JP2006049923A - Circuit board and its fabricating method - Google Patents

Circuit board and its fabricating method Download PDF

Info

Publication number
JP2006049923A
JP2006049923A JP2005256934A JP2005256934A JP2006049923A JP 2006049923 A JP2006049923 A JP 2006049923A JP 2005256934 A JP2005256934 A JP 2005256934A JP 2005256934 A JP2005256934 A JP 2005256934A JP 2006049923 A JP2006049923 A JP 2006049923A
Authority
JP
Japan
Prior art keywords
circuit board
fine particles
substrate
ceramic substrate
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256934A
Other languages
Japanese (ja)
Inventor
Hironori Hatono
広典 鳩野
Masakatsu Kiyohara
正勝 清原
Katsuhiko Mori
勝彦 森
Atsushi Yoshida
篤史 吉田
Tatsuro Yokoyama
達郎 横山
Tomokazu Ito
朋和 伊藤
Jun Aketo
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toto Ltd
Priority to JP2005256934A priority Critical patent/JP2006049923A/en
Publication of JP2006049923A publication Critical patent/JP2006049923A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit board which can be densified and comprises insulating ceramics. <P>SOLUTION: In a structure of the circuit board 3, an aluminum oxide substrate 11 formed by a particulate beam depositing method is arranged on the surface of a copper substrate 10, on which a conductive wiring 12 drawing a certain pattern is disposed, and on which aluminum oxide layers 13, 14 likewise formed by a particulate beam depositing method are arranged. The conductive wiring 12 passes also through between the layers. An IC chip 16 is placed also on the aluminum oxide substrate 11 through a high-temperature solder 17, which is connected by the conductive wiring 12 and a wire bonding 18. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ICチップなどの電子部品を搭載したり、配線が形成される絶縁性セラミックスからなる回路基板とその製造方法に関する。   The present invention relates to a circuit board made of insulating ceramics on which an electronic component such as an IC chip is mounted or wiring is formed, and a manufacturing method thereof.

従来の回路基板は、特開2000−86368号公報、特開2000−127123号公報、特開2000−269392号公報或いは特開2000−353769号公報に開示されるように、セラミックス基板に放熱用の金属製のヒートシンクを接合したものが使用されている。セラミックス基板は通常グリーンシートやドクターブレード法によってシート状に形成されたセラミックス素地を焼成して得られる。   Conventional circuit boards are disclosed in Japanese Unexamined Patent Publication No. 2000-86368, Japanese Unexamined Patent Publication No. 2000-127123, Japanese Unexamined Patent Publication No. 2000-269392, or Japanese Unexamined Patent Publication No. 2000-353769. What joined the metal heat sink is used. The ceramic substrate is usually obtained by firing a ceramic substrate formed into a sheet shape by a green sheet or a doctor blade method.

配線を必要とする場合は、上記公報に開示されるように、あらかじめグリーンシート上にペースト塗布などにより導電性物質を配置した後、グリーンシートを積層して圧縮成形し、これを還元雰囲気で焼成するなどして得ている。   When wiring is required, as disclosed in the above publication, after placing a conductive material on the green sheet by pasting the paste in advance, the green sheet is laminated and compression molded, and this is fired in a reducing atmosphere. It is obtained by doing.

また、セラミックス基板とヒートシンクの接合は、銅系ロウ材を使って銅板と接合する活性金属法や、銅と酸素の共晶点を利用して直接銅と接合する直接接合法(DBC法)などが多く用いられている。   Also, the ceramic substrate and the heat sink can be joined by an active metal method in which a copper brazing material is used to join a copper plate, a direct joining method in which a copper and oxygen eutectic point is used to join directly to copper (DBC method), etc. Is often used.

セラミックス基板の材料としては、絶縁性に優れ、強度が強く、熱伝導率にも優れ、湿度や温度変化に対して劣化の少ない酸化アルミニウムや、さらに熱伝導率に優れるという理由から窒化アルミニウムあるいは窒化ケイ素などが通常使用されている。その厚さは数百μm以上が一般的である。   The ceramic substrate material is aluminum nitride or nitriding because it has excellent insulating properties, high strength, excellent thermal conductivity, aluminum oxide that does not deteriorate with humidity and temperature changes, and excellent thermal conductivity. Silicon or the like is usually used. The thickness is generally several hundred μm or more.

ヒートシンクには、前述した銅が熱伝導率に優れ、安価であり、よく使用されているほか、熱伝導性には銅に譲るものの、軟質であるなどの理由でアルミニウムも使用される。   For the heat sink, the above-mentioned copper is excellent in thermal conductivity, inexpensive and frequently used, and aluminum is also used because it is soft, although it is transferred to copper for thermal conductivity.

上述した方法は、まずセラミックス基板を作製するために1000℃以上の高温を必要とし、配線を配置する場合は、還元性雰囲気の環境を与えなければならない。   The above-described method first requires a high temperature of 1000 ° C. or higher in order to produce a ceramic substrate, and when a wiring is arranged, an environment of a reducing atmosphere must be given.

また、セラミックス基板とヒートシンクを接合する場合も、活性金属法では780℃以上、直接接合法では1050℃以上と、高温環境を必要とし、このような高温のため、熱膨張の差で接合部に大きな応力が発生し、基板が割れたり、残留応力による基板の反りが発生するなどの不具合が生じる。また接合部の熱伝導率が低い場合もあり、これが冷却効果を劣化させる原因ともなる。また多くの加熱工程は、エネルギー消費量の問題のほか、煩雑さもあり、コスト高の要因となっている。   Also, when a ceramic substrate and a heat sink are joined, a high temperature environment is required, such as 780 ° C. or more for the active metal method and 1050 ° C. or more for the direct joining method. A large stress is generated, causing problems such as cracking of the substrate and warping of the substrate due to residual stress. In addition, the thermal conductivity of the joint may be low, which causes the cooling effect to deteriorate. In addition, many heating processes are complicated, in addition to the problem of energy consumption, which causes high costs.

またPVDやCVDなどで金属板の表面にセラミックス層を形成することも可能であるが、高温プロセスを必要とするだけでなく、厚い膜厚のセラミックス層を作製するのが困難である。また溶射法であれば膜厚を厚くできるが高温プロセスが必要になる。   Moreover, although it is possible to form a ceramic layer on the surface of a metal plate by PVD, CVD, etc., not only a high temperature process is required but it is difficult to produce a thick ceramic layer. Further, the thermal spraying method can increase the film thickness, but requires a high temperature process.

更に最近では、金属やセラミックス等の超微粒子をガス攪拌にてエアロゾル化し、微小なノズルを通して加速せしめ、基材表面に超微粒子の圧粉体層を形成させ、これを加熱して焼成させることにより被膜を形成するというガスデポジション法(加集誠一郎:金属 1989年1月号)や、微粒子を帯電させ電場勾配を用いて加速せしめ、この後はガスデポジション法と同様の基本原理で被膜形成を行う静電微粒子コーティング法(井川 他:昭和52年度精密機械学会秋季大会学術講演会前刷)も知られているが、何れも加熱プロセスを伴うため、前記したように基板の割れや反りを発生しやすい。   More recently, ultrafine particles such as metals and ceramics are aerosolized by gas stirring and accelerated through a minute nozzle to form a green compact layer of ultrafine particles on the substrate surface, which is heated and fired. Gas deposition method (Keishu Seiichiro: Metal January 1989 issue) that forms a coating, and fine particles are charged and accelerated using an electric field gradient. Thereafter, the coating is formed on the same basic principle as the gas deposition method. Electrostatic fine particle coating method (Ikawa et al .: Preprint of the 1978 Fall Meeting of the Japan Society for Precision Mechanics) is also known, but since both involve heating processes, cracking and warping of the substrate as described above. Likely to happen.

また、上記のガスデポジション法あるいは静電微粒子コーティング法を改良した先行技術として、特開平8−81774号公報、特開平10−202171号公報、特開平11−21677号公報、特開平11−330577号公報或いは特開2000−212766号公報に開示されるものが知られている。
しかしながら、これらの先行技術には回路基板への適用が示唆されておらず、且つ回路基板として要求される密着性、絶縁性を有し且つ所定の厚さのものを得ることはできない。
Further, as prior arts improved from the above-described gas deposition method or electrostatic fine particle coating method, JP-A-8-81774, JP-A-10-202171, JP-A-11-21777, JP-A-11-330577 are disclosed. And those disclosed in Japanese Patent Application Laid-Open No. 2000-212766.
However, these prior arts do not suggest application to a circuit board, and it is impossible to obtain a circuit board having the required adhesion and insulation properties and a predetermined thickness.

本発明は以下の知見に基づいてなされた。
即ち、延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの劈開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合して安定状態に移行する。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が形成される。
The present invention has been made based on the following findings.
That is, when a mechanical impact force is applied to a brittle material (ceramics) that does not have spreadability, the crystal lattice shifts along the cleaved surface such as the interface between crystallites or is crushed. When these phenomena occur, a new surface is formed on the slipping surface or fracture surface, in which atoms originally present inside and bonded to other atoms are exposed. The part of the atomic layer on the new surface is exposed to an unstable surface state by an external force from a stable atomic bond state, and the surface energy is high. The active surface joins the adjacent brittle material surface, the newly formed brittle material surface, or the substrate surface, and shifts to a stable state. The addition of a continuous mechanical impact force from the outside continuously generates this phenomenon, and the joining is progressed and densified by repeated deformation and crushing of fine particles, thereby forming a brittle material structure.

そして、更に上記機械的衝撃を搬送ガスにて脆性材料を基材に衝突させるようにした本発明の一態様を微粒子ビーム堆積法あるいはエアロゾルデポジション法と称する。
この微粒子ビーム堆積法は、ガスデポジション法より発展してきた手法であり、金属などの基材上に脆性材料の多結晶構造物をダイレクトに形成させる方法である。この手法は、脆性材料の微粒子をガス中に分散させたエアロゾルを搬送し、高速で基材表面に噴射して衝突させ、微粒子を破砕・変形せしめ、基板との界面にアンカー層を形成して接合させるとともに、破砕した断片粒子同士を接合させることにより、基材との密着性が良好で強度の大きい構造物を得ることができる。
Further, one embodiment of the present invention in which the above-described mechanical impact is caused to collide the brittle material with the base material by the carrier gas is referred to as a fine particle beam deposition method or an aerosol deposition method.
This fine particle beam deposition method is a method developed from the gas deposition method, and is a method of directly forming a polycrystalline structure of a brittle material on a substrate such as a metal. This method transports an aerosol in which fine particles of a brittle material are dispersed in a gas, injects and collides with the surface of the base material at a high speed, crushes and deforms the fine particles, and forms an anchor layer at the interface with the substrate. By joining together the crushed fragment particles, it is possible to obtain a structure having good adhesion to the substrate and high strength.

上記の知見から発展した本発明に係る回路基板は、ヒートシンクとして作用する金属材料にセラミックス基板(層)を接着剤を用いることなく直接接合して構成される。
また、本発明に係る他の回路基板は、金属材料にセラミックス基板が接着剤を用いることなく直接接合され、このセラミックス基板に導電性配線が直接形成された構成とした。
The circuit board according to the present invention developed from the above knowledge is configured by directly bonding a ceramic substrate (layer) to a metal material acting as a heat sink without using an adhesive.
Another circuit board according to the present invention has a configuration in which a ceramic substrate is directly bonded to a metal material without using an adhesive, and conductive wiring is directly formed on the ceramic substrate.

本発明にあっては、前記セラミックス基板が、多結晶の脆性材料からなり、結晶同士の界面にはガラス層からなる粒界層が実質的に存在せず、前記セラミックス基板と前記金属材料との界面は、前記セラミックス基板が前記金属材料に食い込むアンカー部となっている。   In the present invention, the ceramic substrate is made of a polycrystalline brittle material, and there is substantially no grain boundary layer made of a glass layer at the interface between the crystals, and the ceramic substrate and the metal material The interface serves as an anchor portion into which the ceramic substrate bites into the metal material.

前記セラミックス基板の厚さは1〜1000μmが回路基板として適当であり、また緻密度は95%以上であることが好ましく、更に前記セラミックス基板の材質としては酸化アルミニウムを主成分とするものが考えられる。熱伝導特性に優れる絶縁性材質である窒化アルミニウム、窒化硼素、窒化珪素、酸化ベリリウム、あるいは酸化珪素などを主成分とするものを用いることも考えられる。
すなわち、本願では厚さ1μmレベルの薄膜品が焼成せずに作製でき、そのために回路基板をより小型化することが可能となった。また、1000μmレベルの緻密な厚膜も作製可能となり、大面積の回路設計をも可能とした。
The thickness of the ceramic substrate is suitably 1 to 1000 μm as a circuit board, and the density is preferably 95% or more. Further, the material of the ceramic substrate may be mainly composed of aluminum oxide. . It is conceivable to use a material mainly composed of an insulating material having excellent thermal conductivity, such as aluminum nitride, boron nitride, silicon nitride, beryllium oxide, or silicon oxide.
That is, in the present application, a thin film product having a thickness of 1 μm can be produced without firing, and therefore, the circuit board can be further downsized. In addition, a dense thick film with a level of 1000 μm can be produced, and a large area circuit can be designed.

また、本発明に係る回路基板の製造方法は、脆性材料微粒子を金属材料表面および/または導電性配線に高速で衝突させて、この衝突によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、前記金属材料表面および/または前記導電性配線に前記脆性材料微粒子が食い込むアンカー部を形成させ、このアンカー部の上に脆性材料からなるセラミックス層を形成するようにした。     The circuit board manufacturing method according to the present invention causes brittle material fine particles to collide with a metal material surface and / or conductive wiring at high speed, and the brittle material fine particles are deformed or crushed by the collision, and the deformation or crushed. By recombining the fine particles with each other through the active new surface generated in the step, an anchor portion into which the brittle material fine particles bite into the metal material surface and / or the conductive wiring is formed, and brittleness is formed on the anchor portion. A ceramic layer made of a material was formed.

剥離強度に優れ、且つ必要な厚さのセラミックス基板を得るには、脆性材料微粒子はあらかじめ内部歪が印加されていることが好ましい。微粒子に歪を与える粉砕処理は、微粒子にかかる粉砕のための衝撃を大きく与えることのできる粉砕手段を用いるのが好ましい。微粒子に比較的一様に大きな歪を付与することができるからである。このような粉砕手段としては、セラミックスの粉砕処理によく用いられるボールミルに比べて大きな重力加速度を与えることの出来る振動ミルやアトライタ、遊星ミルを用いるのが好ましく、とりわけボールミルに比べて格段に大きな重力加速度を与えることの出来る遊星ミルを用いることが最も好ましい。微粒子の状態に着目すれば、クラックは内部歪をキャンセルするものであるので、最も好ましいのは、クラックが生じる直前まで内部歪が高まっている微粒子ということになる。   In order to obtain a ceramic substrate having an excellent peel strength and a necessary thickness, it is preferable that the brittle material fine particles are preliminarily applied with internal strain. For the pulverization treatment that distorts the fine particles, it is preferable to use a pulverizing means that can give a large impact for pulverization of the fine particles. This is because a large strain can be imparted to the fine particles relatively uniformly. As such a pulverizing means, it is preferable to use a vibration mill, an attritor, or a planetary mill that can give a large acceleration of gravity compared to a ball mill often used for pulverizing ceramics. Most preferably, a planetary mill that can provide acceleration is used. Focusing on the state of the fine particles, since the crack cancels the internal strain, the most preferable is the fine particle whose internal strain is increased until just before the crack is generated.

また、本発明方法の特徴の1つは、セラミックス層の形成を室温環境下で行うことであり、脆性材料微粒子を高速で衝突させる手段が、脆性材料微粒子をガス中に分散させたエアロゾルを、高速で前記金属材料および/または導電性配線に向けて噴射することである。   Further, one of the features of the method of the present invention is that the ceramic layer is formed in a room temperature environment. The means for colliding the brittle material fine particles at high speed is an aerosol in which the brittle material fine particles are dispersed in the gas. Injecting toward the metal material and / or conductive wiring at high speed.

ここで、本発明を理解する上で重要となる語句の解釈を以下に行う。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに脆性材料構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(界面)
本件では結晶子同士の境界を構成する領域を指す。
(粒界層)
界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(アンカー部)
本件の場合には、基材と脆性材料構造物の界面に形成された凹凸を指し、特に、予め基材に凹凸を形成させるのではなく、脆性材料構造物形成時に、元の基材の表面精度を変化させて形成される凹凸のことを指す。
(内部歪)
原料微粒子に含まれる格子歪のことで、X線回折測定におけるHall法を用いて算出される値であり、微粒子を十分にアニールした標準物質を基準として、そのずれを百分率表示する。
Here, the interpretation of the words that are important for understanding the present invention will be described below.
(Polycrystalline)
In this case, it refers to a structure in which crystallites are joined and integrated. The crystallite is essentially one crystal, and its diameter is usually 5 nm or more. However, the case where the fine particles are taken into the brittle material structure without being crushed rarely occurs, but is substantially polycrystalline.
(interface)
In this case, it refers to the region that forms the boundary between crystallites.
(Grain boundary layer)
It is a layer with a certain thickness (usually several nm to several μm) located at the grain boundary in the interface or sintered body. It usually has an amorphous structure different from the crystal structure in the crystal grain, and in some cases, segregates impurities. Accompany.
(Anchor part)
In this case, it refers to the irregularities formed at the interface between the base material and the brittle material structure. It refers to irregularities formed with varying accuracy.
(Internal distortion)
The lattice strain contained in the raw material fine particles is a value calculated by using the Hall method in the X-ray diffraction measurement, and the deviation is displayed as a percentage on the basis of a standard substance obtained by sufficiently annealing the fine particles.

以上に説明したように本発明によれば、回路基板を高温プロセスを使用しないで作製できるため、低コスト、低消費エネルギーであり、材質の熱膨張率の差を気にする必要がない。
また、セラミックス基板と裏面側の金属材料とが直接接合しているので、熱伝導率の低い接着層による冷却効率の低下がない。
また、セラミックス基板を極力薄くできるので、冷却効率が向上し、スルーホール内面に導電性コーティングをする必要がない。
また、緻密質のセラミックス基板が得られるので、導電性配線をめっき処理やペースト塗布で施す場合に余剰の成分がポアに残留して短絡するなどの危険性がない。
更に導電性配線をセラミックス基板内(厚さ内)に極力納めることができ、配線の劣化やゴミによる短絡などの危険性がなく、回路の高密度化が容易である。
As described above, according to the present invention, since the circuit board can be manufactured without using a high temperature process, the cost is low and the energy consumption is low, and there is no need to worry about the difference in the coefficient of thermal expansion between the materials.
Further, since the ceramic substrate and the metal material on the back side are directly bonded, there is no decrease in cooling efficiency due to the adhesive layer having low thermal conductivity.
Further, since the ceramic substrate can be made as thin as possible, the cooling efficiency is improved, and there is no need to provide a conductive coating on the inner surface of the through hole.
In addition, since a dense ceramic substrate can be obtained, there is no danger of excess components remaining in the pores and short-circuiting when the conductive wiring is applied by plating or paste application.
Furthermore, the conductive wiring can be accommodated in the ceramic substrate (within the thickness) as much as possible, and there is no danger such as deterioration of the wiring or short circuit due to dust, and the circuit can be easily densified.

以下に本発明の実施の形態を添付図面に基づいて説明する。
図1に実施の一態様としての回路基板1の断面図を示す。図2にこの実施の態様を達成するために使用する作製装置20(超微粒子ビーム堆積装置)の模式図を示す。回路基板1は、銅基板10および酸化アルミニウム基板11からなる。作製装置20は、窒素ガスボンベ201がガス搬送管202を介して、あらかじめミル解砕により歪みを印加した酸化アルミニウム微粒子を内蔵するエアロゾル発生器203に接続し、エアロゾル搬送管204を介して形成室205内に設置された、縦0.4mm横10mmの開口を持つノズル206に接続されている。ノズル206の先にはXYステージ207に設置された銅基板10が配置される。形成室205は真空ポンプ208に接続されている。銅基板10は表面が平面に加工されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a cross-sectional view of a circuit board 1 as one embodiment. FIG. 2 shows a schematic diagram of a production apparatus 20 (ultrafine particle beam deposition apparatus) used to achieve this embodiment. The circuit board 1 includes a copper substrate 10 and an aluminum oxide substrate 11. In the production apparatus 20, a nitrogen gas cylinder 201 is connected via a gas transport pipe 202 to an aerosol generator 203 containing aluminum oxide fine particles to which distortion is applied in advance by mill crushing, and a formation chamber 205 is connected via an aerosol transport pipe 204. It is connected to a nozzle 206 that is installed inside and has an opening of 0.4 mm in length and 10 mm in width. The copper substrate 10 installed on the XY stage 207 is disposed at the tip of the nozzle 206. The formation chamber 205 is connected to a vacuum pump 208. The copper substrate 10 has a surface processed into a flat surface.

以上の構成の作製装置20による回路基板1の作製手順を次に述べる。窒素ガスボンベ201を開栓し、窒素ガスを搬送管202を通じてエアロゾル発生器203に導入させ、酸化アルミニウム微粒子を含むエアロゾルを発生させる。エアロゾルは搬送管204を通じてノズル206へと送られ、ノズル206の開口より高速で噴出される。このとき真空ポンプ208の作動により、形成室205内は数kPaの減圧環境下に置かれている。   A procedure for manufacturing the circuit board 1 by the manufacturing apparatus 20 having the above configuration will be described below. The nitrogen gas cylinder 201 is opened and nitrogen gas is introduced into the aerosol generator 203 through the transport pipe 202 to generate an aerosol containing aluminum oxide fine particles. The aerosol is sent to the nozzle 206 through the transport pipe 204 and ejected at a high speed from the opening of the nozzle 206. At this time, the inside of the forming chamber 205 is placed in a reduced pressure environment of several kPa by the operation of the vacuum pump 208.

ノズル206の開口の先に配置された銅基板10に酸化アルミニウム微粒子が高速で衝突し、粒子はその運動エネルギーにより変形、破砕を起こして、一部は銅基板10に食い込みアンカー層を形成し、一部はアンカー層の上に破砕して形成された微細断片粒子同士がその新生面を介して接合し、これを繰り返して銅基板10上に緻密質の酸化アルミニウムの層を形成していく。銅基板10はXYステージ207により揺動されており、所望の面積に酸化アルミニウムの層は形成され、銅基板10上に都合30μmの酸化アルミニウム基板11を得た。これらのプロセスはすべて室温下で行われた。   Aluminum oxide fine particles collide with the copper substrate 10 disposed at the tip of the opening of the nozzle 206 at high speed, the particles are deformed and crushed by the kinetic energy, and part of the particles bite into the copper substrate 10 to form an anchor layer, Fine fragment particles, which are partly crushed on the anchor layer, are joined to each other through the newly formed surface, and this process is repeated to form a dense aluminum oxide layer on the copper substrate 10. The copper substrate 10 was swung by the XY stage 207, and an aluminum oxide layer was formed in a desired area, and an aluminum oxide substrate 11 having a thickness of 30 μm was obtained on the copper substrate 10. All these processes were performed at room temperature.

このようにして得られた回路基板1は、銅基板10と酸化アルミニウム基板11が強固に接着しており、室温で形成されているため、酸化アルミニウム基板の残留応力も少ない。形成後の表面はRa=0.18μm程度の表面荒さを保有しているが、この表面は研磨しても良いし、後工程での電極との密着性を考慮すれば、このまま用いることも好適である。   In the circuit board 1 thus obtained, the copper substrate 10 and the aluminum oxide substrate 11 are firmly bonded and formed at room temperature, so that the residual stress of the aluminum oxide substrate is small. The surface after formation has a surface roughness of about Ra = 0.18 μm. However, this surface may be polished, or it may be used as it is in consideration of adhesion to the electrode in a later step. It is.

また、絶縁破壊電圧値が100V/μm以上の酸化アルミニウム基板が30μm厚みで形成されているため、銅基板10をグランドとしても、3kV以上の耐電圧を有し、電流の漏れはなく、熱伝導特性も良好である。   In addition, since an aluminum oxide substrate having a dielectric breakdown voltage value of 100 V / μm or more is formed with a thickness of 30 μm, even if the copper substrate 10 is grounded, it has a withstand voltage of 3 kV or more, no current leakage, and heat conduction The characteristics are also good.

図3は回路基板1を用い、ICチップをはめ込んでパッケージ化した多層配線基板3の断面図である。図4は多層配線基板3のセラミックス基板部分の形成に用いた作製装置21の一部を示した模式図であり、作製装置20に準じているが、ノズル206に3次元構造形成装置40が設置され、プログラムコントローラ41につながっている。   FIG. 3 is a cross-sectional view of a multilayer wiring board 3 in which an IC chip is inserted and packaged using the circuit board 1. FIG. 4 is a schematic view showing a part of the manufacturing apparatus 21 used for forming the ceramic substrate portion of the multilayer wiring board 3, and is based on the manufacturing apparatus 20, but the three-dimensional structure forming apparatus 40 is installed in the nozzle 206. And connected to the program controller 41.

図5は3次元構造形成装置の斜視図であり、ノズルの開口の先に届く、可動式の、幅500μmのピンを多数並べた構造となっており、XYステージと同期しつつプログラム稼動する。   FIG. 5 is a perspective view of the three-dimensional structure forming apparatus, which has a structure in which a large number of movable pins having a width of 500 μm that reach the tip of the nozzle opening are arranged, and the program is operated in synchronization with the XY stage.

多層配線基板3の構成は、銅基板10の表面に酸化アルミニウム基板11が配置され、その表面にあるパターンを描く導電性配線12が配置され、その上に酸化アルミニウム層13、14が配置される。この層間にも導電性配線12が通っている。すなわち導電性配線は3次元の立体配線構造をとっている。また酸化アルミニウム層13、14はスルーホール15が各所に設置されており、導電性配線12がここから覗いている。酸化アルミニウム基板11上にはまたICチップ16が高温半田17を介して設置されており、導電性配線12とワイヤーボンディング18によって接続されている。   The multilayer wiring board 3 is configured such that an aluminum oxide substrate 11 is disposed on the surface of a copper substrate 10, conductive wiring 12 drawing a pattern on the surface is disposed, and aluminum oxide layers 13 and 14 are disposed thereon. . Conductive wiring 12 also passes between these layers. That is, the conductive wiring has a three-dimensional solid wiring structure. The aluminum oxide layers 13 and 14 are provided with through holes 15 at various places, and the conductive wiring 12 is viewed from here. An IC chip 16 is also placed on the aluminum oxide substrate 11 via a high-temperature solder 17 and connected to the conductive wiring 12 by wire bonding 18.

この多層配線基板3の作製方法を次に述べる。回路基板1に図には示さない真空蒸着装置によりアルミニウムの配線パターンを形成した後、作製装置21内のXYステージ207に設置する。実施例1と同様の操作で酸化アルミニウム層13を厚さ30μmで形成するが、形成中3次元構造物形成装置40のピンがプログラムによりエアロゾルの噴射(粉体ビーム)の一部をカットして、回路基板1まで届くのを阻止し、カット部分には酸化アルミニウム層を形成しないマスクの役割を果たす。従ってこれが約500μm×500μmの正方形状のスルーホールとなり、導電性配線12をむき出しのままの状態に保つ。また中央部はICチップを設置するためのキャビティ部分も3次元構造物形成装置40の働きにより、層が形成されない。なお、ピンに粉体ビームが当たる位置は、粉体ビームの直進方向に対し、45°の傾きを持っているため、ビームはここで直角にそろって進路変更をするため、反射するビームが、直進する粉体ビームを散乱させたり、回路基板1に悪影響を及ぼすことはない。   A method for producing the multilayer wiring board 3 will be described next. An aluminum wiring pattern is formed on the circuit board 1 by a vacuum vapor deposition apparatus (not shown), and then placed on the XY stage 207 in the manufacturing apparatus 21. The aluminum oxide layer 13 is formed with a thickness of 30 μm by the same operation as in Example 1, but the part of the aerosol spray (powder beam) is cut by the pin of the three-dimensional structure forming apparatus 40 during the formation. , It serves to act as a mask that prevents reaching the circuit board 1 and does not form an aluminum oxide layer in the cut portion. Therefore, this becomes a square through hole of about 500 μm × 500 μm, and the conductive wiring 12 is kept exposed. In the central portion, the cavity portion for installing the IC chip is not formed by the function of the three-dimensional structure forming apparatus 40. Since the position where the powder beam hits the pin has an inclination of 45 ° with respect to the straight direction of the powder beam, the beam changes its course at right angles, so the reflected beam is It does not scatter the straight powder beam or adversely affect the circuit board 1.

酸化アルミニウム層14を形成後に作製装置21より取り出し、再びアルミニウムの導電性配線12を配線して作製装置21内に設置し、同様の操作を行って酸化アルミニウム層14を形成させる。このようにして作製した多層配線基板3にICチップ16を高温半田にて融着し、ワイヤーボンディング17で導電性配線12と導通させて、ICパッケージとする。 After forming the aluminum oxide layer 14, the aluminum oxide layer 14 is taken out from the manufacturing apparatus 21, and the aluminum conductive wiring 12 is again wired and placed in the manufacturing apparatus 21, and the same operation is performed to form the aluminum oxide layer 14. The IC chip 16 is fused to the multilayer wiring board 3 thus manufactured with high-temperature solder, and is electrically connected to the conductive wiring 12 by wire bonding 17 to obtain an IC package.

(実施例1)
図2とほぼ同様の作製装置を用いて真鍮基板上に酸化アルミニウムの構造物を10〜30μmの厚みで形成した。原料粉末として平均粒径0.6μm、純度99.8%の酸化アルミニウム微粒子を用い、搬送ガスとして超高純度窒素を使用し、流量を5L/minとした。形成した酸化アルミニウム構造物の基板との密着性を引き倒し法によって計測した結果843kgf/cmの値を得た。また島津製作所製微小硬度測定装置DUH−W201にてビッカース硬度を測定した結果1100〜1200Hvの硬度を得た。また酸化アルミニウム表面に電極を形成し、真鍮基板との間で直流の電圧を印加して絶縁破壊電圧値を測定した結果100V/μm以上の値を得た。
Example 1
An aluminum oxide structure having a thickness of 10 to 30 μm was formed on a brass substrate using a manufacturing apparatus substantially similar to that shown in FIG. Aluminum oxide fine particles having an average particle diameter of 0.6 μm and a purity of 99.8% were used as the raw material powder, ultrahigh purity nitrogen was used as the carrier gas, and the flow rate was 5 L / min. As a result of measuring the adhesion of the formed aluminum oxide structure to the substrate by pulling down, a value of 843 kgf / cm 2 was obtained. Moreover, the hardness of 1100-1200Hv was obtained as a result of measuring Vickers hardness with the Shimadzu Corporation microhardness measuring apparatus DUH-W201. Further, an electrode was formed on the aluminum oxide surface, and a DC voltage was applied to the brass substrate to measure the dielectric breakdown voltage. As a result, a value of 100 V / μm or more was obtained.

(実施例2)
本発明者らは原料粉体に同じ粒径の脆性材料を用いた場合でも、形成される構造物の形成速度、達成膜厚に相違があり、これは微粒子の前処理、微粒子のキャラクタリゼーションに起因するとの結論を得た。その指標として前処理条件によって変化する内部歪があげられる。
そこで、内部歪と同一の形成時間で達成された構造物の膜厚の関係について実験した結果を図6に示す。実験は、純度99.8%の酸化アルミニウム微粒子に遊星ミルを用いて粉砕処理を行い、微粒子のキャラクタリゼーションを変化させた後、超微粒子ビーム堆積法によりアルミニウム基板上に構造物を形成した。微粒子の内部歪はX線回折により測定し、歪量は同微粒子に熱エージングを施して内部歪を除去したものを0%として基準にした。
また、図6中のポイントA,B,Cにおける微粒子のSEM写真(日立製インレンズSEM S−5000)を図7、図8及び図9に示す。
(Example 2)
Even when a brittle material having the same particle size is used as the raw material powder, the present inventors have a difference in the formation speed of the structure to be formed and the achieved film thickness. The conclusion was derived. An example of the index is an internal strain that changes depending on pretreatment conditions.
Therefore, FIG. 6 shows the result of an experiment on the relationship between the film thickness of the structure achieved in the same formation time as the internal strain. In the experiment, aluminum oxide fine particles having a purity of 99.8% were pulverized using a planetary mill to change the characterization of the fine particles, and then a structure was formed on the aluminum substrate by an ultrafine particle beam deposition method. The internal strain of the fine particles was measured by X-ray diffraction, and the amount of strain was determined based on 0% obtained by subjecting the fine particles to thermal aging to remove the internal strain.
Moreover, the SEM photograph (Hitachi in-lens SEM S-5000) of the microparticles | fine-particles in point A, B, C in FIG. 6 is shown in FIG.7, FIG8 and FIG.9.

図6から内部歪は、膜厚1μm以上にするには、0.01〜2.5%にするのが好ましく、さらに、安定した膜厚、製膜速度を得るには、0.1%〜2.0%の内部歪が好ましいことが分かる。クラックと内部歪との関係は、内部歪がない場合には図7に示すようにクラックは発生しないが、内部歪が一定値以上、本件の場合には2.0%以上となると完全にクラックが形成されてしまい、さらには脱落した断片が表面に付着して図9に示すような再凝集状態となってしまう。   From FIG. 6, the internal strain is preferably 0.01 to 2.5% in order to obtain a film thickness of 1 μm or more, and 0.1% to 2.5% in order to obtain a stable film thickness and film forming speed. It can be seen that an internal strain of 2.0% is preferred. As shown in FIG. 7, when there is no internal strain, cracks do not occur when there is no internal strain, but when the internal strain exceeds a certain value, in this case, 2.0% or more, it is completely cracked. 9 is formed, and the dropped pieces adhere to the surface, resulting in a re-aggregation state as shown in FIG.

(実施例3)
実施例3として、本発明にて作製した酸化アルミニウム構造物基板と従来からICパッケージ等の絶縁用基材として用いられているアルミナ基板の熱伝導性の比較実験を行った。本発明にて純度99.8%、平均粒径0.6μmの酸化アルミニウム微粒子を用いて超微粒子ビーム堆積法により、厚み1mmのSUS304ステンレス基材上に約10μmの厚み、30mm角の大きさで酸化アルミニウム構造物を形成し、酸化アルミニウム構造物基板とした。比較のための従来絶縁用基材アルミナ基板としては、市販の1mm厚みのアルミナ基材(純度99%)を30mm角に切り出した試料を用いた。図10に、今回、熱伝導性を評価するのに用いた装置50を示す。
サーモ・ボニック製の14mm角のペルチェ素子51(熱電素子)に、直流電源52(KENWOOD製直流安定化電源:PS36-20)を配線して熱源とした。なお、ペルチェ素子51は、厚み12mmで大きさ50mm角のアルミブロックの固定用ジグ53上に、エポキシ系接着剤により接着層54を介して接着されている。測定したい絶縁性基材55は、固定用ジグ53に接着されたペルチェ素子51上に、熱の伝達を促す目的でシリコングリス56を塗布し、これに密着させてのち、固定用ジグ57にてビス58を用いて固定した。絶縁性基材55は酸化アルミニウム構造物基板あるいは従来アルミナ基板を用いるわけであるが、酸化アルミニウム構造物基板を用いる場合は、ペルチェ素子51に接する側に酸化アルミニウム構造物の形成部を接着する。熱伝導性の評価は、測定したい絶縁基材55の裏側に熱電対59を基板中心から約5mm離れた場所に当てて、通電開始前の基板温度と通電時間に伴う基板の温度を温度測定器60(アドバンテスト製 デジタルマルチメータ:TR6846)にて測定した。
図11に、電流を1.0Aと2.0A流した時の通電時間に伴う基板温度の変化量(:(各通電時の基板温度)−(通電前の基材温度))をプロットした。いずれの電流を流した時でも、本発明にて作製した絶縁基材の方が、従来の絶縁基材に対して、変化量が大きく、速く熱伝導することが明らかになった。このことより薄いセラミックス層と金属材料とが直接接合している本発明品は、熱伝導に優れることがわかった。
(Example 3)
As Example 3, a comparative experiment was conducted on the thermal conductivity of an aluminum oxide structure substrate manufactured according to the present invention and an alumina substrate conventionally used as an insulating base material for IC packages and the like. In the present invention, an aluminum oxide fine particle having a purity of 99.8% and an average particle diameter of 0.6 μm is used to deposit a 10 mm thick, 30 mm square size on a 1 mm thick SUS304 stainless steel substrate by ultrafine particle beam deposition. An aluminum oxide structure was formed to obtain an aluminum oxide structure substrate. As a conventional insulating substrate alumina substrate for comparison, a sample obtained by cutting a commercially available 1 mm thick alumina substrate (purity 99%) into 30 mm squares was used. FIG. 10 shows an apparatus 50 used for evaluating the thermal conductivity this time.
A DC power supply 52 (KENWOOD DC stabilized power supply: PS36-20) was wired to a 14 mm square Peltier element 51 (thermoelectric element) manufactured by Thermo-Bonic to make a heat source. The Peltier element 51 is bonded to an aluminum block fixing jig 53 having a thickness of 12 mm and a size of 50 mm square with an epoxy adhesive through an adhesive layer 54. The insulating base material 55 to be measured is coated with silicon grease 56 on the Peltier element 51 bonded to the fixing jig 53 for the purpose of promoting heat transfer, and brought into close contact with the fixing jig 57. Fixing was performed using screws 58. The insulating base 55 uses an aluminum oxide structure substrate or a conventional alumina substrate. When an aluminum oxide structure substrate is used, an aluminum oxide structure forming portion is bonded to the side in contact with the Peltier element 51. The thermal conductivity is evaluated by placing a thermocouple 59 on the back side of the insulating base material 55 to be measured at a location approximately 5 mm away from the center of the substrate, and measuring the substrate temperature before the start of energization and the temperature of the substrate with the energization time. 60 (Advantest Digital Multimeter: TR6846).
FIG. 11 plots the amount of change in substrate temperature (: (substrate temperature at each energization) − (base temperature before energization)) with energization time when currents of 1.0 A and 2.0 A were passed. Even when any current is applied, it has been clarified that the insulating base material produced by the present invention has a larger change amount and conducts heat faster than the conventional insulating base material. From this, it was found that the product of the present invention in which the thin ceramic layer and the metal material are directly bonded is excellent in heat conduction.

(実施例4)
実施例4として、本発明にて作製した酸化アルミニウム構造物回路基板と従来からICパッケージ等の絶縁用基材として用いられているアルミナ基板の放熱特性の比較実験を行った。本発明にて純度99.99%、平均粒径0.1μmの酸化アルミニウム微粒子を用いて超微粒子ビーム堆積法により、アルミニウム合金製の30mm角の平面部を持つヒートシンクに、その平面部表面を覆うように約10μmの厚みにて酸化アルミニウム構造物を形成し、これを酸化アルミニウム構造物基板とした。図12に基板の放熱特性を評価するのに用いた装置70を示す。
サーモ・ボニック製の14mm角のペルチェ素子71(熱電素子)に、直流電源72(KENWOOD製直流安定化電源:PA18−6A)を配線して熱源とした。ペルチェ素子71は、冷温側を厚み12mmで大きさ50mm角のアルミブロックの固定用ジグ73上に、エポキシ系接着剤により接着層74を介して接着されている。酸化アルミニウム構造物基板75は、ペルチェ素子71上に、熱の伝達を促す目的でシリコングリス76を塗布し、ペルチェ素子71に接する側に酸化アルミニウム構造物の形成部を密着させて固定した。酸化アルミニウム構造物基板75の上部に空冷ファン77を設置した。またペルチェ素子71の表面に熱電対78を接着し、サーモメータ79に接続している。
Example 4
As Example 4, a comparative experiment was conducted on the heat dissipation characteristics of an aluminum oxide structure circuit board fabricated according to the present invention and an alumina substrate conventionally used as an insulating base material for IC packages and the like. According to the present invention, the surface of the flat part is covered with a heat sink having a flat part of 30 mm square made of an aluminum alloy by using an ultrafine particle beam deposition method using aluminum oxide fine particles having a purity of 99.99% and an average particle diameter of 0.1 μm. Thus, an aluminum oxide structure was formed with a thickness of about 10 μm, and this was used as an aluminum oxide structure substrate. FIG. 12 shows an apparatus 70 used for evaluating the heat dissipation characteristics of the substrate.
A DC power supply 72 (KENWOOD DC stabilized power supply: PA18-6A) was wired to a 14 mm square Peltier element 71 (thermoelectric element) manufactured by Thermo-Bonic to make a heat source. The Peltier element 71 is bonded to an aluminum block fixing jig 73 having a thickness of 12 mm and a size of 50 mm square on the cold side through an adhesive layer 74 with an epoxy adhesive. The aluminum oxide structure substrate 75 was coated with silicon grease 76 on the Peltier element 71 for the purpose of promoting heat transfer, and the formation portion of the aluminum oxide structure was adhered and fixed to the side in contact with the Peltier element 71. An air cooling fan 77 was installed on the aluminum oxide structure substrate 75. A thermocouple 78 is bonded to the surface of the Peltier element 71 and connected to a thermometer 79.

比較のための従来アルミナ基板としては、市販の1mm厚みのアルミナ基材(純度99%)を30mm角に切り出した試料を用いた。図13に基板の放熱特性を評価するのに用いた装置80を示す。図12とほぼ同様な仕様であるが、従来アルミナ基板81の固定は、ペルチェ素子71上に、熱の伝達を促す目的でシリコングリス82を塗布し、これに密着させて固定した。また従来アルミナ基板81の上部にシリコングリス83を介して図12で示したものと同等のヒートシンク84(酸化アルミニウム構造物は形成されていない)を密着させることとした。   As a conventional alumina substrate for comparison, a sample obtained by cutting a commercially available 1 mm thick alumina substrate (purity 99%) into 30 mm squares was used. FIG. 13 shows an apparatus 80 used for evaluating the heat dissipation characteristics of the substrate. Although the specifications are almost the same as those in FIG. 12, the conventional alumina substrate 81 is fixed by applying silicon grease 82 on the Peltier element 71 for the purpose of promoting heat transfer and intimately attaching it. In addition, a heat sink 84 (no aluminum oxide structure is formed) equivalent to that shown in FIG.

放熱特性の評価は、室温にて放熱ファン77を作動させた状態で2Aの電流をペルチェ素子71に通電し、直後から2分間までのペルチェ素子71の高温部表面の温度を計測することによる。
図14に、通電時間とペルチェ素子の表面温度の関係を示す。従来アルミナ基板に対して、酸化アルミニウム構造物基板ではその表面温度が低く抑えられており、従って基板を通しての熱の伝達が、より良好であることが確認され、基板としての放熱特性が優れるということがわかった。
The evaluation of the heat dissipation characteristic is based on measuring the temperature of the surface of the high temperature part of the Peltier element 71 from immediately after that 2 A current is passed through the Peltier element 71 with the heat dissipation fan 77 operating at room temperature.
FIG. 14 shows the relationship between the energization time and the surface temperature of the Peltier element. Compared to the conventional alumina substrate, the surface temperature of the aluminum oxide structure substrate is kept low, and therefore heat transfer through the substrate is confirmed to be better, and the heat dissipation characteristics as a substrate are excellent. I understood.

(実施例5)
次に構造物形成に伴って形成されたアンカー部について、図15に示す。表面を鏡面に仕上げた金属基板に、微粒子ビーム堆積法を用いて酸化アルミニウム膜を膜厚10μm程度で形成させた後、膜に引張り応力を与えて膜を基板より引き剥がしてアンカー部をむき出しにし、基板の表面粗さとアンカー部を日本真空技術株式会社製触針式表面形状測定器Dektak3030を用いて計測した。図15の上のプロファイルが真鍮基板の表面プロファイルであり、下がアンカー部のプロファイルである。図より微粒子の衝突によりアンカー部が形成されている様子がわかる。また同表面形状測定器によりこれらの表面粗さRaは、スイープ距離200μmにおいて、基板表面が7.7nm、アンカー部が73.8nmであった。
(Example 5)
Next, the anchor part formed with the structure formation is shown in FIG. An aluminum oxide film having a film thickness of about 10 μm is formed on a metal substrate having a mirror-finished surface using a fine particle beam deposition method, and then the film is pulled from the substrate by applying a tensile stress to expose the anchor portion. The surface roughness of the substrate and the anchor portion were measured using a stylus type surface shape measuring device Dektak 3030 manufactured by Nippon Vacuum Technology Co., Ltd. The upper profile in FIG. 15 is the surface profile of the brass substrate, and the lower profile is the profile of the anchor portion. From the figure, it can be seen that the anchor is formed by the collision of the fine particles. The surface roughness Ra was measured by the same surface shape measuring instrument. The substrate surface was 7.7 nm and the anchor portion was 73.8 nm at a sweep distance of 200 μm.

本発明に係る電子回路基板の縦断面図The longitudinal cross-sectional view of the electronic circuit board based on this invention 本発明に係る電子回路基板の製造装置の一例を示す図The figure which shows an example of the manufacturing apparatus of the electronic circuit board which concerns on this invention 別実施形態に係る電子回路基板の縦断面図Vertical sectional view of an electronic circuit board according to another embodiment 別実施形態に係る電子回路基板の製造装置の一例を示す図The figure which shows an example of the manufacturing apparatus of the electronic circuit board which concerns on another embodiment. 3次元構造形成装置の斜視図Perspective view of 3D structure forming apparatus 脆性材料微粒子の内部歪と膜厚との関係を示すグラフGraph showing the relationship between internal strain and film thickness of brittle material fine particles 図4のポイントAにおける微粒子のSEM写真SEM photograph of fine particles at point A in FIG. 図4のポイントBにおける微粒子のSEM写真SEM photograph of fine particles at point B in FIG. 図4のポイントCにおける微粒子のSEM写真SEM photograph of fine particles at point C in FIG. 実施例3における熱伝導性評価装置の構成図The block diagram of the heat conductivity evaluation apparatus in Example 3 実施例3における熱伝導性評価結果の1例Example of thermal conductivity evaluation result in Example 3 実施例4における酸化アルミニウム構造物基板の放熱特性評価装置の構成図Configuration diagram of an apparatus for evaluating heat dissipation characteristics of an aluminum oxide structure substrate in Example 4 実施例4における従来アルミナ基板の放熱特性評価装置の構成図Configuration diagram of conventional heat dissipation characteristic evaluation apparatus for alumina substrate in Example 4 実施例4における放熱特性評価結果Evaluation results of heat dissipation characteristics in Example 4 実施例5におけるアンカー部の凹凸プロファイルを示す図The figure which shows the uneven | corrugated profile of the anchor part in Example 5

Claims (10)

絶縁性のセラミックス基板の裏面側に冷却用の金属材料を設けた回路基板において、前記金属材料に前記セラミックス基板が接着剤を用いることなく直接接合され、このセラミックス基板に導電性配線が直接形成されていることを特徴とする回路基板。 In a circuit board in which a metal material for cooling is provided on the back side of an insulating ceramic substrate, the ceramic substrate is directly bonded to the metal material without using an adhesive, and conductive wiring is directly formed on the ceramic substrate. A circuit board characterized by the above. 請求項1に記載の回路基板において、前記セラミックス基板が、多結晶の脆性材料からなり、結晶同士の界面にはガラス層からなる粒界層が実質的に存在せず、前記セラミックス基板と前記金属材料との界面は、前記セラミックス基板が前記金属材料に食い込むアンカー部となっていることを特徴とする回路基板。 The circuit board according to claim 1, wherein the ceramic substrate is made of a polycrystalline brittle material, and there is substantially no grain boundary layer made of a glass layer at an interface between the crystals, and the ceramic substrate and the metal The circuit board according to claim 1, wherein the interface with the material is an anchor portion into which the ceramic substrate bites into the metal material. 請求項1または請求2に記載の回路基板において、前記セラミックス基板の厚さが1〜1000μmであることを特徴とする回路基板。 3. The circuit board according to claim 1 or 2, wherein the ceramic substrate has a thickness of 1 to 1000 [mu] m. 請求項1乃至請求項3の何れかに記載の回路基板において、前記セラミックス基板の緻密度が95%以上であることを特徴とする回路基板。 The circuit board according to any one of claims 1 to 3, wherein the ceramic substrate has a density of 95% or more. 請求項1乃至請求項4の何れかに記載の回路基板において、前記セラミックス基板の材質が酸化アルミニウムを主成分とすることを特徴とする回路基板。 5. The circuit board according to claim 1, wherein a material of the ceramic substrate is mainly composed of aluminum oxide. 脆性材料微粒子を金属材料表面および/または導電性配線に高速で衝突させて、この衝突によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、前記金属材料表面および/または前記導電性配線に前記脆性材料微粒子が食い込むアンカー部を形成させ、このアンカー部の上に脆性材料からなるセラミックス層を形成することを特徴とする回路基板の形成方法。 The brittle material fine particles are collided with the metal material surface and / or the conductive wiring at high speed, the brittle material fine particles are deformed or crushed by the collision, and the fine particles are separated from each other through the active new surface generated by the deformation or crushing. An anchor portion in which the brittle material fine particles bite into the metal material surface and / or the conductive wiring is formed by recombination, and a ceramic layer made of the brittle material is formed on the anchor portion. A method of forming a circuit board. 請求項6に記載の回路基板の形成方法において、前記脆性材料微粒子はあらかじめ内部歪が印加されていることを特徴とする回路基板の形成方法。 7. The method for forming a circuit board according to claim 6, wherein the brittle material fine particles are preliminarily applied with internal strain. 請求項6に記載の回路基板の形成方法において、前記セラミックス層の形成が室温環境下で行われることを特徴とする回路基板の形成方法。 7. The method for forming a circuit board according to claim 6, wherein the ceramic layer is formed in a room temperature environment. 請求項6に記載の回路基板の形成法において、前記脆性材料微粒子を高速で衝突させる手段は、脆性材料微粒子をガス中に分散させたエアロゾルを、高速で前記金属材料および/または導電性配線に向けて噴射することとした回路基板の形成方法。 7. The method for forming a circuit board according to claim 6, wherein the means for causing the brittle material fine particles to collide at high speed is formed by applying an aerosol in which the brittle material fine particles are dispersed in the gas to the metal material and / or conductive wiring at high speed. A method of forming a circuit board that is to be sprayed. 請求項6乃至請求項9の何れかに記載の回路基板の形成方法において、前記脆性材料微粒子の主成分が酸化アルミニウムであることを特徴とする回路基板の形成方法。 10. The circuit board forming method according to claim 6, wherein the brittle material fine particles are mainly composed of aluminum oxide.
JP2005256934A 2001-04-03 2005-09-05 Circuit board and its fabricating method Pending JP2006049923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256934A JP2006049923A (en) 2001-04-03 2005-09-05 Circuit board and its fabricating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001104031 2001-04-03
JP2001349560 2001-11-15
JP2005256934A JP2006049923A (en) 2001-04-03 2005-09-05 Circuit board and its fabricating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002088014A Division JP3784341B2 (en) 2001-04-03 2002-03-27 Circuit board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006049923A true JP2006049923A (en) 2006-02-16

Family

ID=36028027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256934A Pending JP2006049923A (en) 2001-04-03 2005-09-05 Circuit board and its fabricating method

Country Status (1)

Country Link
JP (1) JP2006049923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028255A (en) * 2006-07-24 2008-02-07 Matsushita Electric Works Ltd Method for manufacturing three-dimensional circuit substrate
JP2008219018A (en) * 2007-03-07 2008-09-18 Samsung Electro Mech Co Ltd Forming method of photoresist laminated circuit board using aerosol of metal nanoparticles, plating method of insulating substrate, surface treatment method of metal layer of circuit board, and manufacturing method of multilayer ceramic capacitor
JP2009057635A (en) * 2008-09-25 2009-03-19 Toto Ltd Composite structure, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028255A (en) * 2006-07-24 2008-02-07 Matsushita Electric Works Ltd Method for manufacturing three-dimensional circuit substrate
JP2008219018A (en) * 2007-03-07 2008-09-18 Samsung Electro Mech Co Ltd Forming method of photoresist laminated circuit board using aerosol of metal nanoparticles, plating method of insulating substrate, surface treatment method of metal layer of circuit board, and manufacturing method of multilayer ceramic capacitor
JP2011014916A (en) * 2007-03-07 2011-01-20 Samsung Electro-Mechanics Co Ltd Method for forming photoresist-laminated substrate using aerosol of metal nanoparticle, method for plating insulating substrate, method for surface treating metal layer of circuit board, and method for manufacturing laminated ceramic capacitor
JP4741616B2 (en) * 2007-03-07 2011-08-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method for forming photoresist laminated substrate
US8003173B2 (en) 2007-03-07 2011-08-23 Samsung Electro-Mechanics Co., Ltd. Method for forming a photoresist-laminated substrate, method for plating an insulating substrate, method for surface treating of a metal layer of a circuit board, and method for manufacturing a multi layer ceramic condenser using metal nanoparticles aerosol
JP2009057635A (en) * 2008-09-25 2009-03-19 Toto Ltd Composite structure, and method for producing the same
JP4711242B2 (en) * 2008-09-25 2011-06-29 Toto株式会社 Composite structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3784341B2 (en) Circuit board and manufacturing method thereof
KR101569421B1 (en) Silicon nitride substrate method of manufacturing the same and silicon nitride circuit board and semiconductor module using the same
WO2017082368A1 (en) Laminate and laminate manufacturing method
WO2005042436A1 (en) Aluminum nitride joined article and method for manufacture thereof
KR102274971B1 (en) Copper-ceramic composites
US7381673B2 (en) Composite material, wafer holding member and method for manufacturing the same
JP3937952B2 (en) Heat dissipation circuit board and method for manufacturing the same
JP4201502B2 (en) Electrostatic chuck and manufacturing method thereof
JP2006049923A (en) Circuit board and its fabricating method
US20230086662A1 (en) Method of producing composite material
CN108698943B (en) Copper-ceramic composite
US20190055166A1 (en) Copper-ceramic composite
US20200308072A1 (en) Copper/ceramic composite
JP2000128654A (en) Silicon nitride composite substrate
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP2014179416A (en) Method of manufacturing heat dissipation substrate, heat dissipation substrate manufactured by that method
JP2003086663A (en) Holder of article being processed, processing unit and ceramic susceptor for semiconductor manufacturing device
JP2020136469A (en) Composite base material, semiconductor module, and manufacturing method thereof
JP2010010563A (en) Method for manufacturing power module substrate and power module substrate
JP4565136B2 (en) Electrostatic chuck
JP3716913B2 (en) Brittle material composite structure and manufacturing method thereof
JP4998387B2 (en) Power module substrate manufacturing method and power module substrate
JP6378247B2 (en) LAMINATE, POWER MODULE, AND METHOD FOR PRODUCING LAMINATE
JP2004259805A (en) Electrostatic chuck
JP2016074935A (en) Composite powder material for flame spray and flame sprayed insulation base plate

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20051121

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701