JP2006047780A - Infrared microscope - Google Patents

Infrared microscope Download PDF

Info

Publication number
JP2006047780A
JP2006047780A JP2004229754A JP2004229754A JP2006047780A JP 2006047780 A JP2006047780 A JP 2006047780A JP 2004229754 A JP2004229754 A JP 2004229754A JP 2004229754 A JP2004229754 A JP 2004229754A JP 2006047780 A JP2006047780 A JP 2006047780A
Authority
JP
Japan
Prior art keywords
mirror
light
sample
infrared
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004229754A
Other languages
Japanese (ja)
Inventor
Tetsuo Okuda
哲生 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004229754A priority Critical patent/JP2006047780A/en
Publication of JP2006047780A publication Critical patent/JP2006047780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminating light radiation mechanism for an infrared microscope, which realizes accurate visible light observation without using a complicated optical system. <P>SOLUTION: Instead of a conventional Cassegrain mirror for use in an infrared microscope, a parabolic mirror 6 is installed behind a convex mirror 4 constituting a Cassegrain mirror, and light of a illuminating light source 10 is radiated to the parabolic mirror 6 through an optical fiber 7, and a surface of a sample 8 is illuminated by reflected light from the parabolic mirror 6. Illuminating light can be made into parallel rays of luminous flux by putting the front end of the optical fiber 7 in a focus position of the parabolic mirror 6. Since light is repeatedly reflected in the optical fiber 7, uniform illuminating light can be obtained. Uniform illumination can be obtained by a simpler optical system than that in a conventional method of providing the illuminating light source 10 within a microscope, and accurate sample observation is possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、物質の定性・定量分析に使用される赤外分光光度計と組み合わされて、微小試料の顕微分光分析を行う赤外顕微鏡に関する。   The present invention relates to an infrared microscope that performs microspectroscopic analysis of a micro sample in combination with an infrared spectrophotometer used for qualitative and quantitative analysis of substances.

赤外顕微鏡は赤外線波長領域で顕微分光を行う装置で、微小試料に適するように、赤外光束をごく小さな面積に集光させるように設計されている。近年、フーリエ変換赤外分光光度計と組み合わせて、フーリエ変換赤外分光法の特長である高感度を利用する赤外顕微鏡が開発されており、このシステムの空間分解能は約10μmである。その原理の一例は、フーリエ変換赤外分光光度計の干渉計からの赤外光が、反射鏡を介して赤外顕微鏡に導かれ、凹面鏡を用いて試料上の直径約1mmの円内に集光される。照射された試料面を透過あるいは反射した赤外光束のうち、微小な測定対象部分からの光束のみが、試料部あるいは結像部に置かれた絞り(可変アパーチャ)で選択され、最終的に半導体検出器(MCT)に導かれる。半導体検出器(MCT)の出力はフーリエ変換され、赤外スペクトルが得られるものである。(特許文献1参照)   An infrared microscope is a device that performs microspectroscopic light in the infrared wavelength region, and is designed to condense an infrared light beam into a very small area so as to be suitable for a minute sample. In recent years, an infrared microscope utilizing high sensitivity, which is a feature of Fourier transform infrared spectroscopy, has been developed in combination with a Fourier transform infrared spectrophotometer, and the spatial resolution of this system is about 10 μm. An example of the principle is that infrared light from an interferometer of a Fourier transform infrared spectrophotometer is guided to an infrared microscope through a reflecting mirror and collected in a circle with a diameter of about 1 mm on the sample using a concave mirror. Lighted. Of the infrared light beam transmitted or reflected through the irradiated sample surface, only the light beam from the minute measurement target part is selected by a diaphragm (variable aperture) placed in the sample part or imaging part, and finally the semiconductor. Guided to a detector (MCT). The output of the semiconductor detector (MCT) is Fourier transformed to obtain an infrared spectrum. (See Patent Document 1)

図3に、従来のフーリエ変換赤外分光光度計と組み合わされ使用される赤外顕微鏡の例を示す。この赤外顕微鏡は透過法、反射法いずれのモードでも使用できるものであり、二つのモードは、フーリエ変換赤外分光光度計39からの赤外光を切り替える透過/反射切替ミラー40で選択される。透過法の場合は、赤外光は、透過/反射切替ミラー40で下方に送られ、ミラー21、22、23、24で反射された後、第2カセグレン鏡36によって試料8に集光される。試料8を透過した赤外光は、第1カセグレン鏡20によって集められ、ミラー25を透過した後、可変アパーチャ18によって絞られ、ミラー28を透過し、ミラー29、30、31で反射されて、MCT検出器16に入射する。   FIG. 3 shows an example of an infrared microscope used in combination with a conventional Fourier transform infrared spectrophotometer. This infrared microscope can be used in either a transmission method or a reflection method, and the two modes are selected by a transmission / reflection switching mirror 40 that switches infrared light from the Fourier transform infrared spectrophotometer 39. . In the case of the transmission method, infrared light is transmitted downward by the transmission / reflection switching mirror 40, reflected by the mirrors 21, 22, 23, and 24, and then collected on the sample 8 by the second Cassegrain mirror 36. . Infrared light that has passed through the sample 8 is collected by the first Cassegrain mirror 20, transmitted through the mirror 25, then narrowed down by the variable aperture 18, transmitted through the mirror 28, reflected by the mirrors 29, 30, and 31, The light enters the MCT detector 16.

反射法では、透過/反射切替ミラー40がミラー切替駆動部41によって180°回転される。これによって赤外光は上方に送られ、ミラー27、26、25で反射された後、第1カセグレン鏡20によって試料8上に集光される。試料8によって拡散反射した赤外光は、第1カセグレン鏡20によって集められ、ミラー25を透過した後、可変アパーチャ18によって絞られ、ミラー28を透過し、ミラー29、30、31で反射されて、MCT検出器16に入射する。   In the reflection method, the transmission / reflection switching mirror 40 is rotated 180 ° by the mirror switching drive unit 41. As a result, infrared light is sent upward, reflected by the mirrors 27, 26, and 25, and then condensed on the sample 8 by the first Cassegrain mirror 20. Infrared light diffusely reflected by the sample 8 is collected by the first Cassegrain mirror 20, passes through the mirror 25, is narrowed down by the variable aperture 18, passes through the mirror 28, and is reflected by the mirrors 29, 30, and 31. , And enters the MCT detector 16.

赤外顕微鏡には反射照明用ランプ15が備えられており、測定を開始する前に点灯される。反射照明用ランプ15から発せられる可視光をミラー32、28で反射させて、第1カセグレン鏡20で集光して、試料8を照射する。試料8で反射した可視光は、第1カセグレン鏡20で集光され、ミラー25を透過し、ミラー28で反射され、ミラー32を透過し、プリズム33で反射されて顕微鏡の接眼レンズ17に入る。接眼レンズ17を通して肉眼で試料8を観察しながら、焦点調整ダイアル38によって、試料ステージ9を上下して、試料8の表面を可視光の焦点面(画像がシャープに見える位置)に位置させる。この操作によって、赤外光の焦点面が試料8の表面に位置することが保証される。また、反射照明用ランプ15からの可視光を観察して、可変アパーチャ18のアパーチャ・サイズやアパーチャの位置を調節することができる。   The infrared microscope is provided with a reflected illumination lamp 15 that is lit before starting the measurement. Visible light emitted from the reflective illumination lamp 15 is reflected by the mirrors 32 and 28, condensed by the first Cassegrain mirror 20, and irradiated on the sample 8. The visible light reflected by the sample 8 is collected by the first Cassegrain mirror 20, transmitted through the mirror 25, reflected by the mirror 28, transmitted by the mirror 32, reflected by the prism 33, and enters the eyepiece 17 of the microscope. . While observing the sample 8 with the naked eye through the eyepiece 17, the sample stage 9 is moved up and down by the focus adjustment dial 38 so that the surface of the sample 8 is positioned at the focal plane of visible light (a position where the image looks sharp). This operation ensures that the focal plane of the infrared light is located on the surface of the sample 8. Further, the visible light from the reflected illumination lamp 15 can be observed, and the aperture size and the position of the aperture of the variable aperture 18 can be adjusted.

一方、透過照明用ランプ37が備えられており、試料8の可視像を目で観察したり、写真撮影やテレビカメラで観察する場合に使用される。この場合には、透過観察用ランプ37からの可視光はミラー23、24で反射され、第2カセグレン鏡36で試料8に下部より照射される。試料8を透過した可視光は、第1カセグレン鏡20で集められ、ミラー25を透過し、ミラー28で反射され、ミラー32を透過し、プリズム33で反射されて接眼レンズ17から肉眼による観測が行われる。また、撮像装置取付口14に写真カメラ、あるいはテレビカメラを取り付けて、写真撮影、あるいは、テレビモニタによる観察が行われる。また、可視像の観察において、しばしば第1カセグレン鏡20の代わりに可視対物レンズ19を顕微鏡の光軸に挿入して、肉眼による観察、あるいは撮影、撮像が行われる。   On the other hand, a transmission illumination lamp 37 is provided, which is used when a visible image of the sample 8 is observed with the eyes, photographed, or observed with a television camera. In this case, visible light from the transmission observation lamp 37 is reflected by the mirrors 23 and 24, and is irradiated on the sample 8 by the second Cassegrain mirror 36 from below. Visible light transmitted through the sample 8 is collected by the first Cassegrain mirror 20, transmitted through the mirror 25, reflected by the mirror 28, transmitted through the mirror 32, reflected by the prism 33, and observed by the naked eye from the eyepiece 17. Done. In addition, a photographic camera or a television camera is attached to the imaging device attachment port 14, and photography or observation by a television monitor is performed. Further, in the observation of a visible image, the visual objective lens 19 is often inserted in the optical axis of the microscope instead of the first Cassegrain mirror 20, and observation or photographing / imaging is performed with the naked eye.

この装置に用いられているカセグレン鏡20、36と同様のものは赤外顕微鏡に一般的に用いられており、その構造は、その中央に開孔をもった1個の凹面鏡と、それより小さい1個の凸面鏡を、互いに対向するように配設したもので、凹面鏡の後方の光源から開孔を通って入射する光を、凸面鏡の後方に結像させる、あるいは逆に、凸面鏡の後方の光源からの光を、凹面鏡で集光して凸面鏡に送り、凸面鏡で反射した光を、開孔を通しその後方に結像させる。この場合、凹面鏡および凸面鏡の反射面の形状を、目的に応じて最適のもの(放物面、楕円面、双曲面など)に選択することにより、大口径でありながら非点収差の極めて少ない結像系が得られる。また、赤外領域の広い波長範囲にわたって透過率の高いレンズを製作できる光学材料が少ないため、反射のみの結像系であるカセグレン鏡が赤外顕微鏡で広く使用される。
特開2001−174708号公報
The same Cassegrain mirrors 20 and 36 used in this apparatus are generally used in infrared microscopes, and the structure is smaller than that of one concave mirror with an aperture in the center. One convex mirror is arranged so as to face each other, and light incident through the aperture from the light source behind the concave mirror is imaged behind the convex mirror, or conversely, the light source behind the convex mirror The light from the light beam is condensed by a concave mirror and sent to a convex mirror, and the light reflected by the convex mirror passes through an aperture and forms an image behind it. In this case, the shape of the concave mirror and the reflecting surface of the convex mirror is selected according to the purpose (paraboloid, ellipsoid, hyperboloid, etc.), so that the result is extremely small in astigmatism despite its large aperture. An image system is obtained. In addition, since there are few optical materials that can produce a lens having high transmittance over a wide wavelength range in the infrared region, a Cassegrain mirror, which is a reflection-only imaging system, is widely used in infrared microscopes.
JP 2001-174708 A

しかしながら、これら従来技術に使用されている、可視光による観察用光学系にはいくつかの問題がある。
赤外顕微鏡に限らず顕微鏡一般に、試料を照明して観察を容易にするために、照明用の光源と、そのための光学系が設けられており、試料の照明方法が正確な観察を行うための重要な要素であることはよく知られている。試料に当たる照明光は、できる限り強度分布が均一であることと、できる限り平行な光束で、できる限り垂直に試料面を照射することが求められる。一般の光学顕微鏡では、照明光源の光をレンズで平行光束として試料に照射し、光源の像が試料の結像位置の近傍には結像しないと言う特長のある、「ケーラー照明」と呼ばれる光学系が最も広く利用されている。
However, there are some problems with the optical system for observation using visible light used in these conventional techniques.
In order to facilitate observation by illuminating a sample, not only an infrared microscope, but also a microscope in general, a light source for illumination and an optical system therefor are provided. It is well known that it is an important factor. The illumination light that strikes the sample is required to have as uniform an intensity distribution as possible and to irradiate the sample surface as perpendicularly as possible with a parallel light beam as much as possible. An optical microscope called “Kohler illumination” has the feature that a sample is irradiated with light from an illumination light source as a parallel light beam by a lens and the image of the light source does not form near the image formation position of the sample. The system is most widely used.

赤外顕微鏡では、図3に示すように反射照明用ランプ15と透過照明用ランプ37が設けられており、可視光による試料8の観察に利用される。しかし、反射照明の場合も透過照明の場合も可視光は、最後に第1カセグレン鏡20によって集束光とされて試料8に照射されるため、可視光を平行光束として試料8に当てることは困難であり、理想的な照明方法とはなりにくい欠点がある。   In the infrared microscope, as shown in FIG. 3, a reflection illumination lamp 15 and a transmission illumination lamp 37 are provided, which are used for observing the sample 8 with visible light. However, in both the reflected illumination and the transmitted illumination, the visible light is finally focused by the first Cassegrain mirror 20 and applied to the sample 8, so that it is difficult to apply the visible light to the sample 8 as a parallel light beam. Therefore, there is a drawback that it is difficult to be an ideal lighting method.

一方、照明光源を赤外顕微鏡内に備え、その光を顕微鏡内部の光学系を通して試料8に照射するために、顕微鏡内部の光学系が複雑になり、光学素子の数が多く、調整作業が煩雑になる欠点がある。また、可視光と赤外光を同一の顕微鏡内で使用するためには、図3の透過照明用ランプ37の後のミラー23や、反射照明用ランプ15の後のミラー32のような、光を一部反射し一部透過させる半透鏡を使用する必要がある。この結果赤外光の光量を半透鏡で一部損失することになり、測光精度(S/N比)を低下させる問題点がある。   On the other hand, since the illumination light source is provided in the infrared microscope and the sample 8 is irradiated with the light through the optical system inside the microscope, the optical system inside the microscope becomes complicated, the number of optical elements is large, and the adjustment work is complicated. There are disadvantages to become. In order to use visible light and infrared light in the same microscope, light such as the mirror 23 after the transmission illumination lamp 37 and the mirror 32 after the reflection illumination lamp 15 in FIG. It is necessary to use a semi-transparent mirror that partially reflects and partially transmits. As a result, the amount of infrared light is partially lost by the semi-transparent mirror, and there is a problem that the photometric accuracy (S / N ratio) is lowered.

本発明は、このような事情に鑑みてなされたもので、最適の試料照明を実現する赤外顕微鏡を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an infrared microscope that realizes optimal sample illumination.

上記の目的を達成するために本発明は、測定用光源と、該測定用光源の光束導入用の開孔を有する凹面鏡と、前記凹面鏡より小径の凸面鏡を互いに対向配設し、前記開孔を通じて前記凹面鏡の背部より入射した光束を前記凸面鏡によって拡散反射させ、さらにこの拡散光を前記凹面鏡によって再反射させ、前記凸面鏡の背部の一点に集光させるように構成された集光鏡を持つ赤外顕微鏡に、前記凸面鏡の背面にこれと背向して放物面鏡を取り付け、この放物面鏡の反射面に外部光源の光を導入する光ファイバーを設け、この外部光源の光を前記放物面鏡で反射させ、この反射光によって前記凸面鏡の背部方向を照明するように可視照明系が構成されている。   In order to achieve the above object, the present invention provides a measurement light source, a concave mirror having an aperture for introducing a light beam of the measurement light source, and a convex mirror having a diameter smaller than that of the concave mirror. Infrared light having a condensing mirror configured to diffuse and reflect the light beam incident from the back of the concave mirror by the convex mirror, and to re-reflect the diffused light by the concave mirror and collect the light at one point on the back of the convex mirror. A microscope is provided with a parabolic mirror attached to the back of the convex mirror, and an optical fiber for introducing light from an external light source is provided on the reflecting surface of the parabolic mirror, and the light from the external light source is supplied to the paraboloid. The visible illumination system is configured to reflect with a surface mirror and illuminate the back direction of the convex mirror with the reflected light.

本発明によれば、照明光源からの光は、光ファイバーの内部を通る間に光ファイバー壁面での反射を繰り返す結果、端部から射出される光束は非常に均一な散乱光となるため、均一な強度分布を持った照明光が得られる。また、新たに設けられた放物面鏡によって、平行で、試料に垂直な照明光束を得ることができる。さらに、照明用光源を顕微鏡の外部に置くことにより、顕微鏡内部の光学系を単純化し、調整を容易できると同時に半透鏡の数を減らせて、光量の減少を防ぐことが可能となる。   According to the present invention, the light from the illumination light source is repeatedly reflected on the optical fiber wall surface while passing through the inside of the optical fiber. As a result, the light beam emitted from the end becomes very uniform scattered light, so that the intensity is uniform. Illuminated light with distribution can be obtained. In addition, an illumination light beam which is parallel and perpendicular to the sample can be obtained by a newly provided parabolic mirror. Furthermore, by placing the illumination light source outside the microscope, the optical system inside the microscope can be simplified, adjustment can be facilitated, and at the same time, the number of semi-transparent mirrors can be reduced, thereby preventing a reduction in the amount of light.

図1および図2に本発明の一実施例を示す。図1は、本発明のカセグレン鏡の断面と、赤外光および照明光の光路を示しており、図2は、図1のカセグレン鏡を下方から見た図である。   1 and 2 show an embodiment of the present invention. FIG. 1 shows a cross section of the Cassegrain mirror of the present invention and the optical paths of infrared light and illumination light, and FIG. 2 is a view of the Cassegrain mirror of FIG. 1 as viewed from below.

本発明のカセグレン鏡では、凹面鏡1と凸面鏡4が互いに向き合い、互いの軸が一致するように、鏡筒3、キャップ2、および凸面鏡保持台5で配置・保持されている。図2に見られるように、凸面鏡保持台5は、鏡筒3の直径を渡る細い梁の形をしており、この上に凸面鏡4が保持されている。凸面鏡4の背部に近接して、放物面鏡6が設けられており、また、この放物面鏡6に照明光を導くための光ファイバー7が、凸面鏡保持台5の下面に沿って取り付けられ、その先端は、前記放物面鏡6の焦点に位置するように調節されている。光ファイバー7の他の端は、顕微鏡の外部に置かれた照明光源10からの光が入射するように接続されている。光ファイバー7から射出した照明光は、図1中の実線で示した照明光光路12のように、放物面鏡6によって反射されて平行光束となり、凸面鏡4の後部方向に向かって進行する。照明光の光束の軸が凹面鏡1および凸面鏡4の光軸と一致するように、放物面鏡6の角度が調節でき、照明光光路12が平行光束になるように、光ファイバー7の先端の位置が調節できる構造となっている。   In the Cassegrain mirror of the present invention, the concave mirror 1 and the convex mirror 4 face each other, and are arranged and held by the barrel 3, the cap 2, and the convex mirror holder 5 so that their axes coincide with each other. As shown in FIG. 2, the convex mirror holder 5 is in the form of a thin beam across the diameter of the lens barrel 3, and the convex mirror 4 is held thereon. A parabolic mirror 6 is provided close to the back of the convex mirror 4, and an optical fiber 7 for guiding illumination light to the parabolic mirror 6 is attached along the lower surface of the convex mirror holder 5. The tip is adjusted so as to be positioned at the focal point of the parabolic mirror 6. The other end of the optical fiber 7 is connected so that light from an illumination light source 10 placed outside the microscope enters. The illumination light emitted from the optical fiber 7 is reflected by the parabolic mirror 6 to become a parallel light beam and travels in the rearward direction of the convex mirror 4 as in the illumination light path 12 indicated by the solid line in FIG. The angle of the parabolic mirror 6 can be adjusted so that the axis of the luminous flux of the illumination light coincides with the optical axis of the concave mirror 1 and the convex mirror 4, and the position of the tip of the optical fiber 7 so that the illumination light optical path 12 becomes a parallel luminous flux. Can be adjusted.

本発明が提供するカセグレン鏡は以上の構成を有しており、赤外顕微鏡に適用される場合には、図1と同一のカセグレン鏡が2個、それぞれ図3に示した第1カセグレン鏡20と第2カセグレン鏡36の位置に、試料8を挟んで互いに対向するように配設される。   The Cassegrain mirror provided by the present invention has the above-described configuration. When applied to an infrared microscope, the two Cassegrain mirrors shown in FIG. 3 are the same as the first Cassegrain mirror 20 shown in FIG. And the second Cassegrain mirror 36 are arranged so as to face each other with the sample 8 interposed therebetween.

反射測定が行われるときは、図3の第1カセグレン鏡20の位置に配置された本発明のカセグレン鏡において、図1に示すように、凹面鏡1の背部から開孔部13を通って入射する赤外光は、図中で破線によって示された赤外光光路11のように、凸面鏡4で拡散反射され、次に凹面鏡1で下方に射出され、赤外顕微鏡の試料ステージ9の上におかれた試料8の上に集光される。試料8によって反射された赤外光は、図1中の赤外光光路11の経路を矢印とは逆方向に進行し、凹面鏡1で集光された後、凸面鏡4によって反射されて、凹面鏡1の開孔部13を通って上方に送り出される。その後は、図3の説明で述べた順序に従って検出・測定が行われる。   When the reflection measurement is performed, in the Cassegrain mirror of the present invention arranged at the position of the first Cassegrain mirror 20 in FIG. 3, as shown in FIG. 1, the light enters from the back of the concave mirror 1 through the aperture 13. The infrared light is diffusely reflected by the convex mirror 4 and then emitted downward by the concave mirror 1 as shown in the infrared light path 11 indicated by the broken line in the drawing, and is then projected onto the sample stage 9 of the infrared microscope. The sample 8 is collected on the sample 8. The infrared light reflected by the sample 8 travels in the direction of the infrared light path 11 in FIG. 1 in the direction opposite to the arrow, is collected by the concave mirror 1, is reflected by the convex mirror 4, and is reflected by the concave mirror 1. It is sent out upward through the opening 13. Thereafter, detection and measurement are performed in the order described in the description of FIG.

透過測定が行われる場合は、図3の第2カセグレン鏡36の位置に、図1とは上下を反転した形で配置された本発明のカセグレン鏡において、赤外光は開孔部13に入射し、凸面鏡4で拡散反射され、つぎに凹面鏡1で反射され、試料ステージ9の下部より試料8に集光される。試料8を透過した赤外光は、図3の第1カセグレン鏡20の位置に配置された本発明のカセグレン鏡に入射し、それ以後は、上述した反射測定の場合と同様の順序で検出・測定される。   When transmission measurement is performed, infrared light is incident on the aperture 13 in the Cassegrain mirror of the present invention, which is arranged at the position of the second Cassegrain mirror 36 in FIG. Then, it is diffusely reflected by the convex mirror 4, then reflected by the concave mirror 1, and condensed on the sample 8 from the lower part of the sample stage 9. The infrared light transmitted through the sample 8 is incident on the Cassegrain mirror of the present invention disposed at the position of the first Cassegrain mirror 20 in FIG. 3, and thereafter the detection and detection are performed in the same order as in the reflection measurement described above. Measured.

可視光で試料を観察する場合は、照明光源10を点灯すれば、光ファイバー7および放物面鏡6の働きで、平行で均一な可視光束が試料上部より垂直に試料8を照明する。これによって、正確な試料面の観察が可能となる。また、試料8の可視像の写真撮影や、テレビカメラによる撮像を行う場合には、図3の第2カセグレン鏡36の代わりに置かれた、本発明のカセグレン鏡からの照明光が用いられる。この場合も、前述の反射光の観察の場合と同様に、光ファイバー7と放物面鏡6の働きで、均一で平行な光束が、試料8を下部より垂直に照明する。試料8を透過した可視光は、図3の第1カセグレン鏡20の位置におかれた本発明のカセグレン鏡によって集光され、その後は図3において説明したと同一の順序で、図3の接眼レンズ17を通しての肉眼による観察や、撮像装置取付口14に取り付けられた写真カメラや、テレビカメラによる撮影あるいは撮像が行われる。   In the case of observing the sample with visible light, if the illumination light source 10 is turned on, the parallel and uniform visible light beam illuminates the sample 8 vertically from above the sample by the action of the optical fiber 7 and the parabolic mirror 6. This makes it possible to accurately observe the sample surface. Further, when taking a photograph of a visible image of the sample 8 or taking an image with a television camera, illumination light from the Cassegrain mirror of the present invention placed in place of the second Cassegrain mirror 36 in FIG. 3 is used. . Also in this case, as in the case of the observation of the reflected light described above, the uniform and parallel light beam illuminates the sample 8 vertically from below by the action of the optical fiber 7 and the parabolic mirror 6. The visible light transmitted through the sample 8 is collected by the Cassegrain mirror of the present invention placed at the position of the first Cassegrain mirror 20 in FIG. 3, and thereafter, in the same order as described in FIG. Observation with the naked eye through the lens 17 and photographing or imaging with a photographic camera or a television camera attached to the imaging device attachment port 14 are performed.

図1で見られるように、カセグレン鏡では、凸面鏡4の背部にできる、凸面鏡4の背面を底面とし、凹面鏡1の焦点を頂点とする円錐形の空間は、赤外光が凸面鏡4でさえぎられるため、いわば赤外光の影となる。本発明では、この円錐形の空間に放物面鏡6とその角度調整機構を収めるように構成されている。また凸面鏡保持台5の背部も、赤外光の影になる。本発明では、この部分に光ファイバー7が配置・保持される。これによって、取り付けられた放物面鏡6と光ファイバー7が赤外光をブロックすることがないため、放物面鏡6あるいは光ファイバー7によって赤外光の光量損失を生ずるという問題は発生しない。   As shown in FIG. 1, in the Cassegrain mirror, the conical space formed on the back of the convex mirror 4 with the back surface of the convex mirror 4 as the bottom surface and the focal point of the concave mirror 1 as the apex is blocked by the convex mirror 4. Therefore, it becomes a shadow of infrared light. In this invention, it is comprised so that the parabolic mirror 6 and its angle adjustment mechanism may be stored in this conical space. Further, the back portion of the convex mirror holder 5 also becomes a shadow of infrared light. In the present invention, the optical fiber 7 is disposed and held in this portion. As a result, the parabolic mirror 6 and the optical fiber 7 that are attached do not block infrared light, so that there is no problem that the parabolic mirror 6 or the optical fiber 7 causes a loss in the amount of infrared light.

本発明は、物質の定性・定量分析に使用される赤外分光光度計と組み合わされて、微小試料の顕微分光分析を行う赤外顕微鏡に関する。   The present invention relates to an infrared microscope that performs microspectroscopic analysis of a micro sample in combination with an infrared spectrophotometer used for qualitative and quantitative analysis of substances.

本発明の光ファイバーによる照明機能を持つカセグレン鏡の一実施例の構造図1 is a structural diagram of an embodiment of a Cassegrain mirror having an optical fiber illumination function according to the present invention. 図1のカセグレン鏡を下方から見た図The Cassegrain mirror of Fig. 1 seen from below 従来の赤外顕微鏡の構成図Configuration diagram of a conventional infrared microscope

符号の説明Explanation of symbols

1…凹面鏡
3…鏡筒
4…凸面鏡
5…凸面鏡保持台
6…放物面鏡
7…光ファイバー
8…試料
10…照明光源
11…赤外光光路
12…照明光光路
13…開孔部
14…撮像装置取付口
15…反射照明用ランプ
20…第1カセグレン鏡
36…第2カセグレン鏡
37…透過照明用ランプ
39…フーリエ変換赤外分光光度計
DESCRIPTION OF SYMBOLS 1 ... Concave mirror 3 ... Barrel 4 ... Convex mirror 5 ... Convex mirror holding stand 6 ... Parabolic mirror 7 ... Optical fiber 8 ... Sample 10 ... Illumination light source 11 ... Infrared light optical path 12 ... Illumination light optical path 13 ... Opening part 14 ... Imaging Device mounting port 15 ... Reflective illumination lamp 20 ... First Cassegrain mirror 36 ... Second Cassegrain mirror 37 ... Transmitted illumination lamp 39 ... Fourier transform infrared spectrophotometer

Claims (1)

測定用光源と、該測定用光源の光束導入用の開孔を有する凹面鏡と、前記凹面鏡より小径の凸面鏡を互いに対向配設し、前記開孔を通じて前記凹面鏡の背部より入射した光束を前記凸面鏡によって拡散反射させ、さらにこの拡散光を前記凹面鏡によって再反射させ、前記凸面鏡の背部の一点に集光させるように構成された集光鏡を持つ赤外顕微鏡において、前記凸面鏡の背面にこれと背向して取り付けられた放物面鏡と、この放物面鏡の反射面に外部光源の光を導入する光ファイバーを設け、この外部光源の光を前記放物面鏡で反射させ、この反射光によって前記凸面鏡の背部方向を照明するように可視照明系を構成したことを特徴とする赤外顕微鏡。   A measuring light source, a concave mirror having an aperture for introducing a light beam of the measuring light source, and a convex mirror having a smaller diameter than the concave mirror are arranged opposite to each other, and a light beam incident from the back of the concave mirror through the aperture is transmitted by the convex mirror. In an infrared microscope having a condensing mirror configured to diffusely reflect, further reflect the diffused light again by the concave mirror, and collect the light at one point on the back of the convex mirror. And an optical fiber for introducing the light of the external light source on the reflection surface of the parabolic mirror, the light of the external light source is reflected by the parabolic mirror, and the reflected light An infrared microscope comprising a visible illumination system configured to illuminate a back direction of the convex mirror.
JP2004229754A 2004-08-05 2004-08-05 Infrared microscope Pending JP2006047780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229754A JP2006047780A (en) 2004-08-05 2004-08-05 Infrared microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229754A JP2006047780A (en) 2004-08-05 2004-08-05 Infrared microscope

Publications (1)

Publication Number Publication Date
JP2006047780A true JP2006047780A (en) 2006-02-16

Family

ID=36026394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229754A Pending JP2006047780A (en) 2004-08-05 2004-08-05 Infrared microscope

Country Status (1)

Country Link
JP (1) JP2006047780A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992839B1 (en) * 2008-09-19 2010-11-08 (주)엘립소테크놀러지 Spectroscopic Ellipsometer with a Microspot Module
CN102721677A (en) * 2012-06-15 2012-10-10 中国科学院物理研究所 Fluorescent spectroscope with non-collinear optical parametric amplification function
WO2012166461A1 (en) * 2011-06-01 2012-12-06 Thermo Electron Scientific Instruments Llc Macro area camera for an infrared (ir) microscope
WO2016199262A1 (en) * 2015-06-11 2016-12-15 株式会社島津製作所 Cassegrain reflector retention mechanism, microscope equipped with same, and method for attaching cassegrain reflector
JP2017054032A (en) * 2015-09-10 2017-03-16 株式会社東芝 Optical device and laser processing apparatus
WO2019035483A1 (en) * 2017-08-18 2019-02-21 ナノフォトン株式会社 Optical microscope and method of spectroscopic measurement
CN110985935A (en) * 2019-12-17 2020-04-10 孝感华中精密仪器有限公司 Integrated white light shimmer infrared target simulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174708A (en) * 1999-12-15 2001-06-29 Shimadzu Corp Infrared microscope
JP2002523804A (en) * 1998-08-20 2002-07-30 ラルフ・ベートヒャー Method and apparatus for producing hologram
JP2003084202A (en) * 2001-09-11 2003-03-19 Miyagi Prefecture Ultraviolet-area fluorescent microscope, fluorescent material identifying method, and cleaning degree evaluating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523804A (en) * 1998-08-20 2002-07-30 ラルフ・ベートヒャー Method and apparatus for producing hologram
JP2001174708A (en) * 1999-12-15 2001-06-29 Shimadzu Corp Infrared microscope
JP2003084202A (en) * 2001-09-11 2003-03-19 Miyagi Prefecture Ultraviolet-area fluorescent microscope, fluorescent material identifying method, and cleaning degree evaluating method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992839B1 (en) * 2008-09-19 2010-11-08 (주)엘립소테크놀러지 Spectroscopic Ellipsometer with a Microspot Module
WO2012166461A1 (en) * 2011-06-01 2012-12-06 Thermo Electron Scientific Instruments Llc Macro area camera for an infrared (ir) microscope
GB2506308A (en) * 2011-06-01 2014-03-26 Thermo Electron Scient Instr Macro area camera for an infrared (IR) microscope
CN102721677A (en) * 2012-06-15 2012-10-10 中国科学院物理研究所 Fluorescent spectroscope with non-collinear optical parametric amplification function
JPWO2016199262A1 (en) * 2015-06-11 2017-11-09 株式会社島津製作所 Cassegrain mirror holding mechanism, microscope equipped with the same, and mounting method of cassegrain mirror
WO2016199262A1 (en) * 2015-06-11 2016-12-15 株式会社島津製作所 Cassegrain reflector retention mechanism, microscope equipped with same, and method for attaching cassegrain reflector
US10649190B2 (en) 2015-06-11 2020-05-12 Shimadzu Corporation Cassegrain reflector retention mechanism, microscope equipped with same, and method for attaching Cassegrain reflector
JP2017054032A (en) * 2015-09-10 2017-03-16 株式会社東芝 Optical device and laser processing apparatus
WO2019035483A1 (en) * 2017-08-18 2019-02-21 ナノフォトン株式会社 Optical microscope and method of spectroscopic measurement
JP2019035882A (en) * 2017-08-18 2019-03-07 ナノフォトン株式会社 Optical microscope and spectral measurement method
JP7008974B2 (en) 2017-08-18 2022-01-25 ナノフォトン株式会社 Optical microscope and spectroscopic measurement method
US11442259B2 (en) 2017-08-18 2022-09-13 Nanophoton Corporation Optical microscope and spectroscopic measurement method
CN110985935A (en) * 2019-12-17 2020-04-10 孝感华中精密仪器有限公司 Integrated white light shimmer infrared target simulator
CN110985935B (en) * 2019-12-17 2022-05-20 孝感华中精密仪器有限公司 Integrated white light shimmer infrared target simulator

Similar Documents

Publication Publication Date Title
US6597499B2 (en) Total internal reflection fluorescence microscope having a conventional white-light source
JP5507249B2 (en) Spectrometer with spatial resolution control
KR100293126B1 (en) Inspection device
US20090015912A1 (en) Total Internal Reflectance Fluorescence (TIRF) Microscope
JPS58145911A (en) Optical system for testing with light transmission microscope by reflected light irradiation
US3664751A (en) Accessory for microscopes for use as a two-beam photometer
JP2006047780A (en) Infrared microscope
JP2007264322A (en) Infrared microscope
CN115266578A (en) Analysis device
JP3388285B2 (en) Inspection device
JP2012122757A (en) Photometric device
US7164470B2 (en) Depth of field enhancement for optical comparator
JP2001174708A (en) Infrared microscope
JPH0783845A (en) Inspection device
JPH0618410A (en) Infrared micromeasuring device
JPH02290536A (en) Microspectral measuring instrument
JPH10267846A (en) Laser emission/fetching optical apparatus
JP2004012975A (en) Fluorescent microscope and vertical illuminator for fluorescent observation, and vertical illumination method
CN116203711A (en) Microscope with prealignment conditioning optics
JP5941824B2 (en) Photometric device
JPH087331B2 (en) Infrared absorption spectrum measurement microscope device
JP2002310870A (en) Hardness tester
JP2019074662A (en) Imaging optical element and microscope
JPH04294253A (en) Infrared microscope
JPH05340870A (en) Total-reflection absorption spectrum measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Effective date: 20100629

Free format text: JAPANESE INTERMEDIATE CODE: A02