps partially with the metal film and extends crossing the barrier ribs in the row direction, while moving in a zigzag direction so as to be protruded from the metal film toward the center of the cells for each column. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、対をなす主電極が画面の行を画定する行電極として同一方向に延びる面放電形式のPDP(プラズマディスプレイパネル)に関する。   The present invention relates to a surface discharge type PDP (plasma display panel) in which a pair of main electrodes extends in the same direction as row electrodes that define a row of a screen.

PDPにおいて、単位消費電力当たりの発光量(光束)である発光効率[lm/W]を高める上では、セル面積に対する主電極面積の割合(面積比)が小さいほどよいと言われている。「プラズマディスプレイ最新技術」(御子柴 著,EDリサーチ社)には次の関係が記載されている。   In PDP, it is said that the smaller the ratio (area ratio) of the main electrode area to the cell area, the better, in order to increase the light emission efficiency [lm / W] that is the light emission amount (light flux) per unit power consumption. The following relations are described in "Latest Plasma Display Technology" (Mikoshiba, ED Research).

発光効率=1/(1+c×放電電流密度)
ただし、cは定数
発光効率が高まる理由として次の2点が挙げられる。第1は、電極間の静電容量の充電に消費する無効電力が小さくなることである。第2は、面積比が小さくなるにつれて放電電流が減少し、それによって放電ガスによる真空紫外光の自己吸収が減少して蛍光体の励起効率が高まることである。
Luminous efficiency = 1 / (1 + c x discharge current density)
However, c is a constant. The following two points can be cited as reasons for increasing luminous efficiency. The first is that the reactive power consumed for charging the capacitance between the electrodes is reduced. Second, the discharge current decreases as the area ratio decreases, thereby reducing the self-absorption of vacuum ultraviolet light by the discharge gas and increasing the excitation efficiency of the phosphor.

しかし、面積比を小さくするために主電極の幅を縮小すると、面放電ギャップ長が拡がることになる。この場合、電極間の静電容量が減少するものの、放電開始電圧が上昇して駆動の電圧マージンが狭まってしまう。   However, if the width of the main electrode is reduced to reduce the area ratio, the surface discharge gap length is increased. In this case, although the capacitance between the electrodes decreases, the discharge start voltage rises and the drive voltage margin is narrowed.

画面の大型化及び高精細化によるセル数の増加は消費電力の増大を招く。発熱対策の観点からも消費電力の低減が重要課題となっており、表示の安定に必要な動作マージンの確保と発光効率の向上の両立が望まれている。   An increase in the number of cells due to an increase in screen size and high definition leads to an increase in power consumption. From the viewpoint of heat generation countermeasures, reduction of power consumption is an important issue, and it is desired to achieve both an operation margin necessary for stable display and an improvement in light emission efficiency.

図13は従来の電極構造を示す平面図、図14は従来のPDPの内部構造を示す斜視図である。   FIG. 13 is a plan view showing a conventional electrode structure, and FIG. 14 is a perspective view showing an internal structure of a conventional PDP.

図示のPDP9は特開平9−50768号公報に記載された構造をもつ。前面側のガラス基板11の上に主電極Xq,Yq、誘電体層17及び保護膜18が設けられ、背面側のガラス基板21の上に列電極としてのアドレス電極A、絶縁層24、放電空間30を区画する隔壁29、及びカラー表示のための蛍光体層28R,28G,28Bが設けられている。主電極Xq,Yqは、それぞれが透明導電膜41qと金属膜42qとから構成され、列方向に一定の間隔(面放電ギャップ)を隔てて交互に配列されている。面放電ギャップのギャップ方向、すなわち主電極Xq,Yqの対峙方向は列方向である。放電空間30には例えばネオンとキセノンとの2成分ガスが充填されている。   The illustrated PDP 9 has a structure described in Japanese Patent Laid-Open No. 9-50768. Main electrodes Xq and Yq, a dielectric layer 17 and a protective film 18 are provided on the glass substrate 11 on the front side, and an address electrode A as a column electrode, an insulating layer 24, a discharge space on the glass substrate 21 on the back side. A partition wall 29 that divides 30 and phosphor layers 28R, 28G, and 28B for color display are provided. The main electrodes Xq and Yq are each composed of a transparent conductive film 41q and a metal film 42q, and are alternately arranged with a constant interval (surface discharge gap) in the column direction. The gap direction of the surface discharge gap, that is, the opposite direction of the main electrodes Xq and Yq is the column direction. The discharge space 30 is filled with, for example, a two-component gas of neon and xenon.

PDP9において、放電空間30を列毎に区画する隔壁29の平面視形状は、規則的に蛇行する帯状である。図14のように、各隔壁29は平面視において一定の周期及び振幅で波打っており、隣接する隔壁29との距離が列方向に沿って周期的に一定値より小さくなるように配置されている。一定値とは放電の抑止が可能な寸法であり、ガス圧などの放電条件によって定まる。各隔壁29が互いに離れて配置されているので、隣接する隔壁どうしの間の空間(列空間)31は、画面の全ての行に跨がって連続している。これにより列単位のプライミングによる駆動の容易化、蛍光体層の印刷状態の均一化、及び製造における排気処理の容易化を図ることができる。PDP9では、R(赤)の蛍光体層28R、G(緑)の蛍光体層28G、及びB(青)の蛍光体層28Bが各列毎に1色ずつRGBの順に配置されている。列内の各行の発光色は同一である。   In the PDP 9, the planar view shape of the partition walls 29 that divide the discharge space 30 for each column is a belt shape that meanders regularly. As shown in FIG. 14, each partition wall 29 undulates with a constant period and amplitude in a plan view, and is arranged such that the distance between adjacent partition walls 29 is periodically smaller than a constant value along the column direction. Yes. The constant value is a dimension capable of suppressing discharge, and is determined by discharge conditions such as gas pressure. Since the partition walls 29 are arranged apart from each other, the space (column space) 31 between adjacent partition walls is continuous across all the rows of the screen. As a result, it is possible to facilitate driving by priming in units of columns, to make the printing state of the phosphor layer uniform, and to facilitate exhaust processing in manufacturing. In the PDP 9, an R (red) phosphor layer 28R, a G (green) phosphor layer 28G, and a B (blue) phosphor layer 28B are arranged in RGB in order of one color for each column. The emission color of each row in the column is the same.

列空間31のうち、行方向の幅の小さい部分(狭窄部)31Bでは面放電が生じにくく、幅の広い部分(広大部)31Aが実質的に発光に寄与する。したがって、各行において1列置きに表示素子であるセルが配置されることになる。そして、隣接する2つの行に注目すると、セルの配置される列が1列毎に交互に入れ替わる。つまり、セルは行方向及び列方向の双方において千鳥状に並ぶ。PDP9では、隣接するRGBの計3つのセルによって1つの画素が構成され、カラー表示の3色の配列形式は三角(デルタ)配列形式である。三角配列は、行方向においてセルの幅が画素ピッチの1/3よりも大きく、インライン配列に比べて高精細化に有利である。また、画面のうちの非発光領域の占める割合が小さいので、高輝度の表示を行うことができる。   In the column space 31, the surface discharge is less likely to occur in the narrow portion (constriction portion) 31 </ b> B in the row direction, and the wide portion (wide portion) 31 </ b> A substantially contributes to light emission. Therefore, cells as display elements are arranged every other column in each row. When attention is paid to two adjacent rows, the columns in which the cells are arranged are alternately switched for each column. That is, the cells are arranged in a staggered pattern in both the row direction and the column direction. In the PDP 9, one pixel is formed by a total of three cells of adjacent RGB, and the arrangement format of the three colors for color display is a triangular (delta) arrangement format. The triangular arrangement has a cell width larger than 1/3 of the pixel pitch in the row direction, and is advantageous for higher definition than the inline arrangement. In addition, since the proportion of the non-light-emitting area in the screen is small, high-luminance display can be performed.

従来の構造では、主電極Xq,Yqの平面視形状が画面の全長にわたる一定幅の直線帯状であり、列空間31の狭窄部31Bにおいても広大部31Aと同様に主電極Xq,Yqが近接していた。このため、狭窄部31Bで誤放電の生じるおそれがあり、駆動電圧の設定で誤放電を確実に防止しようとすると動作マージンが小さくなってしまうという問題があった。電極間の静電容量の充電に要する無駄な消費電力が大きいという問題もあった。   In the conventional structure, the main electrodes Xq, Yq in plan view have a straight strip shape with a constant width over the entire length of the screen, and the main electrodes Xq, Yq are close to each other in the constricted portion 31B of the column space 31 as well as the wide portion 31A. It was. For this reason, there is a possibility that an erroneous discharge may occur in the constricted portion 31B, and there is a problem that an operation margin becomes small if an attempt is made to reliably prevent the erroneous discharge by setting the drive voltage. There is also a problem that wasteful power consumption required for charging the capacitance between the electrodes is large.

本発明は、動作マージンを減少させずに行間の放電の干渉をより確実に防止することを目的としている。他の目的は、電極間の静電容量を低減することにある。さらに他の目的は、放電電流を低減して発光効率をより高めることにある。   An object of the present invention is to more reliably prevent discharge interference between rows without reducing an operation margin. Another object is to reduce the capacitance between the electrodes. Yet another object is to increase the luminous efficiency by reducing the discharge current.

本発明においては、列空間の狭窄部での電極面積比が広大部での電極面積比より小さくなり、かつ狭窄部での行間の電極間隙の最大値が広大部での電極間隙の最小値(すなわち面放電ギャップ長)より大きくなるように、主電極の形状を選定する。狭窄部での電極面積比が小さいほど、電極に沿った放電の拡がりが抑制されて列方向の放電の干渉が防止される。電極面積比が0となるように、すなわち狭窄部を避けるように主電極を設けるのが最も好ましい。また、狭窄部での行間の電極間隙を電極が対向する範囲の全体又は一部について大きくすることにより、電極間の静電容量が低下するので、無駄な電力消費が低減されてその分だけ発光効率が高まる。   In the present invention, the electrode area ratio in the narrowed portion of the column space is smaller than the electrode area ratio in the widened portion, and the maximum value of the electrode gap between the rows in the narrowed portion is the minimum value of the electrode gap in the widened portion ( That is, the shape of the main electrode is selected so as to be larger than the surface discharge gap length. The smaller the electrode area ratio at the constricted portion, the more the spread of the discharge along the electrode is suppressed and the interference of the discharge in the column direction is prevented. It is most preferable to provide the main electrode so that the electrode area ratio is 0, that is, to avoid the constriction. In addition, by increasing the electrode gap between the rows in the constriction part over the whole or part of the range where the electrodes face each other, the capacitance between the electrodes decreases, so unnecessary power consumption is reduced and light is emitted accordingly. Increases efficiency.

本発明においては、主電極を、行方向に延びる帯状部分とそれから列毎に広大部へ張り出す半環状部分とを有した形状に形成する。半環状部分は、隣接する他の主電極の半環状部分と対向して面放電ギャップを形成する。半環状部分と帯状部分との隙間の分だけセル内の電極面積が小さくなり、放電電流が減少して発光効率が高まる。電極面積を小さくするために面放電ギャップ長を増大させる必要はない。すなわち所定の動作マージンを確保することができる。なお、時間当たりの発光回数を増やすことにより、放電電流の減少による輝度の低下を補うことができる。主電極を放電空間の前面側に配置する場合は、半環状部分をITO、ネサといった透明導電膜で形成するのが輝度の上で好ましい。主電極を放電空間の背面側に配置する場合は、電極による遮光に対する配慮が不要であるので、帯状部分及び半環状部分を金属膜で形成してもよい。この場合も帯状部分は電極のライン抵抗を低減する。帯状部分を省略すると、電極形状が蛇行した帯状となってその全長が画面より長くなるので、電圧降下が顕著になる。   In the present invention, the main electrode is formed in a shape having a strip-like portion extending in the row direction and a semi-annular portion that extends to the wide portion for each column. The semi-annular portion forms a surface discharge gap opposite to the semi-annular portion of another adjacent main electrode. The electrode area in the cell is reduced by the gap between the semi-annular portion and the belt-like portion, the discharge current is reduced, and the light emission efficiency is increased. There is no need to increase the surface discharge gap length in order to reduce the electrode area. That is, a predetermined operation margin can be ensured. Note that a decrease in luminance due to a decrease in discharge current can be compensated by increasing the number of times of light emission per hour. When the main electrode is disposed on the front side of the discharge space, it is preferable in terms of luminance that the semi-annular portion is formed of a transparent conductive film such as ITO or NESA. In the case where the main electrode is disposed on the back side of the discharge space, consideration for light shielding by the electrode is unnecessary, so that the belt-like portion and the semi-annular portion may be formed of a metal film. Also in this case, the strip portion reduces the line resistance of the electrode. If the belt-like portion is omitted, the electrode shape becomes a meandering belt-like shape, and its entire length becomes longer than the screen, so that the voltage drop becomes significant.

請求項1の発明の装置は、マトリクス表示の列を構成するセル列においてセルの発色が同一であり、隣り合うセル列どうしの間で列方向のセル位置がずれた三角配列形式の画面をもち、各セルが隔壁によって区画されてなるプラズマディスプレイパネルであって、面放電のための電極対を構成する複数の主電極のそれぞれが、前記画面の行方向に隣接したセルに跨って前記隔壁を横切って延びる帯状の金属膜と、前記金属膜と部分的に重なりかつ列毎に当該金属膜からセルの中心に向かって張り出すように蛇行しながら前記隔壁を横切って行方向に延びる帯状の透明導電膜とからなるものである。   The apparatus according to the first aspect of the present invention has a triangular array screen in which the cell colors constituting the matrix display columns are the same, and the cell positions in the column direction are shifted between adjacent cell columns. A plasma display panel in which each cell is partitioned by a partition wall, each of a plurality of main electrodes constituting an electrode pair for surface discharge extending over the partition wall across cells adjacent in the row direction of the screen A band-shaped metal film extending across the band, and a band-shaped transparent film that partially overlaps the metal film and extends in the row direction across the partition wall while meandering so as to protrude from the metal film toward the center of the cell for each column. It consists of a conductive film.

請求項2の発明のプラズマディスプレイパネルにおいては、複数の主電極のそれぞれが、平面視において列方向に蛇行しながら行方向に隣接したセルに跨って隔壁を横切って延びる帯状のバス部と、列毎に当該バス部からセルの中心に向かって張り出した複数のギャップ形成部とを有しており、前記バス部は金属膜によって形成され、前記複数のギャップ形成部のそれぞれは、両端のみが前記バス部とつながった帯状であり、列方向に蛇行しながら前記隔壁を横切って行方向に延びる帯状の透明導電膜によって形成されている。   In the plasma display panel according to the second aspect of the invention, each of the plurality of main electrodes meanders in the column direction in a plan view, and extends in a row direction across cells adjacent to each other in the row direction. Each having a plurality of gap forming portions projecting from the bus portion toward the center of the cell, the bus portion is formed of a metal film, and each of the plurality of gap forming portions has only the both ends The strip is connected to the bus portion, and is formed of a strip-shaped transparent conductive film extending in the row direction across the partition wall while meandering in the column direction.

請求項3の発明のプラズマディスプレイパネルにおいては、複数の主電極のそれぞれが、平面視において列方向に蛇行しながら行方向に隣接したセルに跨って隔壁を横切って延びる帯状のバス部と、各セルで行方向に前記隔壁を横切って延びる直線帯状の複数のギャップ形成部とを有し且つ当該複数のギャップ形成部のそれぞれと当該バス部との間に間隙を有した形状にパターニングされており、前記バス部は蛇行した帯状の金属膜によって形成され、前記複数のギャップ形成部は前記複数のギャップ形成部のそれぞれの行方向の中央と前記バス部とを接続するための連結パターンを有する形状にパターニングされた透明導電膜によって形成されている。   In the plasma display panel according to the third aspect of the invention, each of the plurality of main electrodes meanders in the column direction in a plan view and extends across cells adjacent to each other in the row direction, The cell has a plurality of linear band-shaped gap forming portions extending across the partition wall in the row direction, and is patterned into a shape having a gap between each of the plurality of gap forming portions and the bus portion. The bus portion is formed by a meandering band-shaped metal film, and the plurality of gap forming portions have a connection pattern for connecting the center of each of the plurality of gap forming portions in the row direction and the bus portion. It is formed of a transparent conductive film patterned on the surface.

請求項1乃至請求項3の発明によれば、動作マージンを減少させずに行間の放電の干渉をより確実に防止することができる。また、主電極間の静電容量を低減することができる。   According to the first to third aspects of the present invention, it is possible to more reliably prevent discharge interference between rows without reducing the operation margin. In addition, the capacitance between the main electrodes can be reduced.

請求項11乃至請求項14の発明によれば、主電極による遮光を無くし、発光効率を高めることができる。   According to the eleventh to fourteenth aspects of the present invention, the light shielding by the main electrode can be eliminated and the luminous efficiency can be increased.

図1は本発明に係るPDPの画面構成を示す図、図2は電極マトリクスの模式図である。   FIG. 1 is a diagram showing a screen configuration of a PDP according to the present invention, and FIG. 2 is a schematic diagram of an electrode matrix.

図示のPDP1は面放電構造のAC型カラーPDPであり、一対の基板構体10,20からなる。基板構体とは、ガラス基板上に電極その他の構成要素を設けた構造体を意味する。PDP1の構造は、主電極の構成を除いて、図13に示した従来のPDP9と同様である。したがって、ここでは一部の構成要素の説明を省略する。   The illustrated PDP 1 is an AC color PDP having a surface discharge structure and includes a pair of substrate structures 10 and 20. The substrate structure means a structure in which electrodes and other components are provided on a glass substrate. The structure of the PDP 1 is the same as that of the conventional PDP 9 shown in FIG. 13 except for the configuration of the main electrode. Therefore, description of some components is omitted here.

画面ESは千鳥状に並ぶ多数個のセルCで構成され、RGB配列は三角配列形式である。平面視における画面ESの範囲内で、放電空間30は規則的に蛇行する隔壁29によって区画され、広大部31Aと狭窄部31Bとが交互に並ぶ列空間31が形成されている。各セルCは画面ESにおける1つの広大部31Aの範囲内の構造体である。図1では代表として5個のセルCを鎖線の円で示してある(図を見やすくするために円は実際より若干大きい範囲を囲んでいる)。   The screen ES is composed of a large number of cells C arranged in a staggered pattern, and the RGB array is a triangular array format. Within the range of the screen ES in plan view, the discharge space 30 is partitioned by regularly meandering partition walls 29, and a column space 31 is formed in which wide portions 31A and narrow portions 31B are alternately arranged. Each cell C is a structure within the range of one large portion 31A in the screen ES. In FIG. 1, five cells C are representatively shown by chain line circles (in order to make the figure easier to see, the circles enclose a range slightly larger than the actual range).

表示制御における行(ライン)、すなわち表示データに応じた帯電分布を形成する線順次のアドレッシングにおける単位セル集合は、垂直方向の位置が同一で水平方向に並んだ1列置きのセルCからなる。奇数行と偶数行とでは、セル位置が水平方向に1列分だけずれる。なお、必ずしも水平方向をライン方向とする必要はなく、垂直方向をライン方向とし水平方向を列方向としてもよい。   Rows (lines) in display control, that is, a unit cell set in line-sequential addressing that forms a charge distribution according to display data, is composed of cells C every other column having the same vertical position and aligned in the horizontal direction. In the odd and even rows, the cell positions are shifted by one column in the horizontal direction. The horizontal direction is not necessarily the line direction, and the vertical direction may be the line direction and the horizontal direction may be the column direction.

図2のように、画面ESを構成する各セルCにおいて、本発明に特有の形状にパターニングされた一対の主電極X,Yと、第3の電極であるアドレス電極Aとが交差する。主電極X,Yは、前面側の基板構体10の基材であるガラス基板11の内面に配列されており、画面ESの行方向の全長にわたって延びている。そして、主電極X,Yは左右に振り分けて画面ESの外側へ導出され、ガラス基板11の端縁近傍で図示しない配線板と接続される。その接続部分は端子として膨大化されている。なお、主電極X,Yは、それぞれが後述する透明導電膜と金属膜(いわゆるバス電極)との積層体であるが、画面ESの外側の導出部分は金属膜のみからなる。金属膜42は、例えばクロム−銅−クロムの3層構造をとる。 図2の例では、計N本の主電極Y1 〜YN と計N本の主電極X1 〜XN とが1本ずつ交互に配列されており、画面ESのライン数は2Nである。配列の先端の主電極Y1 及び後端の主電極XN は1つの行の表示のみに係わるが、他の主電極Y2 〜YN ,X1 〜XN-1 は隣接する2つの行の表示に係わる。 As shown in FIG. 2, in each cell C constituting the screen ES, a pair of main electrodes X and Y patterned in a shape peculiar to the present invention intersects with an address electrode A which is a third electrode. The main electrodes X and Y are arranged on the inner surface of the glass substrate 11 which is the base material of the substrate structure 10 on the front side, and extend over the entire length in the row direction of the screen ES. The main electrodes X and Y are distributed to the left and right, led out to the outside of the screen ES, and connected to a wiring board (not shown) near the edge of the glass substrate 11. The connection part is enlarged as a terminal. Each of the main electrodes X and Y is a laminated body of a transparent conductive film and a metal film (so-called bus electrode), which will be described later. The metal film 42 has, for example, a chrome-copper-chromium three-layer structure. In the example of FIG. 2, a total of N main electrodes Y 1 to Y N and a total of N main electrodes X 1 to X N are alternately arranged one by one, and the number of lines on the screen ES is 2N. . The main electrode Y1 at the front end of the array and the main electrode XN at the rear end are related only to the display of one row, while the other main electrodes Y 2 to Y N and X 1 to X N-1 are to display two adjacent rows. Related to.

計M本のアドレス電極A1 〜AM は、背面側の基板構体20の基材であるガラス基板21の内面に配列されており、アドレス電極A1 〜AM のそれぞれが1列の表示に係わる。 A total of M address electrodes A 1 to A M are arranged on the inner surface of the glass substrate 21 which is the base material of the substrate structure 20 on the back side, and each of the address electrodes A 1 to A M is displayed in one row. Involved.

PDP1の駆動制御の概略は次のとおりである。   An outline of the drive control of the PDP 1 is as follows.

主電極Y1 〜YN に対して1本ずつ所定の順序でスキャンパルスを印加し、これと同期させてアドレス電極A1 〜AM に表示データに応じてアドレスパルスを印加するアドレッシングを行う。すなわち、画面全体に拡がる誘電体層17のうちの点灯すべきセル内の部分のみに適量の壁電荷を形成する。その後に、例えば主電極X,Yとに交互にパルスを印加することによって、全てのセルCに対して一斉に交番極性の点灯維持電圧Vsを印加する。点灯維持電圧Vsは次式を満たす。 A scan pulse is applied to the main electrodes Y 1 to Y N one by one in a predetermined order, and addressing is performed in synchronization with this to apply address pulses to the address electrodes A 1 to A M according to display data. That is, an appropriate amount of wall charges is formed only in the portion of the dielectric layer 17 that extends over the entire screen within the cell to be lit. After that, for example, by alternately applying pulses to the main electrodes X and Y, the lighting sustaining voltage Vs having an alternating polarity is applied to all the cells C at once. The sustaining voltage Vs satisfies the following formula.

Vf−Vw<Vs<Vf
Vf:放電開始電圧
Vw:壁電荷
適量の壁電荷の存在するセルCでは、壁電圧Vwが点灯維持電圧Vsに重畳するので、セルCに加わる実効電圧Vcが放電開始電圧Vfを越えて基板面(保護膜18)に沿った主電極間の面放電が生じる。そして、放電ガス中のキセノンが紫外線を放ち、面放電が生じたセル内の蛍光体が紫外線で励起されて発光する。 このように発光制御は2値制御である。したがって、カラー表示を行うために、原画像(フレーム又はそれを分割したフィールド)を輝度の重み付けをした複数のサブフィールドに分割し、サブフィールド単位で各セルCの点灯/非点灯を制御する。サブフィールド数を「8」とした場合、RGBの各色毎に256階調表示が可能であり、表示色数は「2563 」となる。基本的にはサブフィールド毎にアドレッシングと点灯維持とを行う。点灯維持期間の長さ、つまり放電回数は輝度の重みにほぼ比例する。
Vf−Vw <Vs <Vf
Vf: Discharge start voltage Vw: Wall charge In the cell C in which an appropriate amount of wall charge exists, the wall voltage Vw is superimposed on the lighting sustain voltage Vs, so that the effective voltage Vc applied to the cell C exceeds the discharge start voltage Vf and the substrate surface A surface discharge between the main electrodes along the (protective film 18) occurs. Then, xenon in the discharge gas emits ultraviolet rays, and the phosphor in the cell in which the surface discharge is generated is excited by the ultraviolet rays and emits light. Thus, the light emission control is binary control. Therefore, in order to perform color display, an original image (a frame or a field obtained by dividing the original image) is divided into a plurality of subfields weighted with luminance, and lighting / non-lighting of each cell C is controlled in units of subfields. When the number of subfields is “8”, 256 gradations can be displayed for each color of RGB, and the number of display colors is “256 3 ”. Basically, addressing and lighting maintenance are performed for each subfield. The length of the lighting maintenance period, that is, the number of discharges is almost proportional to the luminance weight.

以下、本発明を適用した主電極形状の複数の例を説明する。図面及び説明が煩雑になるのを避けるため、全ての例にわたって原則として共通の参照符号を付す。ただし、構成の差異の理解を容易にするため、第2例以降の各例において、形状又は構造が第1例と異なる構成要素については参照符号に小文字のアルファベット(b,c,d…j)を付す。   Hereinafter, a plurality of examples of the main electrode shape to which the present invention is applied will be described. In order to avoid complicating the drawings and the description, in principle, common reference numerals are assigned to all examples. However, in order to facilitate understanding of the difference in configuration, in each of the examples after the second example, lowercase alphabetic characters (b, c, d... J) are used as reference symbols for components whose shapes or structures are different from those in the first example. Is attached.

図3は主電極形状の第1例を示す図である。主電極X,Yは互いに線対称であるので、図中の参照符号は主電極Xを代表として付してある。以下の図においても同様である。   FIG. 3 is a diagram showing a first example of the main electrode shape. Since the main electrodes X and Y are line-symmetric with each other, the reference numerals in the figure are representative of the main electrode X. The same applies to the following drawings.

第1例において、主電極X,Yのそれぞれは、実質的に等間隔に行方向に並ぶ複数の短冊状の透明導電膜41と、行方向に延びる直線帯状の金属膜42とで構成される。各透明導電膜41は、主電極X,Yと隔壁29との交差位置毎に配置されており、その配置間隔Daは列空間の狭窄部31Bにおける隔壁間隔と等しい(ただし、実際には製造上の多少の誤差がある)。金属膜42は、各透明導電膜41における列方向の中央部分と重なるように位置決めされている。したがって、平面視形状の上では、主電極X,Yのそれぞれは、直線帯状のバス部と、隔壁との交差位置毎にバス部から列方向に張り出した複数のギャップ形成部411,412とを有する。金属膜42がバス部に相当し、透明導電膜41のうちの金属膜42と重なっていない部分がギャップ形成部411,412に相当する。   In the first example, each of the main electrodes X and Y includes a plurality of strip-shaped transparent conductive films 41 arranged in the row direction at substantially equal intervals, and a linear strip-shaped metal film 42 extending in the row direction. . Each transparent conductive film 41 is disposed at each intersection position of the main electrodes X and Y and the partition walls 29, and the disposition interval Da is equal to the partition space in the narrowed portion 31B of the column space (however, in actuality in manufacturing). There are some errors). The metal film 42 is positioned so as to overlap the central portion of each transparent conductive film 41 in the column direction. Therefore, in the plan view shape, each of the main electrodes X and Y includes a straight strip-shaped bus portion and a plurality of gap forming portions 411 and 412 protruding in the column direction from the bus portion at each intersection position with the partition wall. Have. The metal film 42 corresponds to the bus portion, and the portions of the transparent conductive film 41 that do not overlap with the metal film 42 correspond to the gap forming portions 411 and 412.

金属膜(バス部)42は、遮光を最小限とするため列空間における広大部31Aの列方向の端部に寄った位置を通るように配置されている。各広大部31Aにおいて、主電極Xの透明導電膜41と当該主電極Xに隣接した主電極Yの透明導電膜41とが近接し、左右に分かれた2個の面放電ギャップgを形成する。   The metal film (bus portion) 42 is disposed so as to pass through a position close to the end in the column direction of the large portion 31A in the column space in order to minimize light shielding. In each large portion 31A, the transparent conductive film 41 of the main electrode X and the transparent conductive film 41 of the main electrode Y adjacent to the main electrode X are close to each other to form two surface discharge gaps g that are divided into left and right.

上述のとおり透明導電膜41が配置間隔Daを設けて配置されるので、狭窄部31Bには主電極が存在しない。したがって、従来構造と比べて、狭窄部31Bにおける電界強度が小さくなり、広大部31Aから他の広大部31Aへ移動する電荷が減少する。すなわち、行間の放電の干渉が抑制されるので、面放電ギャップ長の設定の自由度が高まるとともに、十分な動作マージンの確保が可能となる。主電極間隙の平均値が面放電ギャップ長より大きくなるので、電極間の静電容量が減少する。また、電極面積が少なくなった分だけ発光効率が高くなる。さらに、副次的な効果として,放電が隔壁29の近傍に集中するので、隔壁29の側面を覆う蛍光体の発光が強まり、発光効率がさらに高まる。   As described above, since the transparent conductive film 41 is arranged with the arrangement interval Da, there is no main electrode in the narrowed portion 31B. Therefore, compared with the conventional structure, the electric field strength in the narrowed portion 31B is reduced, and the charge moving from the large portion 31A to the other large portion 31A is reduced. That is, since the interference of discharge between rows is suppressed, the degree of freedom in setting the surface discharge gap length is increased, and a sufficient operation margin can be secured. Since the average value of the main electrode gap is larger than the surface discharge gap length, the capacitance between the electrodes decreases. In addition, the light emission efficiency increases as the electrode area decreases. Further, as a secondary effect, the discharge is concentrated in the vicinity of the barrier ribs 29, so that the phosphor covering the side surfaces of the barrier ribs 29 emits more light and the luminous efficiency is further increased.

図4は主電極形状の第2例を示す図である。   FIG. 4 is a diagram showing a second example of the main electrode shape.

主電極Xb,Ybのそれぞれは、列方向に蛇行しながら行方向に延びる帯状の透明導電膜41bと、上述の例と同様の金属膜42とで構成される。透明導電膜41bは、行方向に延びる直線帯状のバス部と、列空間毎にバス部から広大部31Aに向かって列方向の一方側及び他方側に交互に張り出す複数のギャップ形成部411b,412bとを有した形状にパターニングされる。バス部は金属膜42と重なる部分に相当する。金属膜42の片側(奇数行側又は偶数行側)において、ギャップ形成部411b,412bの配置間隔Dbは狭窄部31Bにおける隔壁間隔と実質的に等しい。つまり、この第2例の電極形状は、図3の第1例における行方向に並ぶ透明導電膜41どうしを、広大部31Aの範囲内で連結したものである。その連結部分の面積を選定することにより、電極面積の減少による輝度の低下を最小限に抑えて動作マージンの拡大を図るバランス調整が可能である。第2例の構成を採用した場合に、放電電流及び静電容量を充電する無効電流の双方を約30%低減し、発光効率を約40%向上させることができた。   Each of the main electrodes Xb and Yb is composed of a strip-shaped transparent conductive film 41b extending in the row direction while meandering in the column direction, and a metal film 42 similar to the above example. The transparent conductive film 41b includes a straight strip-shaped bus portion extending in the row direction, and a plurality of gap forming portions 411b that alternately protrude from the bus portion toward the wide portion 31A toward one side and the other side in the column direction for each column space. 412b is patterned. The bus portion corresponds to a portion overlapping the metal film 42. On one side (odd row side or even row side) of the metal film 42, the arrangement interval Db of the gap forming portions 411b and 412b is substantially equal to the partition wall interval in the narrowed portion 31B. That is, the electrode shape of the second example is obtained by connecting the transparent conductive films 41 arranged in the row direction in the first example of FIG. 3 within the range of the large portion 31A. By selecting the area of the connecting portion, it is possible to perform balance adjustment that minimizes a decrease in luminance due to a reduction in the electrode area and increases the operation margin. When the configuration of the second example was adopted, both the discharge current and the reactive current for charging the capacitance were reduced by about 30%, and the light emission efficiency was improved by about 40%.

図5は主電極形状の第3例を示す図である。   FIG. 5 is a diagram showing a third example of the main electrode shape.

PDP1cにおいても主電極Xc,Ycのそれぞれは、列方向に蛇行しながら行方向に延びる帯状の透明導電膜41cと、上述した金属膜42とで構成される。透明導電膜41cは、第2例の透明導電膜41bよりも細い帯状であって、列毎に金属膜42から広大部31Aに向かって張り出す半環状(C字状)の複数のギャップ形成部411c,412cを有した形状にパターニングされている。図の上側に張り出すギャップ形成部411cは、金属膜42と離れて行方向に延びる第1直線パターン511と、第1直線パターン511の両端部のそれぞれを金属膜42とつなぐ2個の第2直線パターン512,513とからなる。同様に、図の下側に張り出すギャップ形成部412cも、第1直線パターン521と2個の第2直線パターン522,523とからなる。第1直線パターン511,521の長さは両端が隔壁29から一定長dだけ離れるように選定されており、ギャップ形成部411c,421cの配置間隔Dcは狭窄部31Bの隔壁間隔より十分に大きい。第1直線パターン511,521を隔壁29から離すことにより、蛍光体へのイオン衝撃を軽減することができる。   Also in the PDP 1c, each of the main electrodes Xc and Yc is composed of a strip-shaped transparent conductive film 41c that snakes in the column direction and extends in the row direction, and the metal film 42 described above. The transparent conductive film 41c has a narrower band shape than the transparent conductive film 41b of the second example, and a plurality of semi-annular (C-shaped) gap forming portions projecting from the metal film 42 toward the wide portion 31A for each column. It is patterned into a shape having 411c and 412c. The gap forming portion 411c that protrudes to the upper side in the drawing is a first linear pattern 511 that extends in the row direction away from the metal film 42, and two second lines that connect both ends of the first linear pattern 511 to the metal film 42. It consists of linear patterns 512 and 513. Similarly, the gap forming portion 412c projecting to the lower side of the figure also includes a first linear pattern 521 and two second linear patterns 522 and 523. The lengths of the first linear patterns 511 and 521 are selected so that both ends are separated from the partition wall 29 by a fixed length d, and the arrangement interval Dc of the gap forming portions 411c and 421c is sufficiently larger than the partition wall interval of the narrowed portion 31B. By separating the first linear patterns 511 and 521 from the partition walls 29, ion bombardment on the phosphor can be reduced.

図5(B)の透明導電膜41c’の第1直線パターン511’又は図5(C)の透明導電膜41c''の第1直線パターン511''のように、帯の太さを選定して電極面積を最適化することができる。第3例の構成を採用した場合に、放電電流を約70%低減し、発光効率を約20%向上させることができた。   The thickness of the band is selected as in the first linear pattern 511 ′ of the transparent conductive film 41c ′ in FIG. 5B or the first linear pattern 511 ″ of the transparent conductive film 41c ″ in FIG. 5C. Thus, the electrode area can be optimized. When the configuration of the third example was adopted, the discharge current was reduced by about 70% and the light emission efficiency was improved by about 20%.

図6は主電極形状の第4例を示す図である。   FIG. 6 is a diagram showing a fourth example of the main electrode shape.

第4例のPDP1dの電極形状は基本的には第3例と同様である。この例の特徴は、透明導電膜41dのうちのギャップ形成部411d,412dを構成する半環状部分において、行方向に延びる第1直線パターン514,524の両端が第2直線パターン512,513,523,524より突出している点である。その突出した分だけ面放電ギャップの幅(電極対向距離)が延びて放電確率が増大するので、駆動電圧を低減することができる。列方向に突出させても同様の効果が得られる。   The electrode shape of the PDP 1d of the fourth example is basically the same as that of the third example. The feature of this example is that both ends of the first linear patterns 514, 524 extending in the row direction are the second linear patterns 512, 513, 523 in the semi-annular portions constituting the gap forming portions 411d, 412d of the transparent conductive film 41d. , 524 protrudes. Since the width of the surface discharge gap (electrode facing distance) is extended by the protruding amount and the discharge probability is increased, the driving voltage can be reduced. The same effect can be obtained by projecting in the column direction.

図7は主電極形状の第5例を示す図である。   FIG. 7 is a diagram showing a fifth example of the main electrode shape.

PDP1eにおいても主電極Xe,Yeのそれぞれは、列方向に蛇行しながら行方向に延びる透明導電膜41eと、上述した金属膜42とで構成される。透明導電膜41eは、波打つように湾曲した帯状であって、列毎に金属膜42から広大部31Aに向かって張り出す弧状のギャップ形成部411e,412eを有した形状にパターニングされている。各広大部31Aにおいて、主電極Xeのギャップ形成部411e,412eと隣接した主電極Yeのギャップ形成部411e,412eとが対峙し、鼓状の面放電ギャップgを形成する。すなわち、ギャップ形成部411e,412eの対向する辺どうしは平行でない。なお、帯状の透明導電膜41eの幅は規則的に変化してもよい。   Also in the PDP 1e, each of the main electrodes Xe and Ye is composed of the transparent conductive film 41e that snakes in the column direction and extends in the row direction, and the metal film 42 described above. The transparent conductive film 41e is shaped like a strip that is curved so as to wave, and is patterned into a shape having arc-shaped gap forming portions 411e and 412e protruding from the metal film 42 toward the wide portion 31A for each column. In each of the large portions 31A, the gap forming portions 411e, 412e of the main electrode Xe and the gap forming portions 411e, 412e of the adjacent main electrode Ye face each other to form a drum-shaped surface discharge gap g. That is, the opposing sides of the gap forming portions 411e and 412e are not parallel to each other. The width of the strip-shaped transparent conductive film 41e may change regularly.

第5例によれば、面放電ギャップ長(最短電極間距離)を増大させずに、電極間距離の平均値を大幅に低減して静電容量を低下させることができる。第3例と同様に放電干渉の防止及び放電電流の低減し、さらに第3例と比べて無効電流を約20%低減して発光効率を約30%向上させることができた。   According to the fifth example, without increasing the surface discharge gap length (shortest inter-electrode distance), the average value of the inter-electrode distance can be greatly reduced to reduce the capacitance. As in the third example, discharge interference was prevented and the discharge current was reduced. Further, the reactive current was reduced by about 20% compared to the third example, and the luminous efficiency was improved by about 30%.

図8は主電極形状の第6例を示す図である。   FIG. 8 is a diagram showing a sixth example of the main electrode shape.

PDP1fにおいても主電極Xf,Yfのそれぞれは、蛇行した帯状の透明導電膜41fと、上述した直線帯状の金属膜42とで構成される。透明導電膜41fは、三角波のように折れ曲がり、列毎に金属膜42から広大部31Aに向かって張り出す山状のギャップ形成部411f,412fを有した形状にパターニングされている。各広大部31Aにおいて、主電極Xfのギャップ形成部411f,412fと隣接した主電極Yfのギャップ形成部411f,412fとが面放電ギャップgを形成する。この第6例においてもギャップ形成部411f,412fの対向辺どうしは平行ではなく、第5例と同様の効果がある。   Also in the PDP 1 f, each of the main electrodes Xf and Yf is composed of a meandering strip-shaped transparent conductive film 41 f and the above-described straight strip-shaped metal film 42. The transparent conductive film 41f is bent like a triangular wave and patterned into a shape having mountain-shaped gap forming portions 411f and 412f protruding from the metal film 42 toward the wide portion 31A for each column. In each large portion 31A, the gap forming portions 411f and 412f of the main electrode Xf and the adjacent gap forming portions 411f and 412f of the main electrode Yf form a surface discharge gap g. Also in the sixth example, the opposing sides of the gap forming portions 411f and 412f are not parallel to each other, and the same effect as in the fifth example is obtained.

図9は主電極形状の第7例を示す図である。   FIG. 9 is a diagram showing a seventh example of the main electrode shape.

PDP1gにおいても主電極Xg,Ygのそれぞれは、蛇行した帯状の透明導電膜41gと、上述した直線帯状の金属膜42とで構成される。透明導電膜41gは、規則的に折れ曲がり、列毎に金属膜42から広大部31Aに向かって張り出すM字状のギャップ形成部411g,412gを有した形状にパターニングされている。各広大部31Aにおいて、主電極Xgのギャップ形成部411g,412gと隣接した主電極Ygのギャップ形成部411g,412gとが面放電ギャップgを形成する。放電は広大部31Aの左右両側に集中する。この第7例においてもギャップ形成部411g,412gの対向辺どうしは平行でなく、第5例及び第6例と同様の効果がある。   Also in the PDP 1g, each of the main electrodes Xg and Yg is composed of a meandering strip-shaped transparent conductive film 41g and the above-described straight strip-shaped metal film 42. The transparent conductive film 41g is regularly bent and patterned into a shape having M-shaped gap forming portions 411g and 412g protruding from the metal film 42 toward the wide portion 31A for each column. In each large portion 31A, the gap forming portions 411g and 412g of the main electrode Xg and the adjacent gap forming portions 411g and 412g of the main electrode Yg form a surface discharge gap g. The discharge is concentrated on the left and right sides of the large portion 31A. Also in the seventh example, the opposing sides of the gap forming portions 411g and 412g are not parallel to each other, and there are the same effects as the fifth and sixth examples.

図10は主電極形状の第8例を示す図である。   FIG. 10 is a diagram showing an eighth example of the main electrode shape.

PDP1hにおいて、主電極Xh,Yhのそれぞれは、図5の第3例と同様に蛇行した帯状の透明導電膜41hと、広大部31Aを避けるように隔壁29に沿って蛇行しながら行方向に延びる帯状の金属膜43とで構成される。各広大部31Aにおいて、主電極Xhのギャップ形成部411h,412hと隣接した主電極Yhのギャップ形成部411h,412hとが面放電ギャップgを形成する。 この第8例では、隣接する金属膜43どうしの最短距離Dtが図5の第3例より小さくなるももの、広大部31Aの行方向中央での透明導電膜41hと金属膜43との距離Dsが大きくなる。透明導電膜41hと金属膜43との隙間では電界強度が小さいので、行間の放電の干渉を図5の第3例と同程度に抑えることができる。さらに副次的な効果として、金属膜43による遮光が軽減されて発光効率が高まる。第8例を採用した場合に、第3例と同様に放電干渉の防止し、発光効率を第3例と比べて約10%、従来例と比べて約40%向上させることができた。   In the PDP 1h, each of the main electrodes Xh and Yh extends in the row direction while meandering along the barrier rib 29 so as to avoid the wide portion 31A and the strip-shaped transparent conductive film 41h meandering as in the third example of FIG. A band-shaped metal film 43 is used. In each large portion 31A, the gap forming portions 411h and 412h of the main electrode Xh and the adjacent gap forming portions 411h and 412h of the main electrode Yh form a surface discharge gap g. In the eighth example, the shortest distance Dt between adjacent metal films 43 is smaller than that in the third example of FIG. 5, but the distance Ds between the transparent conductive film 41h and the metal film 43 at the center in the row direction of the large portion 31A. Becomes larger. Since the electric field strength is small in the gap between the transparent conductive film 41h and the metal film 43, the interference of discharge between rows can be suppressed to the same extent as in the third example of FIG. Further, as a secondary effect, light shielding by the metal film 43 is reduced and the light emission efficiency is increased. When the eighth example was adopted, discharge interference was prevented as in the third example, and the luminous efficiency was improved by about 10% compared to the third example and by about 40% compared to the conventional example.

図11は主電極形状の第9例を示す図である。   FIG. 11 is a diagram showing a ninth example of the main electrode shape.

PDP1iにおいて、主電極Xi,Yiのそれぞれは、画面の全長にわたって行方向に平行に延びる2本の直線帯状の透明導電膜41A,41Bと、図10と同様に蛇行しながら列方向に延びる金属膜43とで構成される。各広大部31Aにおいて、主電極Xiの透明導電膜41A,41Bと隣接した主電極Yiの透明導電膜41B,41Aとが面放電ギャップgを形成する。透明導電膜41A,41Bのうちの金属膜43と重ならない部分がギャップ形成部411i,412iである。   In the PDP 1i, each of the main electrodes Xi and Yi includes two linear strip-like transparent conductive films 41A and 41B extending in parallel in the row direction over the entire length of the screen, and a metal film extending in the column direction while meandering as in FIG. 43. In each large portion 31A, the transparent conductive films 41A and 41B of the main electrode Xi and the transparent conductive films 41B and 41A of the adjacent main electrode Yi form a surface discharge gap g. The portions of the transparent conductive films 41A and 41B that do not overlap with the metal film 43 are gap forming portions 411i and 412i.

この第9例では、金属膜43からギャップ形成部411i,412iの中央位置Pまでの最短導電経路(図中の破線矢印)が図10の第8例と比べて短いので、透明導電膜の抵抗による電圧降下が比較的に小さい。   In the ninth example, the shortest conductive path (broken arrow in the figure) from the metal film 43 to the central position P of the gap forming portions 411i and 412i is shorter than that in the eighth example of FIG. The voltage drop due to is relatively small.

図12は主電極形状の第10例を示す図である。   FIG. 12 is a diagram showing a tenth example of the main electrode shape.

PDP1jにおいて、主電極Xj,Yjのそれぞれは、画面の全長にわたって行方向に延びる梯子状の透明導電膜41jと、上述のように蛇行した帯状の金属膜43とで構成される。透明導電膜41jのうちの金属膜43と重ならない部分がギャップ形成部411j,412jであり、各広大部31Aにおいて主電極Xjのギャップ形成部411j,412jと隣接した主電極Yjのギャップ形成部411j,412jとが面放電ギャップgを形成する。透明導電膜41jの形状は、図11の第9例における透明導電膜41A,41Bを、各列の中央で連結したものである。連結パターン413を設けることにより、金属膜43からギャップ形成部411j,412jの中央位置Pまでの最短導電経路(図中の破線矢印)が図11の第9例と比べてさらに短くなる。ただし、放電の干渉防止効果は低下するので、少なくとも連結パターン413幅を狭窄部31Bの隔壁間隔よりも小さくする必要がある。第8例を採用した場合に、発光効率を約30%高めることができた。   In the PDP 1j, each of the main electrodes Xj and Yj is composed of a ladder-like transparent conductive film 41j extending in the row direction over the entire length of the screen, and the strip-shaped metal film 43 meandering as described above. The portions of the transparent conductive film 41j that do not overlap the metal film 43 are the gap forming portions 411j and 412j, and the gap forming portions 411j of the main electrode Yj adjacent to the gap forming portions 411j and 412j of the main electrode Xj in each of the wide portions 31A. , 412j form a surface discharge gap g. The shape of the transparent conductive film 41j is obtained by connecting the transparent conductive films 41A and 41B in the ninth example of FIG. 11 at the center of each row. By providing the connection pattern 413, the shortest conductive path (broken arrow in the drawing) from the metal film 43 to the central position P of the gap forming portions 411j and 412j is further shortened compared to the ninth example of FIG. However, since the effect of preventing discharge interference decreases, it is necessary to make at least the width of the connection pattern 413 smaller than the interval between the barrier ribs of the narrowed portion 31B. When the eighth example was adopted, the luminous efficiency could be increased by about 30%.

以上の実施形態において、隔壁形状の種々の変形が可能である。例えば平面視において列方向に延びる基部とそれから行方向に張り出た突起部とからなる隔壁を設けてもよい。この場合にも、広大部31Aと狭窄部31Bとが交互に並ぶ列空間31を形成することができる。   In the above embodiment, various modifications of the partition wall shape are possible. For example, you may provide the partition which consists of the base part extended in a column direction in planar view, and the projection part projected in the row direction from it. Also in this case, the row space 31 in which the wide portion 31A and the narrowed portion 31B are alternately arranged can be formed.

以上の実施形態では、主電極X,Xb〜j,Y,Yb〜jを放電空間30の前面側に配置したいわゆる反射型を例示したが、図3〜図9の電極構成は、主電極X,Xb〜g,Y,Yb〜gを背面側に配置する透過型のPDPにも適用することができる。透過型では主電極X,Xb〜g,Y,Yb〜gの全体(バス部及ギャップ形成部)を金属膜のパターニングで形成してもよい。なお、主電極を金属膜のみで構成する場合、本発明のバス部とギャップ形成部とが一括に形成されるので、バス部とそれから張り出す導電膜とで互いの一部が共通となる。また、図3〜図9に示した第1〜第7の実施例において、直線帯状の金属膜に代えて図10の第8例のような蛇行した帯状の金属膜を採用してもよい。   In the above embodiment, the so-called reflection type in which the main electrodes X, Xb to j, Y, and Yb to j are arranged on the front surface side of the discharge space 30 is illustrated, but the electrode configuration of FIGS. , Xb to g, Y, Yb to g can also be applied to a transmissive PDP arranged on the back side. In the transmission type, the entire main electrodes X, Xb to g, Y, and Yb to g (a bus portion and a gap forming portion) may be formed by patterning a metal film. When the main electrode is composed of only a metal film, the bus portion and the gap forming portion of the present invention are formed in a lump, so that the bus portion and the conductive film projecting from the bus portion share a part of each other. Further, in the first to seventh embodiments shown in FIGS. 3 to 9, a meandering band-like metal film as in the eighth example of FIG. 10 may be adopted instead of the straight band-like metal film.

本発明に係るPDPの画面構成を示す図である。It is a figure which shows the screen structure of PDP which concerns on this invention. 電極マトリクスの模式図である。It is a schematic diagram of an electrode matrix. 主電極形状の第1例を示す図である。It is a figure which shows the 1st example of a main electrode shape. 主電極形状の第2例を示す図である。It is a figure which shows the 2nd example of a main electrode shape. 主電極形状の第3例を示す図である。It is a figure which shows the 3rd example of a main electrode shape. 主電極形状の第4例を示す図である。It is a figure which shows the 4th example of a main electrode shape. 主電極形状の第5例を示す図である。It is a figure which shows the 5th example of a main electrode shape. 主電極形状の第6例を示す図である。It is a figure which shows the 6th example of a main electrode shape. 主電極形状の第7例を示す図である。It is a figure which shows the 7th example of a main electrode shape. 主電極形状の第8例を示す図である。It is a figure which shows the 8th example of a main electrode shape. 主電極形状の第9例を示す図である。It is a figure which shows the 9th example of a main electrode shape. 主電極形状の第10例を示す図である。It is a figure which shows the 10th example of a main electrode shape. 従来の電極構造を示す平面図である。It is a top view which shows the conventional electrode structure. 従来のPDPの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the conventional PDP.

符号の説明Explanation of symbols

1,1b〜j PDP(プラズマディスプレイパネル)
29 隔壁
ES 画面
30 放電空間
31 列空間
31A 広大部
31B 狭窄部
X,Xb〜j 主電極
Y,Yb〜j 主電極
42,43 金属膜(バス部)
41,41b〜j 透明導電膜
41A,41B 透明導電膜
411,411b〜j ギャップ形成部
412,412b〜j ギャップ形成部
511,521 第1直線パターン
514,524 第1直線パターン
512,513 第2直線パターン
522,523 第2直線パターン
413 連結パターン
g 面放電ギャップ
Da,Db 配置間隔
1,1b-j PDP (Plasma Display Panel)
29 Bulkhead ES screen 30 Discharge space 31 Column space 31A Wide part 31B Constriction part X, Xb-j Main electrode Y, Yb-j Main electrode 42, 43 Metal film (bus part)
41, 41b to j Transparent conductive film 41A, 41B Transparent conductive film 411, 411b to j Gap formation part 412, 412b to j Gap formation part 511, 521 First linear pattern 514, 524 First linear pattern 512, 513 Second straight line Pattern 522, 523 Second linear pattern 413 Connection pattern g Surface discharge gap Da, Db Arrangement interval

Claims (3)

マトリクス表示の列を構成するセル列においてセルの発色が同一であり、隣り合うセル列どうしの間で列方向のセル位置がずれた三角配列形式の画面をもち、各セルが隔壁によって区画されてなるプラズマディスプレイパネルであって、
面放電のための電極対を構成する複数の主電極のそれぞれが、前記画面の行方向に隣接したセルに跨って前記隔壁を横切って延びる帯状の金属膜と、前記金属膜と部分的に重なりかつ列毎に当該金属膜からセルの中心に向かって張り出すように蛇行しながら前記隔壁を横切って行方向に延びる帯状の透明導電膜とからなる
ことを特徴とするプラズマディスプレイパネル。
In the cell columns that make up the matrix display column, the color of the cells is the same, and the cell positions in the column direction are shifted between adjacent cell columns, and each cell is partitioned by partitions. A plasma display panel,
Each of a plurality of main electrodes constituting an electrode pair for surface discharge has a strip-shaped metal film extending across the partition across cells adjacent in the row direction of the screen, and partially overlaps the metal film And a strip-like transparent conductive film extending in the row direction across the partition wall while meandering so as to project from the metal film toward the center of the cell for each column.
マトリクス表示の列を構成するセル列においてセルの発色が同一であり、隣り合うセル列どうしの間で列方向のセル位置がずれた三角配列形式の画面をもち、各セルが隔壁によって区画されてなるプラズマディスプレイパネルであって、
前記複数の主電極のそれぞれが、平面視において列方向に蛇行しながら行方向に隣接したセルに跨って前記隔壁を横切って延びる帯状のバス部と、列毎に当該バス部からセルの中心に向かって張り出した複数のギャップ形成部とを有しており、
前記バス部は金属膜によって形成され、
前記複数のギャップ形成部のそれぞれは、両端のみが前記バス部とつながった帯状であり、列方向に蛇行しながら前記隔壁を横切って行方向に延びる帯状の透明導電膜によって形成されている
ことを特徴とするプラズマディスプレイパネル。
In the cell columns that make up the matrix display column, the color of the cells is the same, and the cell positions in the column direction are shifted between adjacent cell columns, and each cell is partitioned by partitions. A plasma display panel,
Each of the plurality of main electrodes meanders in the column direction in a plan view and extends across the partition across the adjacent cells in the row direction, and from each bus portion to the center of the cell for each column. A plurality of gap forming portions projecting toward the
The bus portion is formed of a metal film,
Each of the plurality of gap forming portions has a strip shape in which only both ends are connected to the bus portion, and is formed by a strip-shaped transparent conductive film extending in the row direction across the partition wall while meandering in the column direction. A characteristic plasma display panel.
マトリクス表示の列を構成するセル列においてセルの発色が同一であり、隣り合うセル列どうしの間で列方向のセル位置がずれた三角配列形式の画面をもち、各セルが隔壁によって区画されてなるプラズマディスプレイパネルであって、
前記複数の主電極のそれぞれが、平面視において列方向に蛇行しながら行方向に隣接したセルに跨って前記隔壁を横切って延びる帯状のバス部と、各セルで行方向に前記隔壁を横切って延びる直線帯状の複数のギャップ形成部とを有し且つ当該複数のギャップ形成部のそれぞれと当該バス部との間に間隙を有した形状にパターニングされており、
前記バス部は蛇行した帯状の金属膜によって形成され、
前記複数のギャップ形成部は前記複数のギャップ形成部のそれぞれの行方向の中央と前記バス部とを接続するための連結パターンを有する形状にパターニングされた透明導電膜によって形成されている
ことを特徴とするプラズマディスプレイパネル。
In the cell columns that make up the matrix display column, the color of the cells is the same, and the cell positions in the column direction are shifted between adjacent cell columns, and each cell is partitioned by partitions. A plasma display panel,
Each of the plurality of main electrodes meanders in the column direction in a plan view, and extends in a row direction across the partition walls across the adjacent cells in the row direction, and crosses the partition walls in the row direction in each cell. A plurality of gap-forming portions in the form of straight strips extending and patterned into a shape having a gap between each of the plurality of gap-forming portions and the bus portion,
The bus portion is formed by a meandering band-shaped metal film,
The plurality of gap forming portions are formed of a transparent conductive film patterned into a shape having a connection pattern for connecting the center of each of the plurality of gap forming portions in the row direction and the bus portion. Plasma display panel.
JP2005321413A 2005-11-04 2005-11-04 Electrode structure of surface discharge type plasma display panel Expired - Fee Related JP4040058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321413A JP4040058B2 (en) 2005-11-04 2005-11-04 Electrode structure of surface discharge type plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321413A JP4040058B2 (en) 2005-11-04 2005-11-04 Electrode structure of surface discharge type plasma display panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12948399A Division JP3865029B2 (en) 1999-05-11 1999-05-11 Plasma display panel

Publications (2)

Publication Number Publication Date
JP2006054205A true JP2006054205A (en) 2006-02-23
JP4040058B2 JP4040058B2 (en) 2008-01-30

Family

ID=36031510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321413A Expired - Fee Related JP4040058B2 (en) 2005-11-04 2005-11-04 Electrode structure of surface discharge type plasma display panel

Country Status (1)

Country Link
JP (1) JP4040058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001406A1 (en) * 2007-06-27 2008-12-31 Hitachi, Ltd. Plasma display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001406A1 (en) * 2007-06-27 2008-12-31 Hitachi, Ltd. Plasma display panel

Also Published As

Publication number Publication date
JP4040058B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP3865029B2 (en) Plasma display panel
JP4155968B2 (en) Plasma display panel
JP3838311B2 (en) Plasma display panel
JP3688055B2 (en) Surface discharge type PDP
EP0932181B1 (en) Plasma display panel
JP2000021313A (en) Plasma display panel
JP3678332B2 (en) Plasma display panel
JP2000223034A (en) Plasma display panel
US6628076B2 (en) Plasma display panel
JP2005142151A (en) Plasma display panel
US20060152159A1 (en) Plasma display panel
JP4040058B2 (en) Electrode structure of surface discharge type plasma display panel
EP1349192B1 (en) Plasma display panel
JPH08212933A (en) Surface discharge type plasma display panel and its driving method
JP2010062131A (en) Plasma display panel
EP1717839A1 (en) Plasma display panel
JP3625620B2 (en) Plasma display panel
JP4951479B2 (en) Plasma display panel
US20090026954A1 (en) Plasma display panel
JP2005108775A (en) Plasma display panel
JP2009076336A (en) Plasma display panel, and image display device equipped with it
KR20060055092A (en) Plasma display panel having
JP2005019011A (en) A.c. type plasma display panel and its manufacturing method
JP2013152835A (en) Plasma display panel
KR20070053495A (en) Plasma display panel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees