JP2006048064A - High-precision relief map production system and high-precision relief map generation process - Google Patents

High-precision relief map production system and high-precision relief map generation process Download PDF

Info

Publication number
JP2006048064A
JP2006048064A JP2005233291A JP2005233291A JP2006048064A JP 2006048064 A JP2006048064 A JP 2006048064A JP 2005233291 A JP2005233291 A JP 2005233291A JP 2005233291 A JP2005233291 A JP 2005233291A JP 2006048064 A JP2006048064 A JP 2006048064A
Authority
JP
Japan
Prior art keywords
data
map
dimensional map
stl data
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005233291A
Other languages
Japanese (ja)
Other versions
JP4572387B2 (en
Inventor
Hitoshi Maekawa
仁 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005233291A priority Critical patent/JP4572387B2/en
Publication of JP2006048064A publication Critical patent/JP2006048064A/en
Application granted granted Critical
Publication of JP4572387B2 publication Critical patent/JP4572387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Processing Or Creating Images (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-precision relief map production system capable of producing a high-precision relief map of an arbitrary area from numerical map data at a low cost in a short period of time. <P>SOLUTION: The high-precision relief map production system produces the relief map by converting the numerical map data to STL data and inputting the STL data to an optical shaping device. In performing automatic conversion processing by a computer to the STL data from the numerical map data, a horizontal plane is set within a production range of the relief map; a lattice point which is a base point and three lattice points adjacent to the lattice point are set on the horizontal plane; an altitude at each lattice point is read in from a numerical map CD-ROM and new four lattice points are set upward distant the above altitude from each lattice point; a quadrilateral constituted by the four lattice points is divided by diagonals to two triangles; the assembly of the divided triangles is converted into the STL data and the relief map is shaped by inputting the STL data to the optical shaping device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、高精度立体地図作製システムおよび高精度立体地図作成処理方法に関するものである。   The present invention relates to a high-precision three-dimensional map creation system and a high-precision three-dimensional map creation processing method.

従来、立体地図は、(a)地形デ−タの作成及び(b)立体地図の加工という2つの工程から製作されており、各工程に関しては、次のような方法を用いていた。   Conventionally, a three-dimensional map has been manufactured from two processes of (a) creation of topographic data and (b) processing of a three-dimensional map, and the following method has been used for each process.

デ−タ作成方法に関しては、
(a1)地図から手作業により作成する。
(a2)地図からデジタイザで入力する。
また、加工方法に関しては、
(b1)シ−トを切り抜き、貼りあわせて積層する。
(b2)手作業により切削する。
(b3)NC工作機械により切削する。
Regarding the data creation method,
(A1) Created manually from a map.
(A2) Input from a map with a digitizer.
Regarding the processing method,
(B1) A sheet is cut out and pasted and laminated.
(B2) Cutting by hand.
(B3) Cutting with an NC machine tool.

ところが、これら従来技術には、それぞれ次のような問題があった。前記(a1)の方法では、地図上で地形の高低を表す等高線の形状を手作業で読み取ったり、シ−トに写し取ったりするが、これには多大な時間・労力・コストを必要とする。   However, these conventional techniques have the following problems. In the method (a1), the shape of the contour line representing the level of the topography on the map is manually read or copied on a sheet, but this requires a great deal of time, labor, and cost.

前記(a2)の方法では、デジタイザを用いて地図上の等高線の形状を計算機に入力するが、デジタイザを等高線に沿って移動するのは手作業であるため、前記(a1)の方法よりも能率的ではあるものの、やはり長時間の単純労働を強いられる。   In the method (a2), the contour line shape on the map is input to the computer using a digitizer. However, since moving the digitizer along the contour line is a manual operation, it is more efficient than the method (a1). Although it is the target, it still requires forced labor for a long time.

前記(a1)及び(a2)のデ−タ作成方法では、手作業による精度劣化が避けられない。また、現実的な作業時間及び作業者の人件費に関する制約のもとでは、地形の細部を省略せざるを得ないため、高精度のデ−タを作成することは困難である。   In the data creation methods (a1) and (a2), accuracy degradation due to manual work is inevitable. In addition, under the constraints on realistic work time and labor costs of workers, it is difficult to create highly accurate data because terrain details must be omitted.

前記(b1),(b2)の加工方法については、立体地図を熟練技能者の手作業により製作する場合には、多大な時間と労力が必要となり、結果としてコストが上昇する。   With regard to the processing methods (b1) and (b2), when a three-dimensional map is produced manually by skilled technicians, a great amount of time and labor are required, resulting in an increase in cost.

手作業による立体地図を作成する場合には、元の地形デ−タを完全に再現することは不可能で、加工時の誤差が避けられない。また、微細な加工も困難なため、地形の細かい凹凸をある程度省略せざるを得ない。このことは、自然災害の報道のように早急に立体地図を製作しなければならない状況において顕著である。例えば、ニュ−ス番組等で使用される立体地図では、地形の細部をかなり省略している。   When creating a 3D map by hand, it is impossible to completely reproduce the original terrain data, and errors during processing cannot be avoided. In addition, since fine processing is difficult, it is necessary to omit the fine unevenness of the topography to some extent. This is remarkable in situations where a three-dimensional map must be produced as soon as possible, such as a natural disaster report. For example, in a three-dimensional map used in a news program or the like, details of terrain are considerably omitted.

また、前記(b1)の加工方法では、立体地図の精度は貼り合わせるシ−トの厚さにより制約される。すなわち、地形はシ−トの厚さ分の段差からなる3次元形状として表現されるため、滑らかな斜面等を実現することはできない。この問題はシ−トを薄くすれば、ある程度解決可能であるが、貼り合わせるシ−ト枚数が膨大になるため、実現的ではない。   In the processing method (b1), the accuracy of the three-dimensional map is limited by the thickness of the sheets to be attached. That is, since the terrain is expressed as a three-dimensional shape composed of steps corresponding to the thickness of the sheet, a smooth slope or the like cannot be realized. This problem can be solved to some extent by making the sheet thinner, but it is not practical because the number of sheets to be bonded becomes enormous.

前記(b3)のように、NC工作機械にエンドミルを装着して立体地図を切削する場合には、エンドミル先端より小さな凹部を加工することはできないため、高精度の立体地図を製作することができない。この問題に対しては、小径エンドミルを使用すれば立体地図の精度は向上するが、エンドミルの切削量が小さくなるため加工時間が極めて長くなる。   As described in (b3) above, when an end mill is mounted on an NC machine tool and a 3D map is cut, a concave portion smaller than the end mill tip cannot be machined, so a highly accurate 3D map cannot be manufactured. . To solve this problem, the accuracy of the three-dimensional map is improved by using a small-diameter end mill, but the machining time is extremely long because the cutting amount of the end mill is small.

前述の従来技術では、デ−タ作成工程及び加工工程の一方或いは双方に時間・労力を要する方法を使用しなければならず、立体地図の製造コストが上昇するので、このコストを回収するためには、立体地図の製作範囲を多数のユ−ザが見込まれる地域に限定せざるを得ない。例えば、社会科の授業などで用いる立体地図は原型から複製したものであるが、原型の作成コストを回収するために、多くのユ−ザが見込まれる一部の有名特定地域(例えば富士山など)しか製作していない。逆に少数のユ−ザしか存在しない任意地域の立体地図を製作するためには、極めて高額な販売価格を設定せざるを得ないため、事実上そのような製作は行われていないのが実状である。   In the above-mentioned conventional technology, a method that requires time and labor must be used for one or both of the data preparation process and the processing process, and the manufacturing cost of the three-dimensional map increases. In order to recover this cost Therefore, the production range of the three-dimensional map must be limited to an area where many users are expected. For example, 3D maps used in social studies classes are duplicated from the original, but some famous specific areas (such as Mt. Fuji) where many users are expected to recover the cost of creating the original But they are only producing. Conversely, in order to produce a three-dimensional map of an arbitrary area where only a small number of users exist, it is necessary to set an extremely high selling price. It is.

なお、立体地図を表示するための技術として、特許文献1に示すようなナビゲーションシステムが公知である。このナビゲーションシステムでは、地形情報と地図情報を立体鳥瞰図表示する。
特開平10−207356号公報
As a technique for displaying a three-dimensional map, a navigation system as shown in Patent Document 1 is known. In this navigation system, terrain information and map information are displayed in a three-dimensional bird's-eye view.
Japanese Patent Laid-Open No. 10-207356

この発明は、従来技術で記述した問題を解決するためになされたものであり、本発明の目的は、数値地図データから任意地域の高精度立体地図を低コスト・短時間で製作することができる高精度立体地図作製システムおよび高精度立体地図作成処理方法を提供することにある。   The present invention has been made to solve the problems described in the prior art, and an object of the present invention is to produce a high-precision three-dimensional map of an arbitrary area from numerical map data at low cost and in a short time. An object of the present invention is to provide a high-precision 3D map production system and a high-precision 3D map creation processing method.

上記のような目的を達成するため、本発明による高精度立体地図作製システムは、立体地図を作成する作成範囲の地域の数値地図デ−タを入力してSTLデ−タに変換して記録媒体に出力する計算機手段と、前記記録媒体からSTLデ−タを入力して立体地図を光造形により製作する光造形手段とを備える高精度立体地図作製システムであって、前記計算機手段における数値地図デ−タからSTLデ−タに変換する処理を行う変換処理手段は、立体地図の製作範囲に水平面を設定する水平面設定手段と、前記水平面上に基点となる格子点と当該格子点に隣接する3つの格子点を設定する第1格子点設定手段と、数値地図データから前記各格子点における標高を読み込む読み込み手段と、各格子点から前記標高隔たった上方に新たな4つの格子点を設定する第2格子点設定手段と、前記4つの格子点が構成する四辺形を対角線で2つの三角形に分割する際に稜線・谷底の方向に近い方の対角線を選択して前記四辺形を分割する分割手段と、前記分割された三角形の集合体をSTLデ−タに変換して出力する出力手段とを備えることを特徴とするものである。   In order to achieve the above object, a high-precision three-dimensional map production system according to the present invention inputs numerical map data of a region in a creation range for creating a three-dimensional map, converts it into STL data, and records it. A high-accuracy 3D map production system comprising: computer means for outputting to the recording medium; and stereolithography means for producing a 3D map by stereolithography by inputting STL data from the recording medium. The conversion processing means for converting the data into the STL data includes a horizontal plane setting means for setting a horizontal plane in the production range of the three-dimensional map, a grid point serving as a base point on the horizontal plane, and 3 adjacent to the grid point. First grid point setting means for setting two grid points, reading means for reading the altitude at each grid point from the numerical map data, and four new grids above the grid point from the grid point A second grid point setting means for setting the quadrangle, and when the quadrilateral formed by the four grid points is divided into two triangles by diagonal lines, the diagonal line closer to the direction of the ridgeline / valley bottom is selected and the quadrilateral is selected. Dividing means for dividing, and output means for converting the aggregate of the divided triangles into STL data and outputting the STL data.

また、本発明による高精度立体地図作成処理方法は、立体地図を作成する作成範囲の地域の数値地図デ−タを計算機手段により入力してSTLデ−タに変換し、前記STLデ−タを光造形手段に入力して立体地図を光造形により作製する高精度立体地図作成処理方法であって、前記計算機手段において、立体地図の製作範囲に水平面を設定し、前記水平面上に基点となる格子点と当該格子点に隣接する3つの格子点を設定し、数値地図データから前記各格子点における標高を読み込み、各格子点から前記標高隔たった上方に新たな4つの格子点を設定し、前記4つの格子点が構成する四辺形を対角線で2つの三角形に分割する際に稜線・谷底の方向に近い方の対角線を選択して前記四辺形を分割し、前記分割された三角形の集合体をSTLデ−タに変換し、前記光造形手段に前記STLデータを入力し立体地図を光造形により作製することを特徴とするものである。   The high-accuracy 3D map creation processing method according to the present invention inputs the numerical map data of the area of the creation range for creating the 3D map by computer means and converts it into STL data, and the STL data is converted into the STL data. A high-precision three-dimensional map creation processing method for producing a three-dimensional map by stereolithography by inputting to the three-dimensional modeling means, wherein in the computer means, a horizontal plane is set in a production range of the three-dimensional map, and a lattice serving as a base point on the horizontal plane A point and three lattice points adjacent to the lattice point are set, the altitude at each lattice point is read from the numerical map data, and four new lattice points are set above the altitude from each lattice point, When the quadrangle formed by the four lattice points is divided into two triangles by diagonal lines, the diagonal line closest to the direction of the ridgeline / valley bottom is selected to divide the quadrilateral, and the aggregate of the divided triangles STL Converted to data, enter the STL data to the stereolithography means is characterized in that produced by stereolithography three-dimensional map.

本発明の高精度立体地図作製システムおよび高精度立体地図作成処理方法によれば、数値地図データから任意地域の高精度立体地図を低コスト・短時間で製作することができ、作製された立体地図は高精度であり、かつ極力自然な形状の立体地図を作製できる。   According to the high-precision three-dimensional map creation system and high-precision three-dimensional map creation processing method of the present invention, it is possible to produce a high-precision three-dimensional map of an arbitrary region from numerical map data at low cost and in a short time, and the produced three-dimensional map Can create a 3D map with high accuracy and natural shape as much as possible.

本発明の実施の形態の一例を図面を参照しながら説明する。本発明の高精度立体地図作製システムにおいては、数値地図デ−タをSTLデ−タに計算機により自動的に変換し、変換されたSTLデ−タを光造形装置に入力して立体地図を製作する。   An example of an embodiment of the present invention will be described with reference to the drawings. In the high-precision three-dimensional map production system of the present invention, numerical map data is automatically converted into STL data by a computer, and the converted STL data is input to an optical modeling apparatus to produce a three-dimensional map. To do.

すなわち、本発明による高精度立体地図作製システムでは、立体地図を作成する作成範囲の地域の数値地図デ−タを計算機により入力してSTLデ−タに変換し、前記STLデ−タを光造形装置に入力して立体地図を光造形により作製するが、ここでの計算機においては、立体地図の製作範囲に水平面を設定し、前記水平面上に基点となる格子点と当該格子点に隣接する3つの格子点を設定し、数値地図データから前記各格子点における標高を読み込み、各格子点から前記標高隔たった上方に新たな4つの格子点を設定し、前記4つの格子点が構成する四辺形を対角線で2つの三角形に分割する際に稜線・谷底の方向に近い方の対角線を選択して前記四辺形を分割し、前記分割された三角形の集合体をSTLデ−タに変換する処理を行う。そして、光造形装置に変化されたSTLデータを入力し立体地図を光造形により作製する。   That is, in the high-precision three-dimensional map production system according to the present invention, numerical map data of a region in a creation range for creating a three-dimensional map is input by a computer and converted into STL data, and the STL data is stereolithographically formed. A three-dimensional map is produced by stereolithography by inputting into the apparatus. In the computer here, a horizontal plane is set in the production range of the three-dimensional map, and a grid point which is a base point on the horizontal plane and the grid point adjacent to the grid point are 3 Set four grid points, read the altitude at each grid point from the numerical map data, set four new grid points above the grid points above the altitude, and form the quadrangle formed by the four grid points When the triangle is divided into two triangles by diagonal lines, the process selects the diagonal line closest to the direction of the ridgeline / valley bottom, divides the quadrilateral, and converts the aggregate of the divided triangles into STL data. Do. Then, the changed STL data is input to the stereolithography apparatus, and a three-dimensional map is created by stereolithography.

具体的に、このようなデータ処理の内容を説明すると、数値地図デ−タからSTLデ−タに変換処理する際に、図1に示すように、立体地図の製作範囲内に水平面Pを設定し、この水平面P上に基点となる格子点R(m,n)と、格子点R(m,n)に隣接する3つの格子点R(m+1,n)、R(m,n+1)、R(m+1,n+1)を設定する。なお、m,nは、各格子点の東西方向及び南北方向の位置を表す。   Specifically, the contents of such data processing will be explained. When converting from numerical map data to STL data, as shown in FIG. 1, a horizontal plane P is set within the production range of the three-dimensional map. Then, a lattice point R (m, n) serving as a base point on the horizontal plane P and three lattice points R (m + 1, n), R (m, n + 1), R adjacent to the lattice point R (m, n) Set (m + 1, n + 1). Note that m and n represent the positions of each grid point in the east-west direction and the north-south direction.

次に、数値地図データのCD−ROMから前記各格子点R(m,n)、R(m+1,n)、R(m,n+1)、R(m+1,n+1)における標高h(m,n)、h(m+1,n)、h(m,n+1)、h(m+1,n+1)を読み込む。   Next, the altitude h (m, n) at each grid point R (m, n), R (m + 1, n), R (m, n + 1), R (m + 1, n + 1) from the CD-ROM of the numerical map data. , H (m + 1, n), h (m, n + 1), h (m + 1, n + 1) are read.

次に、各格子点R(m,n)、R(m+1,n)、R(m,n+1)、R(m+1,n+1)から、それぞれ前記標高h(m,n)、h(m+1,n)、h(m,n+1)、h(m+1,n+1)隔たった上方に新たな格子点S(m,n)、S(m+1,n)、S(m,n+1)、S(m+1,n+1)を設定する。   Next, from the respective grid points R (m, n), R (m + 1, n), R (m, n + 1), R (m + 1, n + 1), the elevations h (m, n) and h (m + 1, n) are obtained. ), H (m, n + 1), h (m + 1, n + 1) and new lattice points S (m, n), S (m + 1, n), S (m, n + 1), S (m + 1, n + 1) Set.

次に、図2に示すように、前記格子点S(m,n)を頂点の1つとする四辺形U(m,n)を2つの三角形に分割する。まず、四辺形U(m,n)に対して対角線方向に隣接する4つの四辺形U(m−1,n−1)、U(m+1,n−1)、U(m−1,n+1)、U(m+1,n+1)を設定し、各四辺形の対角線をそれぞれ次のベクトルV、V、V、Vで表す。すなわち、
:四辺形U(m−1,n−1)の南西から北東に向かう対角線のベクトル、
:四辺形U(m+1,n−1)の南東から北西に向かう対角線のベクトル、
:四辺形U(m−1,n+1)の南東から北西に向かう対角線のベクトル、
:四辺形U(m+1,n+1)の南西から北東に向かう対角線のベクトル
で表す。
Next, as shown in FIG. 2, the quadrilateral U (m, n) having the lattice point S (m, n) as one vertex is divided into two triangles. First, four quadrilaterals U (m−1, n−1), U (m + 1, n−1), U (m−1, n + 1) that are diagonally adjacent to the quadrilateral U (m, n). , U (m + 1, n + 1) are set, and the diagonal lines of the quadrilaterals are represented by the following vectors V 0 , V 1 , V 2 , and V 3 , respectively. That is,
V 0 : a vector of diagonal lines from the southwest to the northeast of the quadrilateral U (m−1, n−1),
V 1 : A vector of diagonal lines from the southeast to the northwest of the quadrilateral U (m + 1, n−1),
V 2 : a diagonal vector from the southeast to the northwest of the quadrilateral U (m−1, n + 1),
V 3 : represented by a diagonal vector from the southwest to the northeast of the quadrilateral U (m + 1, n + 1).

また、各ベクトルV,V,V,Vを式(1)のように成分表示すると、これらの成分は各格子点の東西・南北方向の間隔及び標高から簡単に求めることができる。

Figure 2006048064
Further, when each vector V 0 , V 1 , V 2 , V 3 is displayed as a component as shown in the equation (1), these components can be easily obtained from the intervals and altitudes of the grid points in the east-west and north-south directions. .
Figure 2006048064

次に、四辺形U(m−1,n−1)、U(m+1,n−1)、U(m−1,n+1)、U(m+1,n+1)の各格子間隔及び標高値から、ベクトルV、V、V、Vを算出する。 Next, from each lattice interval and elevation value of the quadrilateral U (m−1, n−1), U (m + 1, n−1), U (m−1, n + 1), U (m + 1, n + 1), a vector V 0 , V 1 , V 2 , V 3 are calculated.

さらに、ベクトルVとVがなす角をθ03とし、ベクトルVとVがなす角をθ12とするように定めると、角θ03と角θ12は、それらのベクトルの内積の関係から式(2)及び式(3)のように求められる。 Furthermore, when the angle formed by the vectors V 0 and V 3 is θ 03 and the angle formed by the vectors V 1 and V 2 is θ 12 , the angles θ 03 and θ 12 are the inner product of those vectors. It is calculated | required like Formula (2) and Formula (3) from a relationship.

Figure 2006048064
Figure 2006048064

次に、角θ03およびθ12から四辺形U(m,n)近傍の局所的な地形特徴が判別可能であることを説明すると、図2において、南西から北東に向かうベクトルV,Vを含む鉛直面内で角θ03を、また、南東から北西に向かうベクトルV,Vを含む鉛直面内で、角θ12をそれぞれ図示すると、図3(1)−(8)のようになる。すなわち、
角θ03が小:南西から北東方向に平坦地(1)または傾斜一定の斜面(2)、
角θ12が小:南東から北西方向に平坦地(3)または傾斜一定の斜面(4)、
角θ03が大:南西から北東方向に凹地形(5)または凸地形(6)、
角θ12が大:南東から北西方向に凹地形(7)または凸地形(8)
となる。
Next, it will be explained that local topographic features in the vicinity of the quadrilateral U (m, n) can be discriminated from the angles θ 03 and θ 12. In FIG. 2, vectors V 0 and V 3 from southwest to northeast are described. In the vertical plane including the angle θ 03 and in the vertical plane including the vectors V 1 and V 2 from the southeast to the northwest, the angle θ 12 is illustrated as shown in FIGS. 3 (1) to (8). become. That is,
Angle θ 03 is small: flat land (1) or slope with constant slope (2) from southwest to northeast,
Angle theta 12 is small: flat terrain northwest direction from the southeast (3) or inclined constant slope (4),
Angle θ 03 is large: concave terrain (5) or convex terrain (6) from southwest to northeast,
Angle theta 12 is large: depression type from the southeast northwest direction (7) or convex relief (8)
It becomes.

上記の対応に基づき、稜線或いは谷方向を角θ03,θ12の大小関係から、θ03<θ12ならば、稜線或いは谷方向は南西から北東方向に向いており、θ03>θ12ならば、稜線或いは谷方向は南東から北西方向に向いていると判定することができる。 Based on the above correspondence, the ridge line or the valley direction is directed from the southwest to the northeast direction if θ 0312 from the magnitude relationship between the angles θ 03 and θ 12 , and if θ 03 > θ 12 For example, it can be determined that the ridgeline or valley direction is from the southeast to the northwest.

したがって、θ03<θ12ならば、四辺形U(m,n)を南西から北東に向かう対角線で2つの三角形に分割し、θ03>θ12ならば、前記四辺形U(m,n)を南東から北西に向かう対角線で2つの三角形に分割する。 Therefore, if θ 0312 , the quadrilateral U (m, n) is divided into two triangles along a diagonal line from southwest to northeast, and if θ 03 > θ 12 , the quadrilateral U (m, n) Is divided into two triangles by a diagonal line from southeast to northwest.

上記分割処理の効果を説明するために、作成事例の立体地図から特徴的な尾根・谷のみを抽出し、そこで四辺形を分割する対角線を例示する。図4は全ての四辺形を南西から北東に向かう対角線で分割した平面図と投影図であり、その結果、南東から北西に向かう尾根・谷において対角線がそれらを横切って階段状の段差を構成し、不自然な立体地図になってしまう。図5は分割処理により、尾根・谷の方向に近い方の対角線を選択し、四辺形を分割した平面図と投影図であり、自然な立体地図に仕上げられたものとなっている。   In order to explain the effect of the above division processing, only characteristic ridges and valleys are extracted from the three-dimensional map of the creation example, and diagonal lines that divide the quadrilateral are exemplified. Figure 4 is a plan view and a projected view of all quadrilaterals divided by diagonal lines from southwest to northeast, and as a result, diagonal lines cross them to form stepped steps in the ridges and valleys from southeast to northwest. It becomes an unnatural 3D map. FIG. 5 is a plan view and a projection view obtained by dividing the quadrilateral by selecting the diagonal line closer to the ridge / valley direction by the division process, and finished in a natural three-dimensional map.

なお、上述した分割処理は立体地図の製作のみならず、離散的なデ−タから3次元形状を再構成する処理において広く適用することができる。   Note that the above-described division process can be widely applied not only to the production of a three-dimensional map but also to the process of reconstructing a three-dimensional shape from discrete data.

上述した分割処理の説明では、理解を容易とするために、4つの格子点で構成される四辺形U(m,n)を用いて、分割する対角線を選択する処理内容を説明したが、このような四辺形は4つの各格子点により規定されるものであり、実際にパーソナルコンピュータのような計算機手段により情報処理が行う場合には、各格子点を順次に走査することでデータ処理を行う四辺形を順次に指定して、それぞれの四辺形において三角形に分割する対角線を選択する処理を行う。図6〜図8に本発明の実施例に係る高精度立体地図作製システムの構成を示している。図6にハードウェア構成を示し、図7にソフトウェア構成の主要部である分割処理のフローチャートを示している。また、図8は、格子点の走査による分割処理の内容を説明する図である。   In the description of the division processing described above, in order to facilitate understanding, the processing content for selecting a diagonal line to be divided using a quadrilateral U (m, n) formed by four lattice points has been described. Such a quadrilateral is defined by four grid points. When information processing is actually performed by computer means such as a personal computer, data processing is performed by sequentially scanning each grid point. A process of selecting the diagonal lines to be divided into triangles in each quadrangle by sequentially specifying the quadrilaterals is performed. 6 to 8 show the configuration of a high-precision 3D map production system according to an embodiment of the present invention. FIG. 6 shows a hardware configuration, and FIG. 7 shows a flowchart of a division process which is a main part of the software configuration. FIG. 8 is a diagram for explaining the contents of the division processing by scanning the grid points.

この発明は上述のように構成されているので、次のような効果を呈する。
(1)デ−タ作成・加工とも熟練技能者による手作業を必要としない自動化された工程であるため、低コスト・短時間で立体地図を製作することができる。
(2)数値地図と同等の極めて高精度の立体地図を製作することができる。
(3)ユ−ザの要望に応じて、任意地域の立体地図を製作することができる。
(4)光硬化性樹脂には、プラスチックの射出成型に使用可能なものもあり、立体地図の凹凸を反転したSTLデ−タを作成すれば、成形型を容易に造形することができ、この型から立体地図を複製すれば、より低コストで製作が可能である。
(5)数値地図が整備されている地域であれば、内外を問わず、立体地図の製作ができる。
(6)尾根・谷において階段状の段差を生じない自然な立体地図を製作できる。
Since the present invention is configured as described above, the following effects are exhibited.
(1) Since both data creation and processing are automated processes that do not require manual work by skilled technicians, a three-dimensional map can be produced at low cost and in a short time.
(2) A highly accurate 3D map equivalent to a numerical map can be produced.
(3) A three-dimensional map of an arbitrary area can be produced according to the user's request.
(4) Some photo-curable resins can be used for plastic injection molding. If you create STL data with the three-dimensional map inverted, you can easily mold the mold. If a 3D map is copied from a mold, it can be manufactured at a lower cost.
(5) A 3D map can be produced regardless of whether it is an area where numerical maps are available.
(6) It is possible to produce a natural three-dimensional map that does not produce stepped steps in ridges and valleys.

立体地図の製作範囲の水平面上に設定した格子点を示す説明図である。It is explanatory drawing which shows the grid point set on the horizontal surface of the production range of a solid map. 対角線方向に隣接する4つの四辺形を示す説明図である。It is explanatory drawing which shows four quadrilaterals adjacent to a diagonal direction. 角θ03,θ12から四辺形U(m,n)近傍の局所的な地形特徴の一例を示す説明図である。It is explanatory drawing which shows an example of the local topographical feature of quadrilateral U (m, n) vicinity from angle (theta) 03 , (theta) 12 . 全ての四辺形を南西から北東に向かう対角線で分割した平面図と投影図である。It is the top view and projection figure which divided | segmented all the quadrilaterals by the diagonal line which goes to northeast from southwest. 尾根・谷の方向に近い方の対角線を選択し、四辺形を分割した平面図と投影図である。It is the top view and projection figure which selected the diagonal line near the direction of a ridge and a valley, and divided the quadrilateral. 本発明を実施するハードウェア構成を示すシステム構成図である。It is a system configuration diagram showing a hardware configuration for implementing the present invention. 本発明において特徴的な分割処理の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the characteristic division process in this invention. 分割処理の内容を説明するための図である。It is a figure for demonstrating the content of a division | segmentation process.

符号の説明Explanation of symbols

R,S 格子点
U 四辺形
V ベクトル
θ 角度
P 水平面
SE 南東
NE 北東
SW 南西
NW 北西

R, S Grid point U Quadrilateral V Vector θ Angle P Horizontal plane SE Southeast NE Northeast SW Southwest NW Northwest

Claims (2)

立体地図を作成する作成範囲の地域の数値地図デ−タを入力してSTLデ−タに変換して記録媒体に出力する計算機手段と、
前記記録媒体からSTLデ−タを入力して立体地図を光造形により製作する光造形手段と
を備える高精度立体地図作製システムであって、
前記計算機手段における数値地図デ−タからSTLデ−タに変換する処理を行う変換処理手段は、
立体地図の製作範囲に水平面を設定する水平面設定手段と、
前記水平面上に基点となる格子点と当該格子点に隣接する3つの格子点を設定する第1格子点設定手段と、
数値地図データから前記各格子点における標高を読み込む読み込み手段と、
各格子点から前記標高隔たった上方に新たな4つの格子点を設定する第2格子点設定手段と、
前記4つの格子点が構成する四辺形を対角線で2つの三角形に分割する際に稜線・谷底の方向に近い方の対角線を選択して前記四辺形を分割する分割手段と、
前記分割された三角形の集合体をSTLデ−タに変換して出力する出力手段と
を備えることを特徴とする高精度立体地図作製システム。
Computer means for inputting numerical map data of an area in a creation range for creating a three-dimensional map, converting it into STL data, and outputting it to a recording medium;
A high-precision three-dimensional map production system comprising stereolithography means for inputting STL data from the recording medium and producing a three-dimensional map by stereolithography,
Conversion processing means for performing processing for converting numerical map data into STL data in the computer means,
Horizontal plane setting means for setting a horizontal plane in the production range of the three-dimensional map;
First grid point setting means for setting a grid point as a base point on the horizontal plane and three grid points adjacent to the grid point;
Reading means for reading the altitude at each grid point from the numerical map data;
Second grid point setting means for setting four new grid points above the altitude from each grid point;
A dividing unit that divides the quadrangle by selecting a diagonal line that is closer to the direction of the ridge line / valley bottom when dividing the quadrangle formed by the four lattice points into two triangles by a diagonal line;
An output means for converting the aggregate of the divided triangles into STL data and outputting the STL data.
立体地図を作成する作成範囲の地域の数値地図デ−タを計算機手段により入力してSTLデ−タに変換し、前記STLデ−タを光造形手段に入力して立体地図を光造形により作製する高精度立体地図作成処理方法であって、
前記計算機手段において
立体地図の製作範囲に水平面を設定し、
前記水平面上に基点となる格子点と当該格子点に隣接する3つの格子点を設定し、
数値地図データから前記各格子点における標高を読み込み、
各格子点から前記標高隔たった上方に新たな4つの格子点を設定し、
前記4つの格子点が構成する四辺形を対角線で2つの三角形に分割する際に稜線・谷底の方向に近い方の対角線を選択して前記四辺形を分割し、
前記分割された三角形の集合体をSTLデ−タに変換し、
前記光造形手段に前記STLデータを入力し立体地図を光造形により作製する
ことを特徴とする高精度立体地図作成処理方法。


The numerical map data of the area in the creation range for creating a three-dimensional map is input by computer means and converted into STL data, and the STL data is input to the optical modeling means to produce a three-dimensional map by optical modeling. A high-precision three-dimensional map creation processing method,
In the computer means, set a horizontal plane in the production range of the three-dimensional map,
Set a lattice point as a base point on the horizontal plane and three lattice points adjacent to the lattice point,
Read the altitude at each grid point from the numerical map data,
Set four new grid points above the altitude from each grid point,
When dividing the quadrangle formed by the four lattice points into two triangles by diagonal lines, the diagonal line closer to the direction of the ridge line / valley bottom is selected to divide the quadrangle;
Converting the set of divided triangles into STL data;
A high-precision three-dimensional map creation processing method, wherein the STL data is input to the stereolithography means to create a three-dimensional map by stereolithography.


JP2005233291A 2005-08-11 2005-08-11 High-precision 3D map production method Expired - Fee Related JP4572387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233291A JP4572387B2 (en) 2005-08-11 2005-08-11 High-precision 3D map production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233291A JP4572387B2 (en) 2005-08-11 2005-08-11 High-precision 3D map production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002056709A Division JP2003255828A (en) 2002-03-04 2002-03-04 Method for preparing tomographicla map

Publications (2)

Publication Number Publication Date
JP2006048064A true JP2006048064A (en) 2006-02-16
JP4572387B2 JP4572387B2 (en) 2010-11-04

Family

ID=36026590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233291A Expired - Fee Related JP4572387B2 (en) 2005-08-11 2005-08-11 High-precision 3D map production method

Country Status (1)

Country Link
JP (1) JP4572387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253551A (en) * 2006-03-24 2007-10-04 Kimoto & Co Ltd Topographic model molding system and topographic model
KR20170107680A (en) 2016-03-16 2017-09-26 (주)인피닉스 Manufacture method of three dimensions solid model and utilization system based on two dimensions map

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126842A (en) * 1992-10-16 1994-05-10 Matsushita Electric Ind Co Ltd Condition-establishing system in molding of optical molding model
JPH07182541A (en) * 1993-12-21 1995-07-21 Nec Corp Preparing method for three-dimensional model
JPH08212334A (en) * 1994-12-09 1996-08-20 Oki Electric Ind Co Ltd Method and device for generating three-dimensional geographical data
JPH10207356A (en) * 1997-01-20 1998-08-07 Nissan Motor Co Ltd Navigation system and medium which stores navigation program using the system
JPH1165429A (en) * 1997-08-11 1999-03-05 Nissan Motor Co Ltd Stereoscopic topography display method of navigation system, navigation system, and medium where stereoscopic topography display program is recorded
JP2002264222A (en) * 2001-03-09 2002-09-18 Minolta Co Ltd Data processing apparatus and method, recording material and program
JP2003255828A (en) * 2002-03-04 2003-09-10 National Institute Of Advanced Industrial & Technology Method for preparing tomographicla map

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126842A (en) * 1992-10-16 1994-05-10 Matsushita Electric Ind Co Ltd Condition-establishing system in molding of optical molding model
JPH07182541A (en) * 1993-12-21 1995-07-21 Nec Corp Preparing method for three-dimensional model
JPH08212334A (en) * 1994-12-09 1996-08-20 Oki Electric Ind Co Ltd Method and device for generating three-dimensional geographical data
JPH10207356A (en) * 1997-01-20 1998-08-07 Nissan Motor Co Ltd Navigation system and medium which stores navigation program using the system
JPH1165429A (en) * 1997-08-11 1999-03-05 Nissan Motor Co Ltd Stereoscopic topography display method of navigation system, navigation system, and medium where stereoscopic topography display program is recorded
JP2002264222A (en) * 2001-03-09 2002-09-18 Minolta Co Ltd Data processing apparatus and method, recording material and program
JP2003255828A (en) * 2002-03-04 2003-09-10 National Institute Of Advanced Industrial & Technology Method for preparing tomographicla map

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253551A (en) * 2006-03-24 2007-10-04 Kimoto & Co Ltd Topographic model molding system and topographic model
KR20170107680A (en) 2016-03-16 2017-09-26 (주)인피닉스 Manufacture method of three dimensions solid model and utilization system based on two dimensions map

Also Published As

Publication number Publication date
JP4572387B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5383687B2 (en) Method and apparatus for automatically generating a support for an object manufactured by a rapid prototype manufacturing method
Allen et al. On the computation of part orientation using support structures in layered manufacturing
JP6091371B2 (en) Slice data creation device, slice data creation method, program, and computer-readable recording medium
CN101067872B (en) Method for checking two-dimensional draft data from tri-dimensional reverse modeling source model data
CN109766581A (en) A method of bridge BIM model is established using Dynamo software
KR100609786B1 (en) Method of modelling 3-dimensional building using original drawing map
Yan et al. Integration of 3D objects and terrain for 3D modelling supporting the digital twin
CN109859317B (en) 3DGIS terrain model rapid modeling method based on CASS and CATIA
CN108563847B (en) Method for generating two-dimensional layout drawing from three-dimensional bridge model by CATIA software
JP4572387B2 (en) High-precision 3D map production method
JP2003255828A (en) Method for preparing tomographicla map
JPH0567179A (en) Method and device for form data processing
Bernardo et al. Monumental arc 3d model reconstruction through BIM technology
EP4092557A1 (en) Parameterization of digital irregular freeform geometries
JPH09166957A (en) Device for constructing three-dimensional model for design and construction of bridge
KR102350267B1 (en) Mannequin split 3D printing method
JP2013257828A (en) Upland ground leveling program, dynamic link library and landscape study device
Szombara Comparison of methods used in cartography for the skeletonisation of areal objects
Patel et al. Stitching and filling: Creating conformal faceted geometry
JP3792584B2 (en) Tool path surface calculation method, tool path surface calculation program, and recording medium recording tool path surface calculation program
JPH08136255A (en) Slice measuring method useful for solid modeling
CN114529666B (en) Three-dimensional scene rapid construction method based on fusion of oblique photography and next generation modeling technology
JP3572253B2 (en) Three-dimensional model generation method and apparatus, and recording medium recording execution program of this method
KR102461217B1 (en) Apparatus and method for automatically generating a BIM model based on variables by utilizing road digital data
Trivedi et al. Application of CAD, Rapid Prototyping and Reverse Engineering in Handicrafts Sector–A Success Story

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

R150 Certificate of patent or registration of utility model

Ref document number: 4572387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees