JP2006053218A - Camera head - Google Patents

Camera head Download PDF

Info

Publication number
JP2006053218A
JP2006053218A JP2004233152A JP2004233152A JP2006053218A JP 2006053218 A JP2006053218 A JP 2006053218A JP 2004233152 A JP2004233152 A JP 2004233152A JP 2004233152 A JP2004233152 A JP 2004233152A JP 2006053218 A JP2006053218 A JP 2006053218A
Authority
JP
Japan
Prior art keywords
lens
camera head
optical system
refractive power
photographing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004233152A
Other languages
Japanese (ja)
Other versions
JP4700304B2 (en
Inventor
Akira Machida
亮 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004233152A priority Critical patent/JP4700304B2/en
Publication of JP2006053218A publication Critical patent/JP2006053218A/en
Application granted granted Critical
Publication of JP4700304B2 publication Critical patent/JP4700304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a camera head using a compact optical system which is tele-centric in order to prevent a decrease in an amount of peripheral light due to the incident angle characteristic of a CCD and the aberrations of which are sufficiently corrected. <P>SOLUTION: In the camera head having a photographic lens 6 that is attached to the eye-piece section of an endoscope, the photographic lens 6 includes at least a meniscus lens whose convex face is disposed in the direction of the object side, and comprises, in order from the object side, a first lens L1 having a positive refracting power, a second lens L2 having a negative refracting power, a third lens L3 having a positive refracting power, and a fourth lens L4 having a positive refracting power. A condition (1) 1.1<L/f<1.4 for defining the entire length of the optical system of the photographic lens 6 and a condition (2) 0.55<f<SB>1</SB>/f<0.85 for defining the power of the first lens L1, are satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カメラヘッドに関し、特に、内視鏡の接眼部に取り付けてテレビカメラ観察を行い得るようにするための撮影レンズを備えたカメラヘッドに関するものである。   The present invention relates to a camera head, and more particularly, to a camera head provided with a photographing lens that can be attached to an eyepiece of an endoscope so that a television camera can be observed.

一般に、内視鏡により得られる体腔内等の画像を撮像部へ導くためには、接眼レンズの後方に着脱自在な内視鏡テレビカメラが用いられる。この内視鏡用テレビカメラは、例えば図1に示すように、硬性鏡1等の接眼レンズ4の後方に撮影レンズ6を備えたカメラヘッド5を取り付けて、撮像部7内のCCD等の撮像素子上に結像させて、画像処理装置8を介して、モニターテレビ9で観察ができるようにするためのものである。なお、硬性鏡1内には、対物レンズ2、リレーレンズ3等が備えられている。   In general, in order to guide an image of a body cavity or the like obtained by an endoscope to an imaging unit, an endoscope television camera that is detachable behind an eyepiece is used. In this endoscope television camera, for example, as shown in FIG. 1, a camera head 5 having a photographing lens 6 is attached behind an eyepiece 4 such as a rigid endoscope 1 to capture an image of a CCD or the like in an imaging unit 7. The image is formed on the element so that the image can be observed on the monitor television 9 via the image processing device 8. In the rigid endoscope 1, an objective lens 2, a relay lens 3, and the like are provided.

上述のように、撮像素子としてCCDを用いる場合には、輝度シェーディングに注意する必要がある。CCDには、感度向上のために受光部の上部に各画素に対応したマイクロレンズが配置されていたりして、光の入射方向に対して厚みを持っている。この積層構造に対し、撮影レンズ光学系からの斜め入射光が入ると、入射光がCCDの構造物に遮られて受光面への入射光量が減少してしまう。これが輝度シェーディングであり、したがって、像高が高くなる程CCD面への入射角が大きくなり、画像としては画面の周辺が暗くなるという現象が起こる。また、近年CCDの高画素化に伴い被写体の高解像化が可能になる一方、CCDの画素サイズに対する光の入射方向の厚みが相対的に大きくなるため、上記の現象が起こりやすくなってきている。   As described above, when a CCD is used as the image sensor, it is necessary to pay attention to luminance shading. In the CCD, a microlens corresponding to each pixel is disposed above the light receiving portion in order to improve sensitivity, and has a thickness with respect to the incident direction of light. When obliquely incident light from the taking lens optical system enters the laminated structure, the incident light is blocked by the CCD structure, and the amount of light incident on the light receiving surface is reduced. This is luminance shading. Therefore, as the image height increases, the incident angle with respect to the CCD surface increases, and a phenomenon occurs in which the periphery of the screen becomes dark as an image. In addition, with the recent increase in the number of pixels in a CCD, it has become possible to increase the resolution of a subject. On the other hand, since the thickness of the incident direction of light with respect to the CCD pixel size is relatively large, the above phenomenon is likely to occur. Yes.

CCD受光面に入射した光は光電変換され、電気信号が画像処理装置8に送られる。この画像処理装置8では、撮影された被写体をモニターテレビ9に映し出す際に、被写体像の輝度にある閾値を設けて画面上最も明るい領域が上記の閾値以下となるような、あるいは、最も暗い領域が上記の閾値以上となるような電気的処理がなされている。これと前述の輝度シェーディングを考慮すると、前者の場合は、画面中心と比較して周辺が暗くなり、後者の場合は画面上に白い輝点、所謂白飛びの現象が起きてしまい、観察に支障をきたすことになり、好ましくない。   The light incident on the CCD light receiving surface is photoelectrically converted and an electric signal is sent to the image processing device 8. In this image processing device 8, when a photographed subject is displayed on the monitor television 9, a threshold value is set for the luminance of the subject image so that the brightest region on the screen is equal to or lower than the above threshold value, or the darkest region An electrical process is performed so that is equal to or greater than the above threshold. Considering this and the above-mentioned luminance shading, in the former case, the periphery becomes darker than the center of the screen, and in the latter case, a white bright spot, a so-called whitening phenomenon occurs on the screen, which hinders observation. This is not preferable.

上述の欠点を改善するためには、テレセントリックな光学系を用いた撮影レンズ6が望まれる。しかし、一般に、内視鏡、特に外科手術等に用いられる硬性鏡では、眼視観察での利便性を考慮して、接眼レンズ4の射出瞳位置が接眼部より10mm程度突出していることが多い。したがって、内視鏡接眼光学系の射出瞳位置と撮影レンズ光学系の入射側焦点位置を合わせてテレセントリック光学系とするためには、例えば3枚構成の光学系である特許文献1に記載の装置が知られている。しかしながら、特許文献1に記載の装置の光学系では、前述の瞳位置を一致させるようにしているものの、入射側焦点位置が第1レンズ第1面から離れているため光学系全長が大きくなってしまい、コンパクト性に欠けるという欠点がある。この欠点を対策するために単純に全長を小さくしようとした場合、瞳位置がレンズ系の内側に入り込むことになるが、相対的に光線高が低くなるためレンズのパワー不足を招き、パワーを上げようとすると加工が困難となってりまう。また、バックフォーカスも所望の長さを確立できず、テレセントリック性も崩れてしまう。   In order to improve the above-mentioned drawbacks, a photographing lens 6 using a telecentric optical system is desired. However, in general, in endoscopes, particularly rigid endoscopes used for surgical operations, the exit pupil position of the eyepiece 4 protrudes from the eyepiece portion by about 10 mm in consideration of convenience in visual observation. Many. Therefore, in order to obtain a telecentric optical system by combining the exit pupil position of the endoscope eyepiece optical system and the incident-side focal position of the photographing lens optical system, for example, an apparatus described in Patent Document 1 which is a three-lens optical system. It has been known. However, in the optical system of the apparatus described in Patent Document 1, although the above-described pupil position is made to coincide, the total length of the optical system becomes large because the incident-side focal position is away from the first surface of the first lens. Therefore, there is a drawback that it is not compact. If you try to reduce the total length simply to counter this drawback, the pupil position will enter the inside of the lens system, but the height of the light will be relatively low and the lens power will be insufficient. Attempting to do so makes processing difficult. In addition, the back focus cannot establish a desired length, and the telecentricity is lost.

一方、4枚構成で収差補正、コンパクト化という点を考慮した従来例として特許文献2に記載されているものが知られている。前述のように、CCD高画素化に伴い画素サイズが小さくなるため、テレセントリック性の向上が必要である。しかしながら、この従来例のタイプであると、パワー配分、光線高等の違いから、テレセントリック性を容易に実現できないという問題があった。
特許第3,270,591号公報 特許第2,582,144号公報
On the other hand, as a conventional example in consideration of aberration correction and compactness in a four-lens configuration, one described in Patent Document 2 is known. As described above, since the pixel size is reduced with the increase in the number of pixels of the CCD, it is necessary to improve the telecentricity. However, this conventional type has a problem that telecentricity cannot be easily realized due to differences in power distribution, light ray height, and the like.
Japanese Patent No. 3,270,591 Japanese Patent No. 2,582,144

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、上述したように、CCDの入射角特性による周辺光量の劣化を改善するためにテレセントリックな光学系で、しかも、収差が十分に補正されたコンパクトな光学系を用いたカメラヘッドを提供することにある。   The present invention has been made in view of such problems of the prior art, and as described above, the object thereof is a telecentric optical system for improving the deterioration of the peripheral light quantity due to the incident angle characteristic of the CCD. Moreover, it is an object to provide a camera head using a compact optical system in which aberrations are sufficiently corrected.

上記目的を達成するための本発明のカメラヘッドは、内視鏡の接眼部に取り付けて撮影を行う撮影レンズを備えたカメラヘッドにおいて、前記撮影レンズが、少なくとも物体側に凹面を向けたメニスカスレンズを持ち、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、正の屈折力を有する第4レンズとからなり、以下の条件(1)、(2)を満足することを特徴とするものである。   In order to achieve the above object, a camera head of the present invention is a camera head including a photographic lens that is attached to an eyepiece of an endoscope and performs photographing. The photographic lens has a meniscus having a concave surface at least on the object side. A first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a fourth lens having a positive refractive power in order from the object side. It consists of a lens and satisfies the following conditions (1) and (2).

(1) 1.1<L/f<1.4
(2) 0.55<f1 /f<0.85
ただし、Lは第1レンズ第1面から像面までの軸上空気換算長、fは撮影レンズ全系の焦点距離、f1 は第1レンズの焦点距離である。
(1) 1.1 <L / f <1.4
(2) 0.55 <f 1 /f<0.85
Here, L is the axial air-converted length from the first surface of the first lens to the image surface, f is the focal length of the entire taking lens system, and f 1 is the focal length of the first lens.

以下に、本発明のカメラヘッドにおいて上記構成をとる理由と作用を説明する。   Below, the reason and effect | action which take the said structure in the camera head of this invention are demonstrated.

条件(1)は、撮影レンズの光学系の全長を規定したものである。条件(1)において、下限の1.1を超えると、光学系全長が短くなり過ぎて、レンズを配設する際にレンズ同士がぶつかってしまったり、レンズ取り付け枠のためのスペースがなくなったりする。また、各レンズの肉厚が薄くなってしまい、加工コストがアップしてしまうという問題が起こる。また、上限の1.4を超えると、光学系の全長が長くなり、それに応じて光線高が高くなるために、レンズの外径が大きくなり、コンパクト化の妨げになる。さらに加えて、球面収差やコマ収差等も適切に補正できなくなってしまう。   Condition (1) defines the total length of the optical system of the taking lens. In condition (1), if the lower limit of 1.1 is exceeded, the total length of the optical system becomes too short, and when the lenses are installed, the lenses collide with each other, or there is no space for the lens mounting frame. . Moreover, the thickness of each lens becomes thin, and the problem that processing cost will raise arises. On the other hand, when the upper limit of 1.4 is exceeded, the total length of the optical system becomes longer, and the height of the light increases accordingly, so that the outer diameter of the lens increases, which hinders compactification. In addition, spherical aberration and coma aberration cannot be corrected appropriately.

条件(2)は、第1レンズのパワーを規定したものである。長いバックフォーカスを得るため、また、光学系の全長を短くするために、全系の前側焦点位置を第1レンズの第1面に近づける必要があり、そのため、第1レンズのパワーを弱くする必要がある。条件(2)において、下限の0.55を超えると、長いバックフォーカスを得ることができなくなる。また、近軸理論より得られる全系の焦点距離fと第1レンズ焦点距離、第2レンズの倍率β2 、第3レンズの倍率β3 、第4レンズの倍率β4 との関係式f=f1 ×β2 ×β3 ×β4 から、第1レンズの焦点距離f1 が小さくなると、第2レンズ、第3レンズ、第4レンズの倍率β2 、β3 、β4 が大きくなり、前側で発生した収差をこれら第2レンズ、第3レンズにより拡大することになるため、諸収差の補正が難しくなる。また、条件(2)において、上限の0.85を超えると、バックフォーカスが長くなりすぎてコンパクト性に欠ける。 Condition (2) defines the power of the first lens. In order to obtain a long back focus and to shorten the overall length of the optical system, it is necessary to bring the front focal position of the entire system close to the first surface of the first lens, and therefore it is necessary to weaken the power of the first lens. There is. If the lower limit of 0.55 is exceeded in condition (2), a long back focus cannot be obtained. Further, the relational expression f = the focal length f of the entire system obtained from the paraxial theory, the focal length of the first lens, the magnification β 2 of the second lens, the magnification β 3 of the third lens, and the magnification β 4 of the fourth lens f = From f 1 × β 2 × β 3 × β 4 , when the focal length f 1 of the first lens decreases, the magnifications β 2 , β 3 , and β 4 of the second lens, the third lens, and the fourth lens increase. Since the aberration generated on the front side is enlarged by the second lens and the third lens, correction of various aberrations becomes difficult. On the other hand, if the upper limit of 0.85 is exceeded in condition (2), the back focus becomes too long and the compactness is lacking.

以上の条件(1)、(2)を満足することにより、4枚構成といった比較的簡単な構成であるにも係わらず、コンパクトな光学系を実現することができる。   By satisfying the above conditions (1) and (2), a compact optical system can be realized in spite of a relatively simple configuration such as a four-lens configuration.

また、さらに他の諸収差を良好に補正した光学系を得るためには、上記条件(1)、(2)に加え、以下の条件(3)、(4)も満足することが好ましい。   Further, in order to obtain an optical system in which other various aberrations are favorably corrected, it is preferable that the following conditions (3) and (4) are satisfied in addition to the above conditions (1) and (2).

(3) 0.4<r1 /f<0.75
(4) 0.1<|φ2 |<0.3
ただし、r1 は第1レンズの第1面の曲率半径、φ2 は第2レンズの屈折力(mm-1)である。
(3) 0.4 <r 1 /f<0.75
(4) 0.1 <| φ 2 | <0.3
Here, r 1 is the radius of curvature of the first surface of the first lens, and φ 2 is the refractive power (mm −1 ) of the second lens.

条件(3)は、第1レンズの第1面のパワーを規定することで、良好な画質を得るための条件である。条件(3)において、下限の0.4を超えると、球面収差が補正過剰になり、良好な画質が得られなくなる。また、上限の0.75を超えると、上側光線によるコマ収差が負への補正過剰となり、例えば画像周辺の画質が劣化して好ましくない。   Condition (3) is a condition for obtaining a good image quality by defining the power of the first surface of the first lens. In the condition (3), if the lower limit of 0.4 is exceeded, the spherical aberration is overcorrected and good image quality cannot be obtained. On the other hand, when the upper limit of 0.75 is exceeded, the coma aberration due to the upper ray is excessively corrected to negative, and the image quality around the image is deteriorated, for example.

条件(4)は、第2レンズのパワーを規定したものである。本発明のカメラヘッドを硬性鏡等の接眼レンズと組み合わせたときに、片ボケのない画面周辺まで良好な画像が得られるようにするためには、像面湾曲を十分に補正する必要がある。そのためには、負レンズのパワーを適切なものにすることが重要である。条件(4)において、下限の0.1を超えると、像面湾曲が補正不足になる。また、上限の0.3を超えると、像面湾曲の補正が過剰になる。   Condition (4) defines the power of the second lens. When the camera head of the present invention is combined with an eyepiece such as a rigid mirror, it is necessary to sufficiently correct the curvature of field in order to obtain a good image up to the periphery of the screen with no blurring. For that purpose, it is important to make the power of the negative lens appropriate. In the condition (4), if the lower limit of 0.1 is exceeded, the curvature of field becomes insufficiently corrected. If the upper limit of 0.3 is exceeded, field curvature correction becomes excessive.

なお、撮像部にCCD等の固体撮像素子を用いる場合、撮影レンズの光学系に対する内視鏡接眼レンズの射出瞳位置は固定であり、諸収差の変動が少ないので、固体撮像素子を光軸方向に繰り出すことによってピント調整を行うことが好ましいが、撮影レンズの光学系を前後に移動することによってピント調整を行うようにしてもよい。また、撮像部が複数のCCDを含む色分解プリズムユニットからなるものであってもよい。   When a solid-state imaging device such as a CCD is used for the imaging unit, the exit pupil position of the endoscope eyepiece with respect to the optical system of the photographic lens is fixed, and fluctuations in various aberrations are small. However, it is preferable to adjust the focus by moving the optical system back and forth. However, the focus adjustment may be performed by moving the optical system of the taking lens back and forth. Further, the imaging unit may be composed of a color separation prism unit including a plurality of CCDs.

また、さらに、以下の条件(5)、(6)を満足すると、より良好な画像を得られる光学系を実現することができる。   Furthermore, when the following conditions (5) and (6) are satisfied, an optical system capable of obtaining a better image can be realized.

(5) |TW|<2°
(6) (ν3 +ν4 )/2>50
ただし、TWは最大像高主光線の像面への入射角度、ν3 は第3レンズのアッベ数、ν4 は第4レンズのアッベ数である。
(5) | TW | <2 °
(6) (ν 3 + ν 4 ) / 2> 50
Where TW is the angle of incidence of the maximum image height chief ray on the image plane, ν 3 is the Abbe number of the third lens, and ν 4 is the Abbe number of the fourth lens.

条件(5)は、撮影レンズの光学系のテレセントリック性について規定したものである。撮像素子として使用するCCDの高画素化が進めば、前述したように、当然画素サイズが小さくなり、シェーディングに対する光線の入射角の許容範囲も狭くなる。図2に示されているのは、画素サイズが5μm程度であるCCDの感度特性である。また,3板カメラ等では色分解プリズムを使用するが、この場合、プリズム面への光線の入射角特性も重要となる。一般的に、色分解プリズムへの入射角が大きくなると、色シェーディングが発生してしまう。したがって、近年のCCDの高画素化、色分解プリズムの色シェーディングを考慮すると、条件(5)を満足することが望ましい。   Condition (5) defines the telecentricity of the optical system of the taking lens. If the number of pixels of a CCD used as an image sensor increases, as described above, the pixel size naturally becomes smaller, and the allowable range of the incident angle of light rays for shading becomes narrower. FIG. 2 shows the sensitivity characteristics of a CCD having a pixel size of about 5 μm. In addition, a color separation prism is used in a three-plate camera or the like. In this case, the incident angle characteristic of the light beam to the prism surface is also important. In general, when the incident angle to the color separation prism increases, color shading occurs. Therefore, it is desirable to satisfy the condition (5) in consideration of the recent increase in the number of pixels of the CCD and color shading of the color separation prism.

条件(6)は、第3レンズと第4レンズのアッベ数について規定したものである。本発明では、第3レンズ、第4レンズで光線高を高くすることによってテレセントリックな光学系を実現している。このため、色収差、特に倍率の色収差の補正は、この第3レンズ、第4レンズに負うところが大きい。したがって、条件(6)の下限の50を超えると、色収差、特に倍率の色収差が補正し切れなくなる。   Condition (6) defines the Abbe numbers of the third lens and the fourth lens. In the present invention, a telecentric optical system is realized by increasing the light beam height with the third lens and the fourth lens. For this reason, correction of chromatic aberration, particularly magnification chromatic aberration, is largely imposed on the third lens and the fourth lens. Therefore, if the lower limit of 50 of the condition (6) is exceeded, chromatic aberration, particularly chromatic aberration of magnification cannot be corrected.

本発明によれば、周辺光量が不足することがなく、しかも、収差が十分に補正されたコンパクトな光学系のカメラヘッドを得ることができる。   According to the present invention, it is possible to obtain a compact camera head of an optical system in which the amount of peripheral light is not insufficient and the aberration is sufficiently corrected.

次に、本発明におけるカメラヘッド光学系の実施例1〜4を説明する。   Next, first to fourth embodiments of the camera head optical system according to the present invention will be described.

実施例1のカメラヘッド光学系の構成は、図3の断面図に示す通りである。この光学系中のカバーガラス10を含めた撮影レンズ6の数値データは後記する。この光学系は、カバーガラス10と撮影レンズ6と撮像部7とからなり、撮影レンズ6は、絞りSと、凸平レンズである第1レンズL1と、両凹レンズである第2レンズL2と、像面側に凸面を向けた正メニスカスレンズである第3レンズL3と、両凸レンズである第4レンズL4とからなる。撮像部7は、色分解プリズム11と、色分解プリズム11でRGB3色に色分解された像面に配置されたCCD12R、12G、12Bとからなる。   The configuration of the camera head optical system of Example 1 is as shown in the sectional view of FIG. Numerical data of the photographing lens 6 including the cover glass 10 in this optical system will be described later. The optical system includes a cover glass 10, a photographing lens 6, and an imaging unit 7. The photographing lens 6 includes a diaphragm S, a first lens L1 that is a convex flat lens, and a second lens L2 that is a biconcave lens. The lens includes a third lens L3 that is a positive meniscus lens having a convex surface facing the image surface side, and a fourth lens L4 that is a biconvex lens. The imaging unit 7 includes a color separation prism 11 and CCDs 12R, 12G, and 12B arranged on an image plane that is color-separated into three colors RGB by the color separation prism 11.

この実施例1の撮影レンズ6の球面収差、非点収差、歪曲収差、倍率色収差、コマ収差についての収差状況は図7の収差図に示す通りである。この収差図中において、“FIY”は像高を表す。以下、同じ。   The aberration states of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration of the photographing lens 6 of Example 1 are as shown in the aberration diagram of FIG. In this aberration diagram, “FIY” represents the image height. same as below.

実施例1の場合は、光学系のコンパクト化と撮像面への光線入射角、つまりテレセントリック性を重視したものとなっている。すなわち、第3レンズL3と、第4レンズL4のパワー配分のバランスを取り、第3レンズL3で上げた光線高を第4レンズで下げる際、撮像面への光線入射角が小さくなることを優先させた。   In the case of Example 1, the optical system is made compact and the light incident angle on the imaging surface, that is, telecentricity is emphasized. That is, when the power distribution of the third lens L3 and the fourth lens L4 is balanced, and the height of the light beam raised by the third lens L3 is lowered by the fourth lens, priority is given to reducing the light incident angle on the imaging surface. I let you.

実施例2のカメラヘッド光学系の構成は、図4の断面図に示す通りである。この光学系中のカバーガラス10を含めた撮影レンズ6の数値データは後記する。この光学系は、カバーガラス10と撮影レンズ6と撮像部7とからなり、撮影レンズ6は、絞りSと、物体側に凸面を向けた正メニスカスレンズである第1レンズL1と、両凹レンズである第2レンズL2と、像面側に凸面を向けた正メニスカスレンズである第3レンズL3と、凸平レンズである第4レンズL4とからなる。撮像部7は、色分解プリズム11と、色分解プリズム11でRGB3色に色分解された像面に配置されたCCD12R、12G、12Bとからなる。   The configuration of the camera head optical system of Example 2 is as shown in the sectional view of FIG. Numerical data of the photographing lens 6 including the cover glass 10 in this optical system will be described later. This optical system includes a cover glass 10, a photographing lens 6, and an imaging unit 7. The photographing lens 6 includes a diaphragm S, a first lens L1 that is a positive meniscus lens having a convex surface facing the object side, and a biconcave lens. It consists of a certain second lens L2, a third lens L3 that is a positive meniscus lens having a convex surface facing the image surface side, and a fourth lens L4 that is a convex flat lens. The imaging unit 7 includes a color separation prism 11 and CCDs 12R, 12G, and 12B arranged on an image plane that is color-separated into three colors RGB by the color separation prism 11.

この実施例2の撮影レンズ6の図7同様の収差状況は図8の収差図に示す通りである。   The aberration situation similar to that of FIG. 7 of the photographing lens 6 of Example 2 is as shown in the aberration diagram of FIG.

実施例2の場合は、実施例1と後記の実施例4で重視した項目のバランスを取ったものとなっている。すなわち、テレセントリック性を確保しつつ、コンパクト化、画質を考慮している。   In the case of Example 2, the items emphasized in Example 1 and Example 4 described later are balanced. That is, compactness and image quality are taken into consideration while ensuring telecentricity.

実施例3のカメラヘッド光学系の構成は、図5の断面図に示す通りである。この光学系中のカバーガラス10を含めた撮影レンズ6の数値データは後記する。この光学系は、カバーガラス10と撮影レンズ6と撮像部7とからなり、撮影レンズ6は、絞りSと、凸平レンズである第1レンズL1と、両凹レンズである第2レンズL2と、像面側に凸面を向けた正メニスカスレンズである第3レンズL3と、物体側に凸面を向けた正メニスカスレンズである第4レンズL4とからなる。撮像部7は、色分解プリズム11と、色分解プリズム11でRGB3色に色分解された像面に配置されたCCD12R、12G、12Bとからなる。   The configuration of the camera head optical system of Example 3 is as shown in the sectional view of FIG. Numerical data of the photographing lens 6 including the cover glass 10 in this optical system will be described later. The optical system includes a cover glass 10, a photographing lens 6, and an imaging unit 7. The photographing lens 6 includes a diaphragm S, a first lens L1 that is a convex flat lens, and a second lens L2 that is a biconcave lens. The third lens L3 is a positive meniscus lens having a convex surface facing the image surface side, and the fourth lens L4 is a positive meniscus lens having a convex surface facing the object side. The imaging unit 7 includes a color separation prism 11 and CCDs 12R, 12G, and 12B arranged on an image plane that is color-separated into three colors RGB by the color separation prism 11.

この実施例3の撮影レンズ6の図7同様の収差状況は図9の収差図に示す通りである。   The aberration situation similar to FIG. 7 of the photographic lens 6 of Example 3 is as shown in the aberration diagram of FIG.

実施例3の場合は、光学系のレンズ、特に凸メニスカスレンズの加工性を重視したものとなっている。すなわち、2つの正メニスカスレンズにおいて、各面の曲率半径の差を大きくすることで、加工性の向上を図った。   In the case of Example 3, the workability of an optical lens, particularly a convex meniscus lens, is emphasized. That is, in the two positive meniscus lenses, workability was improved by increasing the difference in the radius of curvature of each surface.

実施例4のカメラヘッド光学系の構成は、図6の断面図に示す通りである。この光学系中のカバーガラス10を含めた撮影レンズ6の数値データは後記する。この光学系は、カバーガラス10と撮影レンズ6と撮像部7とからなり、撮影レンズ6は、絞りSと、凸平レンズである第1レンズL1と、両凹レンズである第2レンズL2と、像面側に凸面を向けた正メニスカスレンズである第3レンズL3と、両凸レンズである第4レンズL4とからなる。撮像部7は、色分解プリズム11と、色分解プリズム11でRGB3色に色分解された像面に配置されたCCD12R、12G、12Bとからなる。   The configuration of the camera head optical system of Example 4 is as shown in the sectional view of FIG. Numerical data of the photographing lens 6 including the cover glass 10 in this optical system will be described later. The optical system includes a cover glass 10, a photographing lens 6, and an imaging unit 7. The photographing lens 6 includes a diaphragm S, a first lens L1 that is a convex flat lens, and a second lens L2 that is a biconcave lens. The lens includes a third lens L3 that is a positive meniscus lens having a convex surface facing the image surface side, and a fourth lens L4 that is a biconvex lens. The imaging unit 7 includes a color separation prism 11 and CCDs 12R, 12G, and 12B arranged on an image plane that is color-separated into three colors RGB by the color separation prism 11.

この実施例4の撮影レンズ6の図7同様の収差状況は図10の収差図に示す通りである。   The aberration situation similar to that of FIG. 7 of the photographing lens 6 of Example 4 is as shown in the aberration diagram of FIG.

実施例4の場合は、光学系のコンパクト化を最も重視し、また、像面湾曲量つまり画質を重視したものとなっている。すなわち、正メニスカスレンズである第3レンズL3の凹面の曲率半径を小さくすることで、光線高を上げる効果を大きくして、像面湾曲を他の実施例よりも良く補正している。   In the case of the fourth embodiment, the most important is the downsizing of the optical system, and the emphasis is on the amount of field curvature, that is, the image quality. That is, by reducing the radius of curvature of the concave surface of the third lens L3, which is a positive meniscus lens, the effect of increasing the ray height is increased, and the field curvature is corrected better than in the other embodiments.

以下に、上記各実施例の数値データを示すが、記号は上記の他、fは全系の焦点距離、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。 In the following, numerical data of each of the above embodiments is shown. Symbols are the above, f is the focal length of the entire system, r 1 , r 2 ... Are the curvature radii of the lens surfaces, d 1 , d 2 . The distance between the lens surfaces, n d1 , n d2 ... Is the refractive index of the d-line of each lens, and ν d1 , ν d2 .


実施例1
1 = ∞ d1 = 0.7 nd1 =1.7682 νd1 =71.79
2 = ∞ d2 = 6.1
3 = ∞(絞り) d3 = 1.9
4 = 10.484 d4 = 3.5 nd2 =1.788 νd2 =47.37
5 = ∞ d5 = 4.0
6 = -11.061 d6 = 2.2 nd3 =1.84666 νd3 =23.78
7 = 11.061 d7 = 2.0
8 = -22.182 d8 = 3.1 nd4 =1.72916 νd4 =54.68
9 = -10.691 d9 = 0.54
10= 13.408 d10= 3.1 nd5 =1.788 νd5 =47.37
11= -60.966
f =18.46
(1)L/f = 1.212
(2)f1 /f = 0.72
(3)r1 /f = 0.57
(4)|φ2 | = 0.16
(5)|TW| = 0.03 °
(6)(ν3 +ν4 )/2=51.03 。

Example 1
r 1 = ∞ d 1 = 0.7 n d1 = 1.7682 ν d1 = 71.79
r 2 = ∞ d 2 = 6.1
r 3 = ∞ (aperture) d 3 = 1.9
r 4 = 10.484 d 4 = 3.5 n d2 = 1.788 ν d2 = 47.37
r 5 = ∞ d 5 = 4.0
r 6 = -11.061 d 6 = 2.2 n d3 = 1.84666 ν d3 = 23.78
r 7 = 11.061 d 7 = 2.0
r 8 = -22.182 d 8 = 3.1 n d4 = 1.72916 ν d4 = 54.68
r 9 = -10.691 d 9 = 0.54
r 10 = 13.408 d 10 = 3.1 n d5 = 1.788 ν d5 = 47.37
r 11 = -60.966
f = 18.46
(1) L / f = 1.212
(2) f 1 / f = 0.72
(3) r 1 / f = 0.57
(4) | φ 2 | = 0.16
(5) | TW | = 0.03 °
(6) (ν 3 + ν 4 ) /2=51.03.


実施例2
1 = ∞ d1 = 0.7 nd1 =1.7682 νd1 =71.79
2 = ∞ d2 = 6.1
3 = ∞(絞り) d3 = 4.0651
4 = 10.1651 d4 = 2.5831 nd2 =1.83481 νd2 =42.71
5 = 127.9514 d5 = 3.5
6 = -17.1888 d6 = 2.2339 nd3 =1.84666 νd3 =23.78
7 = 8.9058 d7 = 1.9
8 = -14.2003 d8 = 2.7002 nd4 =1.7725 νd4 =49.6
9 = -9.3 d9 = 0.9889
10= 11.2501 d10= 2.7031 nd5 =1.72916 νd5 =54.68
11= ∞
f =18.45
(1)L/f = 1.209
(2)f1 /f = 0.71
(3)r1 /f = 0.55
(4)|φ2 | = 0.15
(5)|TW| = 0.25 °
(6)(ν3 +ν4 )/2=52.14 。

Example 2
r 1 = ∞ d 1 = 0.7 n d1 = 1.7682 ν d1 = 71.79
r 2 = ∞ d 2 = 6.1
r 3 = ∞ (aperture) d 3 = 4.0651
r 4 = 10.1651 d 4 = 2.5831 n d2 = 1.83481 ν d2 = 42.71
r 5 = 127.9514 d 5 = 3.5
r 6 = -17.1888 d 6 = 2.2339 n d3 = 1.84666 ν d3 = 23.78
r 7 = 8.9058 d 7 = 1.9
r 8 = -14.2003 d 8 = 2.7002 n d4 = 1.7725 ν d4 = 49.6
r 9 = -9.3 d 9 = 0.9889
r 10 = 11.2501 d 10 = 2.7031 n d5 = 1.72916 ν d5 = 54.68
r 11 = ∞
f = 18.45
(1) L / f = 1.209
(2) f 1 / f = 0.71
(3) r 1 / f = 0.55
(4) | φ 2 | = 0.15
(5) | TW | = 0.25 °
(6) (ν 3 + ν 4 ) /2=52.14.


実施例3
1 = ∞ d1 = 0.7 nd1 =1.7682 νd1 =71.79
2 = ∞ d2 = 6.1
3 = ∞(絞り) d3 = 4.3292
4 = 13 d4 = 3.2 nd2 =1.883 νd2 =40.76
5 = ∞ d5 = 3.1
6 = -14.1245 d6 = 2.5574 nd3 =1.84666 νd3 =23.78
7 = 14.7074 d7 = 2.7
8 = -32.0904 d8 = 3.0913 nd4 =1.7725 νd4 =49.6
9 = -11.1301 d9 = 1
10= 13.4383 d10= 3.0947 nd5 =1.72916 νd5 =54.68
11= 63.8046
f =18.44
(1)L/f = 1.31
(2)f1 /f = 0.80
(3)r1 /f = 0.70
(4)|φ2 | = 0.12
(5)|TW| = 0.33 °
(6)(ν3 +ν4 )/2=52.14 。

Example 3
r 1 = ∞ d 1 = 0.7 n d1 = 1.7682 ν d1 = 71.79
r 2 = ∞ d 2 = 6.1
r 3 = ∞ (aperture) d 3 = 4.3292
r 4 = 13 d 4 = 3.2 n d2 = 1.883 ν d2 = 40.76
r 5 = ∞ d 5 = 3.1
r 6 = -14.1245 d 6 = 2.5574 n d3 = 1.84666 ν d3 = 23.78
r 7 = 14.7074 d 7 = 2.7
r 8 = -32.0904 d 8 = 3.0913 n d4 = 1.7725 ν d4 = 49.6
r 9 = -11.1301 d 9 = 1
r 10 = 13.4383 d 10 = 3.0947 n d5 = 1.72916 ν d5 = 54.68
r 11 = 63.8046
f = 18.44
(1) L / f = 1.31
(2) f 1 / f = 0.80
(3) r 1 / f = 0.70
(4) | φ 2 | = 0.12
(5) | TW | = 0.33 °
(6) (ν 3 + ν 4 ) /2=52.14.


実施例4
1 = ∞ d1 = 0.7 nd1 =1.7682 νd1 =71.79
2 = ∞ d2 = 6.1
3 = ∞(絞り) d3 = 1.9
4 = 8.2 d4 = 3.5 nd2 =1.7859 νd2 =44.2
5 = ∞ d5 = 2.7
6 = -10.2063 d6 = 2.2 nd3 =1.84666 νd3 =23.78
7 = 6.993 d7 = 2.3
8 = -10.7952 d8 = 2.8 nd4 =1.51823 νd4 =58.9
9 = -6.3724 d9 = 0.7
10= 10.8202 d10= 3 nd5 =1.7725 νd5 =49.6
11= -460.807
f =18.46
(1)L/f = 1.17
(2)f1 /f = 0.57
(3)r1 /f = 0.44
(4)|φ2 | = 0.22
(5)|TW| = 0.13 °
(6)(ν3 +ν4 )/2=54.25 。

Example 4
r 1 = ∞ d 1 = 0.7 n d1 = 1.7682 ν d1 = 71.79
r 2 = ∞ d 2 = 6.1
r 3 = ∞ (aperture) d 3 = 1.9
r 4 = 8.2 d 4 = 3.5 n d2 = 1.7859 ν d2 = 44.2
r 5 = ∞ d 5 = 2.7
r 6 = -10.2063 d 6 = 2.2 n d3 = 1.84666 ν d3 = 23.78
r 7 = 6.993 d 7 = 2.3
r 8 = -10.7952 d 8 = 2.8 n d4 = 1.51823 ν d4 = 58.9
r 9 = -6.3724 d 9 = 0.7
r 10 = 10.8202 d 10 = 3 n d5 = 1.7725 ν d5 = 49.6
r 11 = -460.807
f = 18.46
(1) L / f = 1.17
(2) f 1 / f = 0.57
(3) r 1 / f = 0.44
(4) | φ 2 | = 0.22
(5) | TW | = 0.13 °
(6) (ν 3 + ν 4 ) /2=54.25.

以上、本発明のカメラヘッド光学系の撮影レンズは、何れの実施例においても、各条件式(1)〜(6)を満足することにより、良好な性能が得られる。   As described above, the photographic lens of the camera head optical system of the present invention can obtain good performance by satisfying the conditional expressions (1) to (6) in any embodiment.

なお、各実施例において、撮影レンズ6の第1レンズL1の前には、平行平板のカバーガラス10が配置されているが、これはゴミ、塵等がカメラヘッド5内部へ侵入するのを防止するためのものである。また、カバーガラス10にサファイアを使用し、メタライズ後に半田付けして封止ユニットとすることで、オートクレーブにも対応することができる。この際、サファイアの屈折率が大きく反射率が高いため、カバーガラス10を図3〜図6に示すように傾けて配置することにより、カバーガラス10の面での反射光によるゴーストを防止するようにしている。あるいは、サファイア表面に反射防止コートを施しても効果的である。   In each of the embodiments, a parallel flat cover glass 10 is disposed in front of the first lens L1 of the photographing lens 6. This prevents dust, dust, and the like from entering the camera head 5. Is to do. Moreover, it can respond also to an autoclave by using sapphire for the cover glass 10 and soldering after metallization to form a sealing unit. At this time, since the refractive index of sapphire is large and the reflectance is high, the cover glass 10 is inclined as shown in FIGS. 3 to 6 to prevent ghosts caused by reflected light on the surface of the cover glass 10. I have to. Alternatively, it is effective to apply an antireflection coating to the sapphire surface.

一般に、上記実施例のように、撮影レンズ6と撮像部7が一体となっている内視鏡用カメラヘッド5の場合、図11に示すように、複数の内視鏡(硬性鏡)11 〜1n が選択的に接続される内視鏡テレビカメラシステムとなる。なお、以上の本発明のカメラヘッドでは、輝度シェーディングによる光量の低下を撮影レンズをテレセントリックとすることで改善を図っているが、より多くの仕様の異なる複数の内視鏡11 〜1n に対応するために、画像処理装置8のDSP(Digital Signal Processor)にて輝度平均化を行うようにしてもよい。 Generally, in the case of the endoscope camera head 5 in which the photographing lens 6 and the imaging unit 7 are integrated as in the above-described embodiment, a plurality of endoscopes (rigid endoscopes) 1 1 as shown in FIG. to 1 n the endoscope TV camera system is selectively connected. In the above camera head of the present invention have attempted to improve by a telecentric imaging lens a decrease in light intensity by the luminance shading, the more multiple the endoscope 1 1 to 1 n of different specifications In order to cope with this, luminance averaging may be performed by a DSP (Digital Signal Processor) of the image processing apparatus 8.

硬性内視鏡とテレビカメラシステムの構成を示す図である。It is a figure which shows the structure of a rigid endoscope and a television camera system. CCD相対感度の入射角特性を示す図である。It is a figure which shows the incident angle characteristic of CCD relative sensitivity. 本発明の実施例1のカメラヘッド光学系の断面図である。It is sectional drawing of the camera head optical system of Example 1 of this invention. 本発明の実施例2のカメラヘッド光学系の断面図である。It is sectional drawing of the camera head optical system of Example 2 of this invention. 本発明の実施例3のカメラヘッド光学系の断面図である。It is sectional drawing of the camera head optical system of Example 3 of this invention. 本発明の実施例4のカメラヘッド光学系の断面図である。It is sectional drawing of the camera head optical system of Example 4 of this invention. 本発明の実施例1のカメラヘッド光学系における撮影レンズの収差図である。FIG. 6 is an aberration diagram of the photographing lens in the camera head optical system according to Example 1 of the present invention. 本発明の実施例2のカメラヘッド光学系における撮影レンズの収差図である。It is an aberration diagram of the taking lens in the camera head optical system of Example 2 of the present invention. 本発明の実施例3のカメラヘッド光学系における撮影レンズの収差図である。It is an aberration diagram of the taking lens in the camera head optical system of Example 3 of the present invention. 本発明の実施例4のカメラヘッド光学系における撮影レンズの収差図である。It is an aberration diagram of the taking lens in the camera head optical system of Example 4 of the present invention. 複数の内視鏡と本発明のカメラヘッドを含む内視鏡テレビカメラシステムの構成を示す図である。It is a figure which shows the structure of the endoscope television camera system containing a some endoscope and the camera head of this invention.

符号の説明Explanation of symbols

1、11 〜1n …硬性鏡(内視鏡)
2…対物レンズ
3…リレーレンズ
4…接眼レンズ
5…カメラヘッド
6…撮影レンズ
7…撮像部
8…画像処理装置
9…モニターテレビ
10…カバーガラス
11…色分解プリズム
12R、12G、12B…CCD
S…絞り
L1…第1レンズ
L2…第2レンズ
L3…第3レンズ
L4…第4レンズ
1, 1 1 -1 n ... rigid endoscope (endoscope)
DESCRIPTION OF SYMBOLS 2 ... Objective lens 3 ... Relay lens 4 ... Eyepiece lens 5 ... Camera head 6 ... Shooting lens 7 ... Imaging part 8 ... Image processing device 9 ... Monitor television 10 ... Cover glass 11 ... Color separation prism 12R, 12G, 12B ... CCD
S ... Aperture L1 ... First lens L2 ... Second lens L3 ... Third lens L4 ... Fourth lens

Claims (4)

内視鏡の接眼部に取り付けて撮影を行う撮影レンズを備えたカメラヘッドにおいて、前記撮影レンズが、少なくとも物体側に凹面を向けたメニスカスレンズを持ち、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、正の屈折力を有する第4レンズとからなり、以下の条件(1)、(2)を満足することを特徴とするカメラヘッド。
(1) 1.1<L/f<1.4
(2) 0.55<f1 /f<0.85
ただし、Lは第1レンズ第1面から像面までの軸上空気換算長、fは撮影レンズ全系の焦点距離、f1 は第1レンズの焦点距離である。
In a camera head having a photographic lens that is attached to an eyepiece of an endoscope and shoots, the photographic lens has a meniscus lens having a concave surface at least on the object side, and has a positive refractive power in order from the object side. A first lens having a negative refractive power, a third lens having a positive refractive power, and a fourth lens having a positive refractive power. The following conditions (1), (2 ) Satisfying the above).
(1) 1.1 <L / f <1.4
(2) 0.55 <f 1 /f<0.85
Here, L is the axial air-converted length from the first surface of the first lens to the image surface, f is the focal length of the entire taking lens system, and f 1 is the focal length of the first lens.
前記撮影レンズがさらに以下の条件(3)、(4)を満足することを特徴とする請求項1記載のカメラヘッド。
(3) 0.4<r1 /f<0.75
(4) 0.1<|φ2 |<0.3
ただし、r1 は第1レンズの第1面の曲率半径、φ2 は第2レンズの屈折力(mm-1)である。
The camera head according to claim 1, wherein the photographing lens further satisfies the following conditions (3) and (4).
(3) 0.4 <r 1 /f<0.75
(4) 0.1 <| φ 2 | <0.3
Here, r 1 is the radius of curvature of the first surface of the first lens, and φ 2 is the refractive power (mm −1 ) of the second lens.
前記撮影レンズの撮像部が固体撮像素子を備え、前記固体撮像素子を光軸方向に繰り出すことによってピント調整を行うことを特徴とする請求項1又は2記載のカメラヘッド。 3. The camera head according to claim 1, wherein an imaging unit of the photographing lens includes a solid-state image sensor, and performs focus adjustment by extending the solid-state image sensor in an optical axis direction. 前記撮影レンズの撮像部は、複数のCCDを含む色分解プリズムユニットからなることを特徴とする請求項3記載のカメラヘッド。 4. The camera head according to claim 3, wherein the imaging unit of the photographing lens includes a color separation prism unit including a plurality of CCDs.
JP2004233152A 2004-08-10 2004-08-10 Camera head Expired - Fee Related JP4700304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233152A JP4700304B2 (en) 2004-08-10 2004-08-10 Camera head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233152A JP4700304B2 (en) 2004-08-10 2004-08-10 Camera head

Publications (2)

Publication Number Publication Date
JP2006053218A true JP2006053218A (en) 2006-02-23
JP4700304B2 JP4700304B2 (en) 2011-06-15

Family

ID=36030757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233152A Expired - Fee Related JP4700304B2 (en) 2004-08-10 2004-08-10 Camera head

Country Status (1)

Country Link
JP (1) JP4700304B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107616A (en) * 2006-10-26 2008-05-08 Kyocera Corp Imaging lens, optical module and mobile terminal
JP2009251520A (en) * 2008-04-10 2009-10-29 Olympus Medical Systems Corp Camera head optical system
JP2010039006A (en) * 2008-07-31 2010-02-18 Nidec Copal Corp Wide dynamic range imaging apparatus
US7808725B2 (en) 2007-10-23 2010-10-05 Olympus Medical Systems Corp. Taking optical system
KR101379482B1 (en) * 2012-08-08 2014-04-01 (주)이오시스템 Complex eyepiece
US8807854B2 (en) 2010-10-06 2014-08-19 Nikon Corporation Camera system, interchangeable lens and method of manufacturing interchangeable lens
JP2016209058A (en) * 2015-04-30 2016-12-15 ソニー・オリンパスメディカルソリューションズ株式会社 Camera head for endoscope
JP2017198893A (en) * 2016-04-28 2017-11-02 オリンパス株式会社 Camera head and endoscope imaging system
JP2018013579A (en) * 2016-07-20 2018-01-25 富士フイルム株式会社 Imaging lens and imaging device
CN107765410A (en) * 2017-09-21 2018-03-06 华中科技大学鄂州工业技术研究院 A kind of wide-angle zoom lens for endoscope
JP2020522024A (en) * 2017-06-02 2020-07-27 ディスペリックス オーイー Projection objective lens and waveguide display device
WO2021059763A1 (en) * 2019-09-25 2021-04-01 ソニー株式会社 Imaging optical system and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137812A (en) * 1988-11-18 1990-05-28 Olympus Optical Co Ltd Photographic lens
JPH03126006A (en) * 1989-10-12 1991-05-29 Olympus Optical Co Ltd Image pickup optical system
JPH07294827A (en) * 1994-04-20 1995-11-10 Olympus Optical Co Ltd Endoscope
JPH10133126A (en) * 1996-09-03 1998-05-22 Olympus Optical Co Ltd Endoscope image pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137812A (en) * 1988-11-18 1990-05-28 Olympus Optical Co Ltd Photographic lens
JPH03126006A (en) * 1989-10-12 1991-05-29 Olympus Optical Co Ltd Image pickup optical system
JPH07294827A (en) * 1994-04-20 1995-11-10 Olympus Optical Co Ltd Endoscope
JPH10133126A (en) * 1996-09-03 1998-05-22 Olympus Optical Co Ltd Endoscope image pickup device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107616A (en) * 2006-10-26 2008-05-08 Kyocera Corp Imaging lens, optical module and mobile terminal
US7808725B2 (en) 2007-10-23 2010-10-05 Olympus Medical Systems Corp. Taking optical system
JP2009251520A (en) * 2008-04-10 2009-10-29 Olympus Medical Systems Corp Camera head optical system
JP2010039006A (en) * 2008-07-31 2010-02-18 Nidec Copal Corp Wide dynamic range imaging apparatus
US8807854B2 (en) 2010-10-06 2014-08-19 Nikon Corporation Camera system, interchangeable lens and method of manufacturing interchangeable lens
KR101379482B1 (en) * 2012-08-08 2014-04-01 (주)이오시스템 Complex eyepiece
JP2016209058A (en) * 2015-04-30 2016-12-15 ソニー・オリンパスメディカルソリューションズ株式会社 Camera head for endoscope
US10456017B2 (en) 2015-04-30 2019-10-29 Sony Olympus Medical Solutions Inc. Endoscopic camera head and endoscopic device
JP2017198893A (en) * 2016-04-28 2017-11-02 オリンパス株式会社 Camera head and endoscope imaging system
JP2018013579A (en) * 2016-07-20 2018-01-25 富士フイルム株式会社 Imaging lens and imaging device
JP2020522024A (en) * 2017-06-02 2020-07-27 ディスペリックス オーイー Projection objective lens and waveguide display device
CN107765410A (en) * 2017-09-21 2018-03-06 华中科技大学鄂州工业技术研究院 A kind of wide-angle zoom lens for endoscope
WO2021059763A1 (en) * 2019-09-25 2021-04-01 ソニー株式会社 Imaging optical system and imaging device
JP7501538B2 (en) 2019-09-25 2024-06-18 ソニーグループ株式会社 Imaging optical system and imaging device

Also Published As

Publication number Publication date
JP4700304B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
KR101228794B1 (en) Imaging lens, imaging device and portable terminal with the imaging device
JP4940704B2 (en) IMAGING LENS, IMAGING DEVICE, AND PORTABLE TERMINAL HAVING THE IMAGING DEVICE
EP2414883B1 (en) Wide angle lens and imaging device
JP5369867B2 (en) Wide angle lens and imaging device
JP4403672B2 (en) Shooting lens
US8830298B2 (en) Wide-angle lens and imaging apparatus using the same
KR100954635B1 (en) Image pickup lens, image pickup unit and portable terminal
JP4032667B2 (en) Shooting lens
EP2336815B1 (en) Retrofocus Objective Lens System with four lenses and Imaging Apparatus
JP3072988B1 (en) Imaging device
JP4453276B2 (en) Imaging lens, imaging unit, and portable terminal equipped with the same
JP4032668B2 (en) Shooting lens
JP2008040033A (en) Wide-angle lens
CN107430260B (en) Objective optical system for strabismus and endoscope for strabismus having the same
JP4981466B2 (en) Optical system and imaging apparatus having the same
JP2008116794A (en) Imaging lens
US10948683B2 (en) Imaging lens, camera, and portable information terminal device
JP4700304B2 (en) Camera head
JP2010145828A (en) Imaging lens
JP5000577B2 (en) Camera head optical system
JP2010210883A (en) Imaging lens, camera and personal digital assistance device
JP5580687B2 (en) Wide angle optical system and imaging apparatus using the same
JP3788133B2 (en) Shooting lens
JPH07253536A (en) Television image photographic device
JP2002162561A (en) Photographic lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees