JP2006044293A - Movement controller for vehicle - Google Patents

Movement controller for vehicle Download PDF

Info

Publication number
JP2006044293A
JP2006044293A JP2004223979A JP2004223979A JP2006044293A JP 2006044293 A JP2006044293 A JP 2006044293A JP 2004223979 A JP2004223979 A JP 2004223979A JP 2004223979 A JP2004223979 A JP 2004223979A JP 2006044293 A JP2006044293 A JP 2006044293A
Authority
JP
Japan
Prior art keywords
vehicle
braking
target
driving force
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004223979A
Other languages
Japanese (ja)
Inventor
Yoshinori Maeda
義紀 前田
Kazuya Okumura
和也 奥村
Shigekazu Yogo
繁一 余合
Mitsutaka Tsuchida
充孝 土田
Kansuke Yoshisue
監介 吉末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004223979A priority Critical patent/JP2006044293A/en
Publication of JP2006044293A publication Critical patent/JP2006044293A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduces overshooting of rolling of a vehicle and vibration generated with delay behind steering and to reduce the possibility that a driver has a sense of incompatibility or a sense of uneasiness by controlling braking/driving power differences between right and left wheels so that the rolling of the vehicle generated behind steering is reduced. <P>SOLUTION: The actual steering angle δ of the right and left front wheels is calculated (S20), and target moment Mt based upon the braking/driving power difference between the right and left wheels to be imparted to the wheel is calculated (S30) to make the actual roll angle of the vehicle follow up a target roll angle of the vehicle based upon the steering angle of the steering wheel; and the requested braking/driving power F of the whole vehicle by a driver is calculated based upon an accelerator opening extent ψ and master cylinder pressure Pm (S40) and target braking/driving power Xi of each wheel is calculated based upon the target moment Mt and requested braking/driving power F (S50). Then motor-driven dynamos 12FL to 12RR or a friction controller 16 is controlled so that the braking/driving power of each wheel reach the target braking/driving power Xi (S60). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車輌の運動制御装置に係り、更に詳細には左右輪間の制駆動力差を制御する車輌の運動制御装置に係る。   The present invention relates to a vehicle motion control device, and more particularly to a vehicle motion control device that controls a difference in braking / driving force between left and right wheels.

自動車等の車輌の運動制御装置の一つとして、例えば本願出願人の出願にかかる下記の特許文献1に記載されている如く、車輌の実ヨーレートが運転者の運転操作に基づく車輌の目標ヨーレートになるよう後輪の舵角及び左右後輪の駆動力を制御する運動制御装置が従来より知られている。   As one of the motion control devices for vehicles such as automobiles, for example, as described in the following Patent Document 1 relating to the application of the present applicant, the actual yaw rate of the vehicle becomes the target yaw rate of the vehicle based on the driving operation of the driver. Conventionally, a motion control device that controls the steering angle of the rear wheels and the driving force of the left and right rear wheels is known.

かかる運動制御装置によれば、後輪の舵角及び左右後輪の駆動力が制御されるので、後輪の舵角のみを制御する運動制御装置や左右後輪の駆動力のみを制御する運動制御装置の場合に比して、より高度な車輌の姿勢制御を行うことができる。
特開2003−000000号公報
According to such a motion control device, the steering angle of the rear wheels and the driving force of the left and right rear wheels are controlled. Therefore, the motion control device that controls only the steering angle of the rear wheels and the motion that controls only the driving force of the left and right rear wheels. Compared to the control device, it is possible to perform more advanced vehicle attitude control.
JP 2003-000000 A

しかし上述の如き従来の運動制御装置に於いては、後輪の舵角及び左右後輪の駆動力が制御されるが、車輌の実ヨーレートが運転者の運転操作に基づく車輌の目標ヨーレートになるようにしか制御されないため、車輌の旋回時のロールを適正に制御することができない。   However, in the conventional motion control device as described above, the steering angle of the rear wheels and the driving force of the left and right rear wheels are controlled, but the actual yaw rate of the vehicle becomes the target yaw rate of the vehicle based on the driving operation of the driver. Therefore, the roll when the vehicle turns can not be controlled properly.

即ち、車輌の旋回時には運転者による操舵に遅れて車輌の横加速度が発生し、車輌の横加速度に遅れて車輌のロール運動が発生する。ロール運動は車輌の横加速度に対し二次の遅れ系の現象であり、操舵に対し遅れて車輌のロールのオーバーシュートや振動が発生するため、車輌の実ヨーレートが車輌の目標ヨーレートになるように制御されてもこれらの現象を効果的に低減することができず、そのため車輌の旋回状況によっては運転者が異和感や不安感を感じることが避けられない。   That is, when the vehicle turns, lateral acceleration of the vehicle is generated behind the steering by the driver, and rolling motion of the vehicle occurs behind the lateral acceleration of the vehicle. Roll motion is a second-order lag phenomenon with respect to the lateral acceleration of the vehicle. Overshoot and vibration of the vehicle roll occur behind the steering, so that the actual yaw rate of the vehicle becomes the target yaw rate of the vehicle. Even if it is controlled, these phenomena cannot be effectively reduced. Therefore, depending on the turning situation of the vehicle, it is inevitable that the driver feels uncomfortable or uneasy.

本発明は、車輌の実ヨーレートが車輌の目標ヨーレートになるよう後輪の舵角若しくは左右後輪の駆動力を制御する従来の運動制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、操舵に対し遅れて発生する車輌のロールが低減されるよう左右輪間の制駆動力差を制御することにより、操舵に対し遅れて発生する車輌のロールのオーバーシュートや振動を低減し、運転者が異和感や不安感を感じる虞れを低減することである。   The present invention has been made in view of the above-described problems in the conventional motion control device that controls the steering angle of the rear wheels or the driving force of the left and right rear wheels so that the actual yaw rate of the vehicle becomes the target yaw rate of the vehicle. The main problem of the present invention is to control the difference in braking / driving force between the left and right wheels so that the roll of the vehicle that is delayed with respect to the steering is reduced, so that the roll of the vehicle that is delayed with respect to the steering is controlled. This is to reduce overshoot and vibration, and reduce the possibility that the driver will feel uncomfortable or uneasy.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち左右輪間に制駆動力差を付与可能な車輌の運動制御装置にして、車輌の実ロール角を操舵輪の舵角に基づく車輌の目標ロール角に追従させるために車輌に付与すべき目標ヨーモーメントを演算し、車輌に付与されるヨーモーメントが前記目標ヨーモーメントになるよう左右輪間の制駆動力差を制御することを特徴とする車輌の運動制御装置によって達成される。   According to the present invention, the main problem described above is the configuration of claim 1, that is, the vehicle motion control device capable of imparting a braking / driving force difference between the left and right wheels, and the actual roll angle of the vehicle is controlled by the steering wheel. Calculates the target yaw moment to be applied to the vehicle to follow the target roll angle of the vehicle based on the angle, and controls the braking / driving force difference between the left and right wheels so that the yaw moment applied to the vehicle becomes the target yaw moment This is achieved by a vehicle motion control device.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、操舵輪の舵角に基づく車輌の目標横加速度に対応する車輌のロール角として車輌の目標ロール角を演算するよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1, the vehicle roll angle corresponding to the target lateral acceleration of the vehicle based on the steering angle of the steered wheels. The vehicle is configured to calculate a target roll angle (configuration of claim 2).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於いて、操舵輪の操舵に対する車輌の横加速度発生の遅れを考慮して車輌の目標横加速度に対応する車輌の目標ロール角を演算するよう構成される(請求項3の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration of the above-described second aspect, in consideration of the delay in the lateral acceleration of the vehicle with respect to the steering wheel, The vehicle is configured to calculate a target roll angle corresponding to the acceleration (configuration of claim 3).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、左右輪間に制駆動力差を付与することに対する車輌の横加速度発生の遅れを考慮して左右輪間の制駆動力差を制御するよう構成される(請求項4の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of the above-described claims 1 to 3, the lateral acceleration of the vehicle with respect to applying a braking / driving force difference between the left and right wheels is generated. Is configured to control the braking / driving force difference between the left and right wheels in consideration of the delay of the vehicle.

上記請求項1の構成によれば、車輌の実ロール角を操舵輪の舵角に基づく車輌の目標ロール角に追従させるために車輌に付与すべき目標ヨーモーメントが演算され、車輌に付与されるヨーモーメントが目標ヨーモーメントになるよう左右輪間の制駆動力差が制御されるので、左右輪間の制駆動力差によるヨーモーメントによって車輌の実ロール角を操舵輪の舵角に基づく車輌の目標ロール角に追従させ、これにより操舵に対し遅れて発生する車輌のロールのオーバーシュートや振動を低減し、運転者が異和感や不安感を感じる虞れを低減することができる。   According to the configuration of the first aspect, the target yaw moment to be applied to the vehicle is calculated and applied to the vehicle so that the actual roll angle of the vehicle follows the target roll angle of the vehicle based on the steering angle of the steered wheels. Since the braking / driving force difference between the left and right wheels is controlled so that the yaw moment becomes the target yaw moment, the actual roll angle of the vehicle is determined based on the steering angle of the steering wheel by the yaw moment due to the braking / driving force difference between the left and right wheels. By following the target roll angle, it is possible to reduce the overshoot and vibration of the roll of the vehicle that are delayed with respect to the steering, and to reduce the possibility that the driver will feel uncomfortable or uneasy.

また上記請求項2の構成によれば、操舵輪の舵角に基づく車輌の目標横加速度に対応する車輌のロール角として車輌の目標ロール角が演算されるので、車輌の実ロール角を追従させる目標としての目標ロール角を確実に演算することができる。   Further, according to the configuration of the second aspect, the target roll angle of the vehicle is calculated as the roll angle of the vehicle corresponding to the target lateral acceleration of the vehicle based on the steering angle of the steered wheels, so that the actual roll angle of the vehicle is made to follow. The target roll angle as a target can be reliably calculated.

また上記請求項3の構成によれば、操舵輪の操舵に対する車輌の横加速度発生の遅れを考慮して車輌の目標横加速度に対応する車輌の目標ロール角が演算されるので、操舵輪の操舵に対する車輌の横加速度発生の遅れが考慮されない場合に比して、車輌の目標横加速度に対応する車輌の目標ロール角を適正に演算することができる。   According to the third aspect of the present invention, the target roll angle of the vehicle corresponding to the target lateral acceleration of the vehicle is calculated in consideration of the delay in the generation of the lateral acceleration of the vehicle with respect to the steering of the steering wheel. Compared with the case where the delay in the lateral acceleration of the vehicle is not taken into account, the target roll angle of the vehicle corresponding to the target lateral acceleration of the vehicle can be calculated appropriately.

また上記請求項4の構成によれば、左右輪間に制駆動力差を付与することに対する車輌の横加速度発生の遅れを考慮して左右輪間の制駆動力差が制御されるので、左右輪間に制駆動力差を付与することに対する車輌の横加速度発生の遅れが考慮されない場合に比して、左右輪間の制駆動力差を適正に制御することができる。   According to the configuration of claim 4, the difference in braking / driving force between the left and right wheels is controlled in consideration of the delay in the lateral acceleration of the vehicle with respect to the difference in braking / driving force between the left and right wheels. The braking / driving force difference between the left and right wheels can be appropriately controlled as compared with the case where the delay of the lateral acceleration generation of the vehicle with respect to applying the braking / driving force difference between the wheels is not taken into consideration.

〔課題解決手段の好ましい態様〕
図3に示されている如く、車輌100のロール剛性をKrとし、車輌のばね上質量をMsとし、車輌のロール軸102と重心との間の距離をHsとし、車輌のロール角をφとし、図3には示されていないショックアブソーバによるばね上の単位ロール角速度当りのロールモーメントをCrとし、重力加速度をgとすると、車輌100がそのロール軸102の周りにロールする場合のロールモーメントの和ΣMxは下記の式1により表される。

Figure 2006044293
[Preferred embodiment of problem solving means]
As shown in FIG. 3, the roll stiffness of the vehicle 100 is Kr, the sprung mass of the vehicle is Ms, the distance between the roll axis 102 of the vehicle and the center of gravity is Hs, and the roll angle of the vehicle is φ. 3, assuming that the roll moment per unit roll angular velocity on the spring by a shock absorber not shown in FIG. 3 is Cr and the gravitational acceleration is g, the roll moment when the vehicle 100 rolls around its roll axis 102 is shown. The sum ΣMx is expressed by Equation 1 below.
Figure 2006044293

また車輌100のロール慣性モーメントをIrとすると、車輌100のロール軸102の周りに作用する外力の和ΣLは下記の式2により表される。

Figure 2006044293
Further, assuming that the roll inertia moment of the vehicle 100 is Ir, the sum ΣL of the external force acting around the roll shaft 102 of the vehicle 100 is expressed by the following formula 2.
Figure 2006044293

車輌100のロール軸102の周りに作用する力の釣り合いより上記ロールモーメントの和ΣMx及び外力の和ΣLは互いに等しいので、上記式1及び2より下記の式3が成立する。

Figure 2006044293
Since the roll moment sum ΣMx and the external force sum ΣL are equal to each other from the balance of forces acting around the roll shaft 102 of the vehicle 100, the following formula 3 is established from the above formulas 1 and 2.
Figure 2006044293

上記式3をラプラス変換し、車輌のロール角φについて解くことにより、車輌のロール角φは下記の式4により表される。

Figure 2006044293
The Laplace transform of Equation 3 above and solving for the vehicle roll angle φ yields the vehicle roll angle φ expressed by Equation 4 below.
Figure 2006044293

但し上記式4に於けるGrは下記の式5により表されるロールゲインである。

Figure 2006044293
However, Gr in the above equation 4 is a roll gain represented by the following equation 5.
Figure 2006044293

操舵による車輌の横加速度をGysとし、左右輪の制駆動力差ヨーモーメントによる車輌の横加速度をGymとすると、車輌の横加速度GyはGysとGymとの和であるので、Gy=Gys+Gymである。   If the lateral acceleration of the vehicle by steering is Gys and the lateral acceleration of the vehicle by the braking / driving force difference yaw moment between the left and right wheels is Gym, the lateral acceleration Gy of the vehicle is the sum of Gis and Gym, so Gy = Gys + Gym. .

車輌のロールのオーバーシュートや振動をなくすべく、操舵による車輌の横加速度をGysに対応する車輌のロール角GrGysを車輌の目標ロール角とし、左右輪の制駆動力差によるヨーモーメントを車輌に付与することによって車輌のロール角を目標ロール角に追従させるとすると、上記式4より車輌の目標ロール角GrGys(S)は下記の式6により表される。

Figure 2006044293
In order to eliminate overshoot and vibration of the vehicle roll, the vehicle roll angle GrGys corresponding to Gys is the vehicle's lateral acceleration due to steering, and the yaw moment due to the braking / driving force difference between the left and right wheels is given to the vehicle Thus, assuming that the roll angle of the vehicle follows the target roll angle, the target roll angle GrGys (S) of the vehicle is expressed by the following expression 6 from the above expression 4.
Figure 2006044293

また上記式6を左右輪の制駆動力差ヨーモーメントによる車輌の横加速度をGym(S)について解くと、横加速度Gym(S)は下記の式7により表される。

Figure 2006044293
Further, when the above equation 6 is solved with respect to the lateral acceleration of the vehicle due to the braking / driving force difference yaw moment between the left and right wheels with respect to Gym (S), the lateral acceleration Gym (S) is expressed by the following equation 7.
Figure 2006044293

車輌の横加速度Gyの一次及び二次の進み時定数をそれぞれT1及びT2とし、車輌のヨー減衰比をζとし、車輌の固有振動数をωnとし、実舵角δに対する横加速度ゲインをGgysとすると、操舵(前輪の実舵角δ)に対する車輌の横加速度Gyの応答は既知であり、下記の式8により表される。

Figure 2006044293
The primary and secondary advance time constants of the lateral acceleration Gy of the vehicle are T1 and T2, respectively, the yaw damping ratio of the vehicle is ζ, the natural frequency of the vehicle is ωn, and the lateral acceleration gain with respect to the actual steering angle δ is Ggys. Then, the response of the vehicle lateral acceleration Gy to the steering (the actual steering angle δ of the front wheels) is known, and is expressed by the following equation (8).
Figure 2006044293

また左右輪の制駆動力差ヨーモーメントをMとし、車速をVとし、前輪(一輪分)のコーナリングパワーをKcfとし、後輪(一輪分)のコーナリングパワーをKcrとし、車輌のヨー慣性モーメントをIyとし、車輌の重心と前輪車軸との間の車輌前後方向の距離をLfとし、車輌の重心と後輪車軸との間の車輌前後方向の距離をLrとし、車輌のヨーレートをγとし、車輌のスリップ角をβとすると、周知の如く車輌の横方向の力の釣り合いより下記の式9が成立し、車輌の重心周りのヨー方向の力の釣り合いより下記の式10が成立する。

Figure 2006044293
The left and right wheel braking / driving force difference yaw moment is M, the vehicle speed is V, the cornering power of the front wheel (for one wheel) is Kcf, the cornering power of the rear wheel (for one wheel) is Kcr, and the yaw moment of inertia of the vehicle is Iy, Lf is the distance in the vehicle longitudinal direction between the center of gravity of the vehicle and the front axle, Lr is the distance in the vehicle longitudinal direction between the center of gravity of the vehicle and the rear axle, and γ is the yaw rate of the vehicle. As is well known, the following equation 9 is established from the balance of the lateral force of the vehicle, and the following equation 10 is established from the balance of the force in the yaw direction around the center of gravity of the vehicle.
Figure 2006044293

上記式9及び10の連立方程式をラプラス変換し、ヨーレートγ及びスリップ角βについて解き、更にGy=V(γ+dβ/dt)の関係を用いることにより、左右輪の制駆動力差ヨーモーメントMに対する横加速度ゲインをGgymとして、左右輪の制駆動力差ヨーモーメントMに対する車輌の横加速度Gyの応答は下記の式11により表される。

Figure 2006044293
The simultaneous equations of the above equations 9 and 10 are Laplace transformed, solved for the yaw rate γ and slip angle β, and further using the relationship of Gy = V (γ + dβ / dt), the lateral force with respect to the braking / driving force difference yaw moment M of the left and right wheels. The response of the lateral acceleration Gy of the vehicle to the braking / driving force difference yaw moment M between the left and right wheels is expressed by the following equation 11 where the acceleration gain is Ggym.
Figure 2006044293

上記式8及び11を上記式7に代入し、左右輪の制駆動力差ヨーモーメントM(S)について解くことにより、左右輪の制駆動力差ヨーモーメントM(S)は下記の式12により表され

Figure 2006044293
Substituting the above formulas 8 and 11 into the above formula 7 and solving for the braking / driving force difference yaw moment M (S) of the left and right wheels, the braking / driving force difference yaw moment M (S) of the left and right wheels can be calculated by the following formula 12. Represented
Figure 2006044293

但し上記式12に於けるGmは下記の式13により表されるモーメントゲインである。

Figure 2006044293
However, Gm in the above equation 12 is a moment gain represented by the following equation 13.
Figure 2006044293

従って本発明の一つの好ましい態様によれば、上記請求項1乃至4の構成に於いて、上記式12に対応する下記の式14に従って左右輪の制駆動力差による目標ヨーモーメントMt(S)を演算するよう構成される(好ましい態様1)。

Figure 2006044293
Therefore, according to one preferred aspect of the present invention, in the configuration of claims 1 to 4, the target yaw moment Mt (S) due to the braking / driving force difference between the left and right wheels according to the following equation 14 corresponding to the equation 12: (Preferred aspect 1).
Figure 2006044293

次に目標ヨーモーメントMtを達成するための各車輪の目標制駆動力の演算要領について説明する。   Next, the calculation procedure of the target braking / driving force of each wheel for achieving the target yaw moment Mt will be described.

駆動側を正として左前輪、右前輪、左後輪、右後輪の目標制駆動力をXti(i=fl、fr、rl、rr)とし、運転者による車輌全体の要求制駆動力をFとし、前輪及び後輪のトレッドをそれぞれDf及びDrとすると、下記の式15及び16が成立する。
Xtfl+Xtfr+Xtrl+Xtrr=F ……(15)
Df(Xtfr−Xtfl)+Dr(Xtrr−Xtrl)=2Mt ……(16)
The target braking / driving force of the left front wheel, right front wheel, left rear wheel, and right rear wheel is assumed to be Xti (i = fl, fr, rl, rr) with the driving side as positive, and the driver's required braking / driving force of the entire vehicle is F Assuming that the front and rear treads are Df and Dr, respectively, the following equations 15 and 16 are established.
Xtfl + Xtfr + Xtrl + Xtrr = F (15)
Df (Xtfr-Xtfl) + Dr (Xtrr-Xtrl) = 2Mt (16)

また前後輪の制駆動力配分比をj:(1−j)(但し0≦j≦1である)とし、前後輪のヨーモーメント配分比をk:(1−k)(但し0≦k≦1である)とすると、下記の式17及び18が成立する。
(1−j)(Xtfl+Xtfr)−j(Xtrl+Xtrr)=0 ……(17)
Df(1−k)(Xtfr−Xtfl)−Dr・k(Xtrr−Xtrl)=0 ……(18)
The braking / driving force distribution ratio of the front and rear wheels is j: (1-j) (where 0 ≦ j ≦ 1), and the yaw moment distribution ratio of the front and rear wheels is k: (1-k) (where 0 ≦ k ≦). 1), the following equations 17 and 18 hold.
(1-j) (Xtfl + Xtfr) -j (Xtrl + Xtrr) = 0 (17)
Df (1-k) (Xtfr-Xtfl) -Dr.k (Xtrr-Xtrl) = 0 (18)

上記式15〜18を行列式にまとめると、下記の式19が成立し、式19より各車輪の目標制駆動力Xtiを演算することができる。

Figure 2006044293
When the above formulas 15 to 18 are put together into a determinant, the following formula 19 is established, and the target braking / driving force Xti of each wheel can be calculated from the formula 19.
Figure 2006044293

上記式19の各項を下記式20〜22の通りに置き換えると、上記式19は下記式23となる。

Figure 2006044293
AX=B ……(23) When each term of the formula 19 is replaced as the following formulas 20 to 22, the formula 19 becomes the following formula 23.
Figure 2006044293
AX = B (23)

上記式23の解Xを求める方法として一般的な逆行列A-1を求める方法があるが、行列AをLU分解することで比較的容易に解Xを求めることができるので、LU分解法を採用する。 There is a general method for obtaining the inverse matrix A −1 as a method for obtaining the solution X of Equation 23. Since the solution X can be obtained relatively easily by subjecting the matrix A to LU decomposition, the LU decomposition method is used. adopt.

行列Aは下記の式24及び25にて表される単位下方三角行列L及び単位上方三角行列Uに分解可能である。

Figure 2006044293
The matrix A can be decomposed into a unit lower triangular matrix L and a unit upper triangular matrix U expressed by the following equations 24 and 25.
Figure 2006044293

上記式23は下記の式26となるので、UX=Cを満たすベクトルCを設定し、下記の式27を満たすベクトルCを求める。
A・X=LUX=B ……(26)
LC=B ……(27)
Since the above equation 23 becomes the following equation 26, a vector C satisfying UX = C is set, and a vector C satisfying the following equation 27 is obtained.
A ・ X = LUX = B (26)
LC = B (27)

求めるべきベクトルCをCT=[C0 C1 C2 C3]とすると、上記式27は下記式28となる。

Figure 2006044293
Assuming that the vector C to be obtained is C T = [C 0 C 1 C 2 C 3], the above equation 27 becomes the following equation 28:
Figure 2006044293

上記式28より、ベクトルCの各要素C0〜C3は下記の式29〜32の通りに求められる。   From the above equation 28, the elements C0 to C3 of the vector C are obtained as the following equations 29 to 32.

C0=F ……(29)
C1=2M−DfC0
=2M−DfF ……(30)
C2=−(1−j)C0
=−(1−j)F ……(31)
C3=−Df(1−k)C0−(1−k)C1−DrC2
=−Df(1−k)F−(1−k)(2M−DfF)+Dr(1−j)F
=−2M(1−k)+Dr(1−j)F ……(32)
上記式UX=Cは下記の式33となる。
C0 = F (29)
C1 = 2M-DfC0
= 2M-DfF (30)
C2 =-(1-j) C0
=-(1-j) F (31)
C3 = -Df (1-k) C0- (1-k) C1-DrC2
= -Df (1-k) F- (1-k) (2M-DfF) + Dr (1-j) F
= -2M (1-k) + Dr (1-j) F (32)
The above equation UX = C becomes the following equation 33.

Figure 2006044293
Figure 2006044293

上記式33をXについて解くことにより、下記の式34〜37の通り各車輪の目標制駆動力Xtiを演算することができる。

Figure 2006044293
By solving the above equation 33 for X, the target braking / driving force Xti of each wheel can be calculated as in the following equations 34-37.
Figure 2006044293

尚一般に、前輪のトレッドDf及び後輪のトレッドDrは実質的に互いに等しく、Dr/Df≒1、Dr−Df≒0であるので、上記式34〜37より各車輪の目標制駆動力Xtiを下記の式38〜41の通り演算することができる。

Figure 2006044293
In general, the tread Df for the front wheels and the tread Dr for the rear wheels are substantially equal to each other, and Dr / Df≈1 and Dr−Df≈0. Therefore, the target braking / driving force Xti of each wheel is obtained from the above equations 34 to 37. It can be calculated as in the following equations 38-41.
Figure 2006044293

従って本発明の他の一つの好ましい態様によれば、上記請求項1乃至4の構成に於いて、上記式34〜37に従って各車輪の目標制駆動力Xtiを演算するよう構成される(好ましい態様2)。   Therefore, according to another preferred aspect of the present invention, in the configuration of claims 1 to 4, the target braking / driving force Xti of each wheel is calculated according to the equations 34 to 37 (preferred mode). 2).

また本発明の他の一つの好ましい態様によれば、上記請求項1乃至4の構成に於いて、上記式38〜41に従って各車輪の目標制駆動力Xtiを演算するよう構成される(好ましい態様3)。   According to another preferred aspect of the present invention, in the configuration of claims 1 to 4, the target braking / driving force Xti of each wheel is calculated according to the formulas 38 to 41 (preferred mode). 3).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至4の構成に於いて、運転者による車輌全体の要求制駆動力は運転者の駆動操作量及び制動操作量に基づいて演算されるよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the configuration of claims 1 to 4, the required braking / driving force of the entire vehicle by the driver is calculated based on the driving operation amount and the braking operation amount of the driver. (Preferred aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至4の構成に於いて、車輌はそれぞれ対応する車輪を駆動する独立の電動機を有するよう構成される(好ましい態様5)。   According to another preferred aspect of the present invention, in the configuration of the above first to fourth aspects, the vehicle is configured to have independent electric motors for driving the corresponding wheels (preferred aspect 5).

本発明の他の一つの好ましい態様によれば、上記好ましい態様5の構成に於いて、電動機は回生制動を行うよう構成される(好ましい態様6)。   According to another preferred embodiment of the present invention, in the configuration of the preferred embodiment 5, the electric motor is configured to perform regenerative braking (preferred embodiment 6).

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.

図1はホイールインモータ式の四輪駆動車に適用された本発明による車輌の運動制御装置の一つの実施例を示す概略構成図である。   FIG. 1 is a schematic diagram showing one embodiment of a vehicle motion control apparatus according to the present invention applied to a wheel-in-motor four-wheel drive vehicle.

図1に於いて、10FL及び10FRはそれぞれ左右の前輪を示し、10RL及び10RRはそれぞれ左右の後輪を示している。左右の前輪10FL及び10FRにはそれぞれホイールインモータである電動発電機12FL及び12FRが組み込まれており、左右の前輪10FL及び10FRは電動発電機12FL及び12FRにより駆動され、電動発電機12FL及び12FRは駆動力制御用電子制御装置14により制御される。電動発電機12FL及び12FRはそれぞれ左右前輪の発電機としても機能し、回生発電機としての機能(回生駆動)も駆動力制御用電子制御装置14により制御される。   In FIG. 1, 10FL and 10FR respectively indicate left and right front wheels, and 10RL and 10RR respectively indicate left and right rear wheels. Motor generators 12FL and 12FR, which are wheel-in motors, are incorporated in the left and right front wheels 10FL and 10FR, respectively. The left and right front wheels 10FL and 10FR are driven by the motor generators 12FL and 12FR, and the motor generators 12FL and 12FR are It is controlled by the electronic controller 14 for driving force control. The motor generators 12FL and 12FR also function as left and right front wheel generators, respectively, and the function as a regenerative generator (regenerative drive) is also controlled by the driving force control electronic control unit 14.

同様に、左右の後輪10RL及び10RRにはそれぞれホイールインモータである電動発電機12RL及び12RRが組み込まれており、左右の前輪10RL及び10RRは電動発電機12RL及び12RRにより駆動され、電動発電機12RL及び12RRも駆動力制御用電子制御装置14により制御される。電動発電機12RL及び12RRはそれぞれ左右後輪の発電機としても機能し、回生発電機としての機能も駆動力制御用電子制御装置14により制御される。   Similarly, motor generators 12RL and 12RR, which are wheel-in motors, are incorporated in the left and right rear wheels 10RL and 10RR, respectively. The left and right front wheels 10RL and 10RR are driven by the motor generators 12RL and 12RR, and the motor generator 12RL and 12RR are also controlled by the electronic controller 14 for driving force control. The motor generators 12RL and 12RR also function as left and right rear wheel generators, respectively, and the function as a regenerative generator is also controlled by the driving force control electronic control unit 14.

尚図1には詳細に示されていないが、駆動力制御用電子制御装置14はマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えば中央処理ユニット(CPU)と、リードオンリメモリ(ROM)と、ランダムアクセスメモリ(RAM)と、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。また通常走行時には図1には示されていないバッテリに充電された電力が駆動回路を経て各電動発電機12FL〜12RRへ供給され、車輌の減速制動時には各電動発電機12FL〜12RRによる回生制動により発電された電力が駆動回路を経てバッテリに充電される。   Although not shown in detail in FIG. 1, the electronic controller 14 for controlling the driving force includes a microcomputer and a driving circuit. The microcomputer includes, for example, a central processing unit (CPU), a read only memory (ROM), and the like. It may have a general configuration including a random access memory (RAM) and an input / output port device, which are connected to each other by a bidirectional common bus. Further, during normal running, electric power charged in a battery not shown in FIG. 1 is supplied to the motor generators 12FL to 12RR through the drive circuit, and during deceleration braking of the vehicle, regenerative braking by the motor generators 12FL to 12RR is performed. The generated power is charged to the battery via the drive circuit.

左右の前輪10FL、10FR及び左右の後輪10RL、10RRの摩擦制動力は摩擦制動装置16の油圧回路18により対応するホイールシリンダ20FL、20FR、20RL、20RRの制動圧が制御されることによっても制御される。図には示されていないが、油圧回路18はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧力はブレーキペダル22の踏み込みに応じて駆動されるマスタシリンダ24の圧力に応じてオイルポンプや種々の弁装置が制動力制御用電子制御装置26によって制御されることにより制御される。   The friction braking force of the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR is also controlled by controlling the braking pressures of the corresponding wheel cylinders 20FL, 20FR, 20RL, 20RR by the hydraulic circuit 18 of the friction braking device 16. Is done. Although not shown in the drawing, the hydraulic circuit 18 includes a reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is the pressure of the master cylinder 24 that is driven in response to depression of the brake pedal 22. Accordingly, the oil pump and various valve devices are controlled by being controlled by the braking force control electronic control device 26.

尚図1には詳細に示されていないが、制動力制御用電子制御装置26もマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えば中央処理ユニット(CPU)と、リードオンリメモリ(ROM)と、ランダムアクセスメモリ(RAM)と、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, the braking force control electronic control unit 26 also includes a microcomputer and a drive circuit. The microcomputer includes, for example, a central processing unit (CPU), a read-only memory (ROM), and the like. It may have a general configuration including a random access memory (RAM) and an input / output port device, which are connected to each other by a bidirectional common bus.

駆動力制御用電子制御装置14には、アクセル開度センサ28より運転者によって操作される図には示されていないアクセルペダルの踏み込み量としてのアクセル開度φを示す信号が入力され、また操舵角センサ30より操舵角θを示す信号が入力される。尚操舵角センサ30は車輌の左旋回方向を正として操舵角θを検出する。   The driving force control electronic control device 14 is supplied with a signal indicating the accelerator opening φ as an accelerator pedal depression amount not shown in the figure operated by the driver from the accelerator opening sensor 28, and steering. A signal indicating the steering angle θ is input from the angle sensor 30. The steering angle sensor 30 detects the steering angle θ with the left turning direction of the vehicle as positive.

制動力制御用電子制御装置26には、圧力センサ36よりマスタシリンダ圧力Pmを示す信号、圧力センサ38FL〜38RRより対応する車輪の制動圧(ホイールシリンダ圧力)Pi(i=fl、fr、rl、rr)を示す信号が入力される。駆動力制御用電子制御装置14及び制動力制御用電子制御装置26は必要に応じて相互に信号の授受を行う。   The braking force control electronic control unit 26 has a signal indicating the master cylinder pressure Pm from the pressure sensor 36, and a corresponding wheel braking pressure (wheel cylinder pressure) Pi (i = fl, fr, rl,) from the pressure sensors 38FL to 38RR. rr) is input. The driving force control electronic control device 14 and the braking force control electronic control device 26 exchange signals with each other as necessary.

駆動力制御用電子制御装置14は、操舵角θに基づき左右前輪の実舵角δを演算すると共に、実舵角δに基づき上記式14に従って左右輪の制駆動力差による目標ヨーモーメントMt(S)を演算する。また駆動力制御用電子制御装置14は、アクセル開度φ及びマスタシリンダ圧力Pmに基づき運転者による車輌全体の要求制駆動力F(駆動方向を正とする)を演算し、目標ヨーモーメントMt及び要求制駆動力Fに基づき上記式38〜41に従って各車輪の目標制駆動力Xi(i=fl、fr、rl、rr)を演算し、目標制駆動力Xiに基づき電動発電機12FL〜12RRに対する目標駆動電流Iti(i=fl、fr、rl、rr)を演算し、目標駆動電流Itiに基づき各電動発電機12FL〜12RRに通電される駆動電流を制御することにより各車輪の制駆動力が目標制駆動力Xiになるよう各車輪の制駆動力を制御する。   The electronic control unit 14 for driving force control calculates the actual steering angle δ of the left and right front wheels based on the steering angle θ, and based on the actual steering angle δ, the target yaw moment Mt ( S) is calculated. The driving force control electronic control unit 14 calculates the required braking / driving force F (the driving direction is positive) of the entire vehicle by the driver based on the accelerator opening φ and the master cylinder pressure Pm, and the target yaw moment Mt and Based on the required braking / driving force F, the target braking / driving force Xi (i = fl, fr, rl, rr) of each wheel is calculated according to the above formulas 38 to 41, and the motor generators 12FL to 12RR are calculated based on the target braking / driving force Xi. The target driving current Iti (i = fl, fr, rl, rr) is calculated, and the braking / driving force of each wheel is controlled by controlling the driving current supplied to each motor generator 12FL-12RR based on the target driving current Iti. The braking / driving force of each wheel is controlled to achieve the target braking / driving force Xi.

この場合駆動力制御用電子制御装置14は、何れかの車輪の目標制駆動力Xiが当該車輪の最大回生制動力よりも大きい負の値であるときには、当該車輪の制駆動力が目標制駆動力Xiになるよう電動発電機12FL〜12RRにより回生制動し、何れかの車輪の目標制駆動力Xiが当該車輪の最大回生制動力よりも小さい負の値であるときには、当該車輪の回生制動力が最大回生制動力になるよう電動発電機12FL〜12RRを制御し、目標制駆動力Xi−最大回生制動力に相当する目標摩擦制動力を示す信号を制動力制御用電子制御装置26へ出力する。制動力制御用電子制御装置26は、目標摩擦制動力を示す信号が入力されると、目標摩擦制動力に基づき当該車輪の目標制動圧Pti(i=fl、fr、rl、rr)を演算し、当該車輪の制動圧が目標制動圧Ptiになるよう摩擦制動装置16を制御する。   In this case, when the target braking / driving force Xi of any wheel is a negative value larger than the maximum regenerative braking force of the wheel, the driving force control electronic control unit 14 determines that the braking / driving force of the wheel is the target braking / driving force. When regenerative braking is performed by the motor generators 12FL to 12RR so that the force becomes Xi, and the target braking / driving force Xi of any wheel is a negative value smaller than the maximum regenerative braking force of the wheel, the regenerative braking force of the wheel The motor generators 12FL to 12RR are controlled so that becomes the maximum regenerative braking force, and a signal indicating the target frictional braking force corresponding to the target braking / driving force Xi−maximum regenerative braking force is output to the braking force control electronic control unit 26. . When a signal indicating the target friction braking force is input, the braking force control electronic control unit 26 calculates a target braking pressure Pti (i = fl, fr, rl, rr) of the wheel based on the target friction braking force. The friction braking device 16 is controlled so that the braking pressure of the wheel becomes the target braking pressure Pti.

次に図2に示されたフローチャートを参照して図示の実施例に於ける車輌の運動制御ルーチンについて説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチが閉成されることにより開始され、イグニッションスイッチが開成されるまで所定の時間毎に繰返し実行される。また以下の説明に於いて、iはそれぞれ左前輪、右前輪、左後輪、右後輪を示すfl、fr、rl、rrである。   Next, a vehicle motion control routine in the illustrated embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started when an ignition switch (not shown) is closed, and is repeatedly executed every predetermined time until the ignition switch is opened. In the following description, i is fl, fr, rl, and rr indicating the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, respectively.

まずステップ10に於いてはアクセル開度センサ28により検出されたアクセル開度φを示す信号等の読み込みが行われ、ステップ20に於いてはステアリングギヤ比をNとしてθ/Nにより左右前輪の実舵角δが演算され、ステップ30に於いては上記式14に従って左右輪の制駆動力差による目標ヨーモーメントMtが演算される。   First, in step 10, a signal indicating the accelerator opening φ detected by the accelerator opening sensor 28 is read, and in step 20, the steering gear ratio is set to N, and the actual left and right front wheels are calculated by θ / N. The steering angle δ is calculated, and in step 30, the target yaw moment Mt according to the braking / driving force difference between the left and right wheels is calculated according to the above equation 14.

ステップ40に於いてはアクセル開度φ及びマスタシリンダ圧力Pmに基づき図には示されていないマップ又は関数により車輌全体の要求制駆動力Fが演算され、ステップ50に於いては上記式38〜41に従って各車輪の目標制駆動力Xiが演算され、ステップ60に於いては各車輪の制駆動力が目標制駆動力Xiになるよう電動発電機12FL〜12RR若しくは摩擦制動装置16が制御される。   In step 40, the required braking / driving force F of the entire vehicle is calculated based on the accelerator opening φ and the master cylinder pressure Pm by a map or function not shown in the figure. 41, the target braking / driving force Xi of each wheel is calculated, and in step 60, the motor generators 12FL to 12RR or the friction braking device 16 are controlled so that the braking / driving force of each wheel becomes the target braking / driving force Xi. .

かくして図示の実施例によれば、ステップ20に於いて左右前輪の実舵角δが演算され、ステップ30に於いて左右輪の制駆動力差による目標ヨーモーメントMtが演算され、ステップ40に於いてアクセル開度φ及びマスタシリンダ圧力Pmに基づき運転者による車輌全体の要求制駆動力Fが演算され、ステップ50に於いて目標ヨーモーメントMt及び要求制駆動力Fに基づき各車輪の目標制駆動力Xiが演算され、ステップ60に於いて各車輪の制駆動力が目標制駆動力Xiになるよう電動発電機12FL〜12RR若しくは摩擦制動装置16が制御される。   Thus, according to the illustrated embodiment, in step 20, the actual steering angle δ of the left and right front wheels is calculated, and in step 30, the target yaw moment Mt due to the braking / driving force difference between the left and right wheels is calculated. Then, the required braking / driving force F of the entire vehicle by the driver is calculated based on the accelerator opening φ and the master cylinder pressure Pm. In step 50, the target braking / driving of each wheel is calculated based on the target yaw moment Mt and the required braking / driving force F. The force Xi is calculated, and in step 60, the motor generators 12FL to 12RR or the friction braking device 16 are controlled so that the braking / driving force of each wheel becomes the target braking / driving force Xi.

前述の如く、上記式14に従って演算される左右輪の制駆動力差による目標ヨーモーメントMtは車輌の実ロール角を操舵輪の舵角に基づく車輌の目標ロール角に追従させるために車輌に付与すべき目標ヨーモーメントであり、上記式6により表わされる車輌の目標ロール角は操舵輪の舵角に基づく車輌の目標横加速度に対応する車輌のロール角として操舵輪の操舵に対する車輌の横加速度発生の遅れを考慮して演算され、また各車輪の目標制駆動力Xiは左右輪間に制駆動力差を付与することに対する車輌の横加速度発生の遅れを考慮して演算される。   As described above, the target yaw moment Mt due to the difference in braking / driving force between the left and right wheels calculated according to the above equation 14 is given to the vehicle so that the actual roll angle of the vehicle follows the target roll angle of the vehicle based on the steering angle of the steering wheel. The vehicle target roll angle represented by the above formula 6 is the target yaw moment to be generated, and the vehicle roll angle corresponding to the vehicle target lateral acceleration based on the steering angle of the steering wheel is the vehicle roll angle. The target braking / driving force Xi of each wheel is calculated in consideration of the delay in the lateral acceleration generation of the vehicle with respect to applying a braking / driving force difference between the left and right wheels.

従って図示の実施例によれば、左右輪間の制駆動力差によるヨーモーメントによって車輌の実ロール角を操舵輪の舵角に基づく車輌の目標ロール角に追従させ、これにより操舵に対し遅れて発生する車輌のロールのオーバーシュートや振動を低減し、運転者が異和感や不安感を感じる虞れを低減することができる。   Therefore, according to the illustrated embodiment, the actual roll angle of the vehicle is made to follow the target roll angle of the vehicle based on the steering angle of the steered wheels by the yaw moment due to the braking / driving force difference between the left and right wheels, thereby delaying the steering. The overshoot and vibration of the generated vehicle roll can be reduced, and the possibility that the driver may feel uncomfortable or uneasy can be reduced.

特に図示の実施例によれば、各車輪の目標制駆動力Xtiは上記式38〜41に従って演算されるので、各車輪の目標制駆動力Xtiが上記式34〜37に従って演算される場合に比して、各車輪の目標制駆動力を能率よく演算することができる。   In particular, according to the illustrated embodiment, the target braking / driving force Xti of each wheel is calculated according to the above formulas 38 to 41, so that the target braking / driving force Xti of each wheel is calculated according to the above equations 34 to 37. Thus, the target braking / driving force of each wheel can be calculated efficiently.

また上述の実施例に於いては、左右前輪及び左右後輪の全ての制駆動力が制御されるので、例えば左右前輪のみの制駆動力又は左右後輪のみの制駆動力により左右輪間の制駆動力差によるヨーモーメントが発生される場合に比して、左右前輪間の制駆動力差及び左右後輪間の制駆動力差を大きくすることなく確実に目標ヨーモーメントMtを達成することができる。   In the above-described embodiment, all braking / driving forces of the left and right front wheels and left and right rear wheels are controlled. For example, the braking / driving force of only the left and right front wheels or the braking / driving force of only the left and right rear wheels is used. The target yaw moment Mt is reliably achieved without increasing the braking / driving force difference between the left and right front wheels and the braking / driving force difference between the left and right rear wheels as compared to the case where the yaw moment is generated due to the braking / driving force difference. Can do.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例に於いては、各車輪の目標制駆動力Xtiは上記式38〜41に従って演算されるようになっているが、前輪のトレッドDf及び後輪のトレッドDrが相互に異なる車輌の場合には各車輪の目標制駆動力Xtiは上記式34〜37に従って演算されてもよい。   For example, in the above-described embodiment, the target braking / driving force Xti of each wheel is calculated according to the above equations 38 to 41. However, the front wheel tread Df and the rear wheel tread Dr are different from each other. In this case, the target braking / driving force Xti of each wheel may be calculated according to the above equations 34 to 37.

また上述の実施例に於いては、車輪10FL〜10RRの全てがそれぞれ電動発電機12FL〜12RRにより制駆動されるようになっているが、例えば左右後輪が内燃機関により駆動され、左右前輪がそれぞれ電動発電機により制駆動されるよう修正されてもよく、また左右前輪が内燃機関により駆動され、左右後輪がそれぞれ電動発電機により制駆動されるよう修正されてもよい。   In the above-described embodiment, all of the wheels 10FL to 10RR are driven by motor generators 12FL to 12RR. For example, the left and right rear wheels are driven by the internal combustion engine, and the left and right front wheels are driven. Each of them may be modified so as to be controlled and driven by the motor generator, or the left and right front wheels may be driven by the internal combustion engine, and the left and right rear wheels may be corrected and controlled by the motor generator.

また上述の実施例に於いては、車輪10FL〜10RRはそれぞれ電動発電機12FL〜12RRにより直接制駆動されるようになっているが、車輪10FL〜10RRはそれぞれ歯車減速機構の如き減速機構を介して電動発電機12FL〜12RRにより制駆動されるようになっていてもよい。   In the above-described embodiment, the wheels 10FL to 10RR are directly controlled and driven by the motor generators 12FL to 12RR, respectively, but the wheels 10FL to 10RR are respectively connected via a reduction mechanism such as a gear reduction mechanism. The motor generators 12FL to 12RR may be controlled and driven.

また上述の実施例に於いては、電動発電機は各車輪に組み込まれたホイールインモータであるが、電動発電機は各車輪を駆動し得る限り車体に支持された電動発電機であってもよく、また上述の実施例に於ける電動発電機は車輌の制動時に回生制動を行う電動発電機であるが、電動発電機は回生制動を行わない電動機であってもよい。   In the above-described embodiments, the motor generator is a wheel-in motor incorporated in each wheel, but the motor generator may be a motor generator supported on the vehicle body as long as it can drive each wheel. The motor generator in the above embodiment is a motor generator that performs regenerative braking when the vehicle is braked, but the motor generator may be an electric motor that does not perform regenerative braking.

ホイールインモータ式の四輪駆動車に適用された本発明による車輌の運動制御装置の一つの実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the motion control apparatus of the vehicle by this invention applied to the wheel-in-motor type four-wheel drive vehicle. 実施例に於ける車輌の運動制御ルーチンを示すフローチャートである。It is a flowchart which shows the movement control routine of the vehicle in an Example. 車輌が旋回しロールする場合にロール軸周りに作用する力を示す説明図である。It is explanatory drawing which shows the force which acts around a roll axis | shaft when a vehicle turns and rolls.

符号の説明Explanation of symbols

12FL〜12RR 電動発電機
14 駆動力制御用電子制御装置
16 摩擦制動装置
22 ブレーキペダル
26 制動力制御用電子制御装置
28 アクセル開度センサ
30 操舵角センサ
32、34FL〜34RR 圧力センサ
12FL to 12RR motor generator 14 electronic control device for driving force control 16 friction braking device 22 brake pedal 26 electronic control device for braking force control 28 accelerator opening sensor 30 steering angle sensor 32, 34FL to 34RR pressure sensor

Claims (4)

左右輪間に制駆動力差を付与可能な車輌の運動制御装置にして、車輌の実ロール角を操舵輪の舵角に基づく車輌の目標ロール角に追従させるために車輌に付与すべき目標ヨーモーメントを演算し、車輌に付与されるヨーモーメントが前記目標ヨーモーメントになるよう左右輪間の制駆動力差を制御することを特徴とする車輌の運動制御装置。   The target yaw to be given to the vehicle in order to make the vehicle's actual roll angle follow the target roll angle of the vehicle based on the steering angle of the steering wheel, using a vehicle motion control device capable of giving a braking / driving force difference between the left and right wheels. A vehicle motion control device that calculates a moment and controls a braking / driving force difference between left and right wheels so that a yaw moment applied to the vehicle becomes the target yaw moment. 操舵輪の舵角に基づく車輌の目標横加速度に対応する車輌のロール角として車輌の目標ロール角を演算することを特徴とする請求項1に記載の車輌の運動制御装置。   2. The vehicle motion control device according to claim 1, wherein the vehicle target roll angle is calculated as the vehicle roll angle corresponding to the target lateral acceleration of the vehicle based on the steering angle of the steered wheels. 操舵輪の操舵に対する車輌の横加速度発生の遅れを考慮して車輌の目標横加速度に対応する車輌の目標ロール角を演算することを特徴とする請求項2に記載の車輌の運動制御装置。   3. The vehicle motion control apparatus according to claim 2, wherein a target roll angle of the vehicle corresponding to the target lateral acceleration of the vehicle is calculated in consideration of a delay in generation of the lateral acceleration of the vehicle with respect to steering of the steered wheels. 左右輪間に制駆動力差を付与することに対する車輌の横加速度発生の遅れを考慮して左右輪間の制駆動力差を制御することを特徴とする請求項1乃至3に記載の車輌の運動制御装置。
4. The vehicle according to claim 1, wherein the difference in braking / driving force between the left and right wheels is controlled in consideration of a delay in the lateral acceleration of the vehicle with respect to the difference in braking / driving force between the left and right wheels. 5. Motion control device.
JP2004223979A 2004-07-30 2004-07-30 Movement controller for vehicle Pending JP2006044293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223979A JP2006044293A (en) 2004-07-30 2004-07-30 Movement controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223979A JP2006044293A (en) 2004-07-30 2004-07-30 Movement controller for vehicle

Publications (1)

Publication Number Publication Date
JP2006044293A true JP2006044293A (en) 2006-02-16

Family

ID=36023371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223979A Pending JP2006044293A (en) 2004-07-30 2004-07-30 Movement controller for vehicle

Country Status (1)

Country Link
JP (1) JP2006044293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133182A1 (en) * 2015-02-19 2016-08-25 本田技研工業株式会社 Vehicle
US9694819B2 (en) 2015-02-19 2017-07-04 Honda Motor Co., Ltd. Vehicle
US9725014B2 (en) 2013-07-31 2017-08-08 Honda Motor Co., Ltd. Vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725014B2 (en) 2013-07-31 2017-08-08 Honda Motor Co., Ltd. Vehicle
WO2016133182A1 (en) * 2015-02-19 2016-08-25 本田技研工業株式会社 Vehicle
US9694819B2 (en) 2015-02-19 2017-07-04 Honda Motor Co., Ltd. Vehicle
US10220836B2 (en) 2015-02-19 2019-03-05 Honda Motor Co., Ltd. Vehicle

Similar Documents

Publication Publication Date Title
EP1510438B1 (en) Control device for vehicle power steering
JP4131269B2 (en) Vehicle braking / driving force control device
JP4131270B2 (en) Vehicle braking / driving force control device
JP4186081B2 (en) Vehicle braking / driving force control device
JP4285343B2 (en) Roll stiffness control device for vehicle
JP4131268B2 (en) Vehicle braking / driving force control device
JP2006335171A (en) Driving/braking force control device for vehicle
JP4166684B2 (en) Method and apparatus for vehicle stability enhancement system
EP1876077A1 (en) Braking-driving force control device of vehicle
JP6844500B2 (en) Vehicle behavior control device
US20070124051A1 (en) Vehicle drive control system and method
CN108263372B (en) Vehicle travel control device
JP2002114140A (en) Vehicular rolling behavior control system
JP2008100579A (en) Traveling control device of vehicle
CN101208224A (en) Driving condition adapted to the steering engagement based on vehicle dynamic control
JP2006264628A (en) Vehicular braking/driving force control system
JP2006240395A (en) Driving/braking force controller for vehicle
JP4810940B2 (en) Vehicle steering assist force control device
JPS63101158A (en) Anti-skid control device
JP4765552B2 (en) Driving force control device for electric vehicle
JP4797586B2 (en) Vehicle braking / driving force control device
JP2006044293A (en) Movement controller for vehicle
JP4155246B2 (en) Vehicle motion control device
JP2006264433A (en) Vehicular longitudinal acceleration estimation and control system
JP4353011B2 (en) Vehicle steering control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415