JP2006050946A - Microcapsule using pectin as wall material - Google Patents

Microcapsule using pectin as wall material Download PDF

Info

Publication number
JP2006050946A
JP2006050946A JP2004234470A JP2004234470A JP2006050946A JP 2006050946 A JP2006050946 A JP 2006050946A JP 2004234470 A JP2004234470 A JP 2004234470A JP 2004234470 A JP2004234470 A JP 2004234470A JP 2006050946 A JP2006050946 A JP 2006050946A
Authority
JP
Japan
Prior art keywords
pectin
microcapsule
capsule
oil
median diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234470A
Other languages
Japanese (ja)
Inventor
友紀子 ▲高▼倉
Yukiko Takakura
Kentaro Maruyama
健太郎 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2004234470A priority Critical patent/JP2006050946A/en
Priority to PCT/JP2005/014975 priority patent/WO2006016713A1/en
Publication of JP2006050946A publication Critical patent/JP2006050946A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nutrition Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Formation And Processing Of Food Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microcapsule without necessitating a surfactant and an emulsifier as a material for capsule, easy to prepare, excellent in stability and having a large oil including capacity per capsule. <P>SOLUTION: The invention relates to the microcapsule obtained by forming an O/W type emulsion with a water phase containing pectin and an oil phase, and then mixing polyvalent cation to form the microcapsule with median diameter of 0.01-100 μm and including an oil soluble material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ペクチンを壁材とするマイクロカプセルに関する   The present invention relates to a microcapsule using pectin as a wall material.

近年、健康志向の高まりから栄養補助食品、機能性食品などの健康食品が注目されている。これらの食品に含まれる内容成分の保護、安定化、味・臭いのマスキングのためにカプセルが用いられている。カプセルにも様々な種類があるが、錠剤などのハードカプセル、ソフトカプセル、シームレスカプセル、従来のマイクロカプセルは粒径が0.3mm〜2cmであり、喫食時に舌で知覚できる大きさである。その為、食品にこれらのカプセルを配合すると食感が変化してしまう。マヨネーズなどの乳化物タイプの食品は粒径が5μm以下であり、喫食時に舌で知覚できない大きさである。しかし、乳化物タイプの食品は加熱安定性・保存安定性、マスキングの困難性、コスト、などの点で課題がある。   In recent years, health foods such as nutritional supplements and functional foods have attracted attention due to the growing health-consciousness. Capsules are used to protect and stabilize the contents contained in these foods and mask taste and odor. There are various types of capsules, but hard capsules such as tablets, soft capsules, seamless capsules, and conventional microcapsules have a particle size of 0.3 mm to 2 cm, and can be perceived by the tongue when eating. Therefore, when these capsules are mixed with food, the texture changes. Emulsion-type foods such as mayonnaise have a particle size of 5 μm or less, and cannot be perceived by the tongue when eating. However, emulsion-type foods have problems in terms of heat stability / storage stability, difficulty in masking, and cost.

また、従来のマイクロカプセルにおいてはその壁材として牛、豚、鳥、魚などの動物由来のタンパクが用いられてきたが、非動物性の素材に対する市場の要求も高まっている。   Moreover, in the conventional microcapsules, protein derived from animals such as cows, pigs, birds, and fish has been used as the wall material, but the market demand for non-animal materials is also increasing.

非動物性の素材を壁材としたマイクロカプセルの製造法として、多糖類と油状物質のエマルションを多価陽イオン塩水溶液に滴下し、多糖類と多価イオンとの間に架橋結合を形成せしめて固形化させるマイクロカプセルが知られている(特許文献1参照)。   As a method for producing microcapsules using non-animal materials as a wall material, an emulsion of polysaccharides and oily substances is dropped into an aqueous solution of polyvalent cation salt to form a crosslink between the polysaccharide and polyvalent ions. There are known microcapsules that are solidified (see Patent Document 1).

しかしながら、エマルションを多価陽イオン塩水溶液に滴下する該滴下法では、粒径がノズル径やぬれ性に依存するためミリオーダーの比較的大きなカプセルしかできない。また、ひとつのカプセル中に複数の油滴が存在する多芯カプセルであるため、1カプセル当りの内包量が少ないという課題がある。   However, in the dropping method in which the emulsion is dropped into the aqueous polyvalent cation salt solution, since the particle diameter depends on the nozzle diameter and wettability, only a comparatively large capsule on the order of millimeters can be produced. Moreover, since it is a multi-core capsule in which a plurality of oil droplets exist in one capsule, there is a problem that the amount of encapsulation per capsule is small.

乳化剤を使用せずメジアン径が3μm以下のマイクロカプセルも知られている(特許文献2参照)。   A microcapsule having a median diameter of 3 μm or less without using an emulsifier is also known (see Patent Document 2).

しかしながら該発明は、壁材としてタンパク質を用いることが必須である。また予備乳化や圧力処理等などの操作が必要であるなど製造方法が複雑である。   However, in the invention, it is essential to use protein as a wall material. In addition, the manufacturing method is complicated such as operations such as preliminary emulsification and pressure treatment.

天然由来多糖類を含有した平均粒径が0.1〜50μmの微粒子が知られている(特許文献3参照)。   Fine particles having an average particle diameter of 0.1 to 50 μm containing natural polysaccharides are known (see Patent Document 3).

しかしながら該発明は多芯カプセルの製造法であるため、多孔質ガラス膜による膜乳化や、濃度調整工程、不溶化工程など複雑な工程が多段階必要である。また多芯カプセルであるため1カプセル当りの内包量も少なくなる。   However, since the invention is a method for producing a multi-core capsule, complicated steps such as membrane emulsification with a porous glass membrane, concentration adjustment step, and insolubilization step are required. Moreover, since it is a multi-core capsule, the amount of encapsulation per capsule is reduced.

水溶性多糖類などの水溶性高分子を外水相に配合したW/O/W複合エマルションが知られている(特許文献4参照)。   A W / O / W composite emulsion in which a water-soluble polymer such as a water-soluble polysaccharide is blended in an outer aqueous phase is known (see Patent Document 4).

しかしながら該発明のエマルションにはメジアン径が20〜2000nmと小さいものも含まれるが、該発明は水、油性成分、親油性乳化剤の組成比に特徴がある。その為、乳化剤が必須の構成要件であるだけでなく、使用できる油性成分も限定されてしまう。   However, the emulsions of the invention include those having a median diameter as small as 20 to 2000 nm, but the invention is characterized by the composition ratio of water, an oily component, and a lipophilic emulsifier. Therefore, an emulsifier is not only an essential component, but also the oily components that can be used are limited.

香料等を食用ガム質の膜により内包するマイクロカプセルが知られている(特許文献5参照)。   There is known a microcapsule in which a fragrance is encapsulated by an edible gum-like film (see Patent Document 5).

該発明のカプセル製法としてコアセルベート法とシームレス法が挙げられているが、コアセルベート法の場合、高分子の小滴(コアセルベート)を芯物質(油)の表面に集めて形成させるためカプセル膜厚はコアセルベート滴より必ず大きくなる(参照:Multi-layered gelatin/acacia microcapsules by complex coaservation method, Journal of chemical engineering of japan, 793-798 vol.30 No.5 1997)。また、シームレス法の場合はカプセル粒径がノズル径やぬれ性に依存するため、該発明のマイクロカプセルは粒径が数百μm以下にすることは困難である。なお、本発明においてコアセルベート法(コアセルべーション法)とは、高分子溶液中にあらかじめ不溶性の芯物質粒子(油など)を分散しておき、次いで高分子濃度、温度、pHなどの変数をコアセルベーションが起こる領域の値に調整しコアセルベート滴を生成させ、芯物質粒子の表面に集めマイクロカプセルを製造することをいう。   Although the coacervate method and the seamless method are mentioned as the capsule manufacturing method of the present invention, in the case of the coacervate method, since the polymer droplets (coacervate) are collected and formed on the surface of the core material (oil), the capsule film thickness is coacervate It is always larger than the droplet (see: Multi-layered gelatin / acacia microcapsules by complex coaservation method, Journal of chemical engineering of japan, 793-798 vol.30 No.5 1997). In the case of the seamless method, since the capsule particle diameter depends on the nozzle diameter and wettability, it is difficult for the microcapsules of the present invention to have a particle diameter of several hundred μm or less. In the present invention, the coacervate method (coacervation method) means that insoluble core material particles (oil, etc.) are dispersed in advance in a polymer solution, and then variables such as polymer concentration, temperature, pH, etc. This refers to the production of microcapsules by adjusting the value of the region where the cervation occurs to produce coacervate droplets and collecting them on the surface of the core material particles.

天然高分子を用いたカプセルも知られている(特許文献6参照)   Capsules using natural polymers are also known (see Patent Document 6).

しかし該発明は、シームレスカプセルであるため粒径が大きい。   However, since the invention is a seamless capsule, the particle size is large.

特開平7−145045号公報Japanese Patent Laid-Open No. 7-145045 特開2003−24017号公報Japanese Patent Laid-Open No. 2003-24017 特開2004−2582号公報Japanese Patent Laid-Open No. 2004-2582 国際公開WO02/43698号公報International Publication WO02 / 43698 特開2000−342186号公報JP 2000-342186 A 特開2001−245660号公報JP 2001-245660 A

本発明は前記のような課題を解決するためになされたものである。本発明の目的はマイクロカプセルを提供することである。   The present invention has been made to solve the above-described problems. An object of the present invention is to provide a microcapsule.

上記課題を解決すべく検討した結果、ペクチンを含む水相と油相でO/Wエマルションを作製した後、多価陽イオンを混合することにより、油溶性物質を内包し、メジアン径が0.01〜100μmであるマイクロカプセルが製造できることを見出し、本発明を完成させるに至った。更に具体的には内包物が油溶性であり、カプセルの壁材が非動物性であるペクチンであり、カプセルの材料として界面活性剤・乳化剤が必須でなく、調製が簡易であり、安定性が良く、かつ1カプセル当りの油内包量の多いマイクロカプセルが好ましいことを見出した。本発明は特に、医薬品、食品、健康食品等の分野、動物用飼料分野、化粧品、バス・トイレタリーなどの分野において有用である。   As a result of studying to solve the above problems, an O / W emulsion was prepared with an aqueous phase containing pectin and an oil phase, and then mixed with a polyvalent cation to encapsulate an oil-soluble substance and have a median diameter of 0. The inventors have found that microcapsules having a size of 01 to 100 μm can be produced, and have completed the present invention. More specifically, the inclusion is oil-soluble, and the capsule wall material is non-animal pectin. No surfactant or emulsifier is essential as the capsule material, and the preparation is simple and stable. It has been found that microcapsules which are good and have a large amount of oil inclusion per capsule are preferable. The present invention is particularly useful in the fields of pharmaceuticals, foods, health foods, animal feeds, cosmetics, baths and toiletries.

即ち本発明は、1)0.01〜10重量%のペクチンを含む水相と油相でO/Wエマルションを作製した後、多価陽イオンを混合することで得られる、壁材にペクチン多価陽イオンゲルを含み、油溶性物質を内包し、メジアン径が0.01〜100μmであるマイクロカプセルを含み、また、2)0.01〜10重量%のペクチンを含む水相と油相でO/Wエマルションを作製した後、カルシウムイオンを混合することで得られる、壁材にペクチンカルシウムゲルを含み、油溶性物質を内包し、メジアン径が0.01〜100μmであるマイクロカプセルを含み、また、3)O/Wエマルションを作成するときに乳化剤を用いないことを特徴とする1)又は2)のマイクロカプセルを含み、また、4)ペクチンがアミド基を持つことを特徴とする1)ないし3)のマイクロカプセルを含み、また、5)内包する油溶性物質がW/Oエマルションであることを特徴とする1)ないし4)のマイクロカプセルを含み、また、6)O/Wエマルションを作製し、多価陽イオンを混合した後に、ペクチンメチルエステラーゼを添加することを特徴とする1)ないし5)のマイクロカプセルを含み、また、7)ペクチンメチルエステラーゼを添加した後に、多価陽イオンを添加することを特徴とする6)のマイクロカプセルを含む。   That is, the present invention is as follows. 1) After producing an O / W emulsion with an aqueous phase and an oil phase containing 0.01 to 10% by weight of pectin, the wall material obtained by mixing multivalent cations It contains a cation gel, contains an oil-soluble substance, contains a microcapsule having a median diameter of 0.01 to 100 μm, and 2) O in an aqueous phase and an oil phase containing 0.01 to 10% by weight of pectin. / W emulsion obtained by mixing calcium ions, including pectin calcium gel in the wall material, encapsulating oil-soluble substances, including microcapsules having a median diameter of 0.01 to 100 μm, and 3) including the microcapsules of 1) or 2), characterized in that no emulsifier is used when preparing an O / W emulsion, and 4) characterized in that the pectin has an amide group 1) to 3) microcapsules, 5) the encapsulated oil-soluble substance is a W / O emulsion, and 1) to 4) microcapsules, and 6) O / 1) to 5) microcapsules characterized by adding a pectin methylesterase after preparing a W emulsion and mixing a polyvalent cation, and 7) adding a pectin methylesterase, 6) microcapsules characterized by adding a valent cation.

本発明によれば、喫食時に知覚しない大きさ、具体的にはメジアン径が100μm以下のマイクロカプセルを製造することができる。また、内包物が油溶性であり、カプセルの壁材が非動物性であるペクチンであり、カプセルの材料として界面活性剤・乳化剤が必須でなく、調製が簡易であり、安定性が良く、かつ1カプセル当りの油内包量の多いマイクロカプセルを提供することができる。   According to the present invention, it is possible to manufacture a microcapsule having a size that is not perceived during eating, specifically, a median diameter of 100 μm or less. Further, the inclusion is oil-soluble, the capsule wall material is non-animal pectin, a surfactant / emulsifier is not essential as the capsule material, the preparation is simple, the stability is good, and A microcapsule having a large amount of oil inclusion per capsule can be provided.

本発明においてマイクロカプセルとはメジアン径が0.01〜100μmのカプセルを意味する。カプセルの安定性の点や人が感知せず摂取できるという点からはメジアン径が小さいことが好ましい。人が感知せず摂取するにはメジアン径が100μm以下、より好ましくは10μm以下であることがより好ましい。本発明においてはマイクロカプセルの中に有効成分を導入することもできるが、内包効率の点からはメジアン径は0.1μm以上であることが好ましい。また本発明におけるカプセルの製造方法は、メジアン径が0.01〜100μmのカプセルを製造できるものであれば良く、超音波を用いる方法、撹拌法、高圧押し出し法などがあげられる。複数管のノズルを用いてシームレスカプセルを製造する方法やコアセルベート法による製造方法、打錠によるカプセルの製造方法ではメジアン径が0.01〜100μmのカプセルを製造することが出来ないため本発明には用いることができない。   In the present invention, the microcapsule means a capsule having a median diameter of 0.01 to 100 μm. The median diameter is preferably small from the viewpoint of the stability of the capsule and the fact that it can be ingested by humans. For ingestion by humans, the median diameter is 100 μm or less, more preferably 10 μm or less. In the present invention, an active ingredient can be introduced into the microcapsule, but the median diameter is preferably 0.1 μm or more from the viewpoint of the encapsulation efficiency. Moreover, the capsule manufacturing method in this invention should just be what can manufacture a capsule with a median diameter of 0.01-100 micrometers, and the method of using an ultrasonic wave, the stirring method, a high pressure extrusion method, etc. are mention | raise | lifted. In the present invention, a capsule having a median diameter of 0.01 to 100 μm cannot be produced by a method of producing a seamless capsule using a nozzle of a plurality of tubes, a production method by a coacervate method, or a production method of a capsule by tableting. Cannot be used.

本発明においてカプセルの壁材となる材料は、ペクチンであることが重要である。ペクチン濃度は、水溶液中に0.01〜10%、より好ましくは0.1〜3%、更に好ましくは1〜3%である。ペクチン濃度が高すぎるとカプセルが凝集する点で好ましくなく、ペクチン濃度が低すぎるとカプセルの安定性が低く内包油が分離する点で好ましくない。   In the present invention, it is important that the material used as the wall of the capsule is pectin. The pectin concentration is 0.01 to 10% in the aqueous solution, more preferably 0.1 to 3%, and still more preferably 1 to 3%. If the pectin concentration is too high, it is not preferable in that the capsules aggregate, and if the pectin concentration is too low, the stability of the capsule is low and it is not preferable in that the encapsulated oil is separated.

カプセルの壁材となるペクチンはアミド化されていると疎水結合によりゲル強度が増す点で好ましい。   It is preferable that the pectin as the wall material of the capsule is amidated in that the gel strength is increased by the hydrophobic bond.

水相と混合される溶液は、油溶性物質であれば特に限定はないが、取り扱いやコスト、安全性の点から食用油であるとより好ましい。油溶性物質中に薬剤や食用の栄養成分などの目的物質をあらかじめ混合させておくことで、マイクロカプセルとその内包物を別々に製造することなく一度に目的物質を含有したマイクロカプセルを製造することができ好ましい。また油溶性物質がW/Oエマルションであっても良く、その場合、水溶性の薬剤や食用の栄養成分などを内包できる点で好ましい。本文中では、特に断りのない限りはマイクロカプセルの内容物が疎水性の例で説明する。   The solution mixed with the aqueous phase is not particularly limited as long as it is an oil-soluble substance, but is more preferably an edible oil from the viewpoint of handling, cost, and safety. Producing microcapsules containing the target substance at once without separately manufacturing the microcapsules and their inclusions by mixing the target substances such as drugs and edible nutritional components in advance with oil-soluble substances This is preferable. The oil-soluble substance may be a W / O emulsion, which is preferable in that it can contain a water-soluble drug, an edible nutritional component, and the like. In the text, unless otherwise specified, the contents of the microcapsules will be described with an example of being hydrophobic.

本発明においては、ペクチンを含む水相と油相でO/Wエマルションを作製した後に多価陽イオンと混合することが重要である。更に安定性の点から、多価陽イオンはカルシウムイオンであることが好ましい。
またカルシウムイオン濃度は、0.01〜1000mM、より好ましくは0.01〜100mM、更に好ましくは1〜10mMである。多価陽イオン濃度が高すぎると、カプセルが凝集する点で好ましくなく、多価陽イオン濃度が低すぎるとカプセルの安定性が低く内包油が分離する点で好ましくない。
In the present invention, it is important that an O / W emulsion is prepared with an aqueous phase containing pectin and an oil phase and then mixed with a polyvalent cation. Furthermore, from the viewpoint of stability, the polyvalent cation is preferably a calcium ion.
The calcium ion concentration is 0.01 to 1000 mM, more preferably 0.01 to 100 mM, and still more preferably 1 to 10 mM. If the polyvalent cation concentration is too high, it is not preferable in terms of aggregation of the capsules, and if the polyvalent cation concentration is too low, it is not preferable in terms of low stability of the capsules and separation of the encapsulated oil.

一般的にエマルション、サスペンションを作製する際に乳化剤を加えることが知られている。本発明においても、例えばシュガーエステル、モノグリセライド、ソルビタンエステル等の乳化剤を加えてマイクロカプセルを形成できるが、本発明では食品、医薬品として摂取する場合の安全性、臭い、コスト等の理由のためカプセル被膜の材料に乳化剤を含まなくてもマイクロカプセルを安定的に形成することが出来ることも特徴である。   In general, it is known to add an emulsifier when preparing an emulsion or suspension. Also in the present invention, microcapsules can be formed by adding an emulsifier such as sugar ester, monoglyceride, sorbitan ester, etc., but in the present invention, the capsule coating film is used for reasons such as safety, odor, and cost when ingested as a food or medicine. It is also a feature that microcapsules can be stably formed even if the material does not contain an emulsifier.

本発明において、カプセル調製後にペクチンメチルエステラーゼ(以下、PMEという場合有り)と反応させることでカプセルの加熱負荷に対する構造安定性、内包物安定性が向上する。PMEに多価陽イオン、好ましくはカルシウムイオン添加を行うことによりカプセルの加熱負荷に対する構造安定性、内包物安定性が更に向上する。PME濃度は2〜300mPEU/ml、好ましくは20〜300mPEU/mlである。PME濃度が高すぎるとカプセルが凝集する点で好ましくなく、PME濃度が低すぎると安定性向上効果が少ない点で好ましくない。ここでPEUとは、Pectin Esterase Unitの略であり、PME1mlが1分間にペクチンのメチルエステルを分解して1m molの酸を生産する能力を示す単位である。   In the present invention, the structure stability and inclusion stability against the heating load of the capsule are improved by reacting with pectin methylesterase (hereinafter sometimes referred to as PME) after preparation of the capsule. By adding a polyvalent cation, preferably calcium ion, to the PME, the structural stability and inclusion stability of the capsule against heating load are further improved. The PME concentration is 2 to 300 mPEU / ml, preferably 20 to 300 mPEU / ml. If the PME concentration is too high, it is not preferable in that the capsules aggregate, and if the PME concentration is too low, it is not preferable in that the effect of improving the stability is small. Here, PEU is an abbreviation for Pectin Esterase Unit, which is a unit that indicates the ability of 1 ml of PME to produce 1 mmol of acid by decomposing methyl ester of pectin in 1 minute.

またPMEに対して多価陽イオン、具体的にはカルシウムイオン等を添加することは必須ではないが、加熱負荷に対する安定性を高めるためにカルシウムイオンを添加する場合は、0.01〜20mMの濃度、より好ましくは1〜10mMの濃度である。カルシウムイオン濃度が高すぎるとカプセルが凝集する点で好ましくなく、カルシウムイオン濃度が低すぎると安定性向上効果が少ない点で好ましくない。またカルシウムイオンを加えないとカルシウムイオンにキレートされないフリーのカルボキシル基が過剰となりカプセルが凝集したりカプセル壁構造が弱くなったりする。   In addition, it is not essential to add polyvalent cations, specifically calcium ions, etc. to PME, but when adding calcium ions to increase the stability against heating load, 0.01-20 mM The concentration is more preferably 1 to 10 mM. If the calcium ion concentration is too high, it is not preferable in that the capsules aggregate, and if the calcium ion concentration is too low, it is not preferable in that the effect of improving the stability is small. If calcium ions are not added, free carboxyl groups that are not chelated by calcium ions become excessive, and the capsules aggregate or the capsule wall structure becomes weak.

また、カプセル調製前にPME処理を行うとカプセル調製時に全体がゲル化しカプセルが形成されない。よってカプセル調製後にPME処理や塩化カルシウム添加を行うことにより、カプセル壁がさらに強化される。   In addition, if PME treatment is performed before capsule preparation, the whole gels during capsule preparation and no capsule is formed. Therefore, the capsule wall is further strengthened by performing PME treatment or calcium chloride addition after capsule preparation.

超音波装置を用いたペクチンカプセルの製造   Production of pectin capsules using an ultrasonic device

ペクチン(商品名「LM−104AS」、CPKelco JAPAN製)と脱イオン水を混合し、2%ペクチン水溶液を調製した。次に50mlステンレスチューブに2%ペクチン水溶液27mlと大豆油(味の素製油株式会社製)3mlを加え、ステンレスチューブの周囲を氷冷した状態で超音波処理機Sonifier250(Branson社製)により、出力145Wで2分間処理を行った。超音波処理開始後30秒経過したところでマイクロシリンジポンプIC3100(KD Scientific社製)を用いて7.3mM塩化カルシウム2mlを127ml/h の速度で添加したところ、乳白色の分散液を得た。   Pectin (trade name “LM-104AS”, manufactured by CPKelco JAPAN) and deionized water were mixed to prepare a 2% aqueous pectin solution. Next, 27 ml of 2% pectin aqueous solution and 3 ml of soybean oil (Ajinomoto Oil Co., Ltd.) are added to a 50 ml stainless tube, and the stainless steel tube is cooled with ice with an ultrasonic processor Sonifier 250 (Branson) at an output of 145 W. Treated for 2 minutes. After 30 seconds from the start of the ultrasonic treatment, 2 ml of 7.3 mM calcium chloride was added at a rate of 127 ml / h using a micro syringe pump IC3100 (manufactured by KD Scientific) to obtain a milky white dispersion.

大豆油をNile Red、ペクチンをRhodamineで蛍光染色した前記分散液を、共焦点レーザースキャン顕微鏡 LSM510(Carl Zeiss社製)にて観察したところ、大豆油を内包したマイクロカプセルの形成が確認された。またマイクロカプセル分散液の粒度分布をレーザー回折式粒度分布計LA920(堀場製作所社製)にて測定したところシングルピークであり、マイクロカプセルの外径のメジアン径は1.3μmであった。   When the dispersion liquid obtained by fluorescently staining soybean oil with Nile Red and pectin with Rhodamine was observed with a confocal laser scanning microscope LSM510 (manufactured by Carl Zeiss), formation of microcapsules containing soybean oil was confirmed. Further, when the particle size distribution of the microcapsule dispersion was measured with a laser diffraction particle size distribution analyzer LA920 (manufactured by Horiba, Ltd.), it was a single peak, and the median diameter of the outer diameter of the microcapsule was 1.3 μm.

マイクロカプセルの壁材の検討   Examination of wall material of microcapsule

マイクロカプセルの壁材と陽イオンとして以下の組み合わせを用いた。
1)ペクチン0.02〜5%、塩化カルシウム0〜700mM、
2)アルギン酸0.25〜1%、塩化カルシウム0〜0.1M、
3)PGA1〜40%、みょうばん2〜200mM、
4)κ-カラギーナン0.1〜1%、塩化カリウム0〜0.2M、
5)ι-カラギーナン0.1〜1%、塩化カルシウム0〜0.2M、
6)ゼラチン−アラビアガム(1対1混合物)0.01〜0.1%
これらの組み合わせでそれぞれの最適条件を検討し、
1)ペクチン2%、塩化カルシウム7mM、
2)アルギン酸0.25%、塩化カルシウム0.05M、
3)PGA1%、みょうばん5mM、
4)κ-カラギーナン0.5%、塩化カリウム0.02M、
5)ι-カラギーナン0.5%、塩化カルシウム0.2M、
6)ゼラチン−アラビアガム0.01%
を選定した。そして各壁材と各陽イオンを用い実施例1と同様の方法により製造したマイクロカプセル分散液を調製した。
The following combinations were used as wall materials and cations for microcapsules.
1) Pectin 0.02-5%, calcium chloride 0-700 mM,
2) Alginic acid 0.25 to 1%, calcium chloride 0 to 0.1M,
3) PGA 1-40%, Alum 2-200mM,
4) κ-carrageenan 0.1-1%, potassium chloride 0-0.2M,
5) ι-carrageenan 0.1-1%, calcium chloride 0-0.2M,
6) Gelatin-Gum arabic (1: 1 mixture) 0.01-0.1%
We examine each optimum condition with these combinations,
1) Pectin 2%, calcium chloride 7 mM,
2) Alginic acid 0.25%, calcium chloride 0.05M,
3) PGA 1%, alum 5 mM,
4) κ-carrageenan 0.5%, potassium chloride 0.02M,
5) ι-carrageenan 0.5%, calcium chloride 0.2M,
6) Gelatin-gum arabic 0.01%
Was selected. And the microcapsule dispersion liquid manufactured by the method similar to Example 1 using each wall material and each cation was prepared.

各マイクロカプセルの油内包率(%)(各サンプルを遠心しカプセルに内包されていない油を分離することで内包油量を測定し、全油量に対する内包油量の割合をだしたもの。油含有量はソックスレー法によった)、メジアン径(μm)、カプセル数(×1012個/L)を測定した。結果を表1示す。 Oil inclusion rate (%) of each microcapsule (The amount of oil included was measured by centrifuging each sample and separating the oil not included in the capsule, and the ratio of the amount of oil included relative to the total oil amount was obtained. The content was determined by the Soxhlet method), the median diameter (μm), and the number of capsules (× 10 12 / L). The results are shown in Table 1.

Figure 2006050946
Figure 2006050946

表1から、PGA、κ-カラギーナン、ι-カラギーナン、ゼラチン−アラビアゴムは油内包率が30%以下と小さいが、ペクチンは油内包率97%、アルギン酸は油内包率94%と内包率が大きく好ましいことが判明した。特にペクチンはメジアン径も1μmと小さいため好ましく、カプセル数も150×1012個/Lと多く好ましいことが判明し、マイクロカプセル素材として有望であることが判明した。 From Table 1, PGA, κ-carrageenan, ι-carrageenan, and gelatin-gum arabic have small inclusion ratios of 30% or less, but pectin has a high inclusion ratio of 97% and alginic acid has a high inclusion ratio of 94%. It turned out to be preferable. In particular, pectin is preferable because it has a median diameter as small as 1 μm, and the number of capsules is found to be as large as 150 × 10 12 / L, which proves promising as a microcapsule material.

超高剪断処理機を用いたペクチンカプセルの製造   Production of pectin capsules using an ultra-high shearing machine

ペクチン(商品名「LM−104AS」、CPKelco JAPAN製)と脱イオン水を混合し、2%ペクチン水溶液を調製した。次に超高剪断処理機(日本精機製作所(株)特注機)の攪拌容器に2%ペクチン水溶液81mlと大豆油(味の素製油株式会社製)9mlを加え、容器の周囲を冷却した状態で超高剪断処理機により、9500rpmで3分間処理を行った。攪拌開始後1分経過したところで7.3mM塩化カルシウム6mlを1分間添加したところ、乳白色の分散液を得た。   Pectin (trade name “LM-104AS”, manufactured by CPKelco JAPAN) and deionized water were mixed to prepare a 2% aqueous pectin solution. Next, add 81 ml of 2% aqueous pectin solution and 9 ml of soybean oil (Ajinomoto Oil Co., Ltd.) to the stirring vessel of the ultra high shearing machine (Nippon Seiki Seisakusho Co., Ltd.) The treatment was performed at 9500 rpm for 3 minutes using a shearing machine. When 1 minute passed after the start of stirring, 6 ml of 7.3 mM calcium chloride was added for 1 minute to obtain a milky white dispersion.

マイクロカプセル分散液の粒度分布をレーザー回折式粒度分布計LA920(堀場製作所社製)にて測定したところシングルピークであり、マイクロカプセルの外径のメジアン径は4.1μmであった。   When the particle size distribution of the microcapsule dispersion was measured with a laser diffraction particle size distribution analyzer LA920 (manufactured by Horiba, Ltd.), it was a single peak, and the median diameter of the outer diameter of the microcapsule was 4.1 μm.

ペクチン濃度、カルシウム濃度がマイクロカプセルの粒径に与える影響   Effects of pectin concentration and calcium concentration on the particle size of microcapsules

ペクチン(LM−104AS CPKelco JAPAN)の濃度を0.02%、0.2%、2%、5%と変化させ、実施例1と同様の方法によりマイクロカプセルを調製した。
また、各濃度のペクチンについて、塩化カルシウムを30秒後に2ml添加したが、その塩化カルシウム濃度を0mM、7mM、70mM、700mM、と変化させた。
Microcapsules were prepared in the same manner as in Example 1, except that the concentration of pectin (LM-104AS CPKelco JAPAN) was changed to 0.02%, 0.2%, 2%, and 5%.
Further, 2 ml of calcium chloride was added after 30 seconds for each concentration of pectin, but the calcium chloride concentration was changed to 0 mM, 7 mM, 70 mM, and 700 mM.

各マイクロカプセルの粒径を表2に示す。なお表に示している数字は特に断りがない限りメジアン径(μm)を示す。なお、ゲル化が激しくサンプルが一つの塊となり、粒度分布測定不可能なものを「凝集」と示した。   The particle size of each microcapsule is shown in Table 2. The numbers shown in the table indicate the median diameter (μm) unless otherwise specified. In addition, the gelation was severe and the sample became one lump, and the particle size distribution measurement impossible was indicated as “aggregation”.

Figure 2006050946
Figure 2006050946

表2に示すように、ペクチン濃度、塩化カルシウム濃度が高くなるにつれて粒子同士が凝集する傾向が得られた。なお、2%ペクチン、7mM塩化カルシウムの条件において最も凝集が少なく、メジアン径が小さいカプセルが得られた。   As shown in Table 2, there was a tendency for the particles to aggregate as the pectin concentration and calcium chloride concentration increased. In addition, a capsule having the smallest aggregation and a small median diameter was obtained under the conditions of 2% pectin and 7 mM calcium chloride.

ペクチンのエステル化度、アミド基の有無によるマイクロカプセルの安定性評価   Evaluation of microcapsule stability by the degree of esterification of pectin and the presence or absence of amide groups

以下の表3の様に、エステル化度(DE値)を31、34、36と変化させたペクチンと、種類をLMA、LMCと変化させたペクチンを用いて実施例1と同様の方法によりマイクロカプセルを調製した。調製したマイクロカプセルを120℃で30分加熱処理し、加熱前後の安定性を評価した。   As shown in Table 3 below, the pectin in which the degree of esterification (DE value) was changed to 31, 34, and 36 and the pectin in which the type was changed to LMA and LMC were used in the same manner as in Example 1 to make micro Capsules were prepared. The prepared microcapsules were heat-treated at 120 ° C. for 30 minutes, and the stability before and after heating was evaluated.

Figure 2006050946
Figure 2006050946

加熱前後のメジアン径、カプセル数を表4に示す。調製後のマイクロカプセル分散液は全て分離のない白濁液となっていた。加熱後LMA(アミド化タイプ)では安定分散していたが、LMCである12CG、13CGは共に分離した。   Table 4 shows the median diameter before and after heating and the number of capsules. All of the microcapsule dispersions after preparation were white turbid liquids without separation. After heating, LMA (amidation type) was stably dispersed, but LCG 12CG and 13CG were both separated.

Figure 2006050946
Figure 2006050946

表4に示すように、すべてのマイクロカプセルが加熱後、凝集もしくは合一してメジアン径が大きくなった。しかし、LMAペクチンは、エステル化度が高いほどメジアン径変化は少なくDE値が36の101ASはメジアン径変化が約1.5倍と少なく粒度分布もシングルピークのままであり、カプセルの構造安定性が最も高かった。LMCペクチンは加熱することにより凝集もしくは合一が格段に進み、メジアン径が大きくなるためマイクロカプセルの調製に適していないことが分かった。   As shown in Table 4, all the microcapsules were aggregated or united after heating to increase the median diameter. However, LMA pectin has less change in median diameter as the degree of esterification is higher, and 101AS with DE value of 36 has about 1.5 times change in median diameter and the particle size distribution remains a single peak, and the structural stability of the capsule Was the highest. It was found that LMC pectin is not suitable for the preparation of microcapsules because aggregation or coalescence proceeds markedly by heating and the median diameter increases.

ペクチンメチルエステラーゼ、カルシウム濃度がマイクロカプセルの安定性に与える影響   Effects of pectin methylesterase and calcium concentration on microcapsule stability

実施例1と同様の方法により製造したマイクロカプセル分散液5mLと濃度を変化させたPME溶液5mLを混合し、pH4、反応温度40℃、反応時間4時間の条件で振とう機で反応させ、その後濃度を変化させた塩化カルシウム溶液を1ml添加した。混合したPME(製品名:NOVO SHAPE、ノボザイム社製)濃度は、0、2.5、25、250、500mPEU/mlであり、添加した塩化カルシウム濃度は7、10、15、25、450mMである。その結果を表5に示す。   5 mL of the microcapsule dispersion produced by the same method as in Example 1 and 5 mL of the PME solution having a changed concentration were mixed, and reacted with a shaker under the conditions of pH 4, reaction temperature 40 ° C., and reaction time 4 hours. 1 ml of calcium chloride solution with varying concentration was added. The mixed PME (product name: NOVO SHAPE, manufactured by Novozyme) concentration is 0, 2.5, 25, 250, 500 mPEU / ml, and the added calcium chloride concentration is 7, 10, 15, 25, 450 mM. . The results are shown in Table 5.

Figure 2006050946
Figure 2006050946

表5から、PME濃度500mPEU/mlでは全ての塩化カルシウム濃度において、PME濃度250mPEU/mlでは15mM以上の塩化カルシウムで、それ以外のPME濃度では25mM以上の塩化カルシウムで全体がゲル化することが判明した。   From Table 5, it is found that the whole gelation occurs at all calcium chloride concentrations at a PME concentration of 500 mPEU / ml, at 15 mM or more of calcium chloride at a PME concentration of 250 mPEU / ml, and at 25 mM or more of calcium chloride at other PME concentrations. did.

PME処理後の塩化カルシウム添加の有無が加熱耐性に与える影響   Effect of the presence or absence of calcium chloride after PME treatment on heat resistance

実施例1と同様の方法により製造したマイクロカプセル分散液に濃度を変化させたPME溶液を混合し、その後7mM塩化カルシウム1mlを添加したサンプル、無添加のサンプルを作製した(すべてpH4)。これに対し120℃、30分加熱を行い、加熱前後のメジアン径を測定した。混合したPME(製品名:NOVO SHAPE、ノボザイム社製)濃度は、0、2.5、25、250mPEU/mlであった。その結果を表6に示す。
なお、コントロール(Cont.)は実施例1の製法により作製したマイクロカプセルを用いた。
A microcapsule dispersion prepared by the same method as in Example 1 was mixed with a PME solution having a changed concentration, and then a sample to which 1 ml of 7 mM calcium chloride was added and an additive-free sample were prepared (all pH 4). On the other hand, it heated at 120 degreeC for 30 minutes, and measured the median diameter before and behind a heating. The concentration of the mixed PME (product name: NOVO SHAPE, manufactured by Novozyme) was 0, 2.5, 25, 250 mPEU / ml. The results are shown in Table 6.
In addition, the control (Cont.) Used the microcapsule produced by the manufacturing method of Example 1.

Figure 2006050946
Figure 2006050946

表6から、PME処理を行った後に塩化カルシウムを添加しないものについてはPME濃度が高いほど加熱後合一もしくは凝集してメジアン径が大きくなるが、PME処理を行った後に塩化カルシウムを添加したものは、加熱後であってもメジアン径が維持されることが判明した。上記結果より、PME処理を行う場合にはPME処理の後に、塩化カルシウムを添加することによりカプセルの構造が加熱負荷に対して耐性をもつことが判明した。またPME濃度が0〜250mPEU/mlの間では、250mPEU/mlのPMEに塩化カルシウムを添加したカプセルが最も安定性が高く好ましいことが判明した。   From Table 6, for those in which calcium chloride is not added after PME treatment, the median diameter increases as the PME concentration increases after heating or coalescing or aggregation, but calcium chloride is added after PME treatment Was found to maintain the median diameter even after heating. From the above results, it was found that when PME treatment is performed, the capsule structure is resistant to heating load by adding calcium chloride after the PME treatment. Further, it was found that capsules obtained by adding calcium chloride to 250 mPEU / ml PME had the highest stability when the PME concentration was between 0 and 250 mPEU / ml.

本発明によれば、喫食時に知覚しない大きさのマイクロカプセルを製造することができる。   According to the present invention, a microcapsule having a size that is not perceived during eating can be produced.

Claims (7)

0.01〜10重量%のペクチンを含む水相と油相でO/Wエマルションを作製した後、多価陽イオンを混合することで得られる、壁材にペクチン多価陽イオンゲルを含み、油溶性物質を内包し、メジアン径が0.01〜100μmであるマイクロカプセル An O / W emulsion is prepared with an aqueous phase and an oil phase containing 0.01 to 10% by weight of pectin and then mixed with a polyvalent cation. A microcapsule containing a soluble substance and having a median diameter of 0.01 to 100 μm 0.01〜10重量%のペクチンを含む水相と油相でO/Wエマルションを作製した後、カルシウムイオンを混合することで得られる、壁材にペクチンカルシウムゲルを含み、油溶性物質を内包し、メジアン径が0.01〜100μmであるマイクロカプセル An O / W emulsion is prepared with an aqueous phase containing 0.01 to 10% by weight of pectin and an oil phase, and then obtained by mixing calcium ions. The wall material contains a pectin calcium gel and contains an oil-soluble substance. And a microcapsule having a median diameter of 0.01 to 100 μm O/Wエマルションを作製するときに乳化剤を用いないことを特徴とする請求項1又は2記載のマイクロカプセル 3. The microcapsule according to claim 1 or 2, wherein an emulsifier is not used when preparing an O / W emulsion. ペクチンがアミド基を持つことを特徴とする請求項1ないし3記載のマイクロカプセル 4. The microcapsule according to claim 1, wherein the pectin has an amide group. 内包する油溶性物質がW/Oエマルションであることを特徴とする請求項1ないし4記載のマイクロカプセル 5. The microcapsule according to claim 1, wherein the oil-soluble substance to be included is a W / O emulsion. O/Wエマルションを作製し、多価陽イオンを混合した後に、ペクチンメチルエステラーゼを添加することを特徴とする請求項1ないし5記載のマイクロカプセル 6. The microcapsule according to claim 1, wherein pectin methylesterase is added after preparing an O / W emulsion and mixing a polyvalent cation. ペクチンメチルエステラーゼを添加した後に、多価陽イオンを添加することを特徴とする請求項6記載のマイクロカプセル

The microcapsule according to claim 6, wherein a polyvalent cation is added after adding pectin methylesterase.

JP2004234470A 2004-08-11 2004-08-11 Microcapsule using pectin as wall material Pending JP2006050946A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004234470A JP2006050946A (en) 2004-08-11 2004-08-11 Microcapsule using pectin as wall material
PCT/JP2005/014975 WO2006016713A1 (en) 2004-08-11 2005-08-10 Microcapsule using pectin as wall material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234470A JP2006050946A (en) 2004-08-11 2004-08-11 Microcapsule using pectin as wall material

Publications (1)

Publication Number Publication Date
JP2006050946A true JP2006050946A (en) 2006-02-23

Family

ID=35839460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234470A Pending JP2006050946A (en) 2004-08-11 2004-08-11 Microcapsule using pectin as wall material

Country Status (2)

Country Link
JP (1) JP2006050946A (en)
WO (1) WO2006016713A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112314948A (en) * 2020-10-26 2021-02-05 北京壹诺药业有限公司 Microcapsule for embedding functional grease and preparation method thereof
WO2022114234A1 (en) * 2020-11-30 2022-06-02 富士フイルム株式会社 Edible oil-containing microcapsule, microcapsule dispersion, production method for edible oil-containing microcapsule, and meat alternative
WO2023008581A1 (en) * 2021-07-30 2023-02-02 富士フイルム株式会社 Fatty mass composition and meat alternative

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188037B (en) * 2010-03-08 2013-12-04 宏芳香料(昆山)有限公司 Microcapsule granule and preparation process thereof
CN103271424B (en) * 2013-05-28 2015-08-12 上海交通大学 A kind of preparation method of essence microcapsule
CN114869857B (en) * 2022-05-12 2023-04-04 郑州大学第一附属医院 Argatroban particles, preparation and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900984B2 (en) * 1997-07-15 2012-03-21 武田薬品工業株式会社 Manufacturing method of sustained-release preparation
DE19962427A1 (en) * 1999-12-22 2001-07-12 Nutrinova Gmbh Encapsulated multifunctional, biologically active food component, process for their production and their application
WO2002082924A1 (en) * 2001-04-10 2002-10-24 Basf Health & Nutrition A/S Microcapsules
JP2003055219A (en) * 2001-08-06 2003-02-26 Lion Corp Microcapsule, tablet and compounding agent for food and medicine
JP3818384B2 (en) * 2004-03-30 2006-09-06 独立行政法人食品総合研究所 Emulsion production apparatus, reaction apparatus, microcapsule production method using the reaction apparatus, microtube production method, and microtube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112314948A (en) * 2020-10-26 2021-02-05 北京壹诺药业有限公司 Microcapsule for embedding functional grease and preparation method thereof
WO2022114234A1 (en) * 2020-11-30 2022-06-02 富士フイルム株式会社 Edible oil-containing microcapsule, microcapsule dispersion, production method for edible oil-containing microcapsule, and meat alternative
WO2023008581A1 (en) * 2021-07-30 2023-02-02 富士フイルム株式会社 Fatty mass composition and meat alternative
JP7446529B2 (en) 2021-07-30 2024-03-08 富士フイルム株式会社 Fat mass composition and meat substitute

Also Published As

Publication number Publication date
WO2006016713A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
Tan et al. Application of advanced emulsion technology in the food industry: A review and critical evaluation
McClements Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds
Weinbreck et al. Microencapsulation of oils using whey protein/gum arabic coacervates
JP4833553B2 (en) Microcapsules having a plurality of shells and methods for their preparation
JP4918859B2 (en) Manufacturing method of capsinoid-containing microcapsules
CN105533691B (en) A kind of micro/nano level fish oil/algae oil microcapsules and its preparation process
JP4829341B2 (en) Method for producing microcapsules by coacervation
CN107484985B (en) Self-emulsifying fish oil microcapsule and production process thereof
CN107836716B (en) Algae oil microcapsule and preparation method and application thereof
JP2006510359A6 (en) Composite coacervate capsule with lipophilic core
JP2006510359A (en) Composite coacervate capsule with lipophilic core
WO2008020680A1 (en) The method of preparing a microcapsule containing unsaturated fatty acids, the microcapsule prepared by the method, and articles containing the microcapsule
WO2006016713A1 (en) Microcapsule using pectin as wall material
Liu et al. Optimization and evaluation of fish oil microcapsules
CN110101084B (en) Algae oil nano pickering emulsion and oil powder stabilized by yolk protein peptide particles as well as preparation method and application thereof
Chen et al. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application
Wang et al. Preparation and characterization of GX-50 and vitamin C co-encapsulated microcapsules by a water-in-oil-in-water (W1/O/W2) double emulsion–complex coacervation method
He et al. Formation and gastrointestinal digestion of β‐carotene emulsion stabilized by milk fat globule membrane
Zheng et al. Tween emulsifiers improved alginate-based dispersions and ionic crosslinked milli-sized capsules
KR101526689B1 (en) Composition of biopolymer microcapsule and method of preparation
WO2022252818A1 (en) Hydrophilic compound-embedded nano microcapsule, and preparation method therefor and application thereof
JP2617107B2 (en) Method for producing heat-resistant microcapsules
KR100741531B1 (en) The preparation method of carrier comprising polymer electrolyte complex
KR101540853B1 (en) Composition of non-spherical biopolymer microcapsule and method of preparation
Nakkeeran et al. Mechanism and application of nano assisted carrier systems in food