JP2006052793A - Supporting device and processing machine - Google Patents

Supporting device and processing machine Download PDF

Info

Publication number
JP2006052793A
JP2006052793A JP2004235021A JP2004235021A JP2006052793A JP 2006052793 A JP2006052793 A JP 2006052793A JP 2004235021 A JP2004235021 A JP 2004235021A JP 2004235021 A JP2004235021 A JP 2004235021A JP 2006052793 A JP2006052793 A JP 2006052793A
Authority
JP
Japan
Prior art keywords
static pressure
support
hydrostatic
transmission medium
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004235021A
Other languages
Japanese (ja)
Other versions
JP4529127B2 (en
Inventor
Hide Hosoe
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004235021A priority Critical patent/JP4529127B2/en
Publication of JP2006052793A publication Critical patent/JP2006052793A/en
Application granted granted Critical
Publication of JP4529127B2 publication Critical patent/JP4529127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Units (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting device capable of suppressing axial line inclination of a static pressure rotation axis in simple constitution and to provide a processing machine having the supporting device. <P>SOLUTION: Force F1 applied to a first static pressure surface SP1 and force F2 applied to a second static surface SP2 are made F1>F2, a value obtained by multiplying the difference between F1 and F2 by the distance to the center of gravity becomes restoring force for conducting inclination correction acting clockwise as moment to a static pressure rotation axis SRS. If the inclination of the axial line is large, difference between gaps and pressure difference between pressure transmission media become large, and the restoring force is increased. Even in a left half part of a lower circular plate LC, a similar phenomenon is produced (the lower surface of the lower circular plate LC is the first static pressure surface and its upper surface is the second static pressure surface), and since the moment as the restoring force becomes twice, automatic correction of the inclination of the axial line is made possible by high restoring force. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、静圧回転軸を備えた支持装置及びそれを有する加工機に関し、特に圧力伝達媒体を用いて静圧回転軸を回転可能に支持する支持装置及びそれを有する加工機に関する。   The present invention relates to a support device having a static pressure rotating shaft and a processing machine having the same, and more particularly to a support device that rotatably supports a static pressure rotating shaft using a pressure transmission medium and a processing machine having the support device.

光学素子やその成形用型に対して、切削加工や研磨加工等を施すことができる加工機が知られている。かかる加工機においては、ワークを支持する作業テーブルを高精度に回転させるために静圧回転軸を用いた支持装置が設けられている。ここで、光学素子等に高精度な加工を行うためには、静圧回転軸の軸線の傾きや軸線のズレを抑えることが重要となる。これに対し、非特許文献1には、半径方向の力と軸線方向の力とを支持することができ、且つ軸線傾きを自律的に補正することができる流体静圧回転ベアリングが開示されている。
「A hydrostatic rotary bearing with angled surface self−compensation」 Precision Engineering 27(2003) p.125−139
2. Description of the Related Art Processing machines capable of performing cutting processing, polishing processing, and the like on optical elements and molds for forming the same are known. In such a processing machine, a support device using a static pressure rotating shaft is provided in order to rotate a work table supporting a workpiece with high accuracy. Here, in order to perform high-precision processing on an optical element or the like, it is important to suppress the inclination of the axis of the hydrostatic rotating shaft and the deviation of the axis. On the other hand, Non-Patent Document 1 discloses a hydrostatic rotary bearing that can support a radial force and an axial force and can autonomously correct an axial inclination. .
“A hydrostatic bearing with an angled surface self-compensation” Precision Engineering 27 (2003) p. 125-139

ところで、非特許文献1の流体静圧回転ベアリングは、一対のテーパ静圧面に対して圧力伝達媒体の圧力を局所的に変化させることで、半径方向の力と軸線方向の力とを支持し、或いは軸線傾きを自律的に補正している。しかるに、非特許文献1の流体静圧回転ベアリングは、軸線傾き時に、静圧面への圧力伝達媒体の流量制限を変更しないため、静圧面に生じる静圧力の差が小さく、装置が大型である割には軸線傾きの自律補正力が弱いという問題がある。   By the way, the hydrostatic rotary bearing of Non-Patent Document 1 supports the radial force and the axial force by locally changing the pressure of the pressure transmission medium with respect to the pair of tapered hydrostatic surfaces. Alternatively, the axis inclination is corrected autonomously. However, the hydrostatic rotary bearing of Non-Patent Document 1 does not change the flow rate restriction of the pressure transmission medium to the static pressure surface when the axis is inclined, so the difference in static pressure generated on the static pressure surface is small and the device is large. Has a problem that the self-correction force of the axis inclination is weak.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、コンパクトな構成ながら静圧回転軸の軸線傾きを抑制できる支持装置及びそれを有する加工機を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a support device that can suppress the inclination of the axis of the static pressure rotating shaft while having a compact configuration, and a processing machine having the support device.

請求項1に記載の支持装置は、
第1の支持面と第2の支持面とを備える固定部材と、
前記第1の支持面に対向する第1の静圧面と、前記第2の支持面に対向する第2の静圧面とを備え、前記固定部材に対して圧力伝達媒体により回転可能に支持される静圧回転軸と、を有し、
前記第1の静圧面と前記第2の静圧面とは、前記静圧回転軸の回転軸線の方向において異なる位置で、表裏の関係で設けられ、
前記圧力伝達媒体が、供給側から排出側に移動する間に分けられて、分けられた前記圧力伝達媒体が、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間を、それぞれ移動するように構成されており、
前記静圧回転軸の回転軸線を通る装置全体の断面形状を、前記静圧回転軸の回転軸線を境界として2分割し、その片方の断面形状を見たときに、
前記第1の静圧面と前記第1の支持面との間において前記圧力伝達媒体が移動する方向と、前記第2の静圧面と前記第2の支持面との間において前記圧力伝達媒体が移動する方向とは、共に前記静圧回転軸の回転軸線に近い側から遠ざかる側への方向であり、前記第1の静圧面と前記第1の支持面との間において、前記圧力伝達媒体が前記第1の静圧面と前記第1の支持面とが対向する一端側から他端側へ移動し、また前記第2の静圧面と前記第2の支持面との間において、前記圧力伝達媒体が前記第2の静圧面と前記第2の支持面とが対向する一端側から他端側に移動するように構成されており、
前記固定部材に対し、前記静圧回転軸の回転軸線が傾いた場合に、
前記第1の静圧面と前記第1の支持面とが対向する前記一端側よりも前記他端側において、前記第1の静圧面と前記第1の支持面との間隔(スキマともいう)が小さくなると共に、前記第1の静圧面が前記圧力伝達媒体によって受ける圧力が大きくなり、
更に、前記第2の静圧面と前記第2の支持面とが対向する前記一端側よりも前記他端側において、前記第2の静圧面と前記第2の支持面との間隔が大きくなると共に、前記第2の静圧面が前記圧力伝達媒体によって受ける圧力が小さくなるよう構成されたことを特徴とする。
The support device according to claim 1 comprises:
A fixing member comprising a first support surface and a second support surface;
A first hydrostatic surface opposed to the first support surface; and a second hydrostatic surface opposed to the second support surface, and rotatably supported by a pressure transmission medium with respect to the fixing member. A static pressure rotating shaft,
The first static pressure surface and the second static pressure surface are provided in a front / back relationship at different positions in the direction of the rotation axis of the static pressure rotation shaft,
The pressure transmission medium is divided while moving from the supply side to the discharge side, and the divided pressure transmission medium is divided between the first static pressure surface and the first support surface, and the second. Between the static pressure surface and the second support surface, respectively,
When the sectional shape of the entire device passing through the rotational axis of the static pressure rotating shaft is divided into two with the rotational axis of the static pressure rotating shaft as a boundary, and one of the sectional shapes is viewed,
The direction of movement of the pressure transmission medium between the first static pressure surface and the first support surface and the movement of the pressure transmission medium between the second static pressure surface and the second support surface. Both directions are directions from the side close to the rotation axis of the static pressure rotary shaft to the side away from the rotary axis, and the pressure transmission medium is between the first static pressure surface and the first support surface. The first static pressure surface and the first support surface move from one end side to the other end side, and the pressure transmission medium is interposed between the second static pressure surface and the second support surface. The second static pressure surface and the second support surface are configured to move from one end side to the other end side facing each other,
When the rotation axis of the static pressure rotation axis is inclined with respect to the fixing member,
An interval (also referred to as a gap) between the first static pressure surface and the first support surface is closer to the other end side than the one end side where the first static pressure surface and the first support surface face each other. As the pressure decreases, the pressure that the first hydrostatic surface receives by the pressure transmission medium increases,
Further, the gap between the second static pressure surface and the second support surface is larger on the other end side than the one end side where the second static pressure surface and the second support surface face each other. The second static pressure surface is configured to reduce the pressure received by the pressure transmission medium.

「静圧面」及び「支持面」は、単一の面であっても複数の面から形成されていても良く、更には単一の面の一部から構成されていても良い。例えば、静圧面を備えた部材を単純な円板とした場合、かかる円板の軸線が傾いたときに、水平面と、円板の上面とが、それぞれ円板の軸線を横切る位置で交差することにより得られる線分を境界にして、水平面より上方に位置する上面を「第1の静圧面」とでき、また水平面と、円板の下面とが、それぞれ円板の軸線を横切る位置で交差することにより得られる線分を境界にして、水平面より上方に位置する下面を「第2の静圧面」とできる。ここで、前記圧力伝達媒体が前記円板の上下面に沿って半径方向内側から外側に向かって移動するものとした場合には、前記一端側は前記円板の中心側、前記他端側は前記円板の外周側となる。一方、前記圧力伝達媒体が前記円板の上下面に沿って半径方向外側から内側に向かって移動するものとした場合には、前記一端側は前記円板の外周側、前記他端側は前記円板の中心側となる。   The “static pressure surface” and the “support surface” may be formed of a single surface or a plurality of surfaces, and may be formed of a part of a single surface. For example, when a member having a static pressure surface is a simple disk, when the axis of the disk is inclined, the horizontal plane and the upper surface of the disk intersect each other at a position crossing the axis of the disk. The upper surface located above the horizontal plane is defined as the “first hydrostatic surface” with the line segment obtained by the above as a boundary, and the horizontal plane and the lower surface of the disk intersect each other at a position crossing the axis of the disk. The lower surface located above the horizontal plane with the line segment obtained as a boundary can be defined as a “second hydrostatic surface”. Here, when the pressure transmission medium moves from the radially inner side to the outer side along the upper and lower surfaces of the disc, the one end side is the center side of the disc and the other end side is It becomes the outer peripheral side of the disk. On the other hand, when the pressure transmission medium moves from the radially outer side to the inner side along the upper and lower surfaces of the disc, the one end side is the outer peripheral side of the disc, and the other end side is the It becomes the center side of the disk.

同様にして、静圧面を備えた円板の軸線が傾いたときに、水平面と、円板の上面とが、それぞれ円板の軸線を横切る位置で交差することにより得られる線分を境界にして、水平面より下方に位置する上面を「第2の静圧面」とでき、また水平面と、円板の下面とが、それぞれ円板の軸線を横切る位置で交差することにより得られる線分を境界にして、水平面より下方に位置する下面を「第1の静圧面」とできることは言うまでもない。   Similarly, when the axis of a disc with a static pressure surface is tilted, the horizontal plane and the top surface of the disc intersect with each other at a position that intersects the axis of the disc. The upper surface located below the horizontal plane can be defined as the “second hydrostatic surface”, and the line segment obtained by intersecting the horizontal plane and the lower surface of the disk at a position crossing the axis of the disk is used as a boundary. Needless to say, the lower surface positioned below the horizontal plane can be referred to as the “first hydrostatic surface”.

更に、「表裏の関係」とは、前記静圧回転軸の回転軸線を含む断面をとったとき、前記断面上において、前記第1の静圧面から遠ざかる方向に引いた法線と、前記第2の静圧面から遠ざかる方向に引いた法線とが互いに交差しない関係を言う。   Furthermore, the “front-back relationship” means that when a cross section including the rotation axis of the static pressure rotating shaft is taken, a normal line drawn in a direction away from the first static pressure surface on the cross section, and the second The normal line drawn in the direction away from the static pressure surface of each other does not intersect each other.

本発明の静圧回転軸を備えた支持装置の作用効果を、図面を参照しつつ比較例と比較して説明する。図1は、比較例にかかる支持装置の断面図であり、図1(a)は、静圧回転軸に軸線傾きがない状態を示し、図1(b)は、静圧回転軸に軸線傾きがある状態を示す。図1(a)において、静圧回転軸SRSは、上部円板部UCと下部円板部LCとを、大径シャフトLSにより連結した構成を有している。上部円板部UCが、その上面にワーク(不図示)を支持する旋回テーブルとなる。   The effects of the support device having the static pressure rotating shaft of the present invention will be described in comparison with a comparative example with reference to the drawings. FIG. 1 is a cross-sectional view of a support device according to a comparative example, in which FIG. 1 (a) shows a state in which there is no axial inclination on the static pressure rotating shaft, and FIG. 1 (b) shows an axial inclination on the static pressure rotating shaft. Indicates that there is a state. In FIG. 1A, the static pressure rotating shaft SRS has a configuration in which an upper disc portion UC and a lower disc portion LC are connected by a large-diameter shaft LS. The upper disk portion UC serves as a turning table that supports a work (not shown) on its upper surface.

静圧回転軸SRSの一部を包囲するようにして、中空円筒状の固定部材FMが設けられている。固定部材FMは、中央開口CAを形成した固定円板FCを有している。固定円板FCの中央開口CA内に、静圧回転軸SRSの大径シャフトLSがスキマを介在させた状態で挿通されており、更に上部円板部UCの下面が、固定円板FCの上面にスキマを介在させた状態で対向し、且つ下部円板部LCの上面が、固定円板FCの下面にスキマを介在させた状態で対向している。   A hollow cylindrical fixing member FM is provided so as to surround a part of the static pressure rotating shaft SRS. The fixing member FM has a fixed disk FC in which a central opening CA is formed. The large-diameter shaft LS of the static pressure rotating shaft SRS is inserted in the center opening CA of the fixed disc FC with a gap interposed therebetween, and the lower surface of the upper disc portion UC is the upper surface of the fixed disc FC. And the upper surface of the lower disk part LC is opposed to the lower surface of the fixed disk FC with the gap interposed therebetween.

固定円板FC内には、圧力伝達媒体の外部供給源に接続された配管DPが形成されており、配管DPの先端はオリフィスORとなって通過する圧力伝達媒体を絞っている。オリフィスORは、固定円板FCの上面及び下面、並びに中央開口CA内に開口するようにして、周方向に等間隔で配置されている。従って、オリフィスORから吐出された圧力伝達媒体を介して、静圧回転軸SRSは固定部材FMに対して非接触で支持されるようになっており、不図示のモータにより駆動されることで、静圧回転軸SRSは回転可能となっている。   A pipe DP connected to an external supply source of the pressure transmission medium is formed in the fixed disk FC, and the tip of the pipe DP serves as an orifice OR to restrict the pressure transmission medium passing therethrough. The orifices OR are arranged at equal intervals in the circumferential direction so as to open in the upper and lower surfaces of the fixed disk FC and the central opening CA. Accordingly, the static pressure rotary shaft SRS is supported in a non-contact manner with respect to the fixed member FM via the pressure transmission medium discharged from the orifice OR, and is driven by a motor (not shown). The static pressure rotating shaft SRS is rotatable.

ここで、静圧回転軸SRSが、その軸線が傾く方向(図1(b)の断面で反時計回り方向)に力を受けたとすると、上部円板部UCと下部円板部LCとは、固定円板FCに対して傾くこととなる。より具体的には、図1(b)に示す断面で、例えば上部円板部UCと下部円板部LCとが左下がりに傾いたとすると、上部円板部UCと固定円板FCとのスキマは、左方で小さくなり且つ右方で大きくなり、これとは逆に下部円板部LCと固定円板FCとのスキマは、右方で小さくなり且つ左方で大きくなる。   Here, if the static pressure rotation shaft SRS receives a force in a direction in which the axis is inclined (counterclockwise direction in the cross section of FIG. 1B), the upper disc portion UC and the lower disc portion LC are: It will be inclined with respect to the fixed disk FC. More specifically, in the cross section shown in FIG. 1B, if, for example, the upper disc portion UC and the lower disc portion LC are inclined to the lower left, a gap between the upper disc portion UC and the fixed disc FC is obtained. Is smaller on the left and larger on the right, and conversely, the gap between the lower disk portion LC and the fixed disk FC is smaller on the right and larger on the left.

かかる場合、固定円板FC上面の左側のオリフィスORに対して上部円板部UCが接近することで、その近傍における圧力伝達媒体の圧力が増大し、右側のオリフィスORに対して上部円板部UCが遠ざかることで、その近傍における圧力伝達媒体の圧力が減少するので、これを利用し傾き復元力を得るようにしている。ところが、左側の上部円板部UCと固定円板FCとの間においても、傾きにより広いスキマと狭いスキマとが生じるため、オリフィスORから供給された殆どの圧力伝達媒体は広いスキマの方に流れてしまうので、狭いスキマにおける圧力伝達媒体の圧力は、実際にはあまり高くならない。より具体的には、上部円板部UCの左方部は、圧力伝達媒体の圧力によりFULの力を受け、一方、上部円板部UCの右方部は、圧力伝達媒体の圧力によりFURの力を受けることになるが、上述の作用によりFULがあまり大きくならずFUL≒FURとなって、FURに対するFULの差があまり大きくならないから、結果として十分な復元力を得ることができないという問題がある。   In such a case, the upper disk portion UC approaches the left-side orifice OR on the upper surface of the fixed disk FC, whereby the pressure of the pressure transmission medium in the vicinity thereof increases, and the upper-plate portion of the right-side orifice OR is increased. As the UC moves away, the pressure of the pressure transmission medium in the vicinity of the UC decreases, and this is used to obtain an inclination restoring force. However, between the left upper disk portion UC and the fixed disk FC, a wide gap and a narrow gap are generated due to the inclination, so that most of the pressure transmission medium supplied from the orifice OR flows toward the wide gap. As a result, the pressure of the pressure transmission medium in a narrow gap is not so high in practice. More specifically, the left side portion of the upper disc portion UC receives FUL force due to the pressure of the pressure transmission medium, while the right side portion of the upper disc portion UC has FUR due to the pressure of the pressure transmission medium. Although the FUL is not so large due to the above-described action, FUL≈FUR, and the difference in FUL with respect to the FUR does not become so large. As a result, there is a problem that sufficient restoring force cannot be obtained. is there.

更に、固定円板FC下面の左側のオリフィスORに対して下部円板部LCが遠ざかることで、その近傍における圧力伝達媒体の圧力が減少し、右側のオリフィスORに対して下部円板部LCが接近することで、その近傍における圧力伝達媒体の圧力が増大するので、これを利用し傾き復元力を得るようにしている。かかる場合も同様であり、下部円板部LCの左方部は、圧力伝達媒体の圧力によりFLLの力を受け、一方、下部円板部LCの右方部は、圧力伝達媒体の圧力によりFLRの力を受けることになるが、上述の作用によりFLL≒FLRとなって、FLRに対するFLLの差があまり大きくならないから、結果として十分な復元力を得ることができないという問題がある。   Further, the lower disk part LC moves away from the left orifice OR on the lower surface of the fixed disk FC, so that the pressure of the pressure transmission medium in the vicinity thereof decreases, and the lower disk part LC moves to the right orifice OR. By approaching, the pressure of the pressure transmission medium in the vicinity thereof increases, and this is used to obtain an inclination restoring force. The same applies to the case where the left part of the lower disk part LC is subjected to FLL force by the pressure of the pressure transmission medium, while the right part of the lower disk part LC is FLR due to the pressure of the pressure transmission medium. However, due to the above-described action, FLL≈FLR, and the difference in FLL with respect to FLR does not increase so much. As a result, there is a problem that a sufficient restoring force cannot be obtained.

このように、比較例にかかる静圧回転軸SRSは、軸線が傾いたときに十分な復元力を発揮できないことから、不安定な構成であるといえ、より高い復元力を得るためには、静圧面積を増大するなどの対策が必要となり、それにより構成の大型化を招くこととなる。   Thus, since the static pressure rotating shaft SRS according to the comparative example cannot exhibit a sufficient restoring force when the axis is inclined, it can be said that it is an unstable configuration, and in order to obtain a higher restoring force, Measures such as increasing the static pressure area are required, thereby increasing the size of the configuration.

図2は、本発明にかかる静圧回転軸を備えた支持装置の一例を示す断面図である。図2において、静圧回転軸SRSは、上部円板部UCと下部円板部LCとを、大径シャフトLSにより連結した構成を有している。上部円板部UCが、その上面にワーク(不図示)を支持する旋回テーブルとなる。   FIG. 2 is a cross-sectional view showing an example of a support device having a static pressure rotating shaft according to the present invention. In FIG. 2, the static pressure rotating shaft SRS has a configuration in which an upper disk portion UC and a lower disk portion LC are connected by a large-diameter shaft LS. The upper disk portion UC serves as a turning table that supports a work (not shown) on its upper surface.

静圧回転軸SRSの一部を包囲するようにして、中空円筒状の固定部材FMが設けられている。固定部材FMは、上面に開放した中央開口CAと、中央開口CAに連通する円盤状空間CSとを形成しており、中央開口CA内に静圧回転軸SRSの大径シャフトLSがスキマを介在させた状態で挿通され、且つ円盤状空間CS内においてスキマを介在させた状態で、下部円板部LC(静圧面を形成した部材)が配置されている。大径シャフトLSと中央開口CAとの間は、O−リングOGにより封止されている。   A hollow cylindrical fixing member FM is provided so as to surround a part of the static pressure rotating shaft SRS. The fixing member FM forms a central opening CA opened on the upper surface and a disk-shaped space CS communicating with the central opening CA, and a large-diameter shaft LS of the static pressure rotating shaft SRS is interposed in the central opening CA. The lower disc part LC (member forming a static pressure surface) is arranged in a state where the disc is inserted in a state where the gap is inserted and a gap is interposed in the disc-like space CS. A space between the large-diameter shaft LS and the central opening CA is sealed with an O-ring OG.

固定部材FMの下部に設けられた供給孔SAを介して、圧力伝達媒体が供給されるようになっており、供給された圧力伝達媒体は、図2に示すように、円盤状空間CS内において、静圧回転軸SRSの底面と固定部材FMの内表面との間を移動し、更に下部円板部LCの下面と、それに対向する固定部材FMの面との間を半径方向に移動して、下部円板部LCの周縁から排出されるようになっている。又、下部円板部LCに形成された軸線方向孔APを通過した圧力伝達媒体は、下部円板部LCの上面と、それに対向する固定部材FMの面との間を半径方向に移動して、下部円板部LCの周縁から排出されるようになっている。   A pressure transmission medium is supplied through a supply hole SA provided in the lower part of the fixing member FM, and the supplied pressure transmission medium is in the disc-shaped space CS as shown in FIG. , Moving between the bottom surface of the static pressure rotating shaft SRS and the inner surface of the fixing member FM, and further moving in the radial direction between the lower surface of the lower disk portion LC and the surface of the fixing member FM facing it. The liquid is discharged from the peripheral edge of the lower disk part LC. In addition, the pressure transmission medium that has passed through the axial hole AP formed in the lower disk portion LC moves in the radial direction between the upper surface of the lower disk portion LC and the surface of the fixing member FM facing the upper surface. The liquid is discharged from the peripheral edge of the lower disk part LC.

図3は、図2の矢印IIIで示す部位を拡大して示す図であり、図3(a)は、静圧回転軸SRSに軸線傾きがない状態を示し、図3(b)は、静圧回転軸SRSに軸線傾きがある状態を示している。尚、図3において、圧力伝達媒体の流れを矢印で示しているが、太さを圧力、長さを流速として模式的に示している。図3に示すように、下部円板部LCの上下面に対向する固定部材FMの面には、それぞれ溝UG、LGが複数本等角度で放射状に形成されているが、傾き補正を実現するためは必ずしも設ける必要はない。   3 is an enlarged view of the part indicated by the arrow III in FIG. 2, FIG. 3 (a) shows a state in which the static pressure rotation axis SRS has no axis inclination, and FIG. A state in which the pressure rotation axis SRS has an axis inclination is shown. In FIG. 3, the flow of the pressure transmission medium is indicated by an arrow, but the thickness is schematically shown as pressure and the length is indicated as a flow velocity. As shown in FIG. 3, a plurality of grooves UG and LG are formed radially at equal angles on the surface of the fixing member FM facing the upper and lower surfaces of the lower disk portion LC, but the inclination correction is realized. Therefore, it is not always necessary to provide it.

本発明にかかる支持装置は、固定オリフィスを有していない。供給孔SA(図2)から供給された圧力伝達媒体は、上述したように、下部円板部LCの右半部上面(第1の静圧面SP1とする)と、それに対向する固定部材FMの面(第1の支持面HP1とする)との間、及び下部円板部LCの右半部下面(第2の静圧面SP2とする)と、それに対向する固定部材FMの面(第2の支持面HP2とする)との間を半径方向に移動するが、図3(a)に示すように、第1の静圧面SP1と第1の支持面HP1との間を通過する圧力伝達媒体の圧力・流量と、第2の静圧面SP2と第2の支持面HP2との間を通過する圧力伝達媒体の圧力・流量はほぼ等しくなるので、第1の静圧面SP1に作用する力F1と第2の静圧面SP2に作用する力F2は略等しくなり(厳密には、静圧回転軸SRSとワークの自重分だけF2が大きくなる)、それらの間のスキマが略等しくなるように、下部円板部LCは、円盤状空間CS内に非接触状態で保持され、更に不図示のモータにより駆動されることで、静圧回転軸SRSは回転可能となっている。   The support device according to the present invention does not have a fixed orifice. As described above, the pressure transmission medium supplied from the supply hole SA (FIG. 2) includes the upper surface of the right half part of the lower disk part LC (referred to as the first static pressure surface SP1) and the fixing member FM opposed thereto. Between the surface (referred to as the first support surface HP1), the lower surface of the right half of the lower disc portion LC (referred to as the second hydrostatic surface SP2), and the surface of the fixing member FM (the second static pressure surface SP2) facing it. 3), as shown in FIG. 3A, the pressure transmission medium passing between the first hydrostatic surface SP1 and the first support surface HP1. Since the pressure / flow rate and the pressure / flow rate of the pressure transmission medium passing between the second hydrostatic surface SP2 and the second support surface HP2 are substantially equal, the force F1 acting on the first hydrostatic surface SP1 and the first The force F2 acting on the second static pressure surface SP2 is substantially equal (strictly speaking, the static pressure rotation axis SRS and the workpiece The lower disc portion LC is held in a non-contact state in the disc-like space CS and further driven by a motor (not shown) so that the clearance between them becomes substantially equal. Thus, the static pressure rotating shaft SRS is rotatable.

ここで、静圧回転軸SRSが、その軸線が傾く方向(図3(b)の断面で反時計回り方向)に力を受けたとすると、下部円板部LCは、円盤状空間CS内で傾くこととなる。ここでは、図3(b)に示す断面で、第1の静圧面SP1と第1の支持面HP1との間の供給端のスキマ(圧力伝達媒体の上流側における第1の支持面HP1の端部と第1の静圧面SP1とのスキマ)Δ1に対し、第1の静圧面SP1と第1の支持面HP1との間の排出端のスキマ(圧力伝達媒体の下流側における第1の静圧面SP1の端部と第1の支持面HP1とのスキマ)Δ3が小さくなる(Δ1>Δ3)。一方、第2の静圧面SP2と第2の支持面HP2との間の供給端のスキマ(圧力伝達媒体の上流側における第2の支持面HP2の端部と第2の静圧面SP2とのスキマ)Δ2に対し、第2の静圧面SP2と第2の支持面HP2との間の排出端のスキマ(圧力伝達媒体の下流側における第2の静圧面SP2の端部と第2の支持面HP2とのスキマ)Δ4が大きくなる(Δ2<Δ4)。尚、ここではΔ2,Δ3がそれぞれ最小スキマとなる。   Here, if the static pressure rotation shaft SRS receives a force in the direction in which the axis is inclined (counterclockwise direction in the cross section of FIG. 3B), the lower disc portion LC is inclined in the disc-like space CS. It will be. Here, in the cross section shown in FIG. 3B, a gap at the supply end between the first hydrostatic surface SP1 and the first support surface HP1 (the end of the first support surface HP1 on the upstream side of the pressure transmission medium). And a first static pressure surface on the downstream side of the pressure transmission medium between the first static pressure surface SP1 and the first support surface HP1. The clearance Δ3 between the end portion of SP1 and the first support surface HP1 becomes smaller (Δ1> Δ3). On the other hand, a clearance at the supply end between the second static pressure surface SP2 and the second support surface HP2 (a clearance between the end portion of the second support surface HP2 on the upstream side of the pressure transmission medium and the second static pressure surface SP2). ) With respect to Δ2, the clearance at the discharge end between the second hydrostatic surface SP2 and the second support surface HP2 (the end portion of the second hydrostatic surface SP2 and the second support surface HP2 on the downstream side of the pressure transmission medium). ) (4) increases (Δ2 <Δ4). Here, Δ2 and Δ3 are minimum clearances, respectively.

このとき、幾何学的関係から、Δ1<Δ2となるが、この部分は傾き中心に近いためΔ1≒Δ2となり、第1の静圧面SP1と第1の支持面HP1との間のスキマに対する供給端(ここでは一端)と、第2の静圧面SP2と第2の支持面HP2との間のスキマに対する供給端(ここでは一端)とで、圧力伝達媒体の流速・圧力は略等しくなる。しかし、前者の場合は、その排出端(ここでは他端)のスキマΔ3がΔ1よりも小さく絞られているため、スキマにおける圧力伝達媒体の流量が制限され、圧力伝達媒体の流速は増大し、圧力も増大する。一方、後者においては、その排出端(ここでは他端)のスキマΔ4がΔ2よりも大きくなるよう開いているため、スキマに入った圧力伝達媒体が流れやすく、圧力伝達媒体の流速は低下し、圧力も減少する。   At this time, Δ1 <Δ2 from the geometrical relationship, but since this portion is close to the center of inclination, Δ1≈Δ2, and the supply end for the gap between the first hydrostatic surface SP1 and the first support surface HP1. At one end (here, one end) and a supply end (here, one end) to the gap between the second hydrostatic surface SP2 and the second support surface HP2, the flow velocity and pressure of the pressure transmission medium are substantially equal. However, in the former case, since the clearance Δ3 at the discharge end (here, the other end) is narrowed to be smaller than Δ1, the flow rate of the pressure transmission medium in the clearance is limited, and the flow rate of the pressure transmission medium increases. The pressure also increases. On the other hand, in the latter, the clearance Δ4 at the discharge end (here, the other end) is opened so as to be larger than Δ2, so that the pressure transmission medium entering the clearance is easy to flow, and the flow rate of the pressure transmission medium is reduced. The pressure also decreases.

ここで、第1の静圧面SP1が受ける力F1は、第1の静圧面SP1と第1の支持面HP1との間に供給された圧力伝達媒体の圧力に面積を乗じた値であり、第2の静圧面SP2が受ける力F2は、第2の静圧面SP2と第2の支持面HP2との間に供給された圧力伝達媒体の圧力に面積を乗じた値であるから、F1>F2となることは明らかであり、その差に回転軸線からの距離を乗じた値が、静圧回転軸SRSに時計回りの方向にモーメントとして傾き補正を行うための復元力となる。軸線の傾きが大きくなれば、スキマの差も大きくなることから圧力伝達媒体の圧力差も大きくなり、かかる復元力は増大することとなる。以上の作用は、図3で図示していない、下部円板部LCの左半部でも同様に生じており(但し下部円板部LCの下面が上述の第1静圧面に対応し、その上面が上述の第2静圧面に対応する)、従って復元力としてのモーメントは2倍となる。尚、図2,3において時計回りに軸線が傾いたときは、反対の作用により逆方向のモーメントが生じることは言うまでもない。以上より、本発明の支持装置は、絞り効果によって剛性が向上することにより、同じ剛性を得るための装置としては、より小型化を図りつつも、高い復元力により静圧回転軸の軸線の傾きを自律補正可能であり、安定した回転を実現可能である。又、本発明によれば、比較例に用いているオリフィスを不要とできるので、精密な細孔の加工を省略でき、部品点数も削減されて、より低コストな支持装置を提供できる。以上より、本発明の静圧回転軸を備えた支持装置は、例えば超精密旋盤等の加工機の旋回テーブルを支持するのに好適であるといえる。   Here, the force F1 received by the first static pressure surface SP1 is a value obtained by multiplying the area of the pressure of the pressure transmission medium supplied between the first static pressure surface SP1 and the first support surface HP1, Since the force F2 received by the second static pressure surface SP2 is a value obtained by multiplying the pressure of the pressure transmission medium supplied between the second static pressure surface SP2 and the second support surface HP2 by the area, F1> F2 Obviously, a value obtained by multiplying the difference by the distance from the rotation axis is a restoring force for correcting the inclination as a moment in the clockwise direction on the static pressure rotation axis SRS. If the inclination of the axis increases, the gap difference also increases, so the pressure difference of the pressure transmission medium also increases, and the restoring force increases. The above-described operation occurs in the same way in the left half of the lower disc portion LC, not shown in FIG. 3 (however, the lower surface of the lower disc portion LC corresponds to the first hydrostatic surface described above, and the upper surface thereof) Corresponds to the second hydrostatic surface described above), and therefore the moment as the restoring force is doubled. In FIGS. 2 and 3, when the axis is tilted clockwise, it goes without saying that a reverse moment is generated by the opposite action. As described above, the support device of the present invention is improved in rigidity due to the throttling effect, and as a device for obtaining the same rigidity, the inclination of the axis of the hydrostatic rotating shaft is increased by a high restoring force while achieving further downsizing. Can be corrected autonomously and stable rotation can be realized. Further, according to the present invention, the orifice used in the comparative example can be dispensed with, so that precise pore processing can be omitted, the number of parts is reduced, and a lower cost support device can be provided. From the above, it can be said that the support device provided with the hydrostatic rotating shaft of the present invention is suitable for supporting a turning table of a processing machine such as an ultra-precision lathe.

請求項2に記載の支持装置は、請求項1に記載の発明において、前記第1の静圧面と前記第2の静圧面は、前記静圧回転軸の回転軸線に対して直交する方向に延在していることを特徴とするので、それら静圧面の加工を例えば平面研削で容易に行え、静圧面間の距離も高精度にできて、所望のスキマを精度良く確保することができるため、簡素な部品構成と相まって、装置の組み上げが容易になる。   According to a second aspect of the present invention, there is provided the support device according to the first aspect, wherein the first static pressure surface and the second static pressure surface extend in a direction orthogonal to a rotation axis of the static pressure rotation shaft. Since it is characterized by being present, the processing of these hydrostatic surfaces can be easily performed by, for example, surface grinding, the distance between the hydrostatic surfaces can be highly accurate, and a desired clearance can be ensured with high accuracy. Combined with a simple component structure, the assembly of the apparatus becomes easy.

請求項3に記載の支持装置は、請求項2に記載の発明において、前記第1の静圧面と前記第2の静圧面は、複数対設けられていることを特徴とする。軸線方向に並んだ前記第1の静圧面と前記第2の静圧面を複数対設けることにより、前記静圧面の各対の支持力を足し合わせた力が全体の支持力となり、それにより前記静圧回転軸の剛性が高まる。   According to a third aspect of the present invention, there is provided the support device according to the second aspect, wherein a plurality of pairs of the first static pressure surface and the second static pressure surface are provided. By providing a plurality of pairs of the first hydrostatic surface and the second hydrostatic surface arranged in the axial direction, the total support force is obtained by adding together the support force of each pair of the hydrostatic surfaces. The rigidity of the pressure rotating shaft is increased.

例えば非特許文献1に示すような従来の支持装置では、静圧回転軸の軸線方向や半径方向の負荷を受ける静圧面はテーパ状であり、そのため、剛性を大きくするために静圧面の面積を大きくすると、それに応じて静圧回転軸全体が大きくなってしまい、大型化し重くなる傾向があった。静圧回転軸が大きく重くなるということは、例えば加工機などに、かかる静圧回転軸を備えた支持装置を用いると、これを回すモーターや、積載して回転したり移動したりする回転テーブルやスライドテーブルの大型化が必要となり、慣性力も大きくなるのでその制御に大きなエネルギーを必要とし、制御レスポンスも遅れるので、高精度な駆動を目的とする用途には不向きであるといえる。又、静圧回転軸が大きく重くなると、加工機全体が大型化し、そのため高コストになるという問題もある。更に、加工機が大型化した場合、環境温度変化等による熱膨縮量も比例して大きくなるので、精密な環境温度や供給する圧力伝達媒体の温度の制御が必要となり、空調などの付帯設備を設けなくてはならず、設置費用も高額化する。   For example, in the conventional support device as shown in Non-Patent Document 1, the hydrostatic surface that receives a load in the axial direction or the radial direction of the hydrostatic rotating shaft is tapered, and therefore the area of the hydrostatic surface is increased in order to increase rigidity. When it is increased, the entire hydrostatic rotating shaft is increased accordingly, and there is a tendency to increase in size and weight. The fact that the static pressure rotating shaft becomes large and heavy means that, for example, when a supporting device equipped with such a static pressure rotating shaft is used for a processing machine or the like, a motor that rotates the rotating device or a rotary table that rotates and moves when loaded. In addition, the size of the slide table needs to be increased, and the inertial force increases, so that a large amount of energy is required for the control and the control response is delayed. Therefore, it can be said that the slide table is not suitable for the purpose of driving with high accuracy. In addition, if the static pressure rotating shaft is large and heavy, there is a problem that the entire processing machine becomes large and therefore high in cost. In addition, when the processing machine becomes larger, the amount of thermal expansion and contraction due to changes in the environmental temperature, etc. also increases proportionally. Therefore, it is necessary to precisely control the environmental temperature and the temperature of the pressure transmission medium to be supplied, and there are incidental facilities such as air conditioning. And the installation cost will be high.

特に、一般的な支持装置の静圧回転軸では、その機能において重要な回転軸線の傾きに対する剛性(傾き剛性とも言う)が弱い(すなわち軸線の傾きに対する復元力が弱い)とされている。そのため、例え静圧面に垂直な方向の剛性(すなわち静圧面に垂直な方向の力を支持する力)が十分であっても、傾き剛性を向上させるために本体を非常に大きくして静圧面積を大きくしたり、静圧面を回転軸線から離してモーメント量を大きくして、高い傾き剛性を得るという手法がとられており、それにより静圧回転軸はより大型化し重くなることとなる。しかも、静圧面が一対だけの場合、静圧面を構成する部品の加工精度や組み立て精度が不十分であったときには、静圧面と支持面とのスキマが一様でなくなる恐れがあり、それがそのまま回転精度に影響を与えて、偏り誤差を生じることがあった。   In particular, the static pressure rotating shaft of a general support device is considered to have low rigidity (also referred to as tilt rigidity) with respect to the tilt of the rotation axis, which is important for its function (that is, the restoring force with respect to the tilt of the axis is weak). Therefore, even if the rigidity in the direction perpendicular to the hydrostatic surface (ie, the force that supports the force in the direction perpendicular to the hydrostatic surface) is sufficient, the main body is made very large to improve the tilt rigidity, Or increasing the moment amount by moving the static pressure surface away from the rotation axis to obtain a high inclination rigidity, thereby increasing the size and weight of the static pressure rotation shaft. In addition, when there is only one pair of hydrostatic surfaces, the clearance between the hydrostatic surface and the support surface may not be uniform if the machining accuracy and assembly accuracy of the components that make up the hydrostatic surface are insufficient. The rotation accuracy was affected and a deviation error sometimes occurred.

これに対し、本発明によれば、前記第1の静圧面及び前記第2の静圧面を複数対にして増やすことで、静圧面の総面積を容易に2倍、3倍、・・・と増大することができるので、小型軽量の静圧回転軸であっても、回転軸線の傾き剛性が高く、軸線方向の剛性も高い静圧回転軸を備えた支持装置を実現できる。   On the other hand, according to the present invention, the total area of the static pressure surface can be easily doubled, tripled,... By increasing the first static pressure surface and the second static pressure surface in pairs. Therefore, even if it is a small and lightweight hydrostatic rotating shaft, a support device including a hydrostatic rotating shaft having high rotational axis inclination rigidity and high axial rigidity can be realized.

また、本発明では、大きな静圧力を受ける前記第1の静圧面と前記第2の静圧面が複数対となるように、前記第1の静圧面と前記第2の静圧面を備えた部材を複数設けることで、1枚や1対だけの静圧面よりも、外力を受けたときにかかる外力が前記複数の部材に分散されることで、その部材がたわみにくくなり、傾きモーメントに対して大きな抗力(すなわち復元力)を与えることが出来る。従って、本発明によれば、単に傾きに対する復元力が大きくなるだけでなく、静圧受け部品のたわみ剛性も大きく確保できる。   According to the present invention, there is provided a member having the first static pressure surface and the second static pressure surface so that a plurality of pairs of the first static pressure surface and the second static pressure surface that receive a large static pressure are formed. By providing a plurality, the external force applied when an external force is applied is distributed to the plurality of members, rather than a single static pressure surface or a pair of static pressure surfaces. Drag (ie, resilience) can be applied. Therefore, according to the present invention, not only the restoring force with respect to the inclination is increased, but also the flexural rigidity of the static pressure receiving component can be ensured.

しかも、前記第1の静圧面と前記第2の静圧面が複数対になっていることで互いの部品誤差を平均化する働きが生じ、回転精度も必然的に向上する。例えば、ある静圧面と支持面との隙間が均一でなく狭い部分が出来るとすると、そこで静圧が高まるので静圧回転軸が振られる恐れがある。しかしながら、前記第1の静圧面と前記第2の静圧面を複数対設けることによって、他の静圧面では静圧回転軸を振ろうとする力に対して剛性を持っているから、静圧回転軸の振れが抑えられるのである。また、前記第1の静圧面と前記第2の静圧面を備えた部材を複数対とすることで、傾き剛性を、従来と比較して2倍、3倍、・・・と非常に大きくできるので、個々の静圧面を小さくしても小型にして実用上十分な傾き剛性を確保できる場合は、前記第1の静圧面と前記第2の静圧面を備えた部材を小さくできるため、部品加工においては精度を高めやすくなり、従来よりも高精度な回転精度を得ることができる。   In addition, a plurality of pairs of the first hydrostatic surface and the second hydrostatic surface cause a function of averaging the component errors of each other, and the rotational accuracy is inevitably improved. For example, if the gap between a certain static pressure surface and the support surface is not uniform and a narrow portion is formed, the static pressure increases there, so that the static pressure rotating shaft may be shaken. However, by providing a plurality of pairs of the first hydrostatic surface and the second hydrostatic surface, the other hydrostatic surfaces have rigidity with respect to the force to shake the hydrostatic rotating shaft. The swing of the is suppressed. In addition, by making a plurality of pairs of members having the first hydrostatic surface and the second hydrostatic surface, the inclination rigidity can be greatly increased to 2 times, 3 times,. Therefore, even if each static pressure surface is made small, if it can be reduced in size and practically sufficient inclination rigidity can be secured, the member including the first static pressure surface and the second static pressure surface can be made small, so that component processing In this case, it is easy to increase the accuracy, and it is possible to obtain a rotational accuracy that is higher than the conventional one.

本発明の特徴を、支持装置に採用すると静圧回転軸の回転軸線の傾き剛性が顕著に増大するので、従来、高剛性の要求により油を圧力伝達媒体として使用する静圧回転軸を、油より供給しやすい高圧エアを圧力伝達媒体として用いる、より小型の静圧回転軸に置き換えることが出来、それによりオイルポンプ等の付帯設備や油の回収などの煩雑な構造が不要となって、工場等に一般的に備えられた高圧エアを用いて、簡便に所望の高剛性を確保できる静圧回転軸も得ることができる。   When the features of the present invention are adopted in the support device, the inclination rigidity of the rotation axis of the hydrostatic rotating shaft is remarkably increased. Therefore, conventionally, a hydrostatic rotating shaft that uses oil as a pressure transmission medium due to the demand for high rigidity has been used. The high-pressure air that is easier to supply can be replaced with a smaller hydrostatic rotating shaft that uses the pressure transmission medium, which eliminates the need for complicated facilities such as oil pumps and other incidental equipment and oil recovery. A static pressure rotating shaft capable of easily ensuring a desired high rigidity can also be obtained by using high-pressure air that is generally provided in the above.

請求項4に記載の支持装置は、請求項2に記載の発明において、前記第1の静圧面と前記第2の静圧面は、円板状の部材上における表裏の関係にある面であることを特徴とするので、部材に対して同じ大きさの静圧が逆方向からかかるため、部材が静圧によって変形することが抑制され、それによりスキマを均一に保持することができることから、静圧面上における圧力伝達媒体の流れを一様に維持でき、それにより精度の高い回転精度と高い剛性を得ることができる。また、円板状の部材の軸線方向寸法を抑えることができ、小型の静圧回転軸を備えた支持装置を得ることができる。   According to a fourth aspect of the present invention, in the invention according to the second aspect, the first static pressure surface and the second static pressure surface are surfaces having a front and back relationship on a disk-shaped member. Since the static pressure of the same magnitude is applied to the member from the opposite direction, the member is restrained from being deformed by the static pressure, so that the gap can be kept uniform. The flow of the pressure transmission medium on the top can be maintained uniformly, thereby obtaining a high rotational accuracy and high rigidity. Moreover, the axial direction dimension of a disk-shaped member can be suppressed, and the support apparatus provided with the small static pressure rotating shaft can be obtained.

請求項5に記載の支持装置は、請求項4に記載の発明において、前記第1の静圧面と前記第2の静圧面を有する前記円板状の部材を、前記静圧回転軸の軸線方向に沿って複数配置したことを特徴とするので、軸線方向に並んだ前記第1の静圧面と前記第2の静圧面を有する前記円板状の部材を複数設けることにより、前記静圧面の各対の支持力を足し合わせた力が全体の支持力となり、それにより前記静圧回転軸の剛性が高まる。又、前記第1の静圧面と前記第2の静圧面は、円板状の部材上における表裏の関係にある面としたことで、前記円板状の部材の軸線方向寸法を小さくできるので、これを積層したときに、その寸法を抑制する効果がほぼ積層した数の倍数だけ得られ、従って重ねれば重ねるほど、同じ剛性を有する従来構造の静圧回転軸を備えた支持装置よりも顕著に小型化できる。   According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the disk-shaped member having the first static pressure surface and the second static pressure surface is arranged in the axial direction of the static pressure rotating shaft. Since a plurality of the disk-shaped members having the first static pressure surface and the second static pressure surface arranged in the axial direction are provided, each of the static pressure surfaces is arranged. The force obtained by adding the pair of supporting forces becomes the total supporting force, thereby increasing the rigidity of the hydrostatic rotating shaft. Moreover, since the first static pressure surface and the second static pressure surface are surfaces that are in a front-back relationship on the disk-shaped member, the axial dimension of the disk-shaped member can be reduced. When this is laminated, the effect of suppressing the size is obtained by a multiple of the number of the laminated layers, so that the more the layers are piled up, the more remarkable the supporting device having the static pressure rotating shaft of the conventional structure having the same rigidity. Can be downsized.

請求項6に記載の支持装置は、請求項1乃至5のいずれかに記載の発明において、前記静圧回転軸に付与される軸線方向力は、前記第1の静圧面とそれに対向する前記支持面との間、及び前記第2の静圧面とそれに対向する前記支持面との間における前記圧力伝達媒体により支持されることを特徴とするので、軸線の傾き補正のみならず軸線方向力も支持することができる。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the axial force applied to the static pressure rotating shaft is the first static pressure surface and the support opposite thereto. Since it is supported by the pressure transmission medium between the surface and between the second hydrostatic surface and the support surface opposite to the second static pressure surface, it supports not only the inclination of the axis but also the axial force. be able to.

請求項7に記載の支持装置は、請求項1乃至6のいずれかに記載の発明において、前記圧力伝達媒体は、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間において、前記静圧回転軸の軸線に近い側から遠い側へと、それぞれ移動するようになっていることを特徴とするので、前記静圧回転軸の回転を利用して前記圧力伝達媒体を、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間に効率的に供給できる。   A support device according to a seventh aspect is the invention according to any one of the first to sixth aspects, wherein the pressure transmission medium is between the first static pressure surface and the first support surface, and the first Between the second static pressure surface and the second support surface, respectively, from the side closer to the axis of the static pressure rotation axis to the side farther from the second static pressure surface. Utilizing the rotation of the rotating shaft, the pressure transmission medium is made efficient between the first hydrostatic surface and the first support surface and between the second hydrostatic surface and the second support surface. Can be supplied.

請求項8に記載の支持装置は、請求項1乃至7のいずれかに記載の発明において、前記第1の静圧面と前記第1の支持面との間隔を前記断面上で比較したときに、前記他端側で最小間隔が生じたときは、前記第2の静圧面と前記第2の支持面との間隔を前記断面上で比較したときに、前記一端側で最小間隔が生じるようになっていることを特徴とするので、それぞれ前記最小間隔に応じて、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間に流れる前記圧力伝達媒体の圧力・流量が決定され、上述の作用効果を発揮できる。尚、「前記第2の静圧面と前記第2の支持面との間隔を前記断面上で比較したときに、前記一端側で最小間隔が生じる」とは、前記断面上で、前記第1の静圧面と前記第1の支持面との間における最小間隔が生じた前記第1の静圧面上の点から、前記静圧回転軸の回転軸に対して平行線を引いたとき、かかる平行線が前記第2の静圧面と交差する点よりも、前記第2の静圧面と前記第2の支持面との間における最小間隔が生じた前記第2の静圧面上の点が前記一端側にあることを意味する。   The support device according to claim 8 is the invention according to any one of claims 1 to 7, wherein the distance between the first static pressure surface and the first support surface is compared on the cross section. When the minimum distance occurs on the other end side, the minimum distance occurs on the one end side when the distance between the second hydrostatic surface and the second support surface is compared on the cross section. In accordance with the minimum distance, the first static pressure surface and the first support surface, and the second static pressure surface and the second support surface, respectively. The pressure / flow rate of the pressure transmission medium flowing between them is determined, and the above-described effects can be exhibited. In addition, “when the distance between the second hydrostatic surface and the second support surface is compared on the cross section, a minimum distance is generated on the one end side” means that the first distance is on the cross section. When a parallel line is drawn from the point on the first static pressure surface where the minimum distance between the static pressure surface and the first support surface is generated, the parallel line is drawn with respect to the rotation axis of the static pressure rotation axis. The point on the second hydrostatic surface at which the minimum distance between the second hydrostatic surface and the second support surface occurs is closer to the one end side than the point where the second hydrostatic surface intersects the second hydrostatic surface. It means that there is.

請求項9に記載の支持装置は、請求項1乃至6のいずれかに記載の発明において、前記第1の静圧面と前記第1の支持面との少なくとも一方には、前記圧力伝達媒体の少なくとも移動方向に沿って延在する溝が形成されており、及び/又は前記第2の静圧面と前記第2の支持面との少なくとも一方には、前記圧力伝達媒体の少なくとも移動方向に沿って延在する溝が形成されていることを特徴とする。   The support device according to claim 9 is the invention according to any one of claims 1 to 6, wherein at least one of the first static pressure surface and the first support surface has at least the pressure transmission medium. A groove extending along the moving direction is formed, and / or at least one of the second static pressure surface and the second support surface extends along at least the moving direction of the pressure transmission medium. An existing groove is formed.

前記第1の静圧面と前記第1の支持面との少なくとも一方、及び/又は前記第2の静圧面と前記第2の支持面との少なくとも一方に前記溝を形成することで、前記溝を介して、前記圧力伝達媒体を高圧に維持しつつ、前記第1の静圧面及び前記第2の静圧面の供給側から排出側へと導くことができるので、前記圧力伝達媒体の流れ不良を抑制でき剛性が向上する。前記圧力伝達媒体が空気などの気体の場合は、この溝に表面絞り効果をもたせることができるよう、例えば10μm以下の浅い溝とすると、剛性がさらに向上するので好ましい。前記圧力伝達媒体が油や水のような液体の場合は、リセスの役目を果たすので深い溝であっても良い。   The groove is formed by forming the groove in at least one of the first static pressure surface and the first support surface and / or at least one of the second static pressure surface and the second support surface. The pressure transmission medium can be guided from the supply side to the discharge side of the first static pressure surface and the second static pressure surface while maintaining the pressure transmission medium at a high pressure. The rigidity is improved. When the pressure transmission medium is a gas such as air, it is preferable to use a shallow groove of, for example, 10 μm or less so that the groove can have a surface squeezing effect because the rigidity is further improved. If the pressure transmission medium is a liquid such as oil or water, it may serve as a recess and may be a deep groove.

前記静圧回転軸が静止しており前記圧力伝達媒体に圧力が付与されていない初期状態において、例えば前記第2の静圧面とそれに対向する第2の支持面とが密着し、且つ前記第1の静圧面とそれに対向する第1の支持面とのスキマが正常時の2倍となっているときに、前記溝を介して、前記第2の静圧面と前記第2の支持面との間における前記圧力伝達媒体に圧力を伝達することで、前記第2の支持面から前記第2の静圧面を引き離して浮上を容易にさせる効果がある。前記溝を設けることで、高圧の前記圧力伝達媒体が前記溝を介して、例えば密着した前記第2の静圧面と前記第2の支持面との間に供給され、その間の圧力を高めることで浮上を容易にする。―旦浮上すると、前記溝の部分だけでなく前記静圧面と前記支持面の間全体に前記圧力伝達媒体が行き渡るので、本来の大きな浮上力が発生し、前記第1の静圧面と前記第1の支持面とのスキマと、前記第2の静圧面と前記第2の支持面とのスキマが略等しくなったときに、前記第1静圧面と前記第2静圧面に作用する力が拮抗して、大きな剛性を発生させることとなる。尚、前記溝は、前記静圧面と前記支持面の少なくとも一方に設けられていればよい。又、前記溝を前記静圧回転軸の軸線方向に見たときのパターンは、できるだけ前記静圧面全体に前記圧力伝達媒体が行き渡るようにするのが効果的であるが、パターン形状は本発明ではこだわらない。しかし、前記溝の底面積を大きくしすぎた場合、負荷変動に対するダンピング効果が薄れて、剛性が低下したり振動したりするので、前記溝の底面積は少なくとも前記静圧面又は前記支持面の面積の30%以内であると好ましい。圧力伝達媒体が、圧縮性がほとんどなく、粘度が高く大きな粘性抵抗を有して液体であると、ダンピング特性が非常に優れた高剛性、高安定性の静圧回転軸を備えた支持装置を得ることができる。   In an initial state in which the static pressure rotating shaft is stationary and no pressure is applied to the pressure transmission medium, for example, the second static pressure surface and a second support surface facing the second static pressure surface are in close contact, and the first Between the second hydrostatic surface and the second support surface through the groove when the gap between the hydrostatic surface and the first support surface opposite to the normal hydrostatic surface is twice that of normal operation. By transmitting the pressure to the pressure transmission medium, the second static pressure surface is pulled away from the second support surface, so that the flying can be facilitated. By providing the groove, the high-pressure pressure transmission medium is supplied, for example, between the second static pressure surface and the second support surface that are in close contact with each other, and the pressure therebetween is increased. Facilitates ascent. When the surface is lifted, the pressure transmission medium spreads not only between the groove portion but also between the hydrostatic surface and the support surface, so that a large natural levitation force is generated, and the first hydrostatic surface and the first hydrostatic surface When the clearance between the second static pressure surface and the second static pressure surface becomes substantially equal, the forces acting on the first static pressure surface and the second static pressure surface antagonize. Thus, a large rigidity is generated. In addition, the said groove | channel should just be provided in at least one of the said static pressure surface and the said support surface. The pattern when the groove is viewed in the axial direction of the static pressure rotating shaft is effective to spread the pressure transmission medium over the entire static pressure surface as much as possible. Don't worry. However, if the bottom area of the groove is too large, the damping effect against load fluctuations will be diminished and the rigidity will decrease or vibrate, so the bottom area of the groove is at least the area of the hydrostatic surface or the support surface Is preferably within 30%. If the pressure transmission medium is liquid with almost no compressibility, high viscosity and high viscosity resistance, a support device equipped with a highly rigid and highly stable hydrostatic rotating shaft with excellent damping characteristics Obtainable.

請求項10に記載の支持装置は、請求項1乃至9のいずれかに記載の発明において、前記第1の静圧面及び前記第2の静圧面の少なくとも一方を形成する部材がセラミックから形成されていることを特徴とする。   According to a tenth aspect of the present invention, in the invention according to any one of the first to ninth aspects, the member forming at least one of the first static pressure surface and the second static pressure surface is made of ceramic. It is characterized by being.

従来の静圧面を形成する部材の材料は、鋳鉄やステンレス材料が一般的である。これに対し、本発明のように前記静圧面を形成する部材にセラミック材料を用いると、ヤング率が高く変形がしにくいというセラミックの特性により、軸線方向の剛性や傾き剛性を発生するために必要な前記静圧面と前記支持面との間のスキマが外力で変わる恐れが少ないので、高負荷でも安定した高剛性を発揮できる。また、部品加工の際も加工歪みや内部応力などで変形することが殆ど無いので、部品形状精度を高く仕上げることが金属材料よりも容易であるから、結果として前記静圧面と前記支持面との間のスキマを精密に制御でき、高剛性の静圧回転軸の製作を容易に行える。さらに、セラミック材料は線膨張係数が鋼材よりも小さいので、温度変化においても部品寸法が安定しており、温度変化による前記静圧面と前記支持面との間のスキマ変化が小さいことから、環境に関わらず安定した性能を発揮できる。また、セラミック材料は比重が鋼材の半分以下と軽量であるので、回転駆動する場合にモーターの負荷が小さくて済み、従ってモーターの容量を小さくでき、コストと発熱を抑えることが出来る。また、サーボによる回転制御を行う際には、慣性力が小さく高速レスポンスが可能となるので制御特性が良く、より高精度な回転制御を行える。   Conventional materials for forming the static pressure surface are generally cast iron and stainless steel. On the other hand, when ceramic material is used for the member forming the static pressure surface as in the present invention, it is necessary to generate axial rigidity and inclination rigidity due to the ceramic property that Young's modulus is high and deformation is difficult. Since there is little fear that the gap between the static pressure surface and the support surface is changed by an external force, stable high rigidity can be exhibited even under a high load. In addition, since there is almost no deformation due to processing strain or internal stress even when parts are processed, it is easier to finish the part shape with higher accuracy than metal materials, and as a result, the static pressure surface and the support surface It is possible to precisely control the clearance between them and easily manufacture a highly rigid hydrostatic rotating shaft. Furthermore, since the ceramic material has a smaller linear expansion coefficient than that of steel, the part dimensions are stable even with temperature changes, and the gap between the hydrostatic surface and the support surface due to temperature changes is small. Regardless, stable performance can be demonstrated. In addition, since the specific gravity of ceramic material is light and less than half that of steel, the load on the motor can be reduced when driven to rotate. Therefore, the capacity of the motor can be reduced, and cost and heat generation can be suppressed. In addition, when performing the rotation control by the servo, the inertial force is small and a high-speed response is possible, so that the control characteristics are good and the rotation control with higher accuracy can be performed.

セラミック材料の中でも、アルミナや窒化珪素、サイアロンは破壊じん性が高く、割れたり欠けたりしにくいのでより好ましいが、特に窒化珪素やサイアロンの破壊じん性値は6.0と高く、しかも室温における線膨張係数がアルミナの数分の1、従来の鋼材との比較においては約1/10である1.3×10−6と著しく小さいので、温度変化による材料の膨縮がほとんどなく、従って静圧面のスキマの変化や回転テーブル上に固定した工具やワークなどの位置の変動もないので、高い回転精度と工具やワークの高い位置精度を実現でき、セラミック材料の中でも特に好ましい。また、窒化珪素やサイアロンの比重は3.3であり、アルミナの3.6に対して10%近く小さいので、それだけ軽い部品を作ることができ、その材料を用いた本発明にかかる静圧回転軸は、サーボ回転駆動における駆動エネルギーの削減とレスポンスの高速化による高精度化が、より達成できて有利である。 Among ceramic materials, alumina, silicon nitride, and sialon are more preferable because they have high fracture toughness and are less likely to crack or chip. In particular, the fracture toughness value of silicon nitride and sialon is as high as 6.0, and is also a line at room temperature. The expansion coefficient is a fraction of alumina, 1.3 × 10 −6 , which is about 1/10 in comparison with conventional steel materials, so there is almost no material expansion / contraction due to temperature change, so the static pressure surface Therefore, it is possible to realize high rotation accuracy and high position accuracy of the tool or workpiece, which is particularly preferable among ceramic materials. Moreover, the specific gravity of silicon nitride and sialon is 3.3, which is nearly 10% smaller than that of alumina, so that lighter parts can be made, and the hydrostatic rotation according to the present invention using the material can be made. The shaft is advantageous in that it can achieve higher accuracy by reducing drive energy and speeding up the response in the servo rotation drive.

請求項11に記載の支持装置は、請求項1乃至10のいずれかに記載の発明において、前記圧力伝達媒体は、油や水などの液体であることを特徴とする。   According to an eleventh aspect of the present invention, in the invention according to any one of the first to tenth aspects, the pressure transmission medium is a liquid such as oil or water.

本発明の加工機は、請求項1乃至11のいずれかに記載の支持装置を有することを特徴とする。   The processing machine of this invention has the support apparatus in any one of Claims 1 thru | or 11, It is characterized by the above-mentioned.

本発明によれば、コンパクトな構成ながら静圧回転軸の軸線傾きを抑制できる支持装置及びそれを用いた加工機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the support apparatus which can suppress the axis line inclination of a static pressure rotating shaft with a compact structure, and a processing machine using the same can be provided.

以下、本発明の実施の形態を、図面を参照して詳細に説明する。図4は、本実施の形態にかかる支持装置を備えた5軸加工機10の斜視図である。かかる支持装置は加工機のみならず、例えば対象物の表面を触針でなぞることにより形状を求めて形状測定を行うような計測器等において、触針や対象物を高精度に回転移動させるために用いることもできる。図1において、床F上に4本(3本のみ図示)の脚11aで支持されたアクティブエアマウント11は、振動の伝達を抑制する抑制手段であり、床の振動をベース12に伝達しない機能を有する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 is a perspective view of the 5-axis machining apparatus 10 including the support device according to the present embodiment. Such a support device is used not only for a processing machine but also for measuring a shape by tracing the surface of an object with a stylus, for example, to measure the shape and rotating the stylus and the object with high accuracy. It can also be used. In FIG. 1, an active air mount 11 supported by four legs 11a (only three are shown) on the floor F is a suppression means for suppressing the transmission of vibrations, and does not transmit floor vibrations to the base 12. Have

アクティブエアマウント11上に支持されたベース12には、支持面を有する部材である一対のスライドレール13が形成され、スライドレール13の対向する支持面13aの間には、Z軸方向に移動可能に静圧スライド20が設けられ、静圧スライド20上に回転可能に旋回テーブルの支持装置30が設けられている。尚、静圧スライド20はスライドレール13に対し、旋回テーブルは静圧スライド20に対し、それぞれ油を圧力伝達媒体として静圧で支持されている。   The base 12 supported on the active air mount 11 is formed with a pair of slide rails 13 that are members having a support surface, and is movable in the Z-axis direction between the support surfaces 13 a facing the slide rail 13. A hydrostatic slide 20 is provided, and a rotating table support device 30 is provided on the hydrostatic slide 20 so as to be rotatable. The static pressure slide 20 is supported by the static pressure using the oil as a pressure transmission medium with respect to the slide rail 13 and the swivel table with respect to the static pressure slide 20.

更に、ベース12上において、一対のサポートブロック15上に掛け渡されたレール15aには、X軸方向に移動可能にスライドテーブル16が設けられ、スライドテーブル16上のレール16aには、Y軸方向に移動可能にスライドテーブル17が設けられ、スライドテーブル17上に回転可能に旋回テーブル18が設けられている。尚、スライドテーブル16はレール15aに対し、スライドテーブル17はレール16aに対し、旋回テーブル18はスライドテーブル17に対し、それぞれ油を圧力伝達媒体として静圧で支持されている。   Further, on the base 12, a rail 15a spanned on the pair of support blocks 15 is provided with a slide table 16 that can move in the X-axis direction. The rail 16a on the slide table 16 has a Y-axis direction. A slide table 17 is provided so as to be movable, and a turning table 18 is provided on the slide table 17 so as to be rotatable. The slide table 16 is supported by static pressure using oil as a pressure transmission medium with respect to the rail 15a, the slide table 17 with respect to the rail 16a, and the turning table 18 with respect to the slide table 17.

図5は、第1の実施の形態にかかる旋回テーブルの支持装置30の軸線方向断面図である。図5において、円盤状のベース31が、図5では不図示の静圧スライド20の上面に取り付けられている。ベース31の上面に、略同外径の外スリーブ32が配置され、不図示のボルトにより固定されている。外スリーブ32の内側には、上端に旋回テーブルTを取り付けた内スリーブ33が若干のスキマ(例えば10μm程度、但し後述するリセスの部位を除く)を介して、外スリーブ32に対して嵌合配置されている。尚、旋回テーブルTと、外スリーブ32の上端との間には、油の流出を防止するシールSが配置されている。   FIG. 5 is an axial sectional view of the turning table support device 30 according to the first embodiment. In FIG. 5, a disc-shaped base 31 is attached to the upper surface of a static pressure slide 20 (not shown in FIG. 5). An outer sleeve 32 having substantially the same outer diameter is disposed on the upper surface of the base 31, and is fixed by a bolt (not shown). On the inner side of the outer sleeve 32, an inner sleeve 33 having a turning table T attached to the upper end is fitted and arranged to the outer sleeve 32 through a slight gap (for example, about 10 μm, except for a recess portion described later). Has been. A seal S that prevents oil from flowing out is disposed between the turning table T and the upper end of the outer sleeve 32.

内スリーブ33の下端から半径方向内方に突出したフランジ部33aに支持されるようにして、第1ロータ部材34Aが配置されている。第1ロータ部材34Aの上面には第1ロータ間座35Aが配置され、第1ロータ間座35Aの上面には第2ロータ部材34Bが配置されている。第2ロータ部材34Bの上面には第2ロータ間座35Bが配置され、第2ロータ間座35Bの上面には第3ロータ部材34Cが配置されている。第1ロータ部材34A、第1ロータ間座35A、第2ロータ部材34B、第2ロータ間座35B、第3ロータ部材34Cは、不図示のボルトで内スリーブ33に固定されており、一体的に静圧回転軸SRSを形成している。   The first rotor member 34A is arranged so as to be supported by a flange portion 33a protruding radially inward from the lower end of the inner sleeve 33. A first rotor spacer 35A is disposed on the upper surface of the first rotor member 34A, and a second rotor member 34B is disposed on the upper surface of the first rotor spacer 35A. A second rotor spacer 35B is disposed on the upper surface of the second rotor member 34B, and a third rotor member 34C is disposed on the upper surface of the second rotor spacer 35B. The first rotor member 34A, the first rotor spacer 35A, the second rotor member 34B, the second rotor spacer 35B, and the third rotor member 34C are fixed to the inner sleeve 33 with bolts (not shown), and are integrally formed. A static pressure rotation axis SRS is formed.

一方、ベース31の上面に、第1ステータ部材36Aが配置されている。第1ステータ部材36Aの上面には第1ステータ間座37Aが配置され、第1ステータ間座37Aの上面には、第1ステータ部材36Aとの間に第1ロータ部材34Aの内周側を挟む形で、第2ステータ部材36Bが配置されている。第2ステータ部材36Bの上面には第2ステータ間座37Bが配置され、第2ステータ間座37Bの上面には、第2ステータ部材36Bとの間に第2ロータ部材34Bの内周側を挟む形で、第3ステータ部材36Cが配置されている。第3ステータ部材36Cの上面には第3ステータ間座37Cが配置され、第3ステータ間座37Cの上面には、第3ステータ部材36Cとの間に第3ロータ部材34Cの内周側を挟む形で、第4ステータ部材36Dが配置されている。   On the other hand, the first stator member 36 </ b> A is disposed on the upper surface of the base 31. A first stator spacer 37A is disposed on the upper surface of the first stator member 36A, and the inner peripheral side of the first rotor member 34A is sandwiched between the upper surface of the first stator spacer 37A and the first stator member 36A. In form, a second stator member 36B is disposed. A second stator spacer 37B is disposed on the upper surface of the second stator member 36B, and the inner peripheral side of the second rotor member 34B is sandwiched between the second stator member 37B and the upper surface of the second stator spacer 37B. In shape, a third stator member 36C is arranged. A third stator spacer 37C is disposed on the upper surface of the third stator member 36C, and the inner peripheral side of the third rotor member 34C is sandwiched between the upper surface of the third stator spacer 37C and the third stator member 36C. In the form, a fourth stator member 36D is arranged.

第1ステータ間座37Aの軸線方向厚さは、第1ロータ部材34Aの厚さより厚く、その差が、後述する第1ロータ部材34Aにおける第1の静圧面SP1と第1の支持面HP1とのスキマ及び第2の静圧面SP2と第2の支持面HP2とのスキマの和に等しくなる。又、第2ステータ間座37Bの軸線方向厚さは、第2ロータ部材34Bの厚さより厚く、その差が、同様に第2ロータ部材34Bにおける第1の静圧面SP1と第1の支持面HP1とのスキマ及び第2の静圧面SP2と第2の支持面HP2とのスキマの和に等しくなる。更に、第3ステータ間座37Cの軸線方向厚さは、第3ロータ部材34Cの厚さより厚く、その差が、同様に第3ロータ部材34Cにおける第1の静圧面SP1と第1の支持面HP1とのスキマ及び第2の静圧面SP2と第2の支持面HP2とのスキマの和に等しくなる。第1ステータ部材36A、第1ステータ間座37A、第2ステータ部材36B、第2ステータ間座37B、第3ステータ部材36C、第3ステータ間座37C、第4ステータ部材36Dは、不図示のボルトでベース31に固定されている。   The axial thickness of the first stator spacer 37A is thicker than the thickness of the first rotor member 34A, and the difference between the first stator member 37A and the first static pressure surface SP1 and the first support surface HP1 of the first rotor member 34A described later. It becomes equal to the sum of the clearance between the clearance and the second hydrostatic surface SP2 and the second support surface HP2. Also, the axial thickness of the second stator spacer 37B is thicker than the thickness of the second rotor member 34B, and the difference between the first stator pressure surface SP1 and the first support surface HP1 of the second rotor member 34B is the same. And the sum of the gaps of the second hydrostatic surface SP2 and the second support surface HP2. Further, the axial thickness of the third stator spacer 37C is thicker than the thickness of the third rotor member 34C, and the difference between the first stator pressure surface SP1 and the first support surface HP1 of the third rotor member 34C is the same. And the sum of the gaps of the second hydrostatic surface SP2 and the second support surface HP2. The first stator member 36A, the first stator spacer 37A, the second stator member 36B, the second stator spacer 37B, the third stator member 36C, the third stator spacer 37C, and the fourth stator member 36D are bolts not shown. The base 31 is fixed.

第1ステータ部材36A、第1ステータ間座37A、第2ステータ部材36B、第2ステータ間座37B、第3ステータ部材36C、第3ステータ間座37C、第4ステータ部材36Dは、それぞれ上面に周溝を形成し、ここにO−リングOGを配置することで、相互の接触面からの油の漏れだしを防止している。   The first stator member 36A, the first stator spacer 37A, the second stator member 36B, the second stator spacer 37B, the third stator member 36C, the third stator spacer 37C, and the fourth stator member 36D are arranged on the upper surface. Grooves are formed and an O-ring OG is disposed here, thereby preventing oil leakage from the mutual contact surfaces.

又、第1ステータ部材36A、第2ステータ部材36B、第3ステータ部材36Cは、中央開口を有するそれぞれ同一形状の円盤状であって、第1ステータ間座37A、第2ステータ間座37B、第3ステータ間座37Cの外径より外側であって、且つ第1ロータ部材34A、第2ロータ部材34B、第3ロータ部材34Cの内径より内側の位置に、油の供給孔36a、36b、36cをそれぞれ形成しているが、第4ステータ部材36Dには、油の供給孔は形成されていない。各供給孔36a、36b、36cは、周方向に等間隔で複数本形成されており、油の供給孔36aは、O−リングOGによって油の漏れだしを防止された形で、ベース31の上面の周溝31cにより互いに連結され、且つベース31に形成された油路31aに連通している。尚、第1ステータ部材36A、第1ステータ間座37A、第2ステータ部材36B、第2ステータ間座37B、第3ステータ部材36C、第3ステータ間座37C、第4ステータ部材36D、ベース31,外スリーブ32により固定部材FMを構成する。   Further, the first stator member 36A, the second stator member 36B, and the third stator member 36C have the same disk shape having a central opening, and the first stator spacer 37A, the second stator spacer 37B, Oil supply holes 36a, 36b, 36c are provided at positions outside the outer diameter of the three stator spacers 37C and inside the inner diameters of the first rotor member 34A, the second rotor member 34B, and the third rotor member 34C. Although formed, the oil supply hole is not formed in the fourth stator member 36D. A plurality of supply holes 36a, 36b, and 36c are formed at equal intervals in the circumferential direction, and the oil supply holes 36a are formed on the top surface of the base 31 in such a manner that oil leakage is prevented by the O-ring OG. Are connected to each other by a circumferential groove 31 c and communicated with an oil passage 31 a formed in the base 31. The first stator member 36A, the first stator spacer 37A, the second stator member 36B, the second stator spacer 37B, the third stator member 36C, the third stator spacer 37C, the fourth stator member 36D, the base 31, The outer sleeve 32 constitutes the fixing member FM.

一方、第1ロータ部材34A、第2ロータ部材34B、第3ロータ部材34Cは、中央開口を有するそれぞれ同一形状の円盤状であって、第1ロータ間座35A、第2ロータ間座35Bの内径より内側であって、且つ第1ステータ部材36A、第2ステータ部材36B、第3ステータ部材36C、第4ステータ部材36Dの外径より外側の位置に、油の排出孔34a、34b、34cをそれぞれ形成している。油の排出孔34aから排出された油は、内スリーブ33の下方の空間に収集され、ベース31に形成された排出路31bを介して外部へと排出される。   On the other hand, the first rotor member 34A, the second rotor member 34B, and the third rotor member 34C have the same disk shape having a central opening, and the inner diameters of the first rotor spacer 35A and the second rotor spacer 35B. Oil discharge holes 34a, 34b, and 34c are provided at positions on the inner side and outside the outer diameters of the first stator member 36A, the second stator member 36B, the third stator member 36C, and the fourth stator member 36D, respectively. Forming. The oil discharged from the oil discharge hole 34 a is collected in a space below the inner sleeve 33 and discharged to the outside through a discharge path 31 b formed in the base 31.

図6は、第1ロータ部材34Aの斜視図である。第2ロータ部材34B、第3ロータ部材34Cは同様な形状を有するので図示を省略する。図6において、第1ロータ部材34Aの上面が第1の静圧面SP1となり、ここに内周側から延在し且つその中間位置と外端位置で周方向両方向に延在する溝UGが形成されている。更に、第1ロータ部材34Aの下面が第2の静圧面SP2となり、ここに内周側から延在し且つその中間位置と外端位置で周方向両方向に延在する溝LGが形成されている。第1ロータ部材34Aの外周近傍には、排出孔34aと固定用ねじ孔SAとが交互に並んで配置されている。   FIG. 6 is a perspective view of the first rotor member 34A. Since the second rotor member 34B and the third rotor member 34C have the same shape, illustration is omitted. In FIG. 6, the upper surface of the first rotor member 34A is the first hydrostatic surface SP1, and a groove UG extending from the inner peripheral side and extending in both the circumferential direction at the intermediate position and the outer end position is formed therein. ing. Further, the lower surface of the first rotor member 34A serves as a second hydrostatic surface SP2, and a groove LG extending from the inner peripheral side and extending in both the circumferential direction at the intermediate position and the outer end position is formed therein. . In the vicinity of the outer periphery of the first rotor member 34A, discharge holes 34a and fixing screw holes SA are alternately arranged.

更に、図5において、第2ロータ部材34Bの上面が第1の静圧面SP1となり、ここに内周側から延在し且つその中間位置と外端位置で周方向両方向に延在する溝UGが形成されている。更に、第2ロータ部材34Bの下面が第2の静圧面SP2となり、ここに内周側から延在し且つその中間位置と外端位置で周方向両方向に延在する溝LGが形成されている(図6参照)。   Further, in FIG. 5, the upper surface of the second rotor member 34B is the first hydrostatic surface SP1, and there is a groove UG extending from the inner peripheral side and extending in both the circumferential direction at the intermediate position and the outer end position. Is formed. Further, the lower surface of the second rotor member 34B becomes the second hydrostatic surface SP2, and a groove LG extending from the inner peripheral side and extending in both the circumferential direction at the intermediate position and the outer end position is formed therein. (See FIG. 6).

又、第3ロータ部材34Cの上面が第1の静圧面SP1となり、ここに内周側から延在し且つその中間位置と外端位置で周方向両方向に延在する溝UGが形成されている。更に、第3ロータ部材34Cの下面が第2の静圧面SP2となり、ここに内周側から延在し且つその中間位置と外端位置で周方向両方向に延在する溝LGが形成されている(図6参照)。   The upper surface of the third rotor member 34C is the first hydrostatic surface SP1, and a groove UG extending from the inner peripheral side and extending in both the circumferential direction at the intermediate position and the outer end position is formed therein. . Further, the lower surface of the third rotor member 34C becomes the second hydrostatic surface SP2, and a groove LG extending from the inner peripheral side and extending in both the circumferential direction at the intermediate position and the outer end position is formed therein. (See FIG. 6).

一方、第1ロータ部材34Aの下面である第2の静圧面SP2に対応する、第1ステータ部材36Aの上面が第2の支持面HP2を形成し、第1ロータ部材34Aの上面である第1の静圧面SP1に対応する、第2ステータ部材36Bの下面が第1の支持面HP1を形成する。又、第2ロータ部材34Bの下面である第2の静圧面SP2に対応する、第2ステータ部材36Bの上面が第2の支持面HP2を形成し、第2ロータ部材34Bの上面である第1の静圧面SP1に対応する、第3ステータ部材36Cの下面が第1の支持面HP1を形成する。更に、第3ロータ部材34Cの下面である第2の静圧面SP2に対応する、第3ステータ部材36Cの上面が第2の支持面HP2を形成し、第3ロータ部材34Cの上面である第1の静圧面SP1に対応する、第4ステータ部材36Dの下面が第1の支持面HP1を形成する。尚、静圧面SP1,SP2及び支持面HP1,HP2は、それぞれ静圧回転軸SRSの回転軸線に直交する方向に延在している。   On the other hand, the upper surface of the first stator member 36A corresponding to the second hydrostatic surface SP2 which is the lower surface of the first rotor member 34A forms the second support surface HP2, and the first upper surface of the first rotor member 34A. The lower surface of the second stator member 36B corresponding to the static pressure surface SP1 forms the first support surface HP1. Further, the upper surface of the second stator member 36B corresponding to the second hydrostatic surface SP2 which is the lower surface of the second rotor member 34B forms the second support surface HP2, and the first upper surface of the second rotor member 34B. The lower surface of the third stator member 36C corresponding to the static pressure surface SP1 forms the first support surface HP1. Further, the upper surface of the third stator member 36C corresponding to the second hydrostatic surface SP2 that is the lower surface of the third rotor member 34C forms the second support surface HP2, and the first upper surface of the third rotor member 34C. The lower surface of the fourth stator member 36D corresponding to the static pressure surface SP1 forms the first support surface HP1. The static pressure surfaces SP1 and SP2 and the support surfaces HP1 and HP2 extend in a direction perpendicular to the rotation axis of the static pressure rotation axis SRS.

外スリーブ32の中間部には、半径方向に貫通する貫通孔32aが複数個形成されており、ここにオリフィス部材38が嵌合固定されている。又、貫通孔32aが露出する外スリーブ32の内周面は、拡径されたリセス(凹部)32bを形成している。リセスは内スリーブ33の外周面に設けても良い。貫通孔32aは、外スリーブ32に形成された軸線方向孔32cを介し、O−リングOGによって油の漏れだしを防止された形で、ベース31に形成された油路31aに連通している。従って、外部の供給源(不図示)より油路31a、軸線方向孔32c、貫通孔32aを通って供給された油が、オリフィス部材38に形成されたオリフィス孔38aを介して、流量を調整された態様で、リセス32b内へと供給されることとなる。ここで、内スリーブ33の外周面が、半径方向の静圧面となり、外スリーブ32の内周面が、半径方向の支持面となっている。   A plurality of through holes 32a penetrating in the radial direction are formed in an intermediate portion of the outer sleeve 32, and an orifice member 38 is fitted and fixed thereto. Further, the inner peripheral surface of the outer sleeve 32 from which the through hole 32a is exposed forms a recess (recessed portion) 32b having an enlarged diameter. The recess may be provided on the outer peripheral surface of the inner sleeve 33. The through hole 32 a communicates with an oil passage 31 a formed in the base 31 through an axial hole 32 c formed in the outer sleeve 32 in a form in which oil leakage is prevented by the O-ring OG. Therefore, the flow rate of oil supplied from an external supply source (not shown) through the oil passage 31a, the axial hole 32c, and the through hole 32a is adjusted through the orifice hole 38a formed in the orifice member 38. In this manner, it is supplied into the recess 32b. Here, the outer peripheral surface of the inner sleeve 33 is a static pressure surface in the radial direction, and the inner peripheral surface of the outer sleeve 32 is a support surface in the radial direction.

本実施の形態によれば、ベース31の油路31aに対して外部の供給源より、圧力伝達媒体として油を供給すると、かかる油は供給孔36a〜36cを通り、図2,3を参照して上述したように、第1の静圧面SP1と第1の支持面HP1との間、及び第2の静圧面SP2と第2の支持面HP2との間でそれぞれ所定の油圧を発生させ、その油圧により固定部材FMに対して静圧回転軸SRSを非接触で支持し、もって軸線方向力を支持すると共に静圧回転軸SRSの軸線の傾きに対する抗力(復元力ともいう)を与えることができる。特に、溝UG、LGを介して、油が静圧面と支持面との間に均一に分散するので、圧力分布の偏りを抑制できる。第1の静圧面SP1と第1の支持面HP1との間、及び第2の静圧面SP2と第2の支持面HP2との間を通過した油は、排出孔34c〜34aを通って、ベース31に形成された排出路31bを介して外部へと排出されることとなる。   According to the present embodiment, when oil is supplied as a pressure transmission medium from an external supply source to the oil passage 31a of the base 31, the oil passes through the supply holes 36a to 36c and refers to FIGS. As described above, a predetermined hydraulic pressure is generated between the first static pressure surface SP1 and the first support surface HP1, and between the second static pressure surface SP2 and the second support surface HP2, respectively. The static pressure rotating shaft SRS is supported in a non-contact manner with respect to the fixed member FM by hydraulic pressure, thereby supporting an axial force and providing a resistance against the inclination of the axis of the static pressure rotating shaft SRS (also referred to as a restoring force). . In particular, since the oil is uniformly dispersed between the static pressure surface and the support surface via the grooves UG and LG, the uneven pressure distribution can be suppressed. The oil that has passed between the first static pressure surface SP1 and the first support surface HP1 and between the second static pressure surface SP2 and the second support surface HP2 passes through the discharge holes 34c to 34a, and enters the base. It will be discharged | emitted outside via the discharge path 31b formed in 31. FIG.

又、ベース31の油路31aに対して外部の供給源より供給された油は、外スリーブ32の内周面と、内スリーブ33の外周面との間に送られて、その間で油圧を発生することで半径方向の力を支持することができ、それにより固定部材FMに対する静圧回転軸SRSの軸線ズレを防止できる。かかる静圧面と支持面との間を通過した油は、同様に内スリーブ33の下方の空間に収集され、排出路31bを介して外部へと排出されることとなる。   Oil supplied from an external supply source to the oil passage 31a of the base 31 is sent between the inner peripheral surface of the outer sleeve 32 and the outer peripheral surface of the inner sleeve 33, and generates hydraulic pressure therebetween. By doing so, the force in the radial direction can be supported, whereby the axial displacement of the static pressure rotating shaft SRS with respect to the fixed member FM can be prevented. The oil that has passed between the static pressure surface and the support surface is similarly collected in the space below the inner sleeve 33 and discharged to the outside through the discharge path 31b.

図7は、ロータ部材の変形例を切断して示す斜視図である。図7に示すように、ロータ部材34の上面である第1の静圧面SP1に、軸線方向に見てU字状の溝UGを形成しており、またロータ部材34の下面である第2の静圧面SP2に、同様に軸線方向に見てU字状の溝LGを形成している。図6,7に示す溝は、支持面のみに、又は静圧面と支持面の双方に形成しても良く、形状は以上の例に限られない。   FIG. 7 is a perspective view showing a modified example of the rotor member. As shown in FIG. 7, a U-shaped groove UG is formed in the first static pressure surface SP <b> 1 that is the upper surface of the rotor member 34 as viewed in the axial direction, and the second lower surface that is the lower surface of the rotor member 34. Similarly, a U-shaped groove LG as viewed in the axial direction is formed in the static pressure surface SP2. The grooves shown in FIGS. 6 and 7 may be formed only on the support surface or on both the static pressure surface and the support surface, and the shape is not limited to the above example.

図8は、第2の実施の形態にかかる旋回テーブルの支持装置30’の軸線方向断面図である。本実施の形態が、図5に示す実施の形態と異なるのは、第3ロータ部材、第3ステータ間座、第4ステータ部材を省略し、その代わりにモータをビルトインしている点である。又、溝UG、LGはステータ部材の支持面側に形成されている。それ以外の点については、上述の実施の形態と同様であるので、説明を省略する。   FIG. 8 is a sectional view in the axial direction of the support device 30 ′ of the turning table according to the second embodiment. This embodiment is different from the embodiment shown in FIG. 5 in that the third rotor member, the third stator spacer, and the fourth stator member are omitted, and a motor is built in instead. The grooves UG and LG are formed on the support surface side of the stator member. Since the other points are the same as those in the above-described embodiment, the description thereof is omitted.

より具体的に異なる点を説明する。内スリーブ33に対し、ホルダHDを介して、永久磁石MGとエンコーダスケールESを取り付けている。一方、第3ステータ部材36Cの上面において、永久磁石MGに対向する位置にコイルCLを配置すると共に、エンコーダスケールESに対向して、読み取りヘッドRHを配置している。外部からコイルCLに交流電流を供給すると、コイルCLと永久磁石MGとの間に磁力が生じ、静圧回転軸SRSは固定部材FMに対して回転する。このとき、エンコーダスケールESを、読み取りヘッドRHで読みとることで回転角度が検出されるため、その信号を用いることでフィードバック回転制御を行うことができる。   More specific differences will be described. A permanent magnet MG and an encoder scale ES are attached to the inner sleeve 33 via a holder HD. On the other hand, on the upper surface of the third stator member 36C, the coil CL is disposed at a position facing the permanent magnet MG, and the reading head RH is disposed facing the encoder scale ES. When an alternating current is supplied from the outside to the coil CL, a magnetic force is generated between the coil CL and the permanent magnet MG, and the static pressure rotating shaft SRS rotates with respect to the fixed member FM. At this time, since the rotation angle is detected by reading the encoder scale ES with the reading head RH, feedback rotation control can be performed by using the signal.

(実施例)
図5に示す支持装置30について、本発明者らが検討した結果、支持装置30の直径を42cm、高さを20.5cmとしたときに、それぞれ内径14cm、外径24cmである3対の静圧面SP1,SP2を得た。かかる場合の静圧面SP1、SP2の総面積は約1790cmとなり、十分な軸線方向の剛性を有することが確認された。即ち、ロータ部材34A〜34Cを3枚用いることで、それが1枚の場合に比べ、3倍の静圧面の面積を稼げるため、コンパクトな構成ながら、高い軸線方向の剛性を確保できることがわかる。更に、ロータ部材34A〜34Cが傾くと、3対の静圧面で差圧が発生するので、極めて大きな復元力が発生することもわかった。
(Example)
As a result of the study by the present inventors on the support device 30 shown in FIG. 5, when the diameter of the support device 30 is 42 cm and the height is 20.5 cm, three pairs of static devices having an inner diameter of 14 cm and an outer diameter of 24 cm, respectively. The pressure surfaces SP1 and SP2 were obtained. In this case, the total area of the static pressure surfaces SP1 and SP2 is about 1790 cm 2 , and it was confirmed that the static pressure surfaces SP1 and SP2 have sufficient axial rigidity. That is, by using three rotor members 34 </ b> A to 34 </ b> C, the area of the static pressure surface can be increased three times as compared with the case of using one rotor member 34 </ b> C. Therefore, it is understood that high axial rigidity can be ensured with a compact configuration. Further, it has been found that when the rotor members 34A to 34C are inclined, a differential pressure is generated between the three pairs of static pressure surfaces, so that an extremely large restoring force is generated.

尚、オリフィス孔38aを介して吐出された油がリセス32bに溜まり大きな保持力を発生させ、更に内スリーブ33の外周である静圧面と、10μm程度の外スリーブ32の内周である支持面との間に供給され、ここで大きなダンピング効果を発生させる。かかる静圧面は、内スリーブ33の最外周部となっているので、直径35cm、高さ14cmと大きな寸法を確保でき、それにより静圧面の面積は約1540cmと大きくなるので、複数の静圧面を有していないにもかかわらず、大きな半径方向の剛性を得ることができる。 The oil discharged through the orifice hole 38a accumulates in the recess 32b and generates a large holding force. Further, the static pressure surface that is the outer periphery of the inner sleeve 33 and the support surface that is the inner periphery of the outer sleeve 32 of about 10 μm Is supplied during this period, where a large damping effect is generated. Since the hydrostatic surface is the outermost peripheral portion of the inner sleeve 33, a large dimension of 35 cm in diameter and 14 cm in height can be secured, and the area of the hydrostatic surface is increased to about 1540 cm 2 , so that a plurality of hydrostatic surfaces can be obtained. A large radial stiffness can be obtained even though

また、第1ロータ部材34A、第1ロータ間座35A、第2ロータ部材34B、第2ロータ間座35B、第3ロータ部材34C、及び旋回テーブルTを全て、窒化珪素のセラミック部材とし、それ以外の部品は、窒化珪素の線膨張係数に合わせたステンレスインバー材を用いることで、支持装置30全体が室温付近で1.3×10−6という非常に小さな熱膨縮量を実現できる。そのため、旋回テーブルT上に設置する工具やワークなどの位置が、温度膨縮によりほとんど変動しないという効果を得られる。また、ロータ部材34A〜34Cにおいて、静圧面SP1,SP2が受ける圧力は、それぞれ全面で均等に加わるため、その撓みがほとんどないという効果も得られる。 Further, the first rotor member 34A, the first rotor spacer 35A, the second rotor member 34B, the second rotor spacer 35B, the third rotor member 34C, and the turning table T are all made of a silicon nitride ceramic member. By using a stainless invar material matched to the linear expansion coefficient of silicon nitride, the entire support device 30 can realize a very small thermal expansion / contraction amount of 1.3 × 10 −6 near room temperature. For this reason, it is possible to obtain an effect that the positions of tools and workpieces installed on the turning table T hardly change due to temperature expansion and contraction. Further, in the rotor members 34A to 34C, the pressures received by the static pressure surfaces SP1 and SP2 are equally applied over the entire surface, so that an effect that there is almost no bending is also obtained.

また、図5に示す支持装置に対して、比較的低粘度の油を5気圧で供給したところ、3580N/μmの軸線方向の剛性と、1600N/μmの半径方向の剛性とを得た。このとき傾き剛性は、12.5Nm/arc秒であった。これに対し、図1に示す比較例の支持装置では、静圧回転軸に同じセラミックを用い、略同じ外形寸法とした場合、軸線方向の剛性が1020N/μmで、半径方向の剛性が400N/μmで、傾き剛性が3.5Nm/arc秒程度であるため、それぞれ図5に示す静圧回転軸の方が3〜4倍の高い剛性を有することがわかった。特に、比較例の静圧回転軸は、静圧面が円板の片方にしか存在しないため、片側からのみ大きな圧力を受けること、更にステンレス材料を用いた場合には、非常にたわみやすく、回転精度やテーブル面の平面度を悪くすることとなる。これに対し、図5に示す静圧回転軸では、第1ロータ部材34A、第1ロータ間座35A、第2ロータ部材34B、第2ロータ間座35B、第3ロータ部材34C、及び旋回テーブルTがセラミックから形成され、且つ第1ロータ部材34A、第2ロータ部材34B、第3ロータ部材34Cの両側に静圧面を設けていることから、撓みのない高精度な静圧回転軸を得られることがわかった。   Further, when relatively low viscosity oil was supplied to the support device shown in FIG. 5 at 5 atm, an axial rigidity of 3580 N / μm and a radial rigidity of 1600 N / μm were obtained. At this time, the inclination stiffness was 12.5 Nm / arc seconds. On the other hand, in the support device of the comparative example shown in FIG. 1, when the same ceramic is used for the static pressure rotating shaft and the outer dimensions are substantially the same, the axial rigidity is 1020 N / μm and the radial rigidity is 400 N / Since the inclination rigidity is about 3.5 Nm / arc second at μm, it has been found that the static pressure rotating shaft shown in FIG. 5 has 3 to 4 times higher rigidity. In particular, the static pressure rotating shaft of the comparative example has a static pressure surface only on one side of the disk, so it receives a large pressure only from one side, and when using a stainless material, it is very flexible and rotational accuracy In addition, the flatness of the table surface is deteriorated. On the other hand, in the hydrostatic rotating shaft shown in FIG. 5, the first rotor member 34A, the first rotor spacer 35A, the second rotor member 34B, the second rotor spacer 35B, the third rotor member 34C, and the turning table T Is formed of ceramic, and the hydrostatic surfaces are provided on both sides of the first rotor member 34A, the second rotor member 34B, and the third rotor member 34C, so that a highly accurate hydrostatic rotating shaft without bending can be obtained. I understood.

比較例にかかる静圧回転軸を備えた支持装置の断面図である。It is sectional drawing of the support apparatus provided with the static pressure rotating shaft concerning a comparative example. 本発明にかかる静圧回転軸を備えた支持装置の一例を示す断面図である。It is sectional drawing which shows an example of the support apparatus provided with the static pressure rotating shaft concerning this invention. 図2の矢印IIIで示す部位を拡大して示す図である。It is a figure which expands and shows the site | part shown by the arrow III of FIG. 本実施の形態にかかる支持装置を備えた5軸加工機10の斜視図である。1 is a perspective view of a five-axis processing machine 10 including a support device according to the present embodiment. 第1の実施の形態にかかる旋回テーブルの支持装置30の軸線方向断面図である。It is an axial sectional view of support device 30 of the turntable concerning a 1st embodiment. 第1ロータ部材34Aの斜視図である。It is a perspective view of 34 A of 1st rotor members. ロータ部材の変形例を切断して示す斜視図である。It is a perspective view which cuts and shows the modification of a rotor member. 第2の実施の形態にかかる旋回テーブルの支持装置30’の軸線方向断面図である。It is an axial sectional view of the turning table support device 30 ′ according to the second embodiment.

符号の説明Explanation of symbols

10 5軸加工機
11 アクティブエアマウント
12 ベース
13 スライドレール
15 サポートブロック
16 スライドテーブル
17 スライドテーブル
18 旋回テーブル
20 静圧スライド
30 支持装置
31 ベース
31a 油路
31b 排出路
31c 周溝
32 外スリーブ
32a 貫通孔
32b リセス
32c 軸線方向孔
33 内スリーブ
33a フランジ部
34A〜34C ロータ部材
34a 排出孔
35A、35B ロータ間座
36A〜36D ステータ部材
36a 供給孔
37A〜37C ステータ間座
37a 排出孔
38 オリフィス部材
38a オリフィス孔
CA 中央開口
CL コイル
CS 円盤状空間
DP 配管
ES エンコーダスケール
FC 固定円板
FM 固定部材
HD ホルダ
HP1 第1の支持面
HP2 第2の支持面
LC 下部円板部
LG 溝
LS 大径シャフト
MG 永久磁石
OG リング
OR オリフィス
RH ヘッド
S シール
SA 供給孔
SP1 第1の静圧面
SP2 第2の静圧面
SRS 静圧回転軸
T 旋回テーブル
UC 上部円板部
UG 溝

DESCRIPTION OF SYMBOLS 10 5-axis processing machine 11 Active air mount 12 Base 13 Slide rail 15 Support block 16 Slide table 17 Slide table 18 Turning table 20 Static pressure slide 30 Support apparatus 31 Base 31a Oil path 31b Discharge path 31c Circumferential groove 32 Outer sleeve 32a Through hole 32b Recess 32c Axial direction hole 33 Inner sleeve 33a Flange 34A-34C Rotor member 34a Discharge hole 35A, 35B Rotor spacer 36A-36D Stator member 36a Supply hole 37A-37C Stator spacer 37a Discharge hole 38 Orifice member 38a Orifice hole CA Center opening CL Coil CS Disc space DP Pipe ES Encoder scale FC Fixed disk FM Fixed member HD Holder HP1 First support surface HP2 Second support surface LC Lower disk part G grooves LS large diameter shaft MG permanent magnet OG ring OR orifice RH head S sealing SA supply hole SP1 first static pressure surface SP2 second static pressure surface SRS hydrostatic rotary axis T turntable UC upper disc portion UG groove

Claims (12)

第1の支持面と第2の支持面とを備える固定部材と、
前記第1の支持面に対向する第1の静圧面と、前記第2の支持面に対向する第2の静圧面とを備え、前記固定部材に対して圧力伝達媒体により回転可能に支持される静圧回転軸と、を有し、
前記第1の静圧面と前記第2の静圧面とは、前記静圧回転軸の回転軸線の方向において異なる位置で、表裏の関係で設けられ、
前記圧力伝達媒体が、供給側から排出側に移動する間に分けられて、分けられた前記圧力伝達媒体が、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間を、それぞれ移動するように構成されており、
前記静圧回転軸の回転軸線を通る装置全体の断面形状を、前記静圧回転軸の回転軸線を境界として2分割し、その片方の断面形状を見たときに、
前記第1の静圧面と前記第1の支持面との間において前記圧力伝達媒体が移動する方向と、前記第2の静圧面と前記第2の支持面との間において前記圧力伝達媒体が移動する方向とは、共に前記静圧回転軸の回転軸線に近い側から遠ざかる側への方向であり、前記第1の静圧面と前記第1の支持面との間において、前記圧力伝達媒体が前記第1の静圧面と前記第1の支持面とが対向する一端側から他端側へ移動し、また前記第2の静圧面と前記第2の支持面との間において、前記圧力伝達媒体が前記第2の静圧面と前記第2の支持面とが対向する一端側から他端側に移動するように構成されており、
前記固定部材に対し、前記静圧回転軸の回転軸線が傾いた場合に、
前記第1の静圧面と前記第1の支持面とが対向する前記一端側よりも前記他端側において、前記第1の静圧面と前記第1の支持面との間隔が小さくなると共に、前記第1の静圧面が前記圧力伝達媒体によって受ける圧力が大きくなり、
更に、前記第2の静圧面と前記第2の支持面とが対向する前記一端側よりも前記他端側において、前記第2の静圧面と前記第2の支持面との間隔が大きくなると共に、前記第2の静圧面が前記圧力伝達媒体によって受ける圧力が小さくなるよう構成されたことを特徴とする支持装置。
A fixing member comprising a first support surface and a second support surface;
A first hydrostatic surface opposed to the first support surface; and a second hydrostatic surface opposed to the second support surface, and rotatably supported by a pressure transmission medium with respect to the fixing member. A static pressure rotating shaft,
The first static pressure surface and the second static pressure surface are provided in a front / back relationship at different positions in the direction of the rotation axis of the static pressure rotation shaft,
The pressure transmission medium is divided while moving from the supply side to the discharge side, and the divided pressure transmission medium is divided between the first static pressure surface and the first support surface, and the second. Between the static pressure surface and the second support surface, respectively,
When the sectional shape of the entire device passing through the rotational axis of the static pressure rotating shaft is divided into two with the rotational axis of the static pressure rotating shaft as a boundary, and one of the sectional shapes is viewed,
The direction of movement of the pressure transmission medium between the first static pressure surface and the first support surface and the movement of the pressure transmission medium between the second static pressure surface and the second support surface. Both directions are directions from the side close to the rotation axis of the static pressure rotary shaft to the side away from the rotary axis, and the pressure transmission medium is between the first static pressure surface and the first support surface. The first static pressure surface and the first support surface move from one end side to the other end side, and the pressure transmission medium is interposed between the second static pressure surface and the second support surface. The second static pressure surface and the second support surface are configured to move from one end side to the other end side facing each other,
When the rotation axis of the static pressure rotation axis is inclined with respect to the fixing member,
On the other end side than the one end side where the first static pressure surface and the first support surface face each other, a distance between the first static pressure surface and the first support surface is reduced, and The pressure that the first hydrostatic surface receives by the pressure transmission medium increases,
Further, the gap between the second static pressure surface and the second support surface is larger on the other end side than the one end side where the second static pressure surface and the second support surface face each other. The support device is configured so that the pressure received by the pressure transmission medium on the second static pressure surface is reduced.
前記第1の静圧面と前記第2の静圧面は、前記静圧回転軸の回転軸線に対して直交する方向に延在していることを特徴とする請求項1に記載の支持装置。   2. The support device according to claim 1, wherein the first static pressure surface and the second static pressure surface extend in a direction orthogonal to a rotation axis of the static pressure rotation shaft. 前記第1の静圧面と前記第2の静圧面は、複数対設けられていることを特徴とする請求項2に記載の支持装置。   The support device according to claim 2, wherein a plurality of pairs of the first static pressure surface and the second static pressure surface are provided. 前記第1の静圧面と前記第2の静圧面は、円板状の部材上における表裏の関係にある面であることを特徴とする請求項2に記載の支持装置。   The support device according to claim 2, wherein the first static pressure surface and the second static pressure surface are surfaces in a front-back relationship on a disk-shaped member. 前記第1の静圧面と前記第2の静圧面を有する前記円板状の部材を、前記静圧回転軸の軸線方向に沿って複数配置したことを特徴とする請求項4に記載の支持装置。   The support device according to claim 4, wherein a plurality of the disk-shaped members having the first static pressure surface and the second static pressure surface are arranged along an axial direction of the static pressure rotation axis. . 前記静圧回転軸に付与される軸線方向力は、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間における前記圧力伝達媒体により支持されることを特徴とする請求項1乃至5のいずれかに記載の支持装置。   The axial force applied to the hydrostatic rotating shaft is between the first hydrostatic surface and the first support surface and between the second hydrostatic surface and the second support surface. The support device according to claim 1, wherein the support device is supported by a pressure transmission medium. 前記圧力伝達媒体は、前記第1の静圧面と前記第1の支持面との間、及び前記第2の静圧面と前記第2の支持面との間において、前記静圧回転軸の軸線に近い側から遠い側へと、それぞれ移動するようになっていることを特徴とする請求項1乃至6のいずれかに記載の支持装置。   The pressure transmission medium is disposed between the first hydrostatic surface and the first support surface, and between the second hydrostatic surface and the second support surface. The support device according to any one of claims 1 to 6, wherein the support device moves from a near side to a far side. 前記第1の静圧面と前記第1の支持面との間隔を前記断面上で比較したときに、前記他端側で最小間隔が生じたときは、前記第2の静圧面と前記第2の支持面との間隔を前記断面上で比較したときに、前記一端側で最小間隔が生じるようになっていることを特徴とする請求項1乃至7のいずれかに記載の支持装置。   When the distance between the first hydrostatic surface and the first support surface is compared on the cross section, when the minimum gap occurs on the other end side, the second hydrostatic surface and the second hydrostatic surface The support device according to any one of claims 1 to 7, wherein a minimum distance is generated on the one end side when the distance from the support surface is compared on the cross section. 前記第1の静圧面と前記第1の支持面との少なくとも一方には、前記圧力伝達媒体の少なくとも移動方向に沿って延在する溝が形成されており、及び/又は前記第2の静圧面と前記第2の支持面との少なくとも一方には、前記圧力伝達媒体の少なくとも移動方向に沿って延在する溝が形成されていることを特徴とする請求項1乃至8のいずれかに記載の支持装置。   At least one of the first static pressure surface and the first support surface is formed with a groove extending along at least the moving direction of the pressure transmission medium, and / or the second static pressure surface. The groove | channel extended along at least the moving direction of the said pressure transmission medium is formed in at least one of the said 2nd support surface and the said 2nd support surface. Support device. 前記第1の静圧面及び前記第2の静圧面の少なくとも一方を形成する部材がセラミックから形成されていることを特徴とする請求項1乃至9のいずれかに記載の支持装置。   The support device according to claim 1, wherein a member forming at least one of the first static pressure surface and the second static pressure surface is made of ceramic. 前記圧力伝達媒体は、液体であることを特徴とする請求項1乃至10のいずれかに記載の支持装置。   The support device according to claim 1, wherein the pressure transmission medium is a liquid. 請求項1乃至11のいずれかに記載の支持装置を有することを特徴とする加工機。
A processing machine comprising the support device according to claim 1.
JP2004235021A 2004-08-12 2004-08-12 Support device and processing machine Expired - Fee Related JP4529127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235021A JP4529127B2 (en) 2004-08-12 2004-08-12 Support device and processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235021A JP4529127B2 (en) 2004-08-12 2004-08-12 Support device and processing machine

Publications (2)

Publication Number Publication Date
JP2006052793A true JP2006052793A (en) 2006-02-23
JP4529127B2 JP4529127B2 (en) 2010-08-25

Family

ID=36030412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235021A Expired - Fee Related JP4529127B2 (en) 2004-08-12 2004-08-12 Support device and processing machine

Country Status (1)

Country Link
JP (1) JP4529127B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067811A (en) * 2019-05-30 2019-07-30 中国工程物理研究院机械制造工艺研究所 A kind of air-float turntable
CN114517809A (en) * 2022-02-23 2022-05-20 中国工程物理研究院机械制造工艺研究所 Aerostatic bearing based on lotus-root-shaped directional porous throttling
CN115325026A (en) * 2022-08-23 2022-11-11 通用技术集团机床工程研究院有限公司 Hydrostatic bearing unit with built-in throttler and ultra-precise hydrostatic rotary table

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139848A (en) * 1980-03-27 1981-10-31 Makino Milling Mach Co Ltd Spindle device for machine tool
JPS59194126A (en) * 1983-04-15 1984-11-02 Japan Steel Works Ltd:The Static pressure thrust bearing device
JPH0351223U (en) * 1989-09-25 1991-05-17
JPH03249424A (en) * 1990-02-26 1991-11-07 Nippon Seiko Kk Hydrostatic gas bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139848A (en) * 1980-03-27 1981-10-31 Makino Milling Mach Co Ltd Spindle device for machine tool
JPS59194126A (en) * 1983-04-15 1984-11-02 Japan Steel Works Ltd:The Static pressure thrust bearing device
JPH0351223U (en) * 1989-09-25 1991-05-17
JPH03249424A (en) * 1990-02-26 1991-11-07 Nippon Seiko Kk Hydrostatic gas bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067811A (en) * 2019-05-30 2019-07-30 中国工程物理研究院机械制造工艺研究所 A kind of air-float turntable
CN110067811B (en) * 2019-05-30 2024-03-26 中国工程物理研究院机械制造工艺研究所 Air-floating rotary table
CN114517809A (en) * 2022-02-23 2022-05-20 中国工程物理研究院机械制造工艺研究所 Aerostatic bearing based on lotus-root-shaped directional porous throttling
CN114517809B (en) * 2022-02-23 2023-09-12 中国工程物理研究院机械制造工艺研究所 Aerostatic bearing based on lotus root-shaped directional porous throttling
CN115325026A (en) * 2022-08-23 2022-11-11 通用技术集团机床工程研究院有限公司 Hydrostatic bearing unit with built-in throttler and ultra-precise hydrostatic rotary table
CN115325026B (en) * 2022-08-23 2023-09-05 通用技术集团机床工程研究院有限公司 Hydrostatic bearing unit with built-in restrictor and ultra-precise hydrostatic turntable

Also Published As

Publication number Publication date
JP4529127B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4715081B2 (en) Processing machine
JP2010096311A (en) Hydrostatic bearing pad, linear guide apparatus, and rotation guide apparatus
US8485729B2 (en) Self-compensating hydrostatic journal bearing
JP2008030190A (en) Machine tool improved in concentricity
US7682082B2 (en) Compact surface self-compensated hydrostatic bearings
CN103429928A (en) Damper having modular flexible ligaments and variable gaps
JP7049165B2 (en) Rotating table and roundness measuring machine
WO2005002788A2 (en) Fast tool servo system and method for cutting a workpiece
US20110299806A1 (en) Spindle, shaft supporting device and method of supporting a rotatable shaft
JP4529127B2 (en) Support device and processing machine
TWI519382B (en) Rotation mechanism
Akhondzadeh et al. Study of variable depth air pockets on air spindle vibrations in ultra-precision machine tools
JP4461372B2 (en) Static pressure rotating shaft and supporting device
JP2014105870A (en) Fluid bearing with non-uniform grooves
JP5831170B2 (en) Variable throttle hydrostatic bearing
JP5045456B2 (en) Spindle device
JP4811780B2 (en) Linear motor, machine tool and measuring instrument
JP6779349B1 (en) Rotary work head using sliding thrust bearing device and sliding thrust bearing device
US20160207154A1 (en) Main spindle device for machine tool and machine tool
JP6492699B2 (en) Thrust support device for operating member, and machine tool provided with the support device
JP2006275281A (en) Gas bearing
JPH10299779A (en) Static pressure gas bearing device
JP2006029395A (en) Static pressure slide
EP4089294A1 (en) Negative-pressure adsorption static-pressure supporting guide rail of machining machine tool, and cylindrical grinding machine comprising negative-pressure adsorption static-pressure supporting guide rail
JP2006210659A (en) Gas control rotary moving device and a gas control actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees