JP2006041681A - Optical signal generator for testing - Google Patents

Optical signal generator for testing Download PDF

Info

Publication number
JP2006041681A
JP2006041681A JP2004215426A JP2004215426A JP2006041681A JP 2006041681 A JP2006041681 A JP 2006041681A JP 2004215426 A JP2004215426 A JP 2004215426A JP 2004215426 A JP2004215426 A JP 2004215426A JP 2006041681 A JP2006041681 A JP 2006041681A
Authority
JP
Japan
Prior art keywords
signal
optical signal
optical
test
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215426A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamaguchi
和彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2004215426A priority Critical patent/JP2006041681A/en
Publication of JP2006041681A publication Critical patent/JP2006041681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform stable and exact testing. <P>SOLUTION: A first electro-optical converter 24 modulates narrow-band light of a predetermined wavelength in intensity according to a data signal with a jitter, and emits the light modulated in intensity as a first optical signal P1. Moreover, a second electro-optical converter 26 modulates a wide-band light in intensity including the predetermined wavelength according to the sine wave signal E2 outputted from a signal generator 25, and emits the light modulated in intensity as a second optical signal P2. A photosynthesizer 27 synthesizes the first optical signal and the second optical signal P2, and outputs the optical signal obtained by the synthesis as an optical signal P3 for testing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光デバイスや光ファイバ通信システムを構成する受信器に代表される光通信機器等の試験に用いる試験用光信号発生装置に関し、特に、位相雑音と振幅雑音とを含む試験用光信号を用いた試験を正確に行うための技術に関する。   The present invention relates to a test optical signal generator used for testing optical communication equipment typified by a receiver constituting an optical device or an optical fiber communication system, and more particularly, a test optical signal including phase noise and amplitude noise. The present invention relates to a technique for accurately performing a test using a computer.

位相雑音と振幅雑音とを含む光信号を用いた試験として、Stressed Eye Conformance Test (以下、SECTと記す)がある。   As a test using an optical signal including phase noise and amplitude noise, there is a Stressed Eye Conformance Test (hereinafter referred to as SECT).

この試験は、次の非特許文献1、2で勧告されており、ジッタを有するデータ信号に他信号を重畳したものを試験用光信号として試験対象に与え、図3のように試験用光信号の試験対象への入力レベルと、試験対象から出力される信号のビット誤り率との関係を、ジッタ量をパラメータとして求めるというものであり、ジッタによる位相雑音と重畳された信号に含まれている振幅雑音とを含む信号に対し、試験対象がどの程度まで小さい光レベルまで動作可能かを把握するための試験である。   This test is recommended in the following non-patent documents 1 and 2, and a test signal obtained by superimposing another signal on a data signal having jitter is given to the test object as shown in FIG. The relationship between the input level to the test target and the bit error rate of the signal output from the test target is obtained using the jitter amount as a parameter and is included in the signal superimposed with phase noise due to jitter. This is a test for grasping to what extent the test object can operate to a light level with respect to a signal including amplitude noise.

IEEE 802.3aeIEEE 802.3ae IEEE 802.3ahIEEE 802.3ah

図4は、上記試験に用いる光信号を発生する試験用光信号発生装置10の構成例を示している。   FIG. 4 shows a configuration example of a test optical signal generation apparatus 10 that generates an optical signal used for the test.

この試験用光信号発生装置10では、ジッタ発生器11からジッタのあるクロック信号Cをデータ信号発生器12に入力して、クロック信号Cに同期した所定パターンのデータ信号Dを発生させ、LPF13によってデータ信号Dに対する高域遮断処理を行い、第1の信号E1を得る。   In this test optical signal generator 10, a jittered clock signal C is input from a jitter generator 11 to a data signal generator 12, and a data signal D having a predetermined pattern synchronized with the clock signal C is generated. A high-frequency cutoff process is performed on the data signal D to obtain a first signal E1.

そして、この第1の信号E1と、信号発生器14から出力される正弦波の第2の信号E2とを合成器15により加算合成し、図5に示すアイパターンように、位相雑音と振幅雑音が付与された第3の信号E3を生成する。   Then, the first signal E1 and the second sine wave signal E2 output from the signal generator 14 are added and synthesized by the synthesizer 15, and phase noise and amplitude noise are obtained as shown in the eye pattern shown in FIG. Is generated as a third signal E3.

そして、この第3の信号E3を電気光変換器16によって所定波長の光信号Pに変換し、これを試験用光信号とし、その消光比、変調度等を規定値に設定した上で、出力レベル可変用のアッテネータ17を介して試験対象1に与え、上記試験を行う。   Then, the third signal E3 is converted into an optical signal P having a predetermined wavelength by the electro-optical converter 16, this is used as a test optical signal, and its extinction ratio, modulation degree, etc. are set to specified values, and then output. The test is performed by giving to the test object 1 via the attenuator 17 for varying the level.

しかしながら、上記のように、電気合成して得られた信号E3を光信号Pに変換する方法では、波長の短い範囲(例えば850nm)で、光信号Pを長時間にわたって安定に出力させることができないという問題がある。   However, as described above, the method of converting the signal E3 obtained by electrosynthesis into the optical signal P cannot stably output the optical signal P for a long time in a short wavelength range (for example, 850 nm). There is a problem.

即ち、電気光変換器16としては通常、例えば波長850nmの光を出力する光源と、LN変調器とが用いられるが、LN変調器には直流ドリフトがあり、波長が短い程そのドリフトの影響が顕著に現れ、光信号Pの波形を数10分も維持することができない。   That is, as the electro-optic converter 16, for example, a light source that outputs light having a wavelength of 850 nm and an LN modulator are usually used, and the LN modulator has a DC drift. Remarkably, the waveform of the optical signal P cannot be maintained for several tens of minutes.

また、LN変調器のドリフトの影響を抑えるためにバイアス電圧をフィードバック制御することも考えられるが、このフィードバック制御は、LN変調器のVπ範囲全体を使用する消光比の大きい光でないと正しく行うことができず、上記のように振幅雑音成分を付与した消光比の小さい光には使用できない。   Although it is conceivable to feedback control the bias voltage in order to suppress the influence of the drift of the LN modulator, this feedback control should be performed correctly unless the light has a large extinction ratio using the entire Vπ range of the LN modulator. Cannot be used for light with a small extinction ratio to which amplitude noise components are added as described above.

これを解決するために、信号E1、E2をLN変調器でそれぞれ光信号P1、P2に変換してから、光合成器によって合成することが考えられる。   In order to solve this, it is conceivable that the signals E1 and E2 are converted into optical signals P1 and P2 by an LN modulator, respectively, and then combined by an optical combiner.

ところが、このように2つの狭帯域な搬送波に対して信号E1、E2で振幅変調をそれぞれ施して、光信号P1、P2を得た場合、光信号P1、P2の各搬送波の周波数差が試験対象の受信帯域内であると、測定対象内でその周波数差のビート雑音信号が大きなレベルで発生して測定に悪影響を与え、正確な試験が行えなくなるという新たな問題が発生する。   However, when the optical signals P1 and P2 are obtained by performing amplitude modulation on the two narrow-band carriers with the signals E1 and E2 as described above, the frequency difference between the carrier waves of the optical signals P1 and P2 is the test target. Within the reception band, a beat noise signal having a frequency difference within the measurement target is generated at a large level, adversely affecting the measurement, and a new problem arises that an accurate test cannot be performed.

本発明は、この問題を解決して、安定で正確な試験を行うことができる試験用光信号発生装置を提供することを目的としている。   An object of the present invention is to provide a test optical signal generator capable of solving this problem and performing a stable and accurate test.

前記目的を達成するために、本発明の試験用光信号発生装置は、
ジッタを有するクロック信号を発生するジッタ発生器(21)と、
前記ジッタ発生器から出力されるクロック信号に同期した所定パターンのデータ信号を出力するデータ信号発生器(22)と、
所定波長の狭帯域な光を前記データ信号によって強度変調し、該強度変調された光を第1光信号として出射する第1の電気光変換器(24)と、
所定周波数の正弦波の信号を出力する信号発生器(25)と、
前記所定波長を含む広帯域な光を前記信号発生器の出力信号によって強度変調し、該強度変調された光を第2光信号として出射する第2の電気光変換器(26)と、
前記第1光信号と前記第2光信号とを合成し、該合成によって得られた光信号を試験用光信号として出力する光合成器(27)とを備えている。
In order to achieve the above object, a test optical signal generator of the present invention comprises:
A jitter generator (21) for generating a clock signal having jitter;
A data signal generator (22) for outputting a data signal having a predetermined pattern synchronized with a clock signal output from the jitter generator;
A first electro-optical converter (24) that modulates the intensity of narrow-band light of a predetermined wavelength with the data signal and emits the intensity-modulated light as a first optical signal;
A signal generator (25) for outputting a sine wave signal of a predetermined frequency;
A second electro-optical converter (26) for intensity-modulating broadband light including the predetermined wavelength with an output signal of the signal generator, and emitting the intensity-modulated light as a second optical signal;
An optical combiner (27) for combining the first optical signal and the second optical signal and outputting the optical signal obtained by the combining as a test optical signal;

このように本発明の試験用光信号発生装置は、第1光信号と第2光信号を合成して試験用光信号を得るとともに、第2光信号を広帯域光としているので、第1光信号の搬送周波数におけるスペクトラム電力密度に比べて、第2光信号の電力密度は広い波長範囲にわたり小さくなるので、両光信号の間で生じるビート成分のレベルも小さくなり、測定に悪影響を与えない。このため、安定で、正確な試験が可能となる。   Thus, the test optical signal generator of the present invention combines the first optical signal and the second optical signal to obtain the test optical signal and uses the second optical signal as broadband light. Compared with the spectrum power density at the carrier frequency, the power density of the second optical signal is reduced over a wide wavelength range, so the level of the beat component generated between the two optical signals is also reduced, and the measurement is not adversely affected. For this reason, a stable and accurate test can be performed.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した前記したSECTに用いる試験用光信号発生装置20の構成と、それを用いた試験システムを示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a test optical signal generator 20 used in the above-described SECT to which the present invention is applied, and a test system using the same.

図1において、試験用光信号発生装置20のジッタ発生器21は、指定されたジッタJを有する所定周波数(例えば10GHz)のクロック信号Cを発生し、データ信号発生器22に出力する。   In FIG. 1, the jitter generator 21 of the test optical signal generator 20 generates a clock signal C having a specified frequency J (eg, 10 GHz) having a specified jitter J and outputs it to the data signal generator 22.

データ信号発生器22は、クロック信号Cに同期した所定パターン(例えば擬似ランダムパターン)のデータ信号Dを、低域通過フィルタ(以下、LPFと記す)23に出力する。   The data signal generator 22 outputs a data signal D having a predetermined pattern (for example, a pseudo random pattern) synchronized with the clock signal C to a low-pass filter (hereinafter referred to as LPF) 23.

LPF23は、データ信号Dに対する帯域制限を行う。このLPF23の高域遮断周波数は、データ信号Dのビットレートが10Gbpsであれば、例えば7.5GHzであり、データ信号Dの立ち上がり、立ち下がりを緩慢にしている。   The LPF 23 performs band limitation on the data signal D. The high frequency cutoff frequency of the LPF 23 is, for example, 7.5 GHz when the bit rate of the data signal D is 10 Gbps, and the rise and fall of the data signal D are slowed down.

第1の電気光変換器24は、図2の(a)のように、所定波長λ1(例えば850nm)を中心波長とする狭帯域な光を搬送波とし、この搬送波をLPF23からの出力信号E1によって強度変調し、第1光信号P1として出射する。   As shown in FIG. 2A, the first electro-optical converter 24 uses a narrowband light having a predetermined wavelength λ1 (for example, 850 nm) as a center wavelength as a carrier wave, and this carrier wave is output by an output signal E1 from the LPF 23. The intensity is modulated and emitted as the first optical signal P1.

第1の電気光変換器24は、所定波長λ1の狭帯域な光源と前記したLN変調器で構成され、直流ドリフトが生じないようにバイアス電圧のフィードバック制御がされている。なお、短時間動作等のために直流ドリフトが問題にならない場合には、前記フィードバック制御を施さなくてもよい。   The first electro-optic converter 24 includes a narrow-band light source having a predetermined wavelength λ1 and the above-described LN modulator, and bias voltage feedback control is performed so that no DC drift occurs. Note that the feedback control need not be performed when direct current drift does not become a problem due to short-time operation or the like.

一方、信号発生器25から出力される所定周波数(200MHz〜2GHz)の正弦波の信号E2は、第2の電気光変換器26に入力され、信号E2によって強度変調された第2光信号P2が生成される。   On the other hand, a sine wave signal E2 having a predetermined frequency (200 MHz to 2 GHz) output from the signal generator 25 is input to the second electro-optical converter 26, and the second optical signal P2 whose intensity is modulated by the signal E2 is obtained. Generated.

この第2の電気光変換器26は、例えば、VCSEL(面発光レーザダイオード)等のように直接変調が可能で広帯域な光源によって構成され、図2の(b)のように、信号E2により強度変調された所定波長λ1を含む広帯域(例えば840〜860nm)の第2光信号P2を出射する。   The second electro-optic converter 26 is constituted by a wide-band light source that can be directly modulated, such as a VCSEL (surface emitting laser diode), and has an intensity based on the signal E2 as shown in FIG. A broadband (for example, 840 to 860 nm) second optical signal P2 including the modulated predetermined wavelength λ1 is emitted.

第1光信号P1と第2光信号P2は、光合成器27に入力されて合成され、その合成された光信号P3が、試験用光信号として出射される。   The first optical signal P1 and the second optical signal P2 are input to the optical combiner 27 and combined, and the combined optical signal P3 is emitted as a test optical signal.

この光合成器27から出射される試験用光信号P3の波形は、前記図5に示したアイパターンとなり、そのスペクトラムは、図2の(c)に示すように、第2光信号P2の広帯域なスペクトラムの中から狭帯域な第1光信号P1のスペクトラムが突出した特性を有している。   The waveform of the test optical signal P3 emitted from the optical combiner 27 becomes the eye pattern shown in FIG. 5, and the spectrum thereof is a wide band of the second optical signal P2 as shown in FIG. The spectrum of the first optical signal P1 having a narrow band is projected from the spectrum.

ここで、例えば第1光信号P1の総電力と第2光信号P2の総電力とが同等であるとしても、第2光信号P2のスペクトラムは広い波長帯域に分散しているのでそのスペクトラム電力密度は、第1光信号P1の搬送波周波数における電力密度に比べて格段に小さい。   Here, for example, even if the total power of the first optical signal P1 and the total power of the second optical signal P2 are equal, the spectrum of the second optical signal P2 is dispersed over a wide wavelength band, so the spectrum power density Is much smaller than the power density at the carrier frequency of the first optical signal P1.

したがって、第2光信号P2の各スペクトラム成分と第1光信号P1の搬送波周波数との周波数差のビート成分(広い波長帯域に分散する)のレベルも非常に小さくなる。   Therefore, the level of the beat component (dispersed in a wide wavelength band) of the frequency difference between each spectrum component of the second optical signal P2 and the carrier frequency of the first optical signal P1 is also very small.

このようにして得られた試験用光信号P3は、例えば、光電変換してサンプリングオシロスコープでアイパターンを観測することにより、その消光比、変調度、VECP(Ver-tical Eye Closure Penalty)等が、SECTの試験で規定されている値に設定された上で、出力レベル可変用のアッテネータ30を介して光通信機器などの試験対象1に与えられる。   The test optical signal P3 thus obtained is subjected to photoelectric conversion and an eye pattern is observed with a sampling oscilloscope. After being set to a value defined in the SECT test, it is given to the test object 1 such as an optical communication device via the output level variable attenuator 30.

そして、試験対象1から出力される信号に対するビット誤り率を、誤り測定器31によって測定する。   The bit error rate for the signal output from the test object 1 is measured by the error measuring device 31.

この測定を、クロック信号Cに付与するジッタ量、試験対象1に対する試験用光信号P3の入力レベルを変えて行うことで、前記図3に示した特性を求めることができる。   The characteristics shown in FIG. 3 can be obtained by performing this measurement while changing the jitter amount applied to the clock signal C and the input level of the test optical signal P3 for the test object 1.

この測定において、光信号P3に含まれる第1光信号P1と第2光信号P2との間のビート成分が試験対象1の受光部内で発生しても、前記したように、そのビート成分のレベルは非常に小さいため、測定に悪影響を与えず、正確な測定結果を得ることができる。   In this measurement, even if a beat component between the first optical signal P1 and the second optical signal P2 included in the optical signal P3 is generated in the light receiving unit of the test target 1, the level of the beat component is as described above. Is very small, so that accurate measurement results can be obtained without adversely affecting the measurement.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 実施形態によって生成された光信号のスペクトラムを示す図The figure which shows the spectrum of the optical signal produced | generated by embodiment SECT試験の測定結果の一例を示す図A figure showing an example of the measurement result of the SECT test 従来装置の構成を示す図Diagram showing the configuration of a conventional device 試験用信号のアイパターン図Eye pattern diagram of test signal

符号の説明Explanation of symbols

1……試験対象、20……試験用光信号発生装置、21……ジッタ発生器、22……データ信号発生器、23……低域通過フィルタ、24……第1の電気光変換器、25……信号発生器、26……第2の電気光変換器、27……光合成器、30……アッテネータ、31……誤り測定器   DESCRIPTION OF SYMBOLS 1 ... Test object, 20 ... Test optical signal generator, 21 ... Jitter generator, 22 ... Data signal generator, 23 ... Low-pass filter, 24 ... First electro-optic converter, 25 …… Signal generator, 26 …… Second electro-optical converter, 27 …… Photo synthesizer, 30 …… Attenuator, 31 …… Error measuring device

Claims (1)

ジッタを有するクロック信号を発生するジッタ発生器(21)と、
前記ジッタ発生器から出力されるクロック信号に同期した所定パターンのデータ信号を出力するデータ信号発生器(22)と、
所定波長の狭帯域な光を前記データ信号によって強度変調し、該強度変調された光を第1光信号として出射する第1の電気光変換器(24)と、
所定周波数の正弦波の信号を出力する信号発生器(25)と、
前記所定波長を含む広帯域な光を前記信号発生器の出力信号によって強度変調し、該強度変調された光を第2光信号として出射する第2の電気光変換器(26)と、
前記第1光信号と前記第2光信号とを合成し、該合成によって得られた光信号を試験用光信号として出力する光合成器(27)とを備えた試験用光信号発生装置。
A jitter generator (21) for generating a clock signal having jitter;
A data signal generator (22) for outputting a data signal having a predetermined pattern synchronized with a clock signal output from the jitter generator;
A first electro-optical converter (24) that modulates the intensity of narrow-band light of a predetermined wavelength with the data signal and emits the intensity-modulated light as a first optical signal;
A signal generator (25) for outputting a sine wave signal of a predetermined frequency;
A second electro-optical converter (26) for intensity-modulating broadband light including the predetermined wavelength with an output signal of the signal generator, and emitting the intensity-modulated light as a second optical signal;
A test optical signal generator comprising: an optical combiner (27) that combines the first optical signal and the second optical signal and outputs the optical signal obtained by the combination as a test optical signal.
JP2004215426A 2004-07-23 2004-07-23 Optical signal generator for testing Pending JP2006041681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215426A JP2006041681A (en) 2004-07-23 2004-07-23 Optical signal generator for testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215426A JP2006041681A (en) 2004-07-23 2004-07-23 Optical signal generator for testing

Publications (1)

Publication Number Publication Date
JP2006041681A true JP2006041681A (en) 2006-02-09

Family

ID=35906233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215426A Pending JP2006041681A (en) 2004-07-23 2004-07-23 Optical signal generator for testing

Country Status (1)

Country Link
JP (1) JP2006041681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667342B2 (en) 2014-11-18 2017-05-30 Fujitsu Limited Optical phase noise extracting device and optical phase noise extraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667342B2 (en) 2014-11-18 2017-05-30 Fujitsu Limited Optical phase noise extracting device and optical phase noise extraction method

Similar Documents

Publication Publication Date Title
Li et al. Photonic generation of phase-coded microwave signal with large frequency tunability
Li et al. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator
JP6001105B2 (en) Method and apparatus for synthesizing waveform having ultra-wide bandwidth
JP2005315858A (en) Optical pulse evaluation device and in-service optical pulse evaluation device
Lin et al. Bio-inspired optical microwave phase lock loop based on nonlinear effects in semiconductor optical amplifier
Romeira et al. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter
CN106100748A (en) Phase-modulator and adjustable chromatic dispersion device is utilized to generate the device and method of microwave waveform
JP2012063146A (en) Distributed optical fiber sensor
CN113671445A (en) DP-BPSK-based method and system for generating dual-band phase encoding signal
Szafraniec et al. Swept coherent optical spectrum analysis
Zuo et al. Photonic-assisted filter-free microwave Doppler frequency shift measurement using a fixed low-frequency reference signal
JP2006162616A (en) Heterodyne-based optical spectrum analysis using data clock sampling
JP5986943B2 (en) Homodyne detection system electromagnetic spectrum measurement system
JP5159255B2 (en) Optical frequency domain reflection measurement method and apparatus
JP2011038839A (en) Optical frequency domain reflectometric method and optical frequency domain reflectometry
JP4889951B2 (en) Optical frequency stabilizer
JP2006293247A (en) Optical frequency comb generation method and device thereof
JP2006041681A (en) Optical signal generator for testing
Ozharar et al. Demonstration of endless phase modulation for arbitrary waveform generation
JP2012037493A (en) Method for evaluating characteristics of photodetector by two-tone light
JP2008039759A (en) Light measuring device and light measuring method
JPH10322284A (en) Fm modulator
JP2842882B2 (en) Optical spectrum analysis method and system
JP2007328044A (en) Optical frequency measuring system, and method for determining frequency component of optical frequency comb
Li et al. Dual-chirp waveform generation and its TBWP improvement based on polarization modulation and phase coding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331