JP2006040885A - Porous electrode substrate and its manufacturing method - Google Patents

Porous electrode substrate and its manufacturing method Download PDF

Info

Publication number
JP2006040885A
JP2006040885A JP2005181150A JP2005181150A JP2006040885A JP 2006040885 A JP2006040885 A JP 2006040885A JP 2005181150 A JP2005181150 A JP 2005181150A JP 2005181150 A JP2005181150 A JP 2005181150A JP 2006040885 A JP2006040885 A JP 2006040885A
Authority
JP
Japan
Prior art keywords
porous electrode
resin
electrode substrate
carbon
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005181150A
Other languages
Japanese (ja)
Other versions
JP4730888B2 (en
Inventor
Makoto Nakamura
誠 中村
Hidehiko Ohashi
英彦 大橋
Mitsuo Hamada
光夫 浜田
Kazushige Mihara
和茂 三原
Kazuhiro Sumioka
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005181150A priority Critical patent/JP4730888B2/en
Publication of JP2006040885A publication Critical patent/JP2006040885A/en
Application granted granted Critical
Publication of JP4730888B2 publication Critical patent/JP4730888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode substrate for solid polymer fuel cell which is of low cost, compact, and suitable for assembling a cell stack, and a manufacturing method of this electrode substrate. <P>SOLUTION: This is the porous electrode substrate with a thickness of 150 μm or less in which carbon staple fibers having fiber diameter of 3-9 μm dispersed in a random direction on a substantially two-dimensional plane are bound by a resin carbide of an indeterminate form, and the carbon staple fibers are bridged by the resin carbide of a filament shape. After the resin is impregnated into a carbon fiber paper composed of carbon staple fiber and Vinylon fiber, it is carbonized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多孔質電極基材およびその製造方法に関する。   The present invention relates to a porous electrode substrate and a method for producing the same.

多孔質電極基材は、固体高分子型燃料電池中で、セパレーターと触媒層の間に位置する部材である。同材は、セパレーターと触媒層間の電気伝達体としての機能だけでなく、セパレーターから供給される水素や酸素などのガスを触媒層に分配する機能と触媒層で発生した水を吸収して外部に排出する機能を併せ持つことを求められている。現在のところ一般的に炭素質が有効とされている。
従来は、機械強度を強くするために、炭素短繊維と樹脂炭化物とを密に結着させるなどの方法がとられていたが、ガス透過度が小さくなり、燃料電池に組んだ時の性能が落ちてしまうことが多かった。一方、ガス透過度を大きく維持しようとすると機械強度が弱くなり、取り扱い方法に制限があるものとなった。
The porous electrode base material is a member located between the separator and the catalyst layer in the polymer electrolyte fuel cell. This material not only functions as an electrical conductor between the separator and the catalyst layer, but also distributes gas such as hydrogen and oxygen supplied from the separator to the catalyst layer and absorbs water generated in the catalyst layer to the outside. It is required to have the function of discharging. At present, carbon is generally considered effective.
Conventionally, in order to increase the mechanical strength, methods such as tightly bonding short carbon fibers and resin carbide were taken, but the gas permeability decreased and the performance when assembled in a fuel cell was reduced. I often fell. On the other hand, if the gas permeability is kept large, the mechanical strength becomes weak and the handling method is limited.

特許文献1には、有機繊維を用い、有機繊維が電極基材の炭素化により消失することを使って細孔を形成した多孔質電極基材が記載されている。しかし、このようにして形成される細孔は、気孔率は高いものの平均径が小さく、固体高分子型燃料電池に用いるには、ガス透過度が低すぎる。また、厚みが厚く、大型でコストが高くなってしまうという問題があった。
特許文献2には、安価な多孔質電極基材の製造方法が記載されている。この方法で得られる多孔質電極基材は、ウェブが厚み方向にも配向しているため、厚み方向の導電性やガス透過度は、満足できる値であるが、機械強度が弱く、厚み方向に配向した繊維が電解質膜を突き破ってしまう、一度プレスすると脆くなってしまうなど取り扱いの面で課題があった。
特許文献3には、多孔質炭素基材のひび割れを防止し、機械強度を上げるため、細孔直径10μm以下の細孔容積が0.05〜0.16cc/gである多孔質電極基材が記載されている。しかし、このように10μm以下の細孔が少ないものでは、保水性が小さいため水分管理が難しく、燃料電池の発電が十分に行えないと考えられる。
Patent Document 1 describes a porous electrode base material in which pores are formed by using organic fibers and using the disappearance of organic fibers due to carbonization of the electrode base material. However, although the pores formed in this way have a high porosity, the average diameter is small, and the gas permeability is too low for use in a polymer electrolyte fuel cell. In addition, there is a problem that the thickness is large, the size is large, and the cost is high.
Patent Document 2 describes an inexpensive method for producing a porous electrode substrate. Since the porous electrode substrate obtained by this method is oriented in the thickness direction, the thickness direction conductivity and gas permeability are satisfactory values, but the mechanical strength is weak and the thickness direction is low. There were problems in terms of handling, such as oriented fibers breaking through the electrolyte membrane and becoming brittle once pressed.
Patent Document 3 discloses a porous electrode substrate having a pore volume of 0.05 to 0.16 cc / g having a pore diameter of 10 μm or less in order to prevent cracking of the porous carbon substrate and increase mechanical strength. Are listed. However, it is considered that when there are few pores of 10 μm or less as described above, water management is difficult because water retention is small, and power generation of the fuel cell cannot be performed sufficiently.

特開平9−278558号公報Japanese Patent Laid-Open No. 9-278558 WO2001/04980号公報(特表2003−504822公報)WO 2001/04980 (Special Table 2003-504822) WO2004/085728号公報WO2004 / 085728

本発明は、上記のような問題点を克服し、安価でかつコンパクトでセルスタックを組むのに最適な固体高分子型燃料電池用の多孔質電極基材およびこの多孔質電極基材の製造方法を提供することを目的とする。   The present invention overcomes the problems as described above, is inexpensive, compact, and suitable for assembling a cell stack. A porous electrode substrate for a polymer electrolyte fuel cell and a method for producing the porous electrode substrate The purpose is to provide.

本発明の第1の要旨は、実質的に二次元平面内においてランダムな方向に分散した繊維直径が3〜9μmの炭素短繊維同士が不定形の樹脂炭化物で結着され、さらに前記炭素短繊維同士がフィラメント状の樹脂炭化物により架橋された、厚みが150μm以下の多孔質電極基材にある。   The first gist of the present invention is that carbon short fibers having a fiber diameter of 3 to 9 μm dispersed in a random direction in a substantially two-dimensional plane are bound together with an amorphous resin carbide, and further the carbon short fibers The porous electrode base material has a thickness of 150 μm or less, which are cross-linked with filamentous resin carbide.

また、本発明の第2の要旨は、繊維直径が3〜9μmの炭素短繊維とビニロン繊維とからなる、炭素繊維目付16〜40g/mの炭素繊維紙に樹脂を含浸したのち、炭素化する多孔質電極基材の製造方法にある。
また、本発明の第3の要旨は、繊維直径が3〜9μmの炭素短繊維とビニロン繊維とからなる、炭素繊維目付8〜20g/mの炭素繊維紙に樹脂を含浸し、2枚貼り合わせた後、炭素化する多孔質電極基材の製造方法にある。
In addition, the second gist of the present invention is that carbon fiber paper having a fiber diameter of 16 to 40 g / m 2 and comprising carbon short fibers having a fiber diameter of 3 to 9 μm and vinylon fibers is impregnated with resin, and then carbonized. A method for producing a porous electrode substrate.
The third gist of the present invention is that a carbon fiber paper having a carbon fiber basis weight of 8 to 20 g / m 2 composed of a short carbon fiber having a fiber diameter of 3 to 9 μm and a vinylon fiber is impregnated with a resin and pasted on two sheets. It is in the manufacturing method of the porous electrode base material which carbonizes after combining.

本発明によれば、厚みが薄く安価でありながら、満足できる値のガス透過度を有し、優れた曲げ強度を有する多孔質電極基材を得ることができる。また、本発明の多孔質電極基材の製造方法によれば、前記多孔質電極基材を低コストで生産することができる。   According to the present invention, it is possible to obtain a porous electrode substrate having a gas permeability with a satisfactory value and an excellent bending strength while being thin and inexpensive. Moreover, according to the manufacturing method of the porous electrode base material of this invention, the said porous electrode base material can be produced at low cost.

<炭素短繊維>
本発明で用いる炭素短繊維の原料である炭素繊維は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであって良いが、ポリアクリロニトリル系炭素繊維が好ましく、特に用いる炭素繊維がポリアクリロニトリル(PAN)系炭素繊維のみからなることが多孔質炭素電極基材の機械的強度が比較的高くすることができるので好ましい。
炭素短繊維の直径は、3〜9μmであることが、炭素短繊維の生産コスト、分散性、最終多孔質電極基材の平滑性の面から必要である、4μm以上、8μm以下であることが好ましい。
炭素短繊維の繊維長は、後述のバインダーとの結着性や分散性の点からは、2〜12mmが好ましい。
<Short carbon fiber>
The carbon fiber that is a raw material of the short carbon fiber used in the present invention may be any of polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, etc., but polyacrylonitrile-based carbon fiber is preferable, and carbon fiber used in particular Is preferably composed only of polyacrylonitrile (PAN) -based carbon fibers since the mechanical strength of the porous carbon electrode substrate can be made relatively high.
The diameter of the short carbon fiber is 3 to 9 μm, which is necessary in terms of production cost, dispersibility, and smoothness of the final porous electrode base material, and is 4 μm or more and 8 μm or less. preferable.
The fiber length of the short carbon fibers is preferably 2 to 12 mm from the viewpoint of binding properties and dispersibility with the binder described below.

<分散>
本発明において、「実質的に二次元平面内においてランダムな方向に分散」とは、炭素短繊維がおおむね一つの面を形成するように横たわっているという意味である。これにより炭素短繊維による短絡や炭素短繊維の折損を防止することができる。
<Dispersion>
In the present invention, “substantially dispersed in a random direction within a two-dimensional plane” means that the carbon short fibers lie so as to form a single plane. Thereby, the short circuit by carbon short fiber and the breakage of carbon short fiber can be prevented.

<樹脂炭化物>
本発明において、樹脂炭化物は、樹脂を炭化してできた、炭素短繊維同士を結着する物質である。樹脂としては、フェノール樹脂など炭素繊維との結着力が強く、炭化時の残存重量が大きいものが好ましいが、特に限定はされない。
この樹脂炭化物は、樹脂の種類や炭素繊維紙への含浸量により、最終的に多孔質電極基材に炭化物として残る割合が異なる。
多孔質電極基材を100質量%とした時に、その中の樹脂炭化物が25〜40質量%であることが好ましく、更に好ましい下限及び上限は、それぞれ28質量%および34質量%である。
炭素短繊維同士を完全に結着し多孔質電極基材の機械的強度を十二分なものに保つためには、樹脂炭化物が25質量%以上必要である。完全に結着されなかった炭素短繊維は、多孔質電極基材から脱落し、電解質膜に刺さり短絡の原因となることがある。一方、多孔質電極基材中の炭素短繊維の比率を高く保ち、樹脂の硬化時の加圧により細孔が樹脂により埋められることがないよう、40質量%以下とすることが有利である。
<Resin carbide>
In the present invention, the resin carbide is a substance that binds short carbon fibers and is formed by carbonizing a resin. The resin is preferably a resin having a strong binding force with carbon fibers such as a phenol resin and a large residual weight during carbonization, but is not particularly limited.
Depending on the type of resin and the amount of impregnation into the carbon fiber paper, the ratio of the resin carbide remaining as a carbide on the porous electrode base material varies.
When the porous electrode substrate is taken as 100% by mass, the resin carbide is preferably 25 to 40% by mass, and more preferable lower and upper limits are 28% by mass and 34% by mass, respectively.
In order to bind carbon short fibers completely and keep the mechanical strength of the porous electrode base material at a sufficient level, 25% by mass or more of resin carbide is required. The short carbon fibers that have not been completely bound may fall off the porous electrode base material and pierce the electrolyte membrane, causing a short circuit. On the other hand, it is advantageous to keep the ratio of short carbon fibers in the porous electrode base material high and to make the pores not more than 40% by mass so that the pores are not filled with the resin due to pressurization when the resin is cured.

<不定形の樹脂炭化物>
本発明では、まず、従来の多孔質電極基材と同様に、炭素短繊維同士が不定形の樹脂炭化物で結着されていることが必要である。
<Amorphous resin carbide>
In the present invention, first, it is necessary that short carbon fibers are bound together with an amorphous resin carbide, as in a conventional porous electrode substrate.

<フィラメント状の樹脂炭化物>
本発明では、不定形の樹脂炭化物とともに、機械強度と反応ガス・水分管理を両立させるという観点から、炭素短繊維と炭素短繊維とを架橋するフィラメント状の樹脂炭化物の存在が必要である。
このフィラメント状の樹脂炭化物は、炭素短繊維とは外観が異なり、さらに、フィラメント状の樹脂炭化物を構成する炭素の配向は、炭素短繊維中の炭素の配列が非常によく配向しているのに対して、上述の不定形の樹脂炭化物と同様である。
炭素短繊維と炭素短繊維がフィラメント状の樹脂炭化物で架橋されている様子を図1、2に示す。フィラメント状の樹脂炭化物により、厚みが薄くても機械強度の強い多孔質電極基材となっている。この理由は、あたかもフィラメント状の樹脂炭化物が炭素短繊維と同様の補強効果を果たすためで、多孔質電極基材に含まれる炭素短繊維の比率を減らすことができ、低コストで提供することができる。
同時にフィラメント状の樹脂炭化物が架橋により一部の大きな孔が分割されるため、本発明の多孔質電極基材は、半径5μm以下の細孔を有すると共に、25μm以上の細孔も有するといった、広い細孔径分布を有するものとなる。これにより本発明の多孔質電極基材は、反応ガスや発生水を多孔質電極基材からスムーズに排出する機能と電解質膜が乾いて反応の効率が下がるのを防ぐ保水性をともにもつ。前者の機能は、25μm以上の大きな細孔が果たし、後者の機能は、5μm以下の比較的小さい細孔が果たすからである。このように細孔径の分布範囲が広いと多孔質電極基材に求められている両方の機能を両立させるのに有利である。
<Filamentary resin carbide>
In the present invention, from the viewpoint of achieving both mechanical strength and reaction gas / moisture management together with the amorphous resin carbide, the presence of filamentous resin carbide that crosslinks the short carbon fiber and the short carbon fiber is necessary.
This filamentous resin carbide has a different appearance from short carbon fibers, and the orientation of the carbon constituting the filamentous resin carbide is very well oriented in the arrangement of carbon in the short carbon fibers. On the other hand, it is the same as the above-mentioned amorphous resin carbide.
FIGS. 1 and 2 show a state in which short carbon fibers and short carbon fibers are crosslinked with filamentous resin carbide. The filament-shaped resin carbide provides a porous electrode base material with high mechanical strength even when the thickness is small. The reason for this is that the filamentous resin carbide performs the same reinforcing effect as the carbon short fibers, so that the ratio of the carbon short fibers contained in the porous electrode substrate can be reduced and provided at low cost. it can.
At the same time, since the filamentous resin carbide has some large pores divided by crosslinking, the porous electrode substrate of the present invention has wide pores having a radius of 5 μm or less and a pore of 25 μm or more. It has a pore size distribution. As a result, the porous electrode substrate of the present invention has both a function of smoothly discharging reaction gas and generated water from the porous electrode substrate and a water retention property that prevents the electrolyte membrane from drying and reducing the efficiency of the reaction. This is because the former function is performed by large pores of 25 μm or more, and the latter function is performed by relatively small pores of 5 μm or less. Thus, when the distribution range of the pore diameter is wide, it is advantageous to satisfy both functions required for the porous electrode substrate.

<厚み>
本発明の多孔質電極基材は、厚みが150μm以下であることが必要で、好ましくは140μm以下、さらに好ましくは130μm以下である。厚みが150μmより厚い多孔質電極基材も使用されてきたが、今後のセルスタックの低コスト化、コンパクト化の上では好ましくない。貫通方向の電気抵抗も厚みが薄いほど低減できる。
多孔質電極基材は、その厚みが小さいものの方が反応ガスの流速が保持されやすく、セル全体の性能も安定化する。
<Thickness>
The porous electrode substrate of the present invention is required to have a thickness of 150 μm or less, preferably 140 μm or less, and more preferably 130 μm or less. Although a porous electrode substrate having a thickness of more than 150 μm has been used, it is not preferable for cost reduction and compactness of the cell stack in the future. The electrical resistance in the penetration direction can also be reduced as the thickness is reduced.
A porous electrode substrate having a smaller thickness is more likely to maintain the flow rate of the reaction gas and stabilizes the performance of the entire cell.

<曲げ破断荷重>
本発明の特徴は、このような薄い多孔質電極基材であるにもかかわらず、以下に示すように十分な曲げ破断荷重を有することである。本発明の多孔質電極基材は、厚みが150μm以下でも少なくとも一つの方向で曲げ破断荷重が0.06N以上を有する。さらに好ましいものとしては、厚みが130μm以下でも少なくとも一つの方向で曲げ破断荷重が0.06N以上の機械強度を発現する。さらに好ましいものは、少なくとも一つの方向で0.11N以上の曲げ破断荷重を有することである。
本発明における曲げ破断荷重は、JIS規格K−6911に準拠した方法よって求められる値で、曲げの破壊に対する強さを表す。曲げ破断荷重は、歪み速度、支点間距離、試験片幅によって値が変化するが、本発明においては、歪み速度10mm/分、支点間距離2cm、試験片幅1cmの条件下で測定したときの破断荷重を採用する。
多孔質電極基材の連続製造工程もしくはこの多孔質電極基材を用いたMEA(膜―電極接合体)の製造工程において、製品の取り扱いに割れ、裂けなどの問題が起こらないようにする上で上記一方向の曲げ破断荷重が0.06N以上であることが好ましい。
これまでの多孔質電極基材では、その厚みを薄くすると発生ガスを排出できなくなったり、脆くなり、上記の工程での取り扱いに支障をきたすことが多かった。
多孔質電極基材の満足できるガス透過度を維持したまま、その機械強度を向上させる方法としては、炭素短繊維の繊維長を長くする方法も挙げられるが、均一分散性が問題となる可能性があった。
<Bending fracture load>
A feature of the present invention is that it has a sufficient bending fracture load as described below, despite being such a thin porous electrode substrate. The porous electrode substrate of the present invention has a bending breaking load of 0.06 N or more in at least one direction even when the thickness is 150 μm or less. More preferably, even when the thickness is 130 μm or less, a mechanical strength with a bending breaking load of 0.06 N or more is exhibited in at least one direction. More preferably, it has a bending fracture load of 0.11 N or more in at least one direction.
The bending fracture load in the present invention is a value obtained by a method based on JIS standard K-6911, and represents the strength against bending fracture. The value of the bending rupture load varies depending on the strain rate, the distance between the fulcrums, and the width of the test piece. Use breaking load.
In order to prevent problems such as cracking and tearing in the handling of products in the continuous manufacturing process of porous electrode base materials or the manufacturing process of MEA (membrane-electrode assembly) using this porous electrode base material It is preferable that the bending fracture load in the one direction is 0.06 N or more.
In conventional porous electrode base materials, if the thickness is reduced, the generated gas cannot be discharged or becomes brittle, which often impedes handling in the above process.
As a method for improving the mechanical strength while maintaining satisfactory gas permeability of the porous electrode base material, there is a method of increasing the fiber length of the short carbon fiber, but uniform dispersibility may be a problem. was there.

<目付>
本発明の多孔質電極基材は、炭素繊維の目付(単位面積あたりの重量)が16〜40g/mであることが必要である。このとき、最も好ましいのは、半分の目付の炭素繊維紙を2枚重ねて上記目付とすることである。炭素短繊維は、導電性材料であると同時に、多孔質電極基材の補強材としての役目も果たしている。
炭素繊維の目付を16g/m以上とすることにより、多孔質電極基材の強度を十分なものとすることができる。また、40g/m以下とすることにより、厚みを150μm以下としても過剰に緻密な構造とならない。
また本発明の多孔質電極基材は、連続的に巻き取ることも可能で、多孔質電極機材や燃料電池の生産性、コストの観点から好ましい。特に本発明の多孔質電極基材は、厚みを薄くできるので取り扱いやすいので、連続的に巻かれているものが好ましい。
<Unit weight>
The porous electrode base material of the present invention needs to have a carbon fiber basis weight (weight per unit area) of 16 to 40 g / m 2 . At this time, it is most preferable to stack two carbon fiber papers having a half basis weight to obtain the above basis weight. The short carbon fiber is not only a conductive material but also serves as a reinforcing material for the porous electrode substrate.
By setting the basis weight of the carbon fiber to 16 g / m 2 or more, the strength of the porous electrode substrate can be made sufficient. In addition, when the thickness is 40 g / m 2 or less, an excessively dense structure is not obtained even if the thickness is 150 μm or less.
Moreover, the porous electrode base material of the present invention can be continuously wound, which is preferable from the viewpoints of productivity and cost of porous electrode materials and fuel cells. In particular, the porous electrode base material of the present invention is easy to handle because the thickness can be reduced, so that it is preferably wound continuously.

<細孔半径の分布>
本発明の多孔質電極基材は、水銀圧入法によって細孔分布を測定したとき、細孔の半径が5μm以下の細孔の単位重量あたりの容積が0.20〜1.00cc/gであることが好ましい。また、細孔の半径が10μm以下の細孔の細孔容積が全細孔容積の15%以上であることが好ましく、さらに好ましくは20%以上である。
燃料電池用多孔質電極基材には、反応気体を反応部(触媒層)に効率よく送り届ける機能だけでなく、反応気体に含まれている水分や発電により発生する水分を効率よく排出する機能が求められている。特に膜厚の薄い電極基材において効率よく水を排出するためには、大量に水分が発生した時に水分を一時的に取り込むための孔として、細孔の半径が5μm以下の細孔の単位重量あたりの容積が0.20cc/g以上、または10μm以下の細孔の細孔容積が全細孔容積の20%以上であること好ましい。炭素短繊維がフィラメント状の樹脂炭化物で架橋されて補強した場合には、小さい細孔が形成されるため、細孔の半径が5μm以下の細孔の単位重量あたりの容積が0.20cc/g以上、細孔の半径が10μm以下の細孔の細孔容積が全細孔容積の15%以上有することが可能となる。または細孔の半径が5μm以下の細孔の単位重量あたりの容積が1.00cc/gより大きい場合は、水分が外部に排出されにくくなるため好ましくない。細孔半径および細孔容積は、測定セル内の圧力およびそのときに注入される水銀体積から算出される。
<Pore radius distribution>
The porous electrode substrate of the present invention has a volume per unit weight of 0.20 to 1.00 cc / g when the pore distribution is measured by mercury porosimetry and the radius of the pore is 5 μm or less. It is preferable. Further, the pore volume of pores having a pore radius of 10 μm or less is preferably 15% or more, more preferably 20% or more of the total pore volume.
The porous electrode substrate for fuel cells not only has a function of efficiently delivering the reaction gas to the reaction part (catalyst layer), but also has a function of efficiently discharging moisture contained in the reaction gas and moisture generated by power generation. It has been demanded. In particular, in order to efficiently discharge water in a thin electrode substrate, the unit weight of pores having a radius of 5 μm or less as pores for temporarily taking in water when a large amount of moisture is generated It is preferable that the permeation volume is 0.20 cc / g or more, or the pore volume of 10 μm or less is 20% or more of the total pore volume. When carbon short fibers are reinforced by cross-linking with filamentous resin carbide, small pores are formed, and the volume per unit weight of pores having a radius of pores of 5 μm or less is 0.20 cc / g. As described above, the pore volume having a pore radius of 10 μm or less can have 15% or more of the total pore volume. Alternatively, when the volume per unit weight of the pores having a pore radius of 5 μm or less is larger than 1.00 cc / g, it is not preferable because moisture is hardly discharged to the outside. The pore radius and pore volume are calculated from the pressure in the measurement cell and the mercury volume injected at that time.

<巻形態>
本発明の多孔質電極基材は、3インチ以下の直径を有する紙管に巻けることが、製造に用いる設備、梱包品のコンパクト化が図れるという点から好ましい。紙管サイズが小さい場合は、持ち運びが容易であるという点でも好ましい。
<Winding form>
The porous electrode base material of the present invention is preferably wound around a paper tube having a diameter of 3 inches or less from the viewpoint that the equipment used for manufacturing and the packaged product can be made compact. When the paper tube size is small, it is preferable also in that it is easy to carry.

<製造方法>
本発明の多孔質電極基材の製造方法は、たとえば以下の方法による。すなわち、
繊維直径が3〜9μmの炭素短繊維とビニロン繊維とからなる、炭素繊維目付16〜40g/mの炭素繊維紙に樹脂を含浸したのち、炭素化する多孔質電極基材の製造方法、または、繊維直径が3〜9μmの炭素短繊維とビニロン繊維とからなる、炭素繊維目付8〜20g/mの炭素繊維紙に樹脂を含浸し、2枚貼り合わせた後、炭素化する多孔質電極基材の製造方法である。
<Manufacturing method>
The method for producing the porous electrode substrate of the present invention is, for example, according to the following method. That is,
A method for producing a porous electrode substrate that is carbonized after impregnating a resin into carbon fiber paper having a carbon fiber basis weight of 16 to 40 g / m 2 , comprising carbon short fibers having a fiber diameter of 3 to 9 μm and vinylon fibers, or A porous electrode made of carbon short fibers and vinylon fibers having a fiber diameter of 3 to 9 μm, impregnated with carbon fiber paper with a carbon fiber basis weight of 8 to 20 g / m 2 , and bonded together, and then carbonized. It is a manufacturing method of a base material.

<ビニロン繊維>
本発明の製造方法では、ビニロン繊維を用いることが必要である。ビニロン繊維とは、ポリビニルアルコール繊維を熱処理やホルムアルデヒドでアセタール化することにより耐熱性、耐水性を高めた繊維である。ビニロン繊維は、炭素化により分解してなくなるが、その周りに付着した樹脂の形状は、そのまま残り、その樹脂がフィラメント状炭化物を形成する。
ビニロン繊維の繊度は、特に限定されないが、0.05〜1.5dtexのものが好ましい。繊度を0.05dtex以上とすることにより、ビニロン繊維一本あたりの樹脂の付着を十分なものとし、炭素化後、多孔質電極基材からフィラメント状樹脂炭化物が剥離することを防ぐことができる。繊度を1.5dtex以下とすることにより、多孔質電極基材表面が粗くなることを防ぎ、燃料電池としたときに多孔質電極基材と周辺部材との接触を良好なものとすることができる。
ビニロン繊維の長さは、特に限定されないが、同時に用いる炭素短繊維と同程度のものが好ましい。バインダーとの結着性や分散性の点から、2〜12mmが好ましい。
ビニロン繊維は、炭素繊維と一緒に分散することで、炭素繊維の再収束を防止する役割も果たす。そのため、水との親和性にも優れているものが好ましい。
炭素繊維紙中のビニロン繊維の質量比率は、10〜60質量%であることが好ましい。
炭素繊維紙中のビニロン繊維の質量比率を10質量%以上とすることにより、ビニロン繊維由来のフィラメント状炭化物による補強効果が十分となり、一方、60質量%以下であれば、フィラメント状炭化物とその他の炭化物のバランスがよく多孔質電極基材の形態が満足いくものとすることができる。
<Vinylon fiber>
In the production method of the present invention, it is necessary to use vinylon fibers. The vinylon fiber is a fiber having improved heat resistance and water resistance by acetalizing polyvinyl alcohol fiber with heat treatment or formaldehyde. The vinylon fiber is not decomposed by carbonization, but the shape of the resin adhered around it remains as it is, and the resin forms filamentary carbide.
The fineness of the vinylon fiber is not particularly limited, but is preferably 0.05 to 1.5 dtex. By setting the fineness to 0.05 dtex or more, the resin per vinylon fiber can be sufficiently adhered, and after carbonization, the filamentous resin carbide can be prevented from peeling off from the porous electrode substrate. By setting the fineness to 1.5 dtex or less, the surface of the porous electrode substrate can be prevented from becoming rough, and when the fuel cell is formed, the contact between the porous electrode substrate and the peripheral member can be improved. .
The length of the vinylon fiber is not particularly limited, but is preferably the same as the short carbon fiber used at the same time. From the viewpoint of binding properties and dispersibility with the binder, 2 to 12 mm is preferable.
The vinylon fiber also serves to prevent the carbon fiber from refocusing by being dispersed together with the carbon fiber. Therefore, what is excellent also in the affinity with water is preferable.
The mass ratio of vinylon fibers in the carbon fiber paper is preferably 10 to 60% by mass.
By making the mass ratio of the vinylon fiber in the carbon fiber paper 10% by mass or more, the reinforcing effect by the filamentous carbide derived from the vinylon fiber is sufficient. On the other hand, if the mass ratio is 60% by mass or less, the filamentous carbide and the other The balance of carbides is good, and the form of the porous electrode substrate can be satisfactory.

<有機高分子化合物>
有機高分子化合物は、炭素繊維紙中で各成分をつなぎとめるバインダー(糊剤)としてはたらく。有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、などを用いることができる。特にポリビニルアルコールは抄紙工程での結着力に優れるため、炭素短繊維の脱落が少なくバインダーとして好ましい。本発明では、有機高分子化合物を繊維状として用いることも可能である。
<Organic polymer compound>
The organic polymer compound serves as a binder (glue) that holds the components together in the carbon fiber paper. As the organic polymer compound, polyvinyl alcohol (PVA), polyvinyl acetate, or the like can be used. In particular, polyvinyl alcohol is preferable as a binder because it has excellent binding power in the paper making process, and the short carbon fibers are not dropped off. In the present invention, it is also possible to use an organic polymer compound as a fiber.

<炭素繊維紙の抄紙>
炭素繊維紙の抄紙方法としては、液体の媒体中に炭素短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維を分散させて降り積もらせる乾式法が適用できるが、中でも湿式法が好ましい。炭素短繊維が単繊維に分散するのを助け、分散した単繊維が再び収束を防止するのを防ぐためにもビニロン繊維を上記量、バインダーとして適切な量の有機高分子物質と共に湿式抄紙することが好ましい。
炭素短繊維とビニロン繊維、必要に応じて有機高分子化合物を混合する方法としては、炭素短繊維とともに水中で攪拌分散させる方法と、直接混ぜ込む方法があるが、均一に分散させるためには水中で拡散分散させる方法が好ましい。このように有機高分子化合物を混ぜることにより、炭素繊維紙の強度を保持し、その製造途中で炭素繊維紙から炭素短繊維が剥離したり、炭素短繊維の配向が変化したりするのを防止することができる。
また、抄紙は連続で行なう方法やバッチ式で行なう方法があるが、本発明において行なう抄紙は、特に目付のコントロールが容易であるという点と生産性および機械的強度の観点から連続抄紙が好ましい。
<Carbon fiber paper making>
As a paper making method for carbon fiber paper, a wet method in which short carbon fibers are dispersed in a liquid medium for paper making or a dry method in which carbon short fibers are dispersed in air to be deposited can be applied. Is preferred. In order to help disperse the short carbon fibers into single fibers and prevent the dispersed single fibers from converging again, it is possible to wet-paper the vinylon fibers with the above-mentioned amount and an appropriate amount of organic polymer substance as a binder. preferable.
There are two methods for mixing short carbon fibers and vinylon fibers and, if necessary, organic polymer compounds with stirring and dispersing in water together with short carbon fibers and direct mixing. The method of diffusing and dispersing with is preferable. By mixing the organic polymer compound in this way, the strength of the carbon fiber paper is maintained, and it is possible to prevent the carbon short fibers from being peeled off from the carbon fiber paper during the production and the orientation of the carbon short fibers from being changed. can do.
Further, there are a continuous paper making method and a batch paper making method. However, the paper making performed in the present invention is preferably continuous paper making from the viewpoint of easy control of the basis weight and productivity and mechanical strength.

<樹脂>
本発明で樹脂として用いる樹脂組成物は、炭素化後も導電性物質として残存する物質であり、常温において粘着性、あるいは流動性を示すものが好ましい。フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ピッチ等を単体もしくは混合物として用いることができる。フェノール樹脂の好ましいものとして、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を挙げることができる。
レゾールタイプのフェノール樹脂は、公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできるが、この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。
フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシロール等が用いられる。アルデヒド類としては、例えばホルマリン、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。これらはフェノール樹脂として市販品を利用することも可能である。
<Resin>
The resin composition used as a resin in the present invention is a substance that remains as a conductive substance even after carbonization, and preferably exhibits adhesiveness or fluidity at room temperature. A phenol resin, a furan resin, an epoxy resin, a melamine resin, an imide resin, a urethane resin, an aramid resin, pitch, or the like can be used alone or as a mixture. Preferable examples of the phenol resin include a resol type phenol resin obtained by a reaction between a phenol and an aldehyde in the presence of an alkali catalyst.
The resol type phenol resin can be dissolved and mixed with a novolac type phenol resin which is produced by the reaction of phenols and aldehydes in the presence of an acid catalyst by a known method and exhibits solid heat-fusibility. Is preferably a self-crosslinking type containing a curing agent such as hexamethylenediamine.
As phenols, for example, phenol, resorcin, cresol, xylol and the like are used. As aldehydes, for example, formalin, paraformaldehyde, furfural and the like are used. Moreover, these can be used as a mixture. These can also use a commercial item as a phenol resin.

<樹脂量>
炭素繊維紙に付着する樹脂の樹脂量は、炭素短繊維100質量部に対し、70〜150質量部とすることが好ましい。前述した、水やガスの供給および排出がスムーズに行なわれ、曲げ強度に優れた電極基材を製造するには、多孔質電極基材中の樹脂炭化物の比率が25〜40質量%になるように樹脂を付着しておく必要があるため、70〜150質量部の樹脂を付着させる必要がある。
<Resin amount>
The amount of resin adhering to the carbon fiber paper is preferably 70 to 150 parts by mass with respect to 100 parts by mass of the carbon short fibers. In order to produce an electrode base material that is smoothly supplied and discharged and has excellent bending strength as described above, the ratio of the resin carbide in the porous electrode base material is 25 to 40% by mass. Since it is necessary to adhere the resin to 70 to 150 parts by mass of resin, it is necessary to adhere the resin.

<樹脂の含浸方法>
炭素繊維紙に樹脂を含浸する方法としては、炭素繊維紙に樹脂を含浸させることができればよく、特段の制限はないが、コーターを用いて炭素繊維紙表面に樹脂を均一にコートする方法、絞り装置を用いるdip−nip方法、もしくは炭素繊維紙と樹脂フィルムを重ねて、樹脂を炭素繊維紙に転写する方法が、連続的に行なうことができ、生産性および長尺ものも製造できるという点で好ましい。
<Resin impregnation method>
The carbon fiber paper is impregnated with the resin as long as the carbon fiber paper can be impregnated with the resin, and there is no particular limitation. However, a method of uniformly coating the resin on the surface of the carbon fiber paper using a coater, The dip-nip method using the apparatus, or the method of transferring the resin to the carbon fiber paper by stacking the carbon fiber paper and the resin film can be performed continuously, and the productivity and the length can be manufactured. preferable.

<樹脂の硬化、炭素化>
樹脂を含浸された炭素繊維紙は、そのまま炭素化することも可能である。しかし、炭素化する前に樹脂を硬化することが樹脂の炭素化時の気化を抑制し、多孔質電極基材の強度向上のために好ましい。硬化は、樹脂を含浸された炭素繊維紙を均等に加熱できる技術であれば、いかなる技術も適用できる。その例としては、樹脂を含浸された炭素繊維紙の上下両面から剛板を重ね、加熱する方法や上下両面から熱風を吹き付ける方法、また連続ベルト装置や連続熱風炉を用いる方法が挙げられる。
硬化された樹脂は、続いて炭素化される。多孔質電極基材の導電性を高めるために、不活性ガス中で炭素化する。炭素化は、炭素繊維紙の全長にわたって連続で行なうことが好ましい。電極基材が長尺であれば、電極基材の生産性が高くなるだけでなく、その後工程のMembrane Electrode Assembly(MEA)製造も連続で行なうことができ、燃料電池のコスト低減化に大きく寄与することができる。
炭素化は、不活性処理雰囲気下にて1000〜3000℃の温度範囲で、炭素繊維紙の全長にわたって連続して焼成処理することが好ましい。本発明の炭素化においては、不活性雰囲気下にて1000〜3000℃の温度範囲で焼成する炭素化処理の前に行われる、300〜800℃の程度の不活性雰囲気での焼成による前処理を行っても良い。
炭素繊維紙に樹脂を付着した後、加熱により、炭素繊維紙表面を平滑にする工程を含んでいることが好ましい。炭素繊維表面を平滑する方法としては、特に限定されないが、上下両面から平滑な剛板にて熱プレスする方法や連続ベルトプレス装置を用いて行なう方法がある。中でも連続ベルトプレス装置を用いて行なう方法が、長尺の多孔質電極基材ができるという点で好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後のMEMBRANE ELECTRODE ASSEMBLY(MEA)製造も連続で行なうことができ、燃料電池のコスト低減化に大きく寄与することができる。表面を平滑にする工程がない場合も良好な強度とガス透過度とをともに有する多孔質電極基材が得られるが、その多孔質電極基材に大きな起伏があるため、セルを組んだとき多孔質電極基材と周辺基材との接触が十分でなく好ましくない。
連続ベルト装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑な多孔質電極基材が得られるという点で好ましい。効果的に表面を平滑にするためには、樹脂が最も軟化する温度でプレスし、その後加熱または冷却により樹脂を固定する方法が最もよい。炭素繊維紙に含浸される樹脂の比率が多い場合は、プレス圧が低くても平滑にすることが容易である。このとき必要以上にプレス圧を高くすることは、多孔質電極基材としたときその組織が緻密になりすぎる、激しく変形するなどの問題が生じるのであまり好ましくない。プレス圧が高く緻密になりすぎた場合は、焼成時に発生するガスがうまく排出されず多孔質電極基材の組織を壊してしまうこともある。剛板に挟んで、又、連続ベルト装置で炭素繊維紙に含浸した樹脂の硬化を行う時は、剛板やベルトに樹脂が付着しないようにあらかじめ剥離剤を塗っておくか、炭素繊維紙と剛板やベルトとの間に離型紙を挟んで行なうことが好ましい。
<Curing and carbonization of resin>
The carbon fiber paper impregnated with the resin can be carbonized as it is. However, curing the resin before carbonization is preferable for suppressing the vaporization of the resin during carbonization and improving the strength of the porous electrode substrate. Any technique can be applied for the curing as long as the technique can uniformly heat the carbon fiber paper impregnated with the resin. Examples thereof include a method in which rigid plates are stacked from both the upper and lower surfaces of carbon fiber paper impregnated with resin and heated, a method in which hot air is blown from both the upper and lower surfaces, and a method using a continuous belt device and a continuous hot air furnace.
The cured resin is subsequently carbonized. In order to increase the conductivity of the porous electrode substrate, it is carbonized in an inert gas. Carbonization is preferably performed continuously over the entire length of the carbon fiber paper. If the electrode base material is long, not only the productivity of the electrode base material is increased, but also the subsequent process of manufacturing the membrane electrode assembly (MEA) can be performed continuously, which greatly contributes to the cost reduction of the fuel cell. can do.
Carbonization is preferably performed by continuous firing over the entire length of the carbon fiber paper in a temperature range of 1000 to 3000 ° C. in an inert treatment atmosphere. In the carbonization of the present invention, a pretreatment by firing in an inert atmosphere of about 300 to 800 ° C., which is performed before a carbonization treatment in a temperature range of 1000 to 3000 ° C. in an inert atmosphere, is performed. You can go.
It is preferable to include a step of smoothing the surface of the carbon fiber paper by heating after attaching the resin to the carbon fiber paper. The method of smoothing the carbon fiber surface is not particularly limited, and there are a method of performing hot pressing with smooth rigid plates from both the upper and lower surfaces and a method of using a continuous belt press apparatus. Among these, the method performed using a continuous belt press is preferable in that a long porous electrode substrate can be formed. If the porous electrode base material is long, not only the productivity of the porous electrode base material is increased, but the subsequent MEMBRANE ELECTRODE ASSEMBLY (MEA) manufacturing can also be continuously performed, thereby reducing the cost of the fuel cell. Can greatly contribute. Even if there is no step to smooth the surface, a porous electrode substrate having both good strength and gas permeability can be obtained, but since the porous electrode substrate has large undulations, it is porous when the cells are assembled. The contact between the porous electrode substrate and the peripheral substrate is not preferable because it is not sufficient.
As a pressing method in the continuous belt device, there are a method of applying pressure to the belt by a roll press by a linear pressure and a method of pressing by a surface pressure by a hydraulic head press, but the latter is a smoother porous electrode substrate. It is preferable in that it is obtained. In order to effectively smooth the surface, it is best to press at a temperature at which the resin is most softened, and then fix the resin by heating or cooling. When the ratio of the resin impregnated in the carbon fiber paper is large, it is easy to make it smooth even if the press pressure is low. In this case, it is not preferable to increase the press pressure more than necessary because problems such as excessively dense structure and severe deformation of the porous electrode substrate occur. If the press pressure is too high and too dense, the gas generated during firing may not be discharged well and the structure of the porous electrode substrate may be destroyed. When curing the resin impregnated in carbon fiber paper with a rigid belt device with a continuous belt device, either apply a release agent in advance to prevent the resin from adhering to the rigid plate or belt, It is preferable that the release paper is sandwiched between a rigid plate and a belt.

以下、本発明を実施例により、さらに具体的に説明する。
実施例中の各物性値等は以下の方法で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples.
Each physical property value in the examples was measured by the following method.

1)曲げ破断荷重
多孔質電極基材中の炭素繊維紙の抄紙時の長手方向が試験片の長辺になるように、80×10mmのサイズに10枚切り取る。曲げ強度試験装置を用いて、支点間距離を2cmにし、歪み速度10mm/minで荷重をかけていき、試験片が破断したときの荷重を測定した。10枚の試験片の平均値である。
1) Bending fracture load Ten sheets are cut into a size of 80 × 10 mm so that the longitudinal direction of the carbon fiber paper in the porous electrode base material is the long side of the test piece. Using a bending strength test apparatus, the distance between supporting points was set to 2 cm, a load was applied at a strain rate of 10 mm / min, and the load when the test piece broke was measured. It is an average value of 10 test pieces.

2)ガス透過度
JIS規格P−8117に準拠した方法によって求められる。多孔質電極基材の試験片を3mmφの孔を有するセルに挟み、孔から1.29kPaの圧力で200mLのガスを流し、ガスが透過するのにかかった時間を測定するし、以下の式より算出した。
ガス透過度(m/sec/MPa)
=気体透過量(m)/気体透過孔面積(m)/透過時間(sec)/透過圧(MPa)
2) Gas permeability It is calculated | required by the method based on JIS specification P-8117. A porous electrode substrate test piece is sandwiched between cells having a 3 mmφ hole, 200 mL of gas is allowed to flow from the hole at a pressure of 1.29 kPa, and the time taken for the gas to permeate is measured. Calculated.
Gas permeability (m / sec / MPa)
= Gas permeation amount (m 3 ) / gas permeation hole area (m 2 ) / permeation time (sec) / permeation pressure (MPa)

3)電極基材の平均細孔半径・全細孔容積・半径10μm以下の細孔の容積・半径5μm以下の細孔の容積
水銀圧入法により、細孔容積と細孔半径の細孔分布を求め、その50%の細孔容積を示す時の半径を電極基材の平均細孔径とした。なお、用いた水銀ポロシメーターは、Quantachrome社製 Pore Master−60である。
3) Average pore radius of electrode substrate, total pore volume, volume of pores with a radius of 10 μm or less, volume of pores with a radius of 5 μm or less Using the mercury intrusion method, the pore distribution of pore volume and pore radius The radius at which the 50% pore volume was obtained was taken as the average pore diameter of the electrode substrate. The mercury porosimeter used was Pore Master-60 manufactured by Quantachrome.

4)厚み
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ7321(ミツトヨ製)を使用し、測定した。このときの測定子の大きさは、直径10mmで測定圧力は1.5kPaで行った。
4) Thickness The thickness of the porous electrode base material was measured using a thickness measuring device dial thickness gauge 7321 (manufactured by Mitutoyo Corporation). The size of the probe at this time was 10 mm in diameter and the measurement pressure was 1.5 kPa.

5)面抵抗
多孔質電極基材中の炭素繊維紙の抄紙時の長手方向が試験片の長辺になるように、100×20mmのサイズに切り取る。電極基材の片面に2cmの間隔をあけて銅線をのせ、10mA/cmの電流密度で電流を流した時の抵抗を測定した。
5) Sheet resistance Cut out to a size of 100 × 20 mm so that the longitudinal direction of the carbon fiber paper in the porous electrode substrate during papermaking becomes the long side of the test piece. A copper wire was placed on one side of the electrode substrate with an interval of 2 cm, and the resistance when a current was passed at a current density of 10 mA / cm 2 was measured.

6)貫通方向抵抗
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、試料を銅板にはさみ、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通抵抗(Ω・cm2)=測定抵抗値(Ω)×試料面積(cm2
6) Through-direction resistance The electrical resistance in the thickness direction of the porous electrode base material (through-direction resistance) is obtained by sandwiching a sample between copper plates, pressurizing at 1 MPa from the top and bottom of the copper plate, and passing a current at a current density of 10 mA / cm 2. The resistance value was measured and obtained from the following equation.
Penetration resistance (Ω · cm 2 ) = Measurement resistance value (Ω) × Sample area (cm 2 )

7)樹脂炭化物の重量比
樹脂炭化物の重量比は、得られた多孔質電極基材の目付と使用した炭素短繊維の目付から次式より算出した。
樹脂炭化物重量比(質量%)
=[多孔質電極基材目付(g/m)−炭素短繊維目付(g/m)]×100÷多孔質電極基材目付(g/m
7) Weight ratio of resin carbide The weight ratio of the resin carbide was calculated from the following formula from the basis weight of the obtained porous electrode substrate and the basis weight of the carbon short fibers used.
Resin carbide weight ratio (mass%)
= [Porous electrode substrate basis weight (g / m 2 ) −carbon short fiber basis weight (g / m 2 )] × 100 ÷ Porous electrode substrate basis weight (g / m 2 )

(実施例1)
炭素短繊維として、平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維と平均繊維径が4μm、平均繊維長が3mmのPAN系炭素繊維を70:30(質量比)で混合した炭素短繊維を用意した。
ビニロン繊維として、1.1dtex、カット長5mmのビニロン短繊維(ユニチカ株式会社製ユニチカビニロンF)を用意した。
有機高分子化合物として、ポリビニルアルコール(PVA)の短繊維(クラレ株式会社製VBP105−1 カット長3mm)を用意した。
炭素短繊維を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散して単繊維に解繊し、十分に分散したところにPVA短繊維およびビニロン短繊維を炭素短繊維100質量部に対して、それぞれ18質量部、32質量部となるように均一に分散し、ウェブ状にして送り出した。
送り出されたウェブを短網板に通し、ドライヤー乾燥後、目付け20g/m、長さ100mの炭素繊維紙を得た(各組成の目付けを表1に記載した、以下同じ)。各繊維の分散状態は良好であった。
次にフェノール樹脂(大日本インキ化学株式会社製フェノライトJ−325)を40質量%含むフェノール樹脂のメタノール溶液が付着したローラーに炭素繊維紙を均一に片面ずつ接触させた後、連続的に熱風を吹きかけ乾燥した。32g/mの樹脂付着炭素繊維紙を得た。これにより炭素短繊維100質量部に対し、フェノール樹脂を90質量部付着したことになる。
次に、この樹脂付着炭素繊維紙を短網板に接していた面が外側を向くように2枚貼り合せた後、一対のエンドレスベルトを備えた連続式加熱プレス装置(ダブルベルトプレス装置:DBP)を用いて連続的に加熱し、表面が平滑化されたシート(シート厚み:110μm、幅30cm、長さ100m)を得た。
このときの予熱ゾーンでの予熱温度は200℃、予熱時間は5分であり、加熱加圧ゾーンでの温度は250℃、プレス圧力は線圧8.0×10N/mであった。なお、シートがベルトに貼り付かないように2枚の離型紙の間に挟んで通した。
その後、得られたシートを、窒素ガス雰囲気とした、500℃の連続焼成炉中で5分間加熱して、フェノール樹脂の硬化および前炭素化を行った。引き続き、得られたシートを窒素ガス雰囲気中、2000℃の連続焼成炉において5分間加熱し、炭素化して、長さ100mの電極基材を連続的に得、外径3インチの円筒型紙管に巻き取った。
薄膜化されているが、平滑で取り扱いやすく、曲げ強度およびガス透過性に優れた電極基材であった。評価結果を表2、3に示した。また、SEM写真を図1−1、細孔分布を図2に示す。樹脂炭化物が架橋している部分としていない部分が存在するため細孔の分布範囲が広くなり、細孔半径が10μm以下の細孔の細孔容積が全細孔容積の30%を占めた。
Example 1
As short carbon fibers, a polyacrylonitrile (PAN) carbon fiber having an average fiber diameter of 7 μm and an average fiber length of 3 mm and a PAN carbon fiber having an average fiber diameter of 4 μm and an average fiber length of 3 mm are 70:30 (mass ratio). The carbon short fiber mixed with was prepared.
As a vinylon fiber, 1.1 dtex and a vinylon short fiber having a cut length of 5 mm (Unitika Vinylon F manufactured by Unitika Ltd.) were prepared.
As an organic polymer compound, polyvinyl alcohol (PVA) short fibers (VBP 105-1 manufactured by Kuraray Co., Ltd., cut length: 3 mm) were prepared.
Carbon short fibers are uniformly dispersed in water in a slurry tank of a wet short net continuous paper making machine to be defibrated into single fibers, and when sufficiently dispersed, PVA short fibers and vinylon short fibers are added to 100 parts by mass of carbon short fibers. Then, they were uniformly dispersed so as to be 18 parts by mass and 32 parts by mass, respectively, and fed into a web shape.
The fed web was passed through a short mesh plate, and after drying with a dryer, carbon fiber paper having a basis weight of 20 g / m 2 and a length of 100 m was obtained (the basis weight of each composition is described in Table 1, the same applies hereinafter). The dispersion state of each fiber was good.
Next, carbon fiber paper was uniformly contacted one side at a time on a roller to which a phenol resin methanol solution containing 40% by mass of phenol resin (Phenolite J-325 manufactured by Dainippon Ink and Chemicals, Inc.) was attached, and then hot air continuously. And dried. A resin-attached carbon fiber paper of 32 g / m 2 was obtained. As a result, 90 parts by mass of the phenol resin was attached to 100 parts by mass of the short carbon fibers.
Next, two sheets of this resin-attached carbon fiber paper were bonded so that the surface in contact with the short mesh plate faced outward, and then a continuous heating press device (double belt press device: DBP) provided with a pair of endless belts. ) To obtain a sheet having a smooth surface (sheet thickness: 110 μm, width 30 cm, length 100 m).
At this time, the preheating temperature in the preheating zone was 200 ° C., the preheating time was 5 minutes, the temperature in the heating and pressing zone was 250 ° C., and the press pressure was 8.0 × 10 4 N / m. The sheet was passed between two release papers so as not to stick to the belt.
Thereafter, the obtained sheet was heated in a continuous baking furnace at 500 ° C. in a nitrogen gas atmosphere for 5 minutes to cure and pre-carbonize the phenol resin. Subsequently, the obtained sheet was heated in a continuous firing furnace at 2000 ° C. for 5 minutes in a nitrogen gas atmosphere and carbonized to continuously obtain an electrode substrate having a length of 100 m, and formed into a cylindrical paper tube having an outer diameter of 3 inches. Winded up.
Although it was thinned, it was an electrode substrate that was smooth, easy to handle, and excellent in bending strength and gas permeability. The evaluation results are shown in Tables 2 and 3. The SEM photograph is shown in FIG. 1-1, and the pore distribution is shown in FIG. Since there is a portion where the resin carbide is not crosslinked, the pore distribution range is widened, and the pore volume of pores having a pore radius of 10 μm or less occupies 30% of the total pore volume.

(実施例2)
炭素短繊維の比率を50/50(質量比)に代えたほかは、実施例1と同様の方法で表面が平滑な多孔質電極基材を得た。評価結果を表2、3に示した。
(Example 2)
A porous electrode substrate having a smooth surface was obtained in the same manner as in Example 1 except that the ratio of short carbon fibers was changed to 50/50 (mass ratio). The evaluation results are shown in Tables 2 and 3.

(実施例3)
ビニロン繊維を0.6dtex、カット長5mmのビニロン短繊維(ユニチカ株式会社製ユニチカビニロンF)に代えたほかは、実施例1と同様の方法で表面が平滑な多孔質電極基材を得た。評価結果を表2、3に示した。
(Example 3)
A porous electrode substrate having a smooth surface was obtained in the same manner as in Example 1 except that the vinylon fiber was replaced with 0.6 dtex and a vinylon short fiber having a cut length of 5 mm (Unitika Vinylon F manufactured by Unitika Ltd.). The evaluation results are shown in Tables 2 and 3.

(実施例4)
ビニロン繊維の目付け量が10g/mをとなるように添加量を代えたほかは実施例3と同様の方法で表面が平滑な多孔質電極基材を得た。評価結果を表2、3に示した。
Example 4
A porous electrode substrate having a smooth surface was obtained in the same manner as in Example 3 except that the addition amount was changed so that the basis weight of the vinylon fiber was 10 g / m 2 . The evaluation results are shown in Tables 2 and 3.

(実施例5)
炭素短繊維として、平均繊維径が4μm、平均繊維長が3mmのPAN系炭素繊維のみを用いるほかは、実施例1と同様の方法で表面が平滑な多孔質電極基材を得た。評価結果を表2、3に示した。
(Example 5)
A porous electrode substrate having a smooth surface was obtained in the same manner as in Example 1 except that only PAN-based carbon fibers having an average fiber diameter of 4 μm and an average fiber length of 3 mm were used as the short carbon fibers. The evaluation results are shown in Tables 2 and 3.

(比較例1)
炭素短繊維として、平均繊維径が7μm、平均繊維長が3mmのPAN系炭素繊維のみを用い、ビニロン繊維を添加しないほかは、実施例1と同様にして、15g/mの炭素繊維紙を得た。この炭素繊維紙に実施例1と同様にして、炭素繊短繊維100質量部に対しフェノール樹脂を100質量部付着して28g/mの樹脂付着炭素繊維紙を得た。
それ以降は、実施例1と同様の方法で多孔質電極基材を得ようとした。しかし、実施例1と同様の条件では、加熱加圧後、無数のシワが入ったため、予熱温度を200℃から230℃まで上げたところ、シワが消えたのでこの条件を採用し、実施例1と同様の方法で焼成し、多孔質電極基材を得た。得られた多孔質電極基材は、脆く、取り扱いにくいものであった。評価結果を表2、3に示す。また、この多孔質電極基材の細孔分布を図2に示す。ピークがシャープであり10μm以下の細孔の細孔容積が全細孔容積の19%しかないため、発生水分の管理がされにくく、セルに組み入れた場合も性能が低いことが予想された。
(Comparative Example 1)
A carbon fiber paper of 15 g / m 2 was used in the same manner as in Example 1 except that only a PAN-based carbon fiber having an average fiber diameter of 7 μm and an average fiber length of 3 mm was used as the short carbon fiber, and no vinylon fiber was added. Obtained. In the same manner as in Example 1, 100 parts by mass of phenol resin was attached to 100 parts by mass of carbon fiber short fibers on this carbon fiber paper to obtain 28 g / m 2 of resin-attached carbon fiber paper.
Thereafter, an attempt was made to obtain a porous electrode substrate by the same method as in Example 1. However, under the same conditions as in Example 1, since innumerable wrinkles entered after heating and pressurization, when the preheating temperature was raised from 200 ° C. to 230 ° C., the wrinkles disappeared, so this condition was adopted. Was fired in the same manner as above to obtain a porous electrode substrate. The obtained porous electrode substrate was brittle and difficult to handle. The evaluation results are shown in Tables 2 and 3. Moreover, the pore distribution of this porous electrode substrate is shown in FIG. Since the peak was sharp and the pore volume of pores of 10 μm or less was only 19% of the total pore volume, it was difficult to manage the generated water, and it was expected that the performance was low even when incorporated in a cell.

(比較例2)
炭素繊維紙の目付を30g/mにし、樹脂付着炭素繊維紙の目付を56g/mにした以外は、比較例1と同様の方法で電極基材を得た。多孔質電極基材は、目付が増えた分強くなったが、脆く取り扱いにくいものとなった。評価結果を表2、3に示す。
(Comparative Example 2)
An electrode substrate was obtained in the same manner as in Comparative Example 1 except that the basis weight of the carbon fiber paper was 30 g / m 2 and the basis weight of the resin-attached carbon fiber paper was 56 g / m 2 . The porous electrode substrate became stronger as the basis weight increased, but it was brittle and difficult to handle. The evaluation results are shown in Tables 2 and 3.

Figure 2006040885
Figure 2006040885

Figure 2006040885
Figure 2006040885

Figure 2006040885
Figure 2006040885

従来技術の問題点を克服し、安価でかつコンパクトでセルスタックを組むのに最適な固体高分子型燃料電池用電極基材及びこの電極基材の製造方法を提供する。   The present invention provides an electrode base material for a polymer electrolyte fuel cell that is suitable for overcoming the problems of the prior art, is inexpensive and compact, and is suitable for assembling a cell stack, and a method for producing the electrode base material.

本発明の多孔質電極基材表面の電子顕微鏡写真である。It is an electron micrograph of the porous electrode base material surface of this invention. 本発明の多孔質電極基材表面の電子顕微鏡写真である。図1より高倍率である。It is an electron micrograph of the porous electrode base material surface of this invention. The magnification is higher than in FIG. 本発明の多孔質電極基材の細孔径分布を示したグラフである。It is the graph which showed the pore diameter distribution of the porous electrode base material of this invention.

Claims (3)

実質的に二次元平面内においてランダムな方向に分散した繊維直径が3〜9μmの炭素短繊維同士が不定形の樹脂炭化物で結着され、さらに前記炭素短繊維同士がフィラメント状の樹脂炭化物により架橋された、厚みが150μm以下の多孔質電極基材。   Carbon short fibers having a fiber diameter of 3 to 9 μm dispersed in a random direction in a substantially two-dimensional plane are bound together by an amorphous resin carbide, and the carbon short fibers are further crosslinked by a filamentous resin carbide. A porous electrode substrate having a thickness of 150 μm or less. 繊維直径が3〜9μmの炭素短繊維とビニロン繊維とからなる、炭素繊維目付16〜40g/mの炭素繊維紙に樹脂を含浸したのち、炭素化する多孔質電極基材の製造方法。 A method for producing a porous electrode substrate, comprising impregnating a resin into carbon fiber paper having a carbon fiber basis weight of 16 to 40 g / m 2 , comprising carbon short fibers having a fiber diameter of 3 to 9 μm and vinylon fibers, and then carbonizing. 繊維直径が3〜9μmの炭素短繊維とビニロン繊維とからなる、炭素繊維目付8〜20g/mの炭素繊維紙に樹脂を含浸し、2枚貼り合わせた後、炭素化する多孔質電極基材の製造方法。 Porous electrode group comprising carbon short fibers having a fiber diameter of 3 to 9 μm and vinylon fibers, impregnated with carbon fiber paper having a carbon fiber basis weight of 8 to 20 g / m 2 , bonding two sheets together, and then carbonizing. A method of manufacturing the material.
JP2005181150A 2004-06-21 2005-06-21 Porous electrode substrate and method for producing the same Expired - Fee Related JP4730888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181150A JP4730888B2 (en) 2004-06-21 2005-06-21 Porous electrode substrate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004182409 2004-06-21
JP2004182409 2004-06-21
JP2005181150A JP4730888B2 (en) 2004-06-21 2005-06-21 Porous electrode substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006040885A true JP2006040885A (en) 2006-02-09
JP4730888B2 JP4730888B2 (en) 2011-07-20

Family

ID=35905627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181150A Expired - Fee Related JP4730888B2 (en) 2004-06-21 2005-06-21 Porous electrode substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4730888B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081872A (en) * 2006-09-27 2008-04-10 Takayasu Co Ltd Carbon fiber nonwoven fabric and method for producing the same
JP2009129633A (en) * 2007-11-21 2009-06-11 Mitsubishi Rayon Co Ltd Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010153222A (en) * 2008-12-25 2010-07-08 Noritake Co Ltd Flexible type gas diffusion electrode substrate and membrane-electrode assembly
WO2010090164A1 (en) * 2009-02-04 2010-08-12 三菱レイヨン株式会社 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and solid polymer-type fuel cell
JP2011146373A (en) * 2009-12-17 2011-07-28 Toray Ind Inc Manufacturing method of gas diffusion electrode base material
JP2015071508A (en) * 2013-10-03 2015-04-16 三菱レイヨン株式会社 Method of producing porous electrode substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622140B2 (en) * 1986-07-18 1994-03-23 呉羽化学工業株式会社 Composite electrode substrate for fuel cell and manufacturing method thereof
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2002270191A (en) * 2001-03-08 2002-09-20 Mitsubishi Rayon Co Ltd Carbon electrode material and manufacturing method thereof
JP2003183994A (en) * 2001-10-09 2003-07-03 Mitsubishi Rayon Co Ltd Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
WO2003087470A1 (en) * 2002-04-17 2003-10-23 Mitsubishi Rayon Co., Ltd. Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622140B2 (en) * 1986-07-18 1994-03-23 呉羽化学工業株式会社 Composite electrode substrate for fuel cell and manufacturing method thereof
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2002270191A (en) * 2001-03-08 2002-09-20 Mitsubishi Rayon Co Ltd Carbon electrode material and manufacturing method thereof
JP2003183994A (en) * 2001-10-09 2003-07-03 Mitsubishi Rayon Co Ltd Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
WO2003087470A1 (en) * 2002-04-17 2003-10-23 Mitsubishi Rayon Co., Ltd. Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081872A (en) * 2006-09-27 2008-04-10 Takayasu Co Ltd Carbon fiber nonwoven fabric and method for producing the same
JP2009129633A (en) * 2007-11-21 2009-06-11 Mitsubishi Rayon Co Ltd Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010153222A (en) * 2008-12-25 2010-07-08 Noritake Co Ltd Flexible type gas diffusion electrode substrate and membrane-electrode assembly
WO2010090164A1 (en) * 2009-02-04 2010-08-12 三菱レイヨン株式会社 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and solid polymer-type fuel cell
JP5404609B2 (en) * 2009-02-04 2014-02-05 三菱レイヨン株式会社 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
US8927173B2 (en) 2009-02-04 2015-01-06 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell
US8986907B2 (en) 2009-02-04 2015-03-24 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell
JP2011146373A (en) * 2009-12-17 2011-07-28 Toray Ind Inc Manufacturing method of gas diffusion electrode base material
JP2015071508A (en) * 2013-10-03 2015-04-16 三菱レイヨン株式会社 Method of producing porous electrode substrate

Also Published As

Publication number Publication date
JP4730888B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5844760B2 (en) Porous electrode substrate
JP3612518B2 (en) Porous carbon electrode substrate, method for producing the same, and carbon fiber paper
JP2006040886A (en) Porous electrode substrate and its manufacturing method
WO2005124907A1 (en) Porous electrode base material and process for producing the same
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP7136252B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP2004235134A (en) Porous electrode substrate for polymer electrolyte fuel cell and its manufacturing method
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP6172131B2 (en) Porous carbon electrode substrate
JP2007269624A (en) Porous carbon electrode substrate and method of manufacturing the same
JP5297701B2 (en) Method for producing electrode substrate for polymer electrolyte fuel cell
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP2006004858A5 (en)
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP2009280437A (en) Method for producing porous carbon sheet
JP2011040386A (en) Porous carbon electrode base material for fuel cell
JP5560977B2 (en) Method for producing porous carbon electrode substrate
JP2010182682A (en) Method for manufacturing porous electrode substrate
JP2009117325A (en) Porous electrode substrate and fuel cell using same
JP5394426B2 (en) Porous carbon electrode substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4730888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees