JP2006044473A - Vehicular tire having rotary auxiliary blade - Google Patents

Vehicular tire having rotary auxiliary blade Download PDF

Info

Publication number
JP2006044473A
JP2006044473A JP2004228679A JP2004228679A JP2006044473A JP 2006044473 A JP2006044473 A JP 2006044473A JP 2004228679 A JP2004228679 A JP 2004228679A JP 2004228679 A JP2004228679 A JP 2004228679A JP 2006044473 A JP2006044473 A JP 2006044473A
Authority
JP
Japan
Prior art keywords
tire
rotation
vehicle
end position
rotary auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004228679A
Other languages
Japanese (ja)
Other versions
JP4510545B2 (en
Inventor
Ichiro Shima
一郎 島
Kensuke Bito
健介 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2004228679A priority Critical patent/JP4510545B2/en
Publication of JP2006044473A publication Critical patent/JP2006044473A/en
Application granted granted Critical
Publication of JP4510545B2 publication Critical patent/JP4510545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular tire having rotary auxiliary blades capable of realizing the low fuel consumption by substantially reducing the rolling resistance of a tire to be used for a car or other vehicle traveling at a normal speed. <P>SOLUTION: A plurality of rotary auxiliary blades 11-1 to 11-4 are provided on an outer face of a side wall part 16 of a tire 1 in a uniformly distributed manner in the tire circumferential direction. Each rotary auxiliary blade 11 comprises a rubber sheet 12, and two bars 23 to support both ends thereof from a tire body 14. As each rotary auxiliary blade 11 is shifted from an upper end position to a lower end position when the vehicle travels, the tire body 14 is deformed by the load of the vehicle 3, a space between the two bars 13 is opened, and the area viewed from the vehicle traveling direction is increased. The center position in the tire radial direction of the rotary auxiliary blades 11 is set to be in a range of 35-55% of the tire radius from a tire rotary shaft 18 to a tread face 15, and the rate of change of the area is ≥ 40% with the lower end position as a reference. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車その他の、ある程度の速度で走行する車両に用いられるタイヤに関する。特には、転がり抵抗を実質上低減させて、低燃費化を実現できるタイヤに関する。   The present invention relates to a tire used for an automobile or other vehicle that travels at a certain speed. In particular, the present invention relates to a tire that can realize a reduction in fuel consumption by substantially reducing rolling resistance.

近年、自動車の低燃費化に対する社会的要請が高まり、タイヤの転がり抵抗を低減させる低燃費化技術の開発が盛んに行なわれている(例えば特許文献1〜2)。タイヤの転がり抵抗は、粘弾性体であるゴムとタイヤコードとからなるタイヤが、たわみながら回転することによる抵抗であり、エネルギーロスを発生させる。   In recent years, social demands for reducing fuel consumption of automobiles have increased, and development of fuel efficiency reduction techniques for reducing rolling resistance of tires has been actively performed (for example, Patent Documents 1 and 2). The rolling resistance of a tire is a resistance caused by a tire made of rubber and a tire cord, which are viscoelastic bodies, rotating while being bent, and causes energy loss.

この転がり抵抗を低減させるためには、タイヤ回転時に生じるタイヤ全体の変形を抑えるか、または、路面接触の際に生じる繰り返し圧縮運動によるエネルギーロスを抑える必要がある。このためには、タイヤの形状や構造(プロファイル)を最適化するか(特許文献1など)、または、ゴム配合組成を最適化する検討(特許文献2など)が行われている。タイヤの転がり抵抗を低減させたならば、特には、高速道路走行時といった定常速度走行時における車両の低燃費化に大きく寄与できる。   In order to reduce this rolling resistance, it is necessary to suppress deformation of the entire tire that occurs during tire rotation, or to suppress energy loss due to repeated compression motion that occurs during road surface contact. For this purpose, studies have been made to optimize the shape and structure (profile) of the tire (such as Patent Document 1) or to optimize the rubber compounding composition (such as Patent Document 2). If the rolling resistance of the tire is reduced, it can greatly contribute to the reduction in fuel consumption of the vehicle particularly during steady speed traveling such as traveling on a highway.

しかし、これら従来の方法では、転がり抵抗の改善のために、耐摩耗性やウェット性能といった他の性能の低下を招くことが多かった。例えば、補強剤であるカーボンブラックの配合量を減らすといった方法では、耐摩耗性の低下を招くおそれがあった。   However, in these conventional methods, in order to improve rolling resistance, other performances such as wear resistance and wet performance are often deteriorated. For example, the method of reducing the blending amount of carbon black as a reinforcing agent may cause a decrease in wear resistance.

一方、タイヤのサイドウォール部の外面には、商品名の浮き彫りや装飾のための凹凸模様を除き、特段の突起構造を設けないのが常識となっている。但し、振動を吸収する目的でタイヤ回転軸を中心として円環状に、リップ状の突起を、タイヤ回転軸の側に倒した形態で設けるという提案がある(特許文献3)。しかし、このような突起であると、タイヤの回転に対する抵抗を増大させることはあっても、その逆の効果は期待できない。また、空気流との間での特段の作用効果を奏するものでない。   On the other hand, it is common knowledge that no special protrusion structure is provided on the outer surface of the sidewall portion of the tire except for the relief of the product name and the uneven pattern for decoration. However, there is a proposal to provide a lip-shaped protrusion in an annular shape around the tire rotation axis in the form of being inclined toward the tire rotation axis for the purpose of absorbing vibration (Patent Document 3). However, such protrusions may increase the resistance to tire rotation, but the reverse effect cannot be expected. Moreover, there is no special effect between the air flow.

他方、航空機用車輪においては、着陸時の摩耗を軽減すべく、着地前に車輪の回転を開始させるための回転力生成翼をホイールキャップ等に設けることも提案されている(特許文献4)。しかし、この回転力生成翼は、車両を定常走行させるための車輪に設けられたものでなく、走行時の低燃費化を実現するものでない。
特開2004−98838 特開2004−10747 特開2000−301920 特開2002−154485
On the other hand, in an aircraft wheel, it has also been proposed to provide a wheel cap or the like with a rotational force generating wing for starting rotation of the wheel before landing in order to reduce wear during landing (Patent Document 4). However, the rotational force generating blades are not provided on the wheels for steady running of the vehicle, and do not realize low fuel consumption during running.
JP 2004-983838 A JP2004-10747 JP2000-301920A JP 2002-154485 A

本発明は、上記問題点に鑑みなされたものであり、他のタイヤ性能の低下を招くおそれなしに、低燃費化を実現できる自動車用タイヤを提供しようとする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an automobile tire that can realize low fuel consumption without causing a decrease in other tire performance.

本発明の自動車用タイヤは、サイドウォール部の外面に、車両走行時に空気流から受ける力を回転駆動力に変換する複数の回転補助翼が、タイヤ周方向に均等に分布するように設けられたことを特徴とする。   The automobile tire of the present invention is provided on the outer surface of the sidewall portion so that a plurality of rotation auxiliary wings that convert the force received from the airflow when the vehicle travels into the rotational driving force are evenly distributed in the tire circumferential direction. It is characterized by that.

本発明の好ましい態様によると、前記回転補助翼が、車両走行時に上端位置から下端位置へと移るにしたがって、車両の荷重によるタイヤの変形に伴い、車両走行方向から見た場合の面積が増大するように設けられたものである。さらに好ましい態様によると、前記回転補助翼は、タイヤ径方向の中心位置が、タイヤ回転軸からトレッド面に至るタイヤ半径の35〜55%の領域内に設定され、下端位置を基準とした前記面積の変化率(後述する面積変化率)が40%以上である。このようであると、車両回転軸の上側で空気抵抗により車両の走行を妨げる回転力の生成をなるべく小さくするとともに、車両回転軸の下側で、車両の走行を促進する回転力の生成を大きくできる。したがって、全体として、容易に、補助的な回転駆動力を生成し、低燃費化または低動力化を実現できる。   According to a preferred aspect of the present invention, as the rotation assist wing moves from the upper end position to the lower end position during vehicle travel, the area when viewed from the vehicle travel direction increases with deformation of the tire due to vehicle load. It is provided as follows. According to a further preferred aspect, the rotation auxiliary wing is configured such that the center position in the tire radial direction is set in a region of 35 to 55% of the tire radius from the tire rotation axis to the tread surface, and the area based on the lower end position. Change rate (area change rate described later) is 40% or more. In this case, the generation of the rotational force that hinders the traveling of the vehicle due to the air resistance on the upper side of the vehicle rotation shaft is minimized, and the generation of the rotational force that promotes the traveling of the vehicle is increased on the lower side of the vehicle rotation shaft. it can. Therefore, as a whole, an auxiliary rotational driving force can be easily generated, and fuel consumption or power can be reduced.

本発明の他の好ましい態様によると、前記回転補助翼は、回転方向の前面に向かって凸の形状をなし、回転方向の後面が凹面または前記前面に比べて扁平な面をなす。   According to another preferred aspect of the present invention, the rotation auxiliary wing has a convex shape toward the front surface in the rotation direction, and the rear surface in the rotation direction is a concave surface or a flat surface compared to the front surface.

転がり抵抗を実質上低減させて、低燃費化または低動力化を実現できる。   Rolling resistance can be substantially reduced, and fuel consumption or power can be reduced.

実施例1について、図1〜6を用いて説明する。図1は、実走行状態における実施例のタイヤを示す模式的な外観斜視図であり、図2は、回転補助翼の形態をタイヤから取り外した状態で示す平面的な斜視図である。また、図3は、実施例のタイヤが車両の荷重により変形した状態について示す模式的な垂直方向断面図である。   Example 1 will be described with reference to FIGS. FIG. 1 is a schematic external perspective view showing a tire according to an embodiment in an actual running state, and FIG. 2 is a plan perspective view showing a state where a rotation auxiliary wing is removed from the tire. FIG. 3 is a schematic vertical sectional view showing a state in which the tire of the example is deformed by the load of the vehicle.

図1及び図3に示すように、タイヤ1のサイドウォール部16外面には、タイヤ径方向及び回転軸方向に沿って延びる略平板状の回転補助翼11が設けられている。図示の例によると、タイヤ1の左右の各サイドウォール部16外面には、4個の回転補助翼11-1〜11-4が、周方向に均等に分布するように設けられている。また、各回転補助翼11は、ホイール2のリム25に近接して配置されている。すなわちビード部17に近接して配置されている。   As shown in FIGS. 1 and 3, a substantially flat plate-shaped rotation auxiliary wing 11 extending along the tire radial direction and the rotation axis direction is provided on the outer surface of the sidewall portion 16 of the tire 1. According to the illustrated example, the four rotation auxiliary wings 11-1 to 11-4 are provided on the outer surfaces of the left and right sidewall portions 16 of the tire 1 so as to be evenly distributed in the circumferential direction. In addition, each rotation auxiliary wing 11 is disposed in the vicinity of the rim 25 of the wheel 2. That is, it is arranged close to the bead portion 17.

図2に示す例で、各回転補助翼11は、1枚の矩形状のゴムシート12と、これをタイヤのサイドウォール部16から支持する2本の棒13とからなる。ゴムシート12は、タイヤ半径方向の両縁部12Bが円柱状であり、これらの間に均等な厚みのゴムシート本体12Aが掛け渡された状態となっている。また、各棒13は、図示の例で1本の直線状の細い丸棒であり、ゴムシート12の円柱状縁部12Bの芯をなす芯部13Bと、タイヤのサイドウォール部16に打ち込んで埋設される根部13Aとからなる。   In the example shown in FIG. 2, each rotation auxiliary wing 11 includes one rectangular rubber sheet 12 and two rods 13 that support the rubber sheet 12 from the sidewall portion 16 of the tire. The rubber sheet 12 has a cylindrical shape at both edges 12B in the tire radial direction, and a rubber sheet body 12A having an equal thickness is stretched between them. Each rod 13 is a straight thin round bar in the illustrated example, and is driven into the core portion 13B that forms the core of the cylindrical edge portion 12B of the rubber sheet 12 and the sidewall portion 16 of the tire. The root portion 13A is embedded.

ゴムシート12は、タイヤを構成するゴム組成物に類似のゴム組成により設けることができる。例えば天然ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等の樹脂にカーボンブラック等の補強剤及び劣化防止剤を配合した組成により設けることができる。一方、棒13は、一般鋼、ステンレス鋼、アルミ合金その他の金属で設けることができる他、繊維強化プラスチックの成形物などにより設けることができる。回転補助翼11と、タイヤ本体14とをそれぞれ別個に加硫成形により設けた後に、サイドウォール16外面の所定位置に棒13の根部13Aを打ち込むことで、実施例のタイヤ1を得ることができる。しかし、場合によっては、回転補助翼11とタイヤ本体14とを組み合わせた後に、加熱による加硫を行うこともできる。   The rubber sheet 12 can be provided with a rubber composition similar to the rubber composition constituting the tire. For example, it can be provided by a composition in which a resin such as natural rubber, butadiene rubber (BR), or styrene butadiene rubber (SBR) is blended with a reinforcing agent such as carbon black and a deterioration preventing agent. On the other hand, the rod 13 can be provided by general steel, stainless steel, aluminum alloy or other metals, or can be provided by a molded product of fiber reinforced plastic. After providing the auxiliary rotation blade 11 and the tire body 14 separately by vulcanization molding, the tire 1 of the embodiment can be obtained by driving the root portion 13A of the rod 13 into a predetermined position on the outer surface of the sidewall 16. . However, depending on the case, after combining the auxiliary rotation blade 11 and the tire body 14, vulcanization by heating can be performed.

図3及び図1に示すように、車両進行方向から見た場合の回転補助翼11の面積は、ホイール2の下方に来たときに大きくなり(11−1の状態)、ホイール2の上方に来たときに小さくなる(11−3の状態)。ホイール2の下方の位置にて、タイヤ本体14は、車両3の荷重によって、トレッド15が接する路面4とホイール2との間で押圧変形を受け、これに伴い、タイヤのサイドウォール部16が外側へ膨出する。これにより、棒13の間の間隔が、回転補助翼11の自由端の側で大きくなる。一方、ホイール2の下方では、タイヤ本体14が車両の荷重によって変形を受けるに伴い、タイヤのサイドウォール部16が湾曲することとなり、これにより、棒13の間の間隔が、回転補助翼11の自由端の側で大きくなる。回転補助翼11は、ホイール2の下方で車輪の回転駆動を促進する作用を行い、ホイールの上で車輪の回転駆動を阻害する逆方向の回転力を生成するが、回転補助翼11の面積が上記のように変化することにより、全体として回転駆動を促進する回転補助力を生成するようにしている。   As shown in FIG. 3 and FIG. 1, the area of the rotation auxiliary wing 11 when viewed from the vehicle traveling direction becomes large when it comes below the wheel 2 (state of 11-1), and above the wheel 2. It becomes smaller when it comes (state of 11-3). At a position below the wheel 2, the tire body 14 is subjected to pressure deformation between the road surface 4 and the wheel 2 in contact with the tread 15 due to the load of the vehicle 3. Bulge out. Thereby, the space | interval between the stick | rods 13 becomes large at the free end side of the rotation auxiliary blade 11. FIG. On the other hand, below the wheel 2, the tire sidewall 14 is curved as the tire body 14 is deformed by the load of the vehicle, so that the space between the rods 13 is reduced. Grows on the free end side. The rotation auxiliary wing 11 acts to promote the rotational drive of the wheel below the wheel 2 and generates a reverse rotational force that inhibits the rotation drive of the wheel on the wheel. By changing as described above, a rotation assisting force that promotes rotation driving as a whole is generated.

具体例において、回転補助翼11は、ゴムシート本体12Aの厚みが1mmであり、棒13の間の間隔Wが5cm、タイヤのサイドウォール16外面から垂直方向に突き出す寸法Hが3cmである。また、タイヤ本体14は、トラック、バスまたは軽トラックに用いられるTOYO 12.00 R 20 14PRである。すなわち、タイヤの断面幅(文字高さを除く車輪軸方向の外寸)が12インチ、リム径が20インチである。   In the specific example, the rotation auxiliary blade 11 has a rubber sheet main body 12A having a thickness of 1 mm, an interval W between the bars 13 of 5 cm, and a dimension H protruding in the vertical direction from the outer surface of the sidewall 16 of the tire of 3 cm. The tire body 14 is TOYO 12.00 R 20 14PR used for trucks, buses or light trucks. That is, the cross-sectional width of the tire (the outer dimension in the wheel axis direction excluding the character height) is 12 inches and the rim diameter is 20 inches.

以下に、図4〜6を用いて、回転補助翼11が生成する回転補助力について行ったシミュレーションについて説明する。まず、図4は、シミュレーションの前提になる基本条件について示す。タイヤの回転軸からトレッド面に至るタイヤ半径は、0.3mとし、車両が時速60km(16.67m/sec)で走行する場合を想定した。   Below, the simulation performed about the rotation assistance force which the rotation assistance blade 11 produces | generates is demonstrated using FIGS. First, FIG. 4 shows basic conditions that are the premise of the simulation. The tire radius from the tire rotation axis to the tread surface was assumed to be 0.3 m, and it was assumed that the vehicle traveled at a speed of 60 km / h (16.67 m / sec).

次ぎに、図5のグラフには、上記実施例のような回転補助翼がタイヤ側面に1個のみ設けられている場合に、路面4から最も遠い頂点位置からの回転角度と、生成する回転補助力との関係についてシミュレーションした結果を示す。この際、回転補助翼11は、車両走行方向から見た場合の面積変化率、すなわち、タイヤ回転軸及び垂直軸を含む平面に投影した場合の上下端位置間での面積変化率が50%であるとした。ここで、面積変化率(%)は、次式により得られる値である。   Next, in the graph of FIG. 5, when only one rotation auxiliary wing is provided on the tire side surface as in the above embodiment, the rotation angle from the vertex position farthest from the road surface 4 and the rotation assistance to be generated are shown. The result of simulating the relationship with force is shown. At this time, the rotation auxiliary wing 11 has an area change rate when viewed from the vehicle traveling direction, that is, an area change rate between the upper and lower end positions when projected on a plane including the tire rotation axis and the vertical axis is 50%. It was supposed to be. Here, the area change rate (%) is a value obtained by the following equation.

面積変化率(%)=(1−下端位置での走行方向への投影面積
÷上端位置での走行方向への投影面積)×100
図5に示すシミュレーション結果によると、頂点からの回転角度が132°と228°との間の領域でのみ正(プラス)の回転補助力が生成する。
Area change rate (%) = (1−projected area in the traveling direction at the lower end position)
÷ Projected area in the direction of travel at the upper end position) × 100
According to the simulation result shown in FIG. 5, a positive (plus) rotation assist force is generated only in a region where the rotation angle from the apex is between 132 ° and 228 °.

図6のグラフには、前述した具体例のタイヤ1における回転補助翼11の面積変化率と、得られる回転補助力との関係について、同様のシミュレーションにより求めた結果を示す。左半図は、図2の回転補助翼の中心が、回転軸からタイヤ外寸半径の11/24だけ離れた個所に位置する場合を示し、右半図は、図2の回転補助翼の中心が、回転軸からタイヤ外寸半径の10/24だけ離れた個所に位置する場合を示す。図6の結果から知られるように、タイヤ外寸半径の11/24の個所に回転補助翼11の中心が位置する場合、回転補助翼11の上下間面積比が60%以上である場合にのみ正(プラス)の回転補助力が生成する。これに対して、タイヤ外寸半径の10/24の個所に回転補助翼11の中心が位置する場合、回転補助翼11の面積変化率が40%以上の領域で、正(プラス)の回転補助力が生成する。   The graph of FIG. 6 shows a result obtained by a similar simulation regarding the relationship between the area change rate of the rotation auxiliary blade 11 and the obtained rotation auxiliary force in the tire 1 of the specific example described above. 2 shows the case where the center of the rotation auxiliary wing of FIG. 2 is located at a position away from the rotation axis by 11/24 of the tire outer radius, and the right half view shows the center of the rotation auxiliary wing of FIG. Shows a case where it is located at a position away from the rotation axis by 10/24 of the tire outer radius. As can be seen from the results of FIG. 6, when the center of the rotation auxiliary wing 11 is located at a location of 11/24 of the tire outer radius, only when the area ratio between the upper and lower sides of the rotation auxiliary wing 11 is 60% or more. Positive (plus) rotational assist force is generated. On the other hand, when the center of the rotation auxiliary wing 11 is located at a position of 10/24 of the outer dimension radius of the tire, the positive (plus) rotation assist in the region where the area change rate of the rotation auxiliary wing 11 is 40% or more. Force is generated.

図6の結果から、回転補助翼11のタイヤ径方向での位置が、回転補助力の発現にとり非常に重要であることが知られる。回転補助翼11は、トレッドに近い位置に位置するほど、タイヤ回転軸の下方にあってもタイヤ走行に伴う向かい風をあまり受けなくなるからであると理解することができる。   From the result of FIG. 6, it is known that the position of the auxiliary rotation blade 11 in the tire radial direction is very important for the expression of the auxiliary rotation force. It can be understood that the closer the rotation auxiliary blade 11 is to the tread, the less the head wind that accompanies the tire traveling, even if it is below the tire rotation axis.

表1には、前述した具体例と同様のタイヤについて、回転補助翼の位置、数、上下間面積比を段階的に変化させた場合の、タイヤの実質的な転がり抵抗をシミュレーションにより求めた結果を示す。回転補助翼の寸法は、タイヤ回転軸18と同じ高さにある場合(図1の11-2及び11-4の状態)、ゴムシート12が矩形状をなし棒13の間の間隔Wが5cmで突出寸法Hが3cmであるとした。表1中において、転がり抵抗は、回転補助翼を設けなかった基準タイヤ(TOYO 12.00 R 20 14PR、リムサイズ20inch×7.50inch)における値を100とする指数で示す。なお、基準タイヤの転がり抵抗は、ドラム式転がり抵抗試験機により、タイヤ空気圧700kPa、荷重2500kgf、測定温度25±1℃の条件で測定したものであり、シミュレーションは、この条件で回転補助翼が及ぼす影響を算出したものである。

Figure 2006044473
Table 1 shows the simulation results of the substantial rolling resistance of the tire when the position, number, and top / bottom area ratio of the rotating auxiliary blades are changed stepwise for a tire similar to the specific example described above. Indicates. When the rotation auxiliary wing is at the same height as the tire rotation shaft 18 (in the state of 11-2 and 11-4 in FIG. 1), the rubber sheet 12 is rectangular and the interval W between the bars 13 is 5 cm. The protrusion dimension H is assumed to be 3 cm. In Table 1, the rolling resistance is indicated by an index with a value of 100 in a reference tire (TOYO 12.00 R 20 14PR, rim size 20 inch × 7.50 inch) without a rotation auxiliary wing. The rolling resistance of the reference tire was measured with a drum type rolling resistance tester under the conditions of tire air pressure 700 kPa, load 2500 kgf, measurement temperature 25 ± 1 ° C. The impact is calculated.
Figure 2006044473

表1に示すように、回転補助翼の中心位置とタイヤ回転軸18との間の距離がタイヤ外寸半径の40%である場合、回転補助翼の面積変化率が50%であるなら、タイヤの実質上の転がり抵抗が2〜3%低下した。実施例1-1と1-2との比較から知られるように、4枚配置する場合よりも、8枚配置する方が効果は大きい。但し、転がり抵抗の低下は、2%から3%へと約1.5倍となるに止まる。   As shown in Table 1, when the distance between the center position of the rotation auxiliary wing and the tire rotation shaft 18 is 40% of the outer dimension radius of the tire, if the area change rate of the rotation auxiliary wing is 50%, the tire The actual rolling resistance was reduced by 2-3%. As is known from the comparison between Examples 1-1 and 1-2, it is more effective to arrange eight than to arrange four. However, the reduction in rolling resistance is only about 1.5 times from 2% to 3%.

一方、実施例2-1〜2-3の結果から知られるように、回転補助翼の位置が、タイヤ回転軸から遠ざかると、回転補助翼の面積変化率を60%及び70%と大きくしたとしても、転がり抵抗低減の度合いは小さくなった。また、回転補助翼がタイヤ軸よりもトレッドの側に位置する場合(比較例1)には、回転補助翼の面積変化率を80%とした場合にも、むしろ転がり抵抗が増加することとなった。   On the other hand, as is known from the results of Examples 2-1 to 2-3, when the position of the rotation auxiliary wing moves away from the tire rotation axis, the area change rate of the rotation auxiliary wing is increased to 60% and 70%. However, the degree of rolling resistance reduction was small. Further, when the rotation auxiliary wing is located on the tread side from the tire shaft (Comparative Example 1), even when the area change rate of the rotation auxiliary wing is 80%, the rolling resistance is increased. It was.

図7には、変形例のタイヤ1’における回転補助翼11’について示す。変形例の回転補助翼11’は、上記実施例と同様の構成において、比較的肉厚のゴムシート12’及びその両端の棒13’が、タイヤ回転方向の方向へと滑らかに湾曲している。回転補助翼11’の断面形状は、例えば、低速の風を用いて発電等を行うための「サボニウム型」の風車の羽根と同様とする。このような構成であると、面積変化率が小さくとも、車両走行中に受ける空圧は、タイヤ回転軸の下方側で大きく、タイヤ回転軸の上方側で大きくなる。したがって、タイヤ回転方向の駆動力が得られる。   FIG. 7 shows a rotation auxiliary wing 11 ′ in a tire 1 ′ according to a modification. In the modified auxiliary rotation blade 11 ′, in the same configuration as in the above embodiment, the relatively thick rubber sheet 12 ′ and the rods 13 ′ at both ends thereof are smoothly curved in the tire rotation direction. . The cross-sectional shape of the auxiliary rotation blade 11 ′ is the same as that of a “savonium-type” windmill blade for generating power using low-speed wind, for example. With such a configuration, even if the area change rate is small, the air pressure received during traveling of the vehicle is large on the lower side of the tire rotation shaft and larger on the upper side of the tire rotation shaft. Accordingly, a driving force in the tire rotation direction can be obtained.

なお、「サボニウム型」の断面形状に限らず、回転方向の前面に向かって凸の形状をなし、回転方向の後面が凹面であるか、または前面に比べて扁平な面をなすものであれば良い。また、回転補助翼11’の全体がカップ状をなしていても良い。   In addition, it is not limited to the “savonium type” cross-sectional shape, as long as it has a convex shape toward the front surface in the rotational direction, and the rear surface in the rotational direction is concave or has a flat surface compared to the front surface. good. Further, the entire rotation auxiliary blade 11 ′ may have a cup shape.

実走行状態における実施例のタイヤの模式的な外観斜視図である。It is a typical external appearance perspective view of the tire of the example in the actual run state. 実施例のタイヤの回転補助翼を示す平面的な斜視図である。タイヤ本体から取り外した状態にて示す。It is a planar perspective view which shows the rotation auxiliary blade of the tire of an Example. Shown in a state removed from the tire body. 実施例のタイヤが車両の荷重により変形した状態について示す模式的な垂直方向断面図である。It is a typical vertical direction sectional view showing about the state where the tire of an example changed with the load of vehicles. 図2の回転補助翼の回転駆動力についてシミュレーションした条件について示す模式図である。It is a schematic diagram shown about the conditions simulated about the rotational drive force of the rotation auxiliary blade of FIG. 回転補助翼の回転位置と、回転駆動力との関係についてのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result about the relationship between the rotation position of a rotation auxiliary blade, and rotational drive force. 回転補助翼の面積変化率([1−下端での面積/上端での面積]X100)と、回転補助力との関係について示すグラフである。左半図は、図2の回転補助翼の中心が、タイヤ外寸半径の11/24の個所に位置する場合を示し、右半図は、図2の回転補助翼の中心が、タイヤ外寸半径の10/24の個所に位置する場合を示す。It is a graph which shows about the relationship between the area change rate ([1-area at the lower end / area at the upper end] X100) of the auxiliary rotation blade and the auxiliary rotation force. The left half view shows the case where the center of the rotation auxiliary wing of FIG. 2 is located at a position of 11/24 of the tire outer dimension radius, and the right half view shows the center of the rotation auxiliary wing of FIG. The case where it is located at a location of 10/24 of the radius is shown. 変形例のタイヤの模式的な部分外観斜視図である。It is a typical partial appearance perspective view of the tire of a modification.

符号の説明Explanation of symbols

1 車両用タイヤ 11-1〜11-4 回転補助翼
12 ゴムシート 13 棒
14 タイヤ本体 15 トレッド
16 サイドウォール部 18 タイヤ回転軸
2 ホイール 25 リム
3 車両 4 路面
DESCRIPTION OF SYMBOLS 1 Vehicle tire 11-1 to 11-4 Rotation auxiliary wing 12 Rubber sheet 13 Rod 14 Tire body 15 Tread 16 Side wall portion 18 Tire rotation shaft 2 Wheel 25 Rim 3 Vehicle 4 Road surface

Claims (5)

サイドウォール部の外面に、車両走行時に空気流から受ける力を回転駆動力に変換する複数の回転補助翼が、タイヤ周方向に均等に分布するように設けられたことを特徴とする車両用タイヤ。   A vehicle tire characterized in that a plurality of auxiliary rotation blades for converting a force received from an air flow during vehicle traveling into a rotational driving force are provided on the outer surface of the sidewall portion so as to be evenly distributed in the tire circumferential direction. . 前記回転補助翼が、車両走行時に上端位置から下端位置へと移るにしたがって、車両の荷重によるタイヤの変形に伴い、車両走行方向から見た場合の面積が増大するように設けられたものであることを特徴とする請求項1記載の車両用タイヤ。   The rotation auxiliary wing is provided so that the area when viewed from the vehicle traveling direction increases with the deformation of the tire due to the load of the vehicle as it moves from the upper end position to the lower end position during vehicle traveling. The vehicle tire according to claim 1. 前記各回転補助翼は、タイヤ径方向の中心位置が、タイヤ回転軸からトレッド面に至るタイヤ半径の35〜55%の領域内に設定され、下端位置を基準とした前記面積の変化率が40%以上であることを特徴とする請求項2の車両用タイヤ。   Each of the rotation assist wings has a center position in the tire radial direction set in a region of 35 to 55% of the tire radius from the tire rotation axis to the tread surface, and the rate of change of the area with respect to the lower end position is 40. The vehicle tire according to claim 2, wherein the vehicle tire is at least%. 前記各回転補助翼が、タイヤ外壁面にタイヤ径方向に沿って複数打ち込まれた棒状部材と、これらの間に掛け渡された弾性の板状部材とからなることを特徴とする請求項2または3記載の車両用タイヤ。   3. Each of the rotation auxiliary wings comprises a plurality of rod-shaped members driven into a tire outer wall surface along a tire radial direction, and an elastic plate-shaped member stretched between the rod-shaped members. 3. The vehicle tire according to 3. 前記回転補助翼は、回転方向の前面に向かって凸の形状をなし、回転方向の後面が凹面または前記前面に比べて扁平な面をなすことを特徴とする請求項1〜3のいずれかに記載の車両用タイヤ。
The rotation auxiliary wing has a convex shape toward the front surface in the rotation direction, and a rear surface in the rotation direction forms a concave surface or a flat surface compared to the front surface. The vehicle tire described.
JP2004228679A 2004-08-04 2004-08-04 Vehicle tires with rotating auxiliary wings Expired - Fee Related JP4510545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228679A JP4510545B2 (en) 2004-08-04 2004-08-04 Vehicle tires with rotating auxiliary wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228679A JP4510545B2 (en) 2004-08-04 2004-08-04 Vehicle tires with rotating auxiliary wings

Publications (2)

Publication Number Publication Date
JP2006044473A true JP2006044473A (en) 2006-02-16
JP4510545B2 JP4510545B2 (en) 2010-07-28

Family

ID=36023529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228679A Expired - Fee Related JP4510545B2 (en) 2004-08-04 2004-08-04 Vehicle tires with rotating auxiliary wings

Country Status (1)

Country Link
JP (1) JP4510545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160994A (en) * 2007-12-28 2009-07-23 Bridgestone Corp Pneumatic tire
WO2010126091A1 (en) * 2009-04-28 2010-11-04 株式会社ブリヂストン Pneumatic tire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311209U (en) * 1986-07-08 1988-01-25
JP2002154485A (en) * 2000-11-21 2002-05-28 Ishikawajima Harima Heavy Ind Co Ltd Landing gear for aircraft and tire for aircraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311209U (en) * 1986-07-08 1988-01-25
JP2002154485A (en) * 2000-11-21 2002-05-28 Ishikawajima Harima Heavy Ind Co Ltd Landing gear for aircraft and tire for aircraft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160994A (en) * 2007-12-28 2009-07-23 Bridgestone Corp Pneumatic tire
WO2010126091A1 (en) * 2009-04-28 2010-11-04 株式会社ブリヂストン Pneumatic tire
CN102458885A (en) * 2009-04-28 2012-05-16 株式会社普利司通 Pneumatic tire
JP5451753B2 (en) * 2009-04-28 2014-03-26 株式会社ブリヂストン Pneumatic tire
CN102458885B (en) * 2009-04-28 2016-01-06 株式会社普利司通 Air-inflation tyre
RU2630878C2 (en) * 2009-04-28 2017-09-13 Бриджстоун Корпорейшн Air tyre

Also Published As

Publication number Publication date
JP4510545B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP6408520B2 (en) Pneumatic radial tire for passenger cars and method of using the same
CA2759381C (en) A vehicle tire having a sidewall section with a plurality of curved protrusions
JP4980815B2 (en) Pneumatic tire
JP2010260377A (en) Pneumatic tire
JP2010260378A (en) Pneumatic tire
JPH07117414A (en) Pneumatic tire
WO2013161296A1 (en) Pneumatic tire
JP5981108B2 (en) Pneumatic radial tire for passenger cars and method of using the same
CN102233794B (en) Pneumatic tire
JP6353456B2 (en) Tire sidewall markings that reduce aerodynamic drag
JPS582845B2 (en) Radial tire for passenger cars with low rolling resistance and anti-slip properties
JP5541416B1 (en) Pneumatic tire
JP5370633B2 (en) Tread for retread tire and retread tire using the same
JP4510545B2 (en) Vehicle tires with rotating auxiliary wings
JP2016523766A (en) Low noise tread for heavy vehicles
JP4295455B2 (en) Pneumatic tire
JP4455951B2 (en) Vehicle wheel with rotating auxiliary wing
US20160288578A1 (en) Pneumatic tire with asymmetrical ribs and paddles
JP2009161072A (en) Pneumatic tire
CN201544709U (en) Vehicular tire with double inner tubes
JP5130003B2 (en) Pneumatic tire
CN105473346B (en) Tire for two-wheeled motor vehicle
CN220904585U (en) Tire and vehicle
JP3941973B2 (en) Pneumatic tire
JP4626269B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees