JP2006037499A - Solar radiation adjusting body - Google Patents

Solar radiation adjusting body Download PDF

Info

Publication number
JP2006037499A
JP2006037499A JP2004218593A JP2004218593A JP2006037499A JP 2006037499 A JP2006037499 A JP 2006037499A JP 2004218593 A JP2004218593 A JP 2004218593A JP 2004218593 A JP2004218593 A JP 2004218593A JP 2006037499 A JP2006037499 A JP 2006037499A
Authority
JP
Japan
Prior art keywords
solar radiation
transparent plate
plate member
wall
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004218593A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Harimoto
和芳 張本
Masabumi Saito
正文 齋藤
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Yokohama National University NUC
Original Assignee
Taisei Corp
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Yokohama National University NUC filed Critical Taisei Corp
Priority to JP2004218593A priority Critical patent/JP2006037499A/en
Publication of JP2006037499A publication Critical patent/JP2006037499A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar radiation adjusting body for securing thermal insulation performance and visibility, preventing irregular reflection, and reducing intensity of solar radiation in response to an altitude of the sun while having transmissivity of the solar radiation. <P>SOLUTION: This solar radiation adjusting body has a first transparent plate member 11, a second transparent plate member 12 oppositely arranged to this first transparent plate member 11, and a partition wall 20A having transmissivity lower than the first transparent plate member 11 and the second transparent plate member 12 and arranged so as to form a plurality of spaces between the first transparent plate member 11 and the second transparent plate member 12; and is characterized by arranging the partition wall 20A so as to be orthogonal to the first transparent plate member 11 and the second transparent plate member 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、日射を調節する日射調整体に関する。   The present invention relates to a solar radiation adjusting body that adjusts solar radiation.

一般に、太陽光(以下、「日射」という。)が窓のガラスを透過して室内に入り込むと、室内居住者が日射に対して眩しさを感じ、また、その日射によって室内が熱せられて劣悪な温熱環境となり、建物に対する冷房負荷などの悪影響をもたらす(以下、これらを総称して「室内劣悪環境」という。)。これら問題を解決するために、日射を遮りつつ断熱する日射調整体の一つである複層窓が提案されている(例えば、特許文献1参照)。
この複層窓は、外側から第一の透明板状体、中空層、紫外線透過防止層、第二の透明板状体、有機材料溶液、第三の透明板状体の順に積層して構成されている。
ここで、中空層は断熱を行い、また、有機材料溶液は、昇温すると白濁化する性質を有していることから、日射によって温度が上昇すると、自発的に白濁して日射及び日射の熱エネルギを遮断する。つまり、複層窓は、日射によって生じる室内の温度上昇を防止することができる。
また、低温時には有機材料溶液は冷やされるので白濁が解消されて透明度を増すようになっている。これにより、日射及び日射の熱エネルギを室内に取り込むことができる。
Generally, when sunlight (hereinafter referred to as “sunlight”) penetrates the window glass and enters the room, indoor residents feel dazzled by the sunlight, and the sun is heated and the room is heated. It becomes a very hot environment and causes adverse effects such as cooling load on the building (hereinafter, these are collectively referred to as “interior indoor environment”). In order to solve these problems, a multi-layer window which is one of the solar radiation adjusting bodies which insulate while shielding the solar radiation has been proposed (for example, see Patent Document 1).
This multi-layer window is configured by laminating the first transparent plate, the hollow layer, the ultraviolet light transmission preventing layer, the second transparent plate, the organic material solution, and the third transparent plate from the outside in this order. ing.
Here, the hollow layer insulates, and the organic material solution has the property of becoming clouded when the temperature rises, so when the temperature rises due to solar radiation, it spontaneously becomes clouded and the heat of solar radiation and solar radiation. Cut off energy. That is, the multi-layer window can prevent an indoor temperature rise caused by solar radiation.
Further, since the organic material solution is cooled at a low temperature, the white turbidity is eliminated and the transparency is increased. Thereby, solar energy and the thermal energy of solar radiation can be taken in indoors.

このほかに、向かい合う2枚の透明板状体の間に中空のガラス管を並べて配置し、このガラス管と透明板状体との間にサーモトロピック水溶液を充填した日射調整体が提案されている(例えば、特許文献2参照)。この日射調整体は、ガラス管の内部が真空状態となっているので断熱性を高くすることができ、また、サーモトロピック水溶液は、昇温すると白濁化する性質を有していることから、日射によって温度が上昇すると白濁して、日射及び日射の熱エネルギを遮断する。また、低温時には、サーモトロピック水溶液が冷やされ、白濁が解消されて透明度を増すようになっている。これにより、日射及び日射の熱エネルギを室内に取り込むことができる。   In addition, a solar radiation adjusting body has been proposed in which hollow glass tubes are arranged side by side between two facing transparent plates, and a thermotropic aqueous solution is filled between the glass tubes and the transparent plates. (For example, refer to Patent Document 2). This solar radiation adjusting body can increase heat insulation because the inside of the glass tube is in a vacuum state, and the thermotropic aqueous solution has the property of becoming clouded when the temperature is raised. When the temperature rises due to turbidity, it becomes cloudy and blocks solar radiation and solar heat energy. Further, at low temperatures, the thermotropic aqueous solution is cooled to eliminate white turbidity and increase transparency. Thereby, solar energy and the thermal energy of solar radiation can be taken in indoors.

また、向かい合う透明板状体の間にアルミニウム製のハニカム構造を設けた日射調整体も提案されている(例えば、非特許文献1参照)。このハニカム構造を用いると、ハニカム構造の各コアで断熱を行い、太陽の位置に対応してハニカム構造で日射を遮断することができるようになっている。また、ハニカム構造の壁部で遮へいされた日射は、その壁部で反射して室内に入り込んで明るく室内を照らすことができるようにもなっている。これにより、室内への熱負荷となる過度の日射を遮断し、また、室内の照度の向上に寄与する拡散性の高い日射を室内に取り込むことができる。
特開平7−232938号公報(段落0007〜0024、図1) 特開平9−124348号公報(段落0008〜0017、図1) Figla Co.,Ltd.、“ECOSS−ハニカム”、[online ]、平成13年2月21日、Figla Co.,Ltd.、[平成16年6月14日検索]、インターネット<URL:http://www.figla.co.jp/eco#hc.htm>
A solar radiation adjusting body in which an aluminum honeycomb structure is provided between opposing transparent plate-like bodies has also been proposed (see, for example, Non-Patent Document 1). When this honeycomb structure is used, each core of the honeycomb structure is thermally insulated, and the solar radiation can be blocked by the honeycomb structure corresponding to the position of the sun. In addition, the solar radiation shielded by the wall portion of the honeycomb structure is reflected by the wall portion and can enter the room to illuminate the room brightly. Thereby, the excessive solar radiation used as the heat load to a room | chamber interior can be interrupted | blocked, and the highly diffused solar radiation which contributes to the improvement of indoor illumination intensity can be taken in indoors.
Japanese Patent Laid-Open No. 7-232938 (paragraphs 0007 to 0024, FIG. 1) JP-A-9-124348 (paragraphs 0008 to 0017, FIG. 1) Figla Co., Ltd., “ECOSS-Honeycomb”, [online], February 21, 2001, Figla Co., Ltd., [Search June 14, 2004], Internet <URL: http: / /www.figla.co.jp/eco#hc.htm>

しかしながら、日射を遮断する材料として有機材料溶液を用いた場合には、日射が有する紫外線を除去しなくてはならず、このような紫外線透過防止層が劣化した場合は、紫外線により有機材料溶液が白濁してしまい、日射調整体の視認性が悪くなるという問題がある。   However, when an organic material solution is used as a material that blocks solar radiation, the ultraviolet light that solar radiation has to be removed must be removed. There is a problem that it becomes cloudy and the visibility of the solar radiation adjusting body deteriorates.

また、ガラス管を並べて配置する場合は、内部が真空となるガラス管で日射調整体の断熱性が向上する一方で、そのガラス管自体により日射調整体の視認性が悪くなるという問題がある。   Moreover, when arrange | positioning glass tubes side by side, while the heat insulation of a solar radiation adjustment body improves with the glass tube which an inside becomes a vacuum, there exists a problem that the visibility of a solar radiation adjustment body worsens by the glass tube itself.

また、断熱しつつ日射を遮断する材料としてアルミニウム製のハニカム構造を用いた場合は、ハニカム構造の壁部で日射が乱反射することから、室内居住者が眩しさを感じるという問題がある。また、ハニカム構造にアルミニウムを用いると、そのアルミニウムの熱伝導によって熱貫流率が低下するという問題がある。さらに、ハニカム構造の壁部によって直接室内に入射しようとする日射を防いだ場合は、アルミニウムは日射の透過性がないので、昼間の日射の導入量が、アルミニウム壁部に入射せずに直接室内に入射される分と、ハニカム構造の壁部の反射による日射の室内への入射の分のみに限定されるという課題もある。   Further, when an aluminum honeycomb structure is used as a material that shields solar radiation while insulating, there is a problem that indoor occupants feel dazzled because solar radiation is diffusely reflected at the walls of the honeycomb structure. In addition, when aluminum is used for the honeycomb structure, there is a problem that the heat transmissivity is lowered due to heat conduction of the aluminum. In addition, when the solar radiation that directly enters the room is prevented by the honeycomb structure wall, aluminum has no solar radiation transparency, so the amount of daytime solar radiation is not directly incident on the aluminum wall. There is also a problem that it is limited only to the amount incident on the inside of the room and the amount of solar radiation incident on the interior of the room due to the reflection of the walls of the honeycomb structure.

そこで、本発明では、前記した問題を解決し、断熱性と視認性とを確保し、また、乱反射を防止し、日射の透過性を有しつつ太陽の高度に応じて日射の強さを減少させる日射調整体を提供することを課題とする。   Therefore, in the present invention, the above-described problems are solved, heat insulation and visibility are ensured, diffuse reflection is prevented, and the intensity of solar radiation is reduced according to the altitude of the sun while having solar radiation transparency. An object of the present invention is to provide a solar radiation adjusting body to be operated.

前記課題を決するため、請求項1に記載の発明は、第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、前記仕切り壁が、前記第一の透明板部材と前記第二の透明板部材とに直交するように設けられていることを特徴とする日射調整体である。   In order to determine the above-mentioned subject, the invention according to claim 1 includes a first transparent plate member, a second transparent plate member disposed opposite to the first transparent plate member, and the first transparent plate. Solar transmittance having lower transmittance than the plate member and the second transparent plate member and provided to form a plurality of spaces between the first transparent plate member and the second transparent plate member And a partition wall, wherein the partition wall is provided so as to be orthogonal to the first transparent plate member and the second transparent plate member.

このように、第一の透明板部材と第二の透明板部材との間に設けられる仕切り壁が第一の透明板部材と第二の透明板部材とに直交し、第一の透明板部材より低い透過率を有して形成されているので、所定の角度以上の入射角度で入射した日射の強さを減少させることができるようになっている。
また、仕切り壁の反射率が低いので仕切り壁の入射面での乱反射を防止することができる。
さらに、仕切り壁によって空間(以下、「コア」という。)が形成され、仕切り壁の面は視線方向にほぼ平行であるので視認性が良く、また、仕切り壁に透過性があるので室内の開放感が高く、また、当該コアによって空気が対流するのを抑制するので断熱性を確保することができるようになっている。
Thus, the partition wall provided between the first transparent plate member and the second transparent plate member is orthogonal to the first transparent plate member and the second transparent plate member, and the first transparent plate member Since it is formed with a lower transmittance, it is possible to reduce the intensity of solar radiation incident at an incident angle greater than a predetermined angle.
Moreover, since the reflectance of a partition wall is low, the irregular reflection in the entrance surface of a partition wall can be prevented.
Furthermore, a space (hereinafter referred to as “core”) is formed by the partition wall, and the surface of the partition wall is substantially parallel to the line-of-sight direction, so that the visibility is good and the partition wall is permeable so that the room is open. The feeling is high, and since the convection of air is suppressed by the core, heat insulation can be ensured.

また、請求項2に記載の発明は、第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、前記仕切り壁が、前記第一の透明板部材及び前記第二の透明板部材に対して傾斜して設けられていることを特徴とする日射調整体である。   Further, the invention according to claim 2 is a first transparent plate member, a second transparent plate member disposed to face the first transparent plate member, the first transparent plate member, and the first transparent plate member. A partition wall having solar transmittance that is provided so as to form a plurality of spaces between the first transparent plate member and the second transparent plate member, having a lower transmittance than the second transparent plate member. And the partition wall is provided so as to be inclined with respect to the first transparent plate member and the second transparent plate member.

このように、第一の透明板部材と第二の透明板部材との間に設けられる仕切り壁が第一の透明板部材及び第二の透明板部材に対して傾斜し、第一の透明板部材より低い透過率を有して形成されているので、入射した日射の強さを減少させることができるようになっている。
また、日射又は日射の一部が仕切り壁に入射した場合に、この日射又は日射の一部が従来のアルミニウムに比べて反射率が低い仕切り壁によって拡散反射、吸収、透過されるので仕切り壁の入射面での乱反射を防止することができる。
さらに、仕切り壁の面は視線方向にほぼ平行であるので視認性が良く、当該空間(コア)内で空気が対流することを抑制するので断熱性を確保することができるようになっている。
Thus, the partition wall provided between the first transparent plate member and the second transparent plate member is inclined with respect to the first transparent plate member and the second transparent plate member, and the first transparent plate Since it has a transmittance lower than that of the member, the intensity of incident solar radiation can be reduced.
In addition, when solar radiation or part of solar radiation is incident on the partition wall, part of the solar radiation or solar radiation is diffusely reflected, absorbed, and transmitted by the partition wall having a lower reflectance than conventional aluminum. It is possible to prevent irregular reflection on the incident surface.
Furthermore, since the surface of the partition wall is substantially parallel to the line-of-sight direction, visibility is good and heat convection is suppressed in the space (core), so that heat insulation can be ensured.

また、請求項3に記載の発明は、請求項1又は請求項2に記載の発明であって、前記仕切り壁がハニカム構造となっていることを特徴とする請求項1又は請求項2に記載の日射調整体である。このように、仕切り壁がハニカム構造となっていることにより、断熱性を確保することができ、日射調整体の強度を高めるようになっている。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the partition wall has a honeycomb structure. The solar radiation adjustment body. Thus, since the partition wall has a honeycomb structure, heat insulation can be ensured, and the strength of the solar radiation adjusting body is increased.

このような日射調整体によれば、仕切り壁が第一の透明板部材及び第二の透明板部材より低い透過率を有しているので、室内への熱負荷となる過度の日射の強さを減少させつつ、室内の照度の向上に寄与する拡散性の高い日射の導入量を多くすることができ、また、仕切り壁の反射率が低いので仕切り壁に日射が入射しても当該仕切り壁の入射面での乱反射を防止することができる。
また、コアを形成する仕切り壁が視線方向にほぼ平行であるので視認性の確保ができ、また、仕切り壁に透過性があるので室内の開放感が高く、この各コアによって空気が対流することを抑制するので断熱性を確保することができる。
また、仕切り壁を第一の透明板部材と第二の透明板部材とに直交して設けられているので、所定の角度以上の入射角度で入射する日射の強さを減少させることができる。
また、仕切り壁を傾斜させたことによって、仕切り壁に入射する日射の比率を高めることができるので、仕切り壁によって吸収・拡散反射される日射量が多くなり、室内に入射する日射の強さを効率よく減少させることができる。
さらに、仕切り壁がハニカム構造となっていることにより、日射調整体の強度が向上し、断熱性を確保することができる。
According to such a solar radiation adjusting body, since the partition wall has a lower transmittance than the first transparent plate member and the second transparent plate member, the intensity of excessive solar radiation that becomes a heat load to the room. The amount of highly diffusible solar radiation that contributes to improving the illuminance in the room can be increased, and the partition wall has a low reflectivity so that even if the solar radiation is incident on the partition wall, the partition wall It is possible to prevent irregular reflection at the incident surface.
In addition, the partition walls forming the core are almost parallel to the line-of-sight direction, so visibility can be ensured, and the partition walls are permeable so that a feeling of openness in the room is high and air is convected by each core. Therefore, heat insulation can be secured.
Moreover, since the partition wall is provided orthogonal to the first transparent plate member and the second transparent plate member, it is possible to reduce the intensity of solar radiation incident at an incident angle equal to or greater than a predetermined angle.
In addition, by tilting the partition wall, the ratio of solar radiation incident on the partition wall can be increased, so the amount of solar radiation that is absorbed and diffusely reflected by the partition wall increases, and the intensity of solar radiation incident on the room increases. It can be reduced efficiently.
Furthermore, since the partition wall has a honeycomb structure, the strength of the solar radiation adjusting body is improved and heat insulation can be secured.

本発明を実施するための最良の一形態(以下「実施形態」という)について、図面を参照して詳細に説明する。
なお、説明において、同一要素には同一符号を用い、重複する説明を省略する。
また、各実施形態において、日射が差し込む側を「外側」、日射が透過した側を「内側(以下、「室内」という場合がある。)」とする。
また、仕切り壁が平面視六角形となるハニカム構造である場合を例示する。
さらに、各実施形態で説明する建物は、一般的な一戸建の建物とする。
A best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings.
In the description, the same reference numerals are used for the same elements, and redundant descriptions are omitted.
Further, in each embodiment, a side into which solar radiation is inserted is referred to as “outside”, and a side through which solar radiation is transmitted is referred to as “inside (hereinafter also referred to as“ indoor ””).
Moreover, the case where the partition wall has a honeycomb structure having a hexagonal shape in plan view is illustrated.
Further, the building described in each embodiment is a general detached building.

(第一の実施形態)
本発明の第一の実施形態について、適宜図面を参照しながら詳細に説明する。図1(a)は本発明の第一の実施形態に係る日射調整体の部分断面図であり、図1(b)は本発明の第一の実施形態に係る日射調整体の対流状態を示す状態図である。図2は本発明の第一の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。図3(a)は本発明の第一の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、図3(b)は「大きい入射角度」で日射を入射した場合を示す概略図である。
(First embodiment)
A first embodiment of the present invention will be described in detail with reference to the drawings as appropriate. Fig.1 (a) is a fragmentary sectional view of the solar radiation adjusting body which concerns on 1st embodiment of this invention, FIG.1 (b) shows the convection state of the solar radiation adjusting body which concerns on 1st embodiment of this invention. It is a state diagram. FIG. 2 is a partial perspective view showing an example of the partition wall of the solar radiation adjusting body according to the first embodiment of the present invention. FIG. 3A is a schematic view showing a case where solar radiation is incident on the solar radiation adjusting body according to the first embodiment of the present invention at a “small incident angle”, and FIG. 3B is a diagram showing a “large incident angle”. It is the schematic which shows the case where solar radiation is incident.

本発明の日射調整体1は、主として建物の窓に用いられるものであって、日射調整体1を備えた窓に日射が差し込んだ場合に、太陽の高度が高い夏季には建物内の温度を日射の熱(日射熱)によって上昇させないように、また、建物内の居住者が日射による眩しさを感じないようにするために、さらに、建物内から外側が視認できるように、差し込む日射の一部を透過させ、吸収・拡散反射しながら室内に入射して冷房負荷となる日射の強さを減少させるものである。
この日射調整体1は、図1に示すように、外側から順番に、第一の透明板部材11、ハニカム構造となっている仕切り壁20A、第二の透明板部材12を積層して構成したものである。
The solar radiation adjusting body 1 of the present invention is mainly used for a window of a building, and when the solar radiation is inserted into the window provided with the solar radiation adjusting body 1, the temperature in the building is increased in summer when the altitude of the sun is high. In order to prevent the sun from rising due to the heat of solar radiation (sun heat) and to prevent the residents in the building from feeling dazzled by solar radiation, the solar radiation to be inserted can be seen from the inside of the building. This reduces the intensity of solar radiation that passes through the part and enters the room while absorbing and diffusing, and becomes a cooling load.
As shown in FIG. 1, the solar radiation adjusting body 1 is configured by laminating a first transparent plate member 11, a partition wall 20A having a honeycomb structure, and a second transparent plate member 12 in order from the outside. Is.

第一の透明板部材11は、図1(a)に示すように、光を透過する部材、例えば透明のガラスからなり、差し込んだ日射をそのまま透過でき、視認性を損なわないようになっている。つまり、第一の透明板部材11を介して対象物を見たときに、この対象物が鮮明に認識できる程度に透明な状態となっている。言い換えれば、第一の透明板部材11は、曇りガラスや擦りガラスのような半透明の状態ではない。なお、視認性を損なわないものであれば、無色透明のものに限らず、有色透明のものであってもよい。
なお、第二の透明板部材12についても同様である。
第二の透明板部材12は、第一の透明板部材11と向かい合わせに配置されている。
As shown in FIG. 1A, the first transparent plate member 11 is made of a light-transmitting member, for example, transparent glass, and can directly transmit the inserted solar radiation so as not to impair visibility. . That is, when the object is viewed through the first transparent plate member 11, the object is transparent to such an extent that the object can be clearly recognized. In other words, the first transparent plate member 11 is not in a translucent state such as frosted glass or rubbed glass. In addition, as long as visibility is not impaired, not only a colorless and transparent thing but a colored and transparent thing may be sufficient.
The same applies to the second transparent plate member 12.
The second transparent plate member 12 is disposed so as to face the first transparent plate member 11.

仕切り壁20Aは、図1(a)に示すように、複数の壁部21,21・・・によってハニカム構造を形成し、また、この各壁部21が第一の透明板部材11及び第二の透明板部材12の透過率よりも低い透過率となっており、透過する日射の強さを減少させることができるようになっている。つまり、透過率が0(ゼロ)ではなく第一の透明板部材11と第二の透明板部材12よりも低くなっている。また、仕切り壁20Aの各壁部21は、第一の透明板部材11及び第二の透明板部材12と直交する向きに設けられている。
この仕切り壁20Aは、図2に示すように、第一の透明板部材11と第二の透明板部材12との間に配置されており、その壁部21が第一の透明板部材11と第二の透明板部材12とで形成している間隔(以下、「ハニカム厚さa」という。)と同じ厚さで、かつ、平面視六角形となる各コアの並行する2つの壁部21,21同士が所定の間隔(以下、「ハニカム径b」という。)となるように形成されている。
As shown in FIG. 1A, the partition wall 20A forms a honeycomb structure with a plurality of wall portions 21, 21,..., And each wall portion 21 includes the first transparent plate member 11 and the second transparent plate member 11. The transmissivity of the transparent plate member 12 is lower than that of the transparent plate member 12, and the intensity of transmitted solar radiation can be reduced. That is, the transmittance is not 0 (zero) but lower than the first transparent plate member 11 and the second transparent plate member 12. Each wall portion 21 of the partition wall 20 </ b> A is provided in a direction orthogonal to the first transparent plate member 11 and the second transparent plate member 12.
As shown in FIG. 2, the partition wall 20 </ b> A is disposed between the first transparent plate member 11 and the second transparent plate member 12, and the wall portion 21 is connected to the first transparent plate member 11. Two parallel wall portions 21 of each core having the same thickness as the interval formed between the second transparent plate member 12 (hereinafter referred to as “honeycomb thickness a”) and a hexagonal shape in plan view. , 21 are formed at a predetermined interval (hereinafter referred to as “honeycomb diameter b”).

また、仕切り壁20Aの壁部21の透過率は、日射遮蔽性能及び眩しさ低減性能を重視する場合は0.30〜0.02が好ましい。
これは、透過率が0.30よりも高い場合は、日射を透過させすぎてしまい、眩しさを感じやすくなってしまうからであり、透過率が0.02よりも低い場合は、日射が透過しにくくなり、昼間の日射の導入量が少なくなってしまうからである。
透過率が0.30よりも高い透過率を持つ仕切り壁であっても、仕切り壁20Aによって日射が拡散するので、直接的な日射による眩しさを低減する効果がある。また、仕切り壁20A面と視線方向の角度が所定の角度以上となる場合は、日射調整体1を介して明瞭な視認性が確保されないものの、透過率が0.90程度の場合では、ある程度の輪郭や色を認識できる場合もあるので、室内の開放感を得ることができる。
なお、透過率は、以下の式1で表される。
透過率=(壁部21を透過した日射の強さ)/(壁部21を透過する前の日射の強さ)・・・(式1)
Further, the transmittance of the wall portion 21 of the partition wall 20A is preferably 0.30 to 0.02 when importance is attached to the solar shading performance and the dazzling reduction performance.
This is because when the transmittance is higher than 0.30, the solar radiation is excessively transmitted and it becomes easy to feel dazzling. When the transmittance is lower than 0.02, the solar radiation is transmitted. This is because the amount of daytime solar radiation is reduced.
Even if the partition wall has a transmittance higher than 0.30, since the solar radiation is diffused by the partition wall 20A, there is an effect of reducing glare caused by direct solar radiation. Further, when the angle between the partition wall 20A surface and the line-of-sight direction is equal to or larger than a predetermined angle, clear visibility is not ensured through the solar radiation adjusting body 1, but when the transmittance is about 0.90, a certain degree Since there are cases where the outline and color can be recognized, a sense of openness in the room can be obtained.
The transmittance is represented by the following formula 1.
Transmittance = (Intensity of solar radiation transmitted through wall 21) / (Intensity of solar radiation before transmitted through wall 21) (Equation 1)

ここで、ハニカム厚さ(中空層厚さ)a及びハニカム径bについて説明する。
ハニカム厚さaとハニカム径bとの関係は、以下の式2によって規定される。
ハニカム厚さa×1/2 ≦ハニカム径b≦ ハニカム厚さa×2・・・(式2)
これは、ハニカム径bが「ハニカム厚さa×1/2」より小さいと視認性が悪くなり、ハニカム厚さaが16mm以上の場合にハニカム径bが「ハニカム厚さa×2」より大きいと、壁部21を透過する日射量がすくなくなるからである。
Here, the honeycomb thickness (hollow layer thickness) a and the honeycomb diameter b will be described.
The relationship between the honeycomb thickness a and the honeycomb diameter b is defined by the following formula 2.
Honeycomb thickness a × 1/2 ≦ honeycomb diameter b ≦ honeycomb thickness a × 2 (Formula 2)
This is because visibility becomes worse when the honeycomb diameter b is smaller than “honeycomb thickness a × 1/2”, and when the honeycomb thickness a is 16 mm or more, the honeycomb diameter b is larger than “honeycomb thickness a × 2”. This is because the amount of solar radiation that passes through the wall portion 21 is reduced.

ここで、式2の関係を有した範囲で、ハニカム径bは仕切り壁20Aの各コア内の空気の対流抑制効果(図1(b)参照)と視認性の確保の観点から、10〜20mmとするのが良い。つまり、ハニカム径bが10mm以下だと視認性が悪くなり、20mm以上だと空気の対流抑制効果が悪くなって断熱性が悪くなるからである。
また、式2の関係を有した範囲で、ハニカム厚さaは16mm以上とするのが良い。
これは、ハニカム厚さaが16mm以上の場合には、一般的な複層ガラス(図示せず)又は一般的な中空層(図示せず)と比較して断熱性が向上するからである。ただし、ハニカム厚さaが16mm未満の場合は、一般的な複層ガラスと比較して断熱性の差異が少ない。
Here, within the range having the relationship of Formula 2, the honeycomb diameter b is 10 to 20 mm from the viewpoint of ensuring the effect of suppressing convection of air in each core of the partition wall 20A (see FIG. 1B) and visibility. It is good to do. That is, if the honeycomb diameter b is 10 mm or less, the visibility is deteriorated, and if it is 20 mm or more, the air convection suppressing effect is deteriorated and the heat insulation is deteriorated.
Further, the honeycomb thickness a is preferably 16 mm or more within the range having the relationship of Formula 2.
This is because when the honeycomb thickness a is 16 mm or more, the heat insulating property is improved as compared with a general multilayer glass (not shown) or a general hollow layer (not shown). However, when the honeycomb thickness a is less than 16 mm, there is little difference in heat insulating properties as compared with general multilayer glass.

次に、日射が日射調整体1を透過する状態を説明する。
図3(a),(b)に示すように、日射は、第一の透明板部材11、仕切り壁20A、第二の透明板部材12の順に透過(通過)する。
ここで、日射は、上方から斜めに第一の透明板部材11へ入射することとなるが、この第一の透明板部材11への日射の入射角度(光線と水平面(線)とのなす角度)は、太陽の高度に応じて「小さい入射角度」から「大きい入射角度」へと変化する。
Next, a state where solar radiation passes through the solar radiation adjusting body 1 will be described.
As shown in FIGS. 3A and 3B, solar radiation is transmitted (passed) in the order of the first transparent plate member 11, the partition wall 20 </ b> A, and the second transparent plate member 12.
Here, the solar radiation is incident on the first transparent plate member 11 obliquely from above. The incident angle of the solar radiation to the first transparent plate member 11 (the angle formed between the light beam and the horizontal plane (line)). ) Changes from “small incident angle” to “large incident angle” according to the altitude of the sun.

なお、一般的に、冬期などの太陽の高度が低い場合においては、日射の入射角度が小さいので、仕切り壁20Aの壁部21を透過する日射が少ない状態となるが、この状態は、一般に日射熱の取得によって暖房負荷の削減効果を得られるため、眩しさを低減する必要がなければ、日射の強さを減少させる必要がない。一方、夏期のように、太陽の高度が高く冷房負荷が発生する場合には、日射の強さを減少させて冷房負荷を削減する必要がある。ここで、日射は、太陽の高度が高くなるにつれて入射角度が大きくなって水平に対して直角に近づき、仕切り壁20Aの壁部21に入射して、吸収あるいは反射する日射が増大する。これにより、昼光利用に適切な日射を透過させつつ冷房負荷となる日射の強さを減少させることができるので、視認性を確保し、室内居住者に眩しさを感じさせることなく室内を明るくすることができる。   In general, when the altitude of the sun is low, such as in winter, the incident angle of solar radiation is small, so there is little solar radiation transmitted through the wall portion 21 of the partition wall 20A. Since the effect of reducing the heating load can be obtained by acquiring heat, if it is not necessary to reduce the glare, it is not necessary to reduce the intensity of solar radiation. On the other hand, when the solar altitude is high and a cooling load is generated as in summer, it is necessary to reduce the cooling load by reducing the intensity of solar radiation. Here, as the solar altitude increases, the incident angle increases and approaches the right angle with respect to the horizontal, and the incident solar radiation is incident on the wall portion 21 of the partition wall 20A and absorbed or reflected. As a result, it is possible to reduce the intensity of solar radiation that becomes a cooling load while transmitting sunlight suitable for daylight use, so that visibility is ensured and the indoor occupants are brightened without feeling dazzling. can do.

このとき、日射の入射角度θは、以下の式3で表される。
θ=tan-1(b1/a)・・・(式3)
この日射の入射角度θは、太陽の高度に対応して変化する。そして、この壁部21Aの位置P1に対する垂直距離b1は、日射の入射角度θの変位によって変わることとなる。
このとき、仕切り壁20Aの各コアに入射した日射のすべてが少なくとも1つの壁部21を透過するためには、以下の式4を満たす必要がある(図3(b)参照)。
θ≧θ1=tan-1(b/a)・・・(式4)
ここで、入射角度θ1は、日射が少なくとも1つの壁部21を透過するための境界となる角度である。つまり、壁部21Aの位置P1に対する垂直距離b1がハニカム径bと同じ距離にならなくてはならない。
したがって、以下、式5となる場合は、壁部21に入射する日射と壁部21に入射しない日射とが存在することとなる(図3(a)参照)。
θ<θ1=tan-1(b/a)・・・(式5)
At this time, the incident angle θ of solar radiation is expressed by the following Expression 3.
θ = tan −1 (b1 / a) (Equation 3)
The incident angle θ of the solar radiation changes corresponding to the altitude of the sun. And the vertical distance b1 with respect to the position P1 of this wall part 21A will change with the displacement of the incident angle (theta) of solar radiation.
At this time, in order for all of the solar radiation incident on each core of the partition wall 20A to pass through the at least one wall portion 21, it is necessary to satisfy the following expression (4) (see FIG. 3B).
θ ≧ θ1 = tan −1 (b / a) (Formula 4)
Here, the incident angle θ <b> 1 is an angle that becomes a boundary for solar radiation to pass through at least one wall portion 21. That is, the vertical distance b1 with respect to the position P1 of the wall 21A must be the same distance as the honeycomb diameter b.
Therefore, hereinafter, in the case of Equation 5, there is solar radiation that enters the wall portion 21 and solar radiation that does not enter the wall portion 21 (see FIG. 3A).
θ <θ1 = tan −1 (b / a) (Formula 5)

例えば、仕切り壁20Aの各コアのハニカム厚さaを16mm、ハニカム径bを16mmとする。
また、図3(a),(b)に示すように、仕切り壁20Aの所定の壁部21A(21)について注目すると、その壁部21Aが第一の透明板部材11と当接している位置をP1、壁部21Aが第二の透明板部材12と当接している位置をP2、位置P1より下方の壁部21B(21)が第一の透明板部材11と当接している位置をP3、壁部21B(21)が第二の透明板部材12と当接している位置をP4、とする。
また、壁部21Aの位置P1に対して上方に離れた距離b1がハニカム径bの二分の一(b×1/2)となる位置をP5とする。
また、壁部21B(21)の下方の壁部21C(21)において、壁部21C(21)が第一の透明板部材11と当接している位置をP6、壁部21C(21)が第二の透明板部材12と当接している位置をP7とする。
さらに、日射の入射角度が式4の状態となる場合を「大きい入射角度」、日射の入射角度が式5の状態となる場合を「小さい入射角度」とする。
For example, the honeycomb thickness a of each core of the partition wall 20A is 16 mm, and the honeycomb diameter b is 16 mm.
3A and 3B, when attention is paid to a predetermined wall portion 21A (21) of the partition wall 20A, the wall portion 21A is in contact with the first transparent plate member 11. P1, the position where the wall 21A is in contact with the second transparent plate member 12, P2, and the position where the wall 21B (21) below the position P1 is in contact with the first transparent plate member 11 is P3. The position where the wall 21B (21) is in contact with the second transparent plate member 12 is P4.
Further, a position where the distance b1 that is spaced upward with respect to the position P1 of the wall portion 21A is a half (b × ½) of the honeycomb diameter b is defined as P5.
Further, in the wall portion 21C (21) below the wall portion 21B (21), the position where the wall portion 21C (21) is in contact with the first transparent plate member 11 is P6, and the wall portion 21C (21) is the first position. A position in contact with the second transparent plate member 12 is defined as P7.
Furthermore, the case where the incident angle of solar radiation is in the state of Expression 4 is referred to as “large incident angle”, and the case where the incident angle of solar radiation is in the state of Expression 5 is referred to as “small incident angle”.

つまり、日射の入射角度が「小さい入射角度」となる場合は、図3(a)に示すように、壁部21Aの位置P1から位置P5の範囲に入射した日射が壁部21A(21)を透過して室内に入り込むこととなる(図中、点を付した部位)。
具体的には、壁部21Aに注目して説明すると、図3(a)に示すように、「小さい入射角度」で壁部21Aを透過する日射は、壁部21Aを透過可能となる境界の一の境界点となる壁部21Aの位置P1から入射し、壁部21Aの位置P2と壁部21Bの位置P4との中間の位置P8で出射する。
また、日射は、壁部21Aを透過可能となる境界の他の境界点となる位置P2を含む直線上に位置する位置P5から入射し、壁部21A(21)の位置P2へ出射し、そのまま第二の透明板部材12を透過する。
このように、位置P1から位置P5の範囲に入射した日射のみが壁部21を透過して室内に入り込み、位置P5から壁部21A(21)の上方の壁部21までの範囲で入射した日射は、壁部21を透過しないでそのまま室内へ入り込むこととなる。
That is, when the incident angle of the solar radiation is “small incident angle”, as shown in FIG. 3A, the solar radiation that has entered the range from the position P1 to the position P5 of the wall 21A enters the wall 21A (21). It penetrates and enters the room (parts marked with dots in the figure).
Specifically, when focusing attention on the wall portion 21A, as shown in FIG. 3A, the solar radiation that transmits through the wall portion 21A at a “small incident angle” is a boundary that can be transmitted through the wall portion 21A. The light enters from the position P1 of the wall 21A, which is one boundary point, and exits at a position P8 intermediate between the position P2 of the wall 21A and the position P4 of the wall 21B.
Further, the solar radiation enters from a position P5 located on a straight line including a position P2 that is another boundary point of the boundary through which the wall portion 21A can be transmitted, and is emitted to the position P2 of the wall portion 21A (21) as it is. It passes through the second transparent plate member 12.
In this way, only the solar radiation that has entered the range from the position P1 to the position P5 penetrates the wall 21 and enters the room, and the solar radiation that has entered the range from the position P5 to the wall 21 above the wall 21A (21). Enters the room as it is without passing through the wall 21.

また、日射の入射角度が「大きい入射角度」となる場合は、図3(b)に示すように、日射は、少なくとも1つの壁部21を透過することとなる。
具体的には、壁部21Bに注目して説明すると、図3(b)に示すように、日射が「小さい入射角度」から「大きい入射角度」に変化した場合、「大きい入射角度」で壁部21B(21)を透過する日射は、壁部21B(21)を透過可能となる境界の一の境界点となる壁部21Bの位置P3から入射し、壁部21B(21)の下の壁部21C(21)の第二の透明板部材12と当接する位置P7へ出射する。
また、日射は、壁部21Bを透過可能となる境界の他の境界点となる位置P4を含む直線上に位置する壁部21A(21)の位置P1から入射し、壁部21Bの位置P4で出射する。
このように、位置P1から位置P3の範囲で入射する日射は、少なくとも1つの壁部21を透過して室内に入り込む。
Moreover, when the incident angle of solar radiation becomes a “large incident angle”, solar radiation is transmitted through at least one wall portion 21 as shown in FIG.
Specifically, when focusing attention on the wall portion 21B, as shown in FIG. 3B, when the solar radiation changes from “small incident angle” to “large incident angle”, the wall is changed to “large incident angle”. The solar radiation that passes through the part 21B (21) is incident from the position P3 of the wall part 21B that is one boundary point of the boundary that can pass through the wall part 21B (21), and the wall below the wall part 21B (21) The light is emitted to a position P7 in contact with the second transparent plate member 12 of the portion 21C (21).
Further, the solar radiation is incident from the position P1 of the wall portion 21A (21) located on the straight line including the position P4 that is another boundary point that allows transmission through the wall portion 21B, and at the position P4 of the wall portion 21B. Exit.
In this way, solar radiation incident in the range from the position P1 to the position P3 passes through at least one wall portion 21 and enters the room.

したがって、日射調整体1は、仕切り壁20Aによって、太陽の高度に応じて日射の強さを調節することができ、各壁部21に入射した日射を吸収あるいは反射させつつ日射の強さを減少させることができるので、昼間の日射の導入量を多くすることができる。
また、日射の強さを減少させつつ、ハニカム構造となる仕切り壁によって視認性が確保され、断熱性も確保される。また、仕切り壁で形成したコアにより視認性の確保ができ、この各コアによって空気が対流することを抑制するので断熱性を確保することができる。
また、仕切り壁が第一の透明板部材と第二の透明板部材とに直交して設けられているので、所定の角度以上の入射角度で入射する日射の強さを減少させることができる。
Therefore, the solar radiation adjusting body 1 can adjust the intensity of solar radiation according to the altitude of the sun by the partition wall 20A, and reduces the intensity of solar radiation while absorbing or reflecting the solar radiation incident on each wall portion 21. Therefore, the amount of daytime solar radiation can be increased.
Moreover, visibility is ensured by the partition wall which becomes a honeycomb structure, and heat insulation is also ensured, reducing the intensity of solar radiation. Moreover, visibility can be ensured by the core formed by the partition wall, and air convection is suppressed by each core, so heat insulation can be secured.
Moreover, since the partition wall is provided orthogonally to the first transparent plate member and the second transparent plate member, it is possible to reduce the intensity of solar radiation incident at an incident angle of a predetermined angle or more.

(第二の実施形態)
次に本発明の第二の実施形態について、適宜図面を参照しながら詳細に説明する。図4(a)は本発明の第二の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、図4(b)は「大きい入射角度」で日射を入射した場合を示す概略図である。
本発明の第二の実施形態に係る日射調整体2は、第一の実施形態における仕切り壁20Aのハニカム径bより仕切り壁20Bのハニカム径b´が小さい点で第一の実施形態と異なる。
(Second embodiment)
Next, a second embodiment of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 4A is a schematic view showing a case where solar radiation is incident on the solar radiation adjusting body according to the second embodiment of the present invention at a “small incident angle”, and FIG. 4B is a “large incident angle”. It is the schematic which shows the case where solar radiation is incident.
The solar radiation adjusting body 2 according to the second embodiment of the present invention is different from the first embodiment in that the honeycomb diameter b ′ of the partition wall 20B is smaller than the honeycomb diameter b of the partition wall 20A in the first embodiment.

例えば、ハニカム径b´を第一の実施形態のハニカム径bの二分の一となる8mmとする。
また、両端が位置P6,P7となる壁部21C(21)の下方の壁部21D(21)において、壁部21D(21)が第一の透明板部材11と当接している位置をP9、壁部21D(21)が第二の透明板部材12と当接している位置をP10とし、この壁部21D(21)の下方の壁部21E(21)において、壁部21E(21)が第一の透明板部材11と当接している位置をP11、壁部21E(21)が第二の透明板部材12と当接している位置をP12とする。以下、日射の強さが壁部21で減少する境界部分について説明する。
For example, the honeycomb diameter b ′ is 8 mm, which is a half of the honeycomb diameter b of the first embodiment.
Further, in the wall portion 21D (21) below the wall portion 21C (21) where both ends are positions P6 and P7, the position where the wall portion 21D (21) is in contact with the first transparent plate member 11 is P9, The position where the wall 21D (21) is in contact with the second transparent plate member 12 is P10. In the wall 21E (21) below the wall 21D (21), the wall 21E (21) is the first. A position where the first transparent plate member 11 is in contact is P11, and a position where the wall 21E (21) is in contact with the second transparent plate member 12 is P12. Hereinafter, the boundary portion where the intensity of solar radiation decreases at the wall portion 21 will be described.

ここで、仕切り壁20Bの各コアに入射する日射のすべてが少なくとも1つの壁部21を透過するためには、日射の入射角度が第一の透明板部材11に対する法線より鉛直方向に約26度傾斜した角度以上の範囲を満たす必要がある。
また、各コアに入射するすべての日射が少なくとも1つの壁部21を透過するためには、以下の式6を満たす必要がある。
θ≧θ2=tan-1(b´/a)・・・(式6)
したがって、
ここで、θ2は、日射が少なくとも1つの壁部21を透過するための境界となる角度である。
また、以下、式7となる場合は、各コアに入射するすべての日射が少なくとも2つの壁部21を透過することとなる。
θ≧θ3=tan-1(2×b´/a)・・・(式7)
このとき、日射の入射角度が式6の状態となる場合を「小さい入射角度」、日射の入射角度が式7の状態となる場合を「大きい入射角度」とする。
Here, in order for all of the solar radiation incident on each core of the partition wall 20 </ b> B to pass through the at least one wall portion 21, the incident angle of solar radiation is about 26 in the vertical direction from the normal to the first transparent plate member 11. It is necessary to satisfy the range that is more than the angle inclined.
Further, in order for all the solar radiation incident on each core to pass through at least one wall portion 21, it is necessary to satisfy the following expression (6).
θ ≧ θ2 = tan −1 (b ′ / a) (Formula 6)
Therefore,
Here, θ2 is an angle that becomes a boundary for solar radiation to pass through at least one wall portion 21.
Further, hereinafter, when Expression 7 is satisfied, all solar radiation incident on each core is transmitted through at least two wall portions 21.
θ ≧ θ3 = tan −1 (2 × b ′ / a) (Expression 7)
At this time, the case where the incident angle of solar radiation is in the state of Expression 6 is referred to as “small incident angle”, and the case where the incident angle of solar radiation is in the state of Expression 7 is referred to as “large incident angle”.

つまり、日射の入射角度が「小さい入射角度」となる場合は、図4(a)に示すように、日射は、少なくとも1つの壁部21を透過することとなる。
具体的には、壁部21Bに注目して説明すると、図4(a)に示すように、「小さい入射角度」で壁部21B(21)を透過する日射は、壁部21B(21)を透過可能となる境界の一の境界点となる壁部21Bの位置P3から入射し、壁部21Cの位置P7で出射することとなる。また、日射は、壁部21Bを透過可能となる境界の他の境界点となる位置P4を含む直線上に位置する壁部21A(21)の位置P1から入射し、壁部21Bの位置P4で出射する。
このように、位置P1から位置P3の範囲で入射した日射は、少なくとも1つの壁部21を透過して室内に入り込む(図中、点を付した部位)。
That is, when the incident angle of solar radiation becomes “small incident angle”, the solar radiation is transmitted through at least one wall portion 21 as shown in FIG.
Specifically, when focusing attention on the wall portion 21B, as shown in FIG. 4A, the solar radiation transmitted through the wall portion 21B (21) at a “small incident angle” is transmitted through the wall portion 21B (21). The light enters from the position P3 of the wall 21B, which is one boundary point of the boundary where transmission is possible, and exits from the position P7 of the wall 21C. Further, the solar radiation is incident from the position P1 of the wall portion 21A (21) located on the straight line including the position P4 that is another boundary point that allows transmission through the wall portion 21B, and at the position P4 of the wall portion 21B. Exit.
In this way, solar radiation incident in the range from the position P1 to the position P3 penetrates the at least one wall portion 21 and enters the room (the part marked with a dot in the figure).

また、日射の入射角度が「大きい入射角度」となる場合は、図4(b)に示すように、日射は、少なくとも2つの壁部21を透過することとなる。
具体的には、壁部21Cに注目して説明すると、図4(b)に示すように、日射が「小さい入射角度」から「大きい入射角度」に変化した場合、「大きい入射角度」で壁部21C(21)を透過する日射は、壁部21Cを透過可能となる境界の一の境界点となるP7を含む直線上に位置する壁部21Aの位置P1から入射し、壁部21B(21)の位置P3と位置P4との中間の位置P13を透過し、さらにその下方の壁部21C(21)における位置P7を透過する。
また、日射は、壁部21Cを透過可能となる境界の他の境界点となる壁部21Cの位置P6から入射し、壁部21D(21)の位置P9と位置P10との中間の位置P14を透過し、さらにその下方の壁部21E(21)における位置P12で出射する。
このように、位置P1から位置P6の範囲で入射する日射は、少なくとも2つの壁部21を透過して室内に入り込む(図中、密度が最も高い点を付した部位)。
Moreover, when the incident angle of solar radiation becomes a “large incident angle”, solar radiation is transmitted through at least two wall portions 21 as shown in FIG.
Specifically, when focusing attention on the wall portion 21C, as shown in FIG. 4 (b), when the solar radiation changes from “small incident angle” to “large incident angle”, the wall is changed to “large incident angle”. The solar radiation that passes through the part 21C (21) is incident from the position P1 of the wall part 21A that is located on a straight line including P7 that is one boundary point of the boundary that can pass through the wall part 21C, and the wall part 21B (21 ) Pass through a position P13 intermediate between the position P3 and the position P4, and further pass through a position P7 in the lower wall portion 21C (21).
In addition, solar radiation enters from the position P6 of the wall 21C, which is another boundary point of the boundary that allows transmission through the wall 21C, and takes an intermediate position P14 between the position P9 and the position P10 of the wall 21D (21). The light passes through and exits at a position P12 on the lower wall 21E (21).
In this way, the solar radiation incident in the range from the position P1 to the position P6 passes through the at least two wall portions 21 and enters the room (the part marked with the highest density in the figure).

したがって、仕切り壁20Bを用いると、太陽の高度に応じて日射の強さを大きく減少させることができる。
また、日射の強さを減少させつつ、ハニカム構造となる仕切り壁によって視認性が確保され、断熱性も確保される。
Therefore, when the partition wall 20B is used, the intensity of solar radiation can be greatly reduced according to the altitude of the sun.
Moreover, visibility is ensured by the partition wall which becomes a honeycomb structure, and heat insulation is also ensured, reducing the intensity of solar radiation.

(第三の実施形態)
次に本発明の第三の実施形態について、適宜図面を参照しながら詳細に説明する。図5は本発明の第三の実施形態に係る日射調整体の部分断面図である。図6は本発明の第三の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。図7(a)は本発明の第三の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、図7(b)は「大きい入射角度」で日射を入射した場合を示す概略図である。
本発明の第三の実施形態に係る日射調整体3は、仕切り壁20Cの壁部21が傾斜している点で第二の実施形態と異なる。
(Third embodiment)
Next, a third embodiment of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 5 is a partial cross-sectional view of the solar radiation adjusting body according to the third embodiment of the present invention. FIG. 6 is a partial perspective view showing an example of the partition wall of the solar radiation adjusting body according to the third embodiment of the present invention. FIG. 7A is a schematic diagram showing a case where solar radiation is incident on the solar radiation adjusting body according to the third embodiment of the present invention at a “small incident angle”, and FIG. It is the schematic which shows the case where solar radiation is incident.
The solar radiation adjusting body 3 according to the third embodiment of the present invention is different from the second embodiment in that the wall portion 21 of the partition wall 20C is inclined.

この仕切り壁20Cは、図5及び図6に示すように、第一の透明板部材11から第二の透明板部材12に向かうにしたがって上方に上がるように傾斜している。
例えば、図5に示す仕切り壁20Cの傾斜角度αは、水平に対して30度の角度で第一の透明板部材11から第二の透明板部材12へ向かうにつれて上方に上がるように傾斜させている。また、図7(a),(b)に示すように、壁部21C(21)の下方の壁部21D(21)において、壁部21D(21)が第一の透明板部材11と当接している位置をP9、壁部21D(21)が第二の透明板部材12と当接している位置をP10とする。
As shown in FIGS. 5 and 6, the partition wall 20 </ b> C is inclined so as to rise upward from the first transparent plate member 11 toward the second transparent plate member 12.
For example, the inclination angle α of the partition wall 20C shown in FIG. 5 is inclined at an angle of 30 degrees with respect to the horizontal so as to rise upward from the first transparent plate member 11 toward the second transparent plate member 12. Yes. Further, as shown in FIGS. 7A and 7B, the wall 21D (21) is in contact with the first transparent plate member 11 in the wall 21D (21) below the wall 21C (21). The position where the wall portion 21D (21) is in contact with the second transparent plate member 12 is P10.

ここで、図示しないが、各コアに入射するすべての日射が少なくとも1つの壁部21を透過するためには、日射が第一の透明板部材11に対して垂直となる方向で入射する必要がある。
また、各コアに入射するすべての日射が少なくとも2つの壁部21を透過するためには、以下の式8、式9、式10を満たす必要がある。
仕切り壁20Cの各コアの傾斜角度をαとすると、
θ3≦θ<θ4・・・(式8)
θ3=tan-1((2c−atanα)/a)・・・(式9)
θ4=tan-1((3c−atanα)/a)・・・(式10)
ここで、θ3は、日射が少なくとも2つの壁部21を透過するための境界となる角度である。θ4は、日射が少なくとも3つの壁部21を透過するための境界となる角度である。また、cは、仕切り壁20Cの各コアにおける並行する2つの壁部21,21の端部同士の間隔である。つまり、仕切り壁20Cと第一の透明板部材11(第二の透明板部材12)とが接した位置における並行する2つの壁部21,21の端部同士の間隔である。
なお、前記したとおり、aはハニカム厚さ(中空層厚さ)であり、bはハニカム径である。
Here, although not shown, in order for all solar radiation incident on each core to pass through at least one wall portion 21, it is necessary that the solar radiation be incident in a direction perpendicular to the first transparent plate member 11. is there.
Further, in order for all solar radiation incident on each core to pass through at least two wall portions 21, it is necessary to satisfy the following formulas 8, 9, and 10.
When the inclination angle of each core of the partition wall 20C is α,
θ3 ≦ θ <θ4 (Expression 8)
θ3 = tan −1 ((2c−atan α) / a) (Equation 9)
θ4 = tan −1 ((3c-atan α) / a) (Equation 10)
Here, θ3 is an angle that becomes a boundary for solar radiation to pass through at least two wall portions 21. θ4 is an angle that becomes a boundary for solar radiation to pass through at least three wall portions 21. Further, c is the distance between the end portions of the two parallel wall portions 21 and 21 in each core of the partition wall 20C. That is, it is the interval between the end portions of the two parallel wall portions 21 and 21 at a position where the partition wall 20C and the first transparent plate member 11 (second transparent plate member 12) are in contact with each other.
As described above, a is the honeycomb thickness (hollow layer thickness), and b is the honeycomb diameter.

以下、式11となる場合は、各コアに入射するすべての日射が少なくとも3つの壁部21を透過することとなる。
θ≧θ4=tan-1((3c−atanα)/a)・・・(式11)
このとき、日射の入射角度が式8の状態となる場合を「小さい入射角度」、日射の入射角度が式9の状態となる場合を「大きい入射角度」とする。
Hereinafter, in the case of Equation 11, all solar radiation incident on each core passes through at least three wall portions 21.
θ ≧ θ4 = tan −1 ((3c-atan α) / a) (Equation 11)
At this time, the case where the incident angle of solar radiation is in the state of Expression 8 is referred to as “small incident angle”, and the case where the incident angle of solar radiation is in the state of Expression 9 is referred to as “large incident angle”.

つまり、日射の入射角度が「小さい入射角度」となる場合は、図7(a)に示すように、日射は、少なくとも2つの壁部21を透過することとなる。
具体的には、壁部21Cに注目して説明すると、図7(a)に示すように、「小さい入射角度」で壁部21C(21)を透過する日射は、壁部21C(21)を透過可能となる境界の一の境界点となる壁部21Aの位置P1から入射し、壁部21B(21)の位置P3と位置P4との中間の位置P15を透過し、さらにその下方の壁部21C(21)における位置P7を透過する。
また、日射は、壁部21Cを透過可能となる境界の他の境界点となる壁部21Cの位置P6から入射し、壁部21D(21)の位置P9と位置P10との中間の位置P16を透過し、さらにその下方の壁部21E(21)における位置P12で出射する。
このように、位置P1から位置P6の範囲で入射した日射は、少なくとも2つの壁部21を透過して室内に入り込む(図中、密度が最も高い点を付した部位)。
That is, when the incident angle of solar radiation becomes “small incident angle”, as shown in FIG. 7A, solar radiation is transmitted through at least two wall portions 21.
Specifically, when focusing attention on the wall portion 21C, as shown in FIG. 7 (a), the solar radiation transmitted through the wall portion 21C (21) at a “small incident angle” is transmitted to the wall portion 21C (21). The light enters from the position P1 of the wall 21A, which is one boundary point of the transmissive boundary, passes through the position P15 between the position P3 and the position P4 of the wall 21B (21), and further the wall below It passes through position P7 at 21C (21).
Further, the solar radiation enters from the position P6 of the wall 21C that is another boundary point of the boundary that can transmit through the wall 21C, and the intermediate position P16 between the position P9 and the position P10 of the wall 21D (21). The light passes through and exits at a position P12 on the lower wall 21E (21).
In this way, the solar radiation incident in the range from the position P1 to the position P6 passes through the at least two wall portions 21 and enters the room (the part marked with the highest density in the figure).

また、日射の入射角度が「大きい入射角度」となる場合は、図7(b)に示すように、日射は、少なくとも3つの壁部21を透過することとなる。
具体的には、壁部21Dに注目して説明すると、図7(b)に示すように、日射が「小さい入射角度」から「大きい入射角度」に変化した場合、「大きい入射角度」で壁部21D(21)を透過する日射は、壁部21Dを透過可能となる境界の一の境界点となる壁部21Aの位置P1から入射し、壁部21B(21)の位置P3と位置P4との間の位置P21を透過し、壁部21C(21)の位置P6と位置P7との間の位置P22を透過し、さらにその下方の壁部21D(21)における位置P10で出射する。
また、日射は、壁部21Dを透過可能となる境界の他の境界点となる壁部21Dの位置P9から入射し、壁部21E(21)の位置P11と位置P12との間の位置P23を透過し、壁部21F(21)の位置P17と位置P18との間の位置P24を透過し、さらにその下方の壁部21G(21)における位置P20を透過する。
このように、位置P1から位置P9の範囲で入射した日射は、少なくとも3つの壁部21を透過して室内に入り込む(図中、密度が最も高い点を付した部位)。
Moreover, when the incident angle of solar radiation becomes a “large incident angle”, as shown in FIG. 7B, solar radiation is transmitted through at least three wall portions 21.
Specifically, when focusing attention on the wall portion 21D, as shown in FIG. 7B, when the solar radiation changes from “small incident angle” to “large incident angle”, the wall is changed to “large incident angle”. The solar radiation that passes through the part 21D (21) is incident from the position P1 of the wall part 21A that is one boundary point of the boundary that can pass through the wall part 21D, and the positions P3 and P4 of the wall part 21B (21) Is transmitted through a position P21 between the positions P6 and P7 of the wall 21C (21), and further emitted at a position P10 in the lower wall 21D (21).
In addition, solar radiation enters from the position P9 of the wall 21D that is another boundary point of the boundary that allows transmission through the wall 21D, and the position P23 between the position P11 and the position P12 of the wall 21E (21) Transmits through the position P24 between the position P17 and the position P18 of the wall portion 21F (21), and further transmits through the position P20 in the wall portion 21G (21) below the wall portion 21F (21).
In this way, the solar radiation incident in the range from the position P1 to the position P9 passes through the at least three wall portions 21 and enters the room (the part with the highest density in the figure).

したがって、日射調整体3は、仕切り壁が第一の透明板部材及び第二の透明板部材より低い透過率を有しており、また表面で拡散的に反射するので、仕切り壁に日射が入射しても当該仕切り壁の入射面での乱反射を防止することができ、昼間の日射の導入量を多くすることができる。
また、コアを形成する仕切り壁は視線方向にほぼ平行であるので視認性の確保ができ、この各コアによって空気が対流することを抑制するので断熱性を確保することができる。
また、仕切り壁を傾斜させたことによって、日射を仕切り壁に入射させ吸収あるいは反射させやすくすることができるので、日射の強さを効率よく減少させることができる。
Therefore, the solar radiation adjusting body 3 has a partition wall having lower transmittance than the first transparent plate member and the second transparent plate member, and also reflects diffusely on the surface, so that solar radiation is incident on the partition wall. Even so, irregular reflection on the entrance surface of the partition wall can be prevented, and the amount of daytime solar radiation can be increased.
Moreover, since the partition wall which forms a core is substantially parallel to the line-of-sight direction, visibility can be ensured, and since air is prevented from convection by each core, heat insulation can be secured.
In addition, by inclining the partition wall, it is possible to make solar radiation incident on the partition wall and easily absorb or reflect it, so that the intensity of solar radiation can be efficiently reduced.

以上、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、各実施形態では、網目材料をハニカム構造として説明したが、網目材料はこれに限られず、平面視多角形となる網目や、平面視円形、平面視において曲線を有する形状となっていても良い。
また、仕切り壁の傾斜する方向は、第一の透明板部材11から第二の透明板部材12へ向かうにしたがって上方に傾斜させてもよい。このように仕切り壁を傾斜させることによって、高層ビル等の窓に本発明の日射調整体を用いた場合に、下方から入射する日射の強さを減少させることができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, in each embodiment, the mesh material has been described as a honeycomb structure, but the mesh material is not limited to this, and may be a mesh that is a polygon in plan view, a circle in plan view, or a shape that has a curve in plan view. good.
Further, the direction in which the partition wall inclines may be inclined upward as it goes from the first transparent plate member 11 to the second transparent plate member 12. By inclining the partition wall in this way, the intensity of solar radiation incident from below can be reduced when the solar radiation adjusting body of the present invention is used for a window of a high-rise building or the like.

(a)は本発明の第一の実施形態に係る日射調整体の部分断面図であり、(b)は本発明の第一の実施形態に係る日射調整体の対流状態を示す状態図である。(A) is a fragmentary sectional view of the solar radiation adjusting body which concerns on 1st embodiment of this invention, (b) is a state figure which shows the convection state of the solar radiation adjusting body which concerns on 1st embodiment of this invention. . 本発明の第一の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。It is a fragmentary perspective view which shows an example of the partition wall of the solar radiation adjustment body which concerns on 1st embodiment of this invention. (a)は本発明の第一の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、(b)は本発明の第一の実施形態に係る日射調整体に「大きい入射角度」で日射を入射した場合を示す概略図である。(A) is the schematic which shows the case where solar radiation is incident on the solar radiation adjusting body which concerns on 1st embodiment of this invention with a "small incident angle", (b) concerns on 1st embodiment of this invention. It is a schematic diagram showing a case where solar radiation is incident on the solar radiation adjusting body at a “large incident angle”. (a)は本発明の第二の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、(b)は本発明の第二の実施形態に係る日射調整体に「大きい入射角度」で日射を入射した場合を示す概略図である。(A) is the schematic which shows the case where solar radiation is incident on the solar radiation adjusting body which concerns on 2nd embodiment of this invention with a "small incident angle", (b) concerns on 2nd embodiment of this invention. It is a schematic diagram showing a case where solar radiation is incident on the solar radiation adjusting body at a “large incident angle”. 本発明の第三の実施形態に係る日射調整体の部分断面図である。It is a fragmentary sectional view of the solar radiation adjusting body which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る日射調整体の仕切り壁の一例を示す部分斜視図である。It is a fragmentary perspective view which shows an example of the partition wall of the solar radiation adjusting body which concerns on 3rd embodiment of this invention. (a)は本発明の第三の実施形態に係る日射調整体に「小さい入射角度」で日射を入射した場合を示す概略図であり、(b)は本発明の第三の実施形態に係る日射調整体に「大きい入射角度」で日射を入射した場合を示す概略図である。(A) is the schematic which shows the case where solar radiation is incident on the solar radiation adjusting body which concerns on 3rd embodiment of this invention with a "small incident angle", (b) concerns on 3rd embodiment of this invention. It is a schematic diagram showing a case where solar radiation is incident on the solar radiation adjusting body at a “large incident angle”.

符号の説明Explanation of symbols

1、2、3 日射調整体
11 第一の透明板部材
12 第二の透明板部材
20A,20B,20C 仕切り壁
21 壁部
1, 2, 3 Solar radiation adjusting body 11 First transparent plate member 12 Second transparent plate member 20A, 20B, 20C Partition wall 21 Wall portion

Claims (3)

第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、
前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、
前記仕切り壁が、前記第一の透明板部材と前記第二の透明板部材とに直交するように設けられていることを特徴とする日射調整体。
A first transparent plate member, a second transparent plate member disposed opposite to the first transparent plate member,
The first transparent plate member and the second transparent plate member have a lower transmittance, and a plurality of spaces are formed between the first transparent plate member and the second transparent plate member. A partition wall with solar radiation permeability provided,
The solar radiation adjusting body, wherein the partition wall is provided so as to be orthogonal to the first transparent plate member and the second transparent plate member.
第一の透明板部材と、この第一の透明板部材と向かい合わせに配置された第二の透明板部材と、
前記第一の透明板部材及び前記第二の透明板部材より低い透過率を有し、前記第一の透明板部材と前記第二の透明板部材との間に複数の空間を形成するように設けられる日射透過性を有する仕切り壁と、を備え、
前記仕切り壁が、前記第一の透明板部材及び前記第二の透明板部材に対して傾斜して設けられていることを特徴とする日射調整体。
A first transparent plate member, a second transparent plate member disposed opposite to the first transparent plate member,
The first transparent plate member and the second transparent plate member have a lower transmittance, and a plurality of spaces are formed between the first transparent plate member and the second transparent plate member. A partition wall with solar radiation permeability provided,
The solar radiation adjusting body, wherein the partition wall is provided to be inclined with respect to the first transparent plate member and the second transparent plate member.
前記仕切り壁がハニカム構造となっていることを特徴とする請求項1又は請求項2に記載の日射調整体。   The solar radiation adjusting body according to claim 1, wherein the partition wall has a honeycomb structure.
JP2004218593A 2004-07-27 2004-07-27 Solar radiation adjusting body Pending JP2006037499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218593A JP2006037499A (en) 2004-07-27 2004-07-27 Solar radiation adjusting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218593A JP2006037499A (en) 2004-07-27 2004-07-27 Solar radiation adjusting body

Publications (1)

Publication Number Publication Date
JP2006037499A true JP2006037499A (en) 2006-02-09

Family

ID=35902774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218593A Pending JP2006037499A (en) 2004-07-27 2004-07-27 Solar radiation adjusting body

Country Status (1)

Country Link
JP (1) JP2006037499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526212A (en) * 2009-05-07 2012-10-25 フォトソーラー・アーエス Integration of optical elements in an insulating glass unit
JP2013527350A (en) * 2010-05-27 2013-06-27 ソラチューブ インターナショナル インコーポレイテッド Thermal insulation window splitting apparatus and method
JP2015017500A (en) * 2014-10-21 2015-01-29 フォトソーラー・アーエス Integration of optical element in insulated glass unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190812U (en) * 1983-06-03 1984-12-18 日本ステンレス株式会社 Translucent/sound insulating panel
JPS63206545A (en) * 1987-02-20 1988-08-25 旭化成株式会社 Mirror surface sandwich panel
JPH04281983A (en) * 1990-11-06 1992-10-07 Peter Paolino Sam Pane-fitted panel and method for its manufacture
JPH06146733A (en) * 1992-11-02 1994-05-27 Fumi Tec:Kk Filter for natural ventilation equipment
JPH0662194U (en) * 1992-01-23 1994-09-02 清一 小仲 Translucent Sandwich film, core or window glass combination translucent panel
JPH10280818A (en) * 1997-04-10 1998-10-20 Figura Kk Double layer glass containing louver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190812U (en) * 1983-06-03 1984-12-18 日本ステンレス株式会社 Translucent/sound insulating panel
JPS63206545A (en) * 1987-02-20 1988-08-25 旭化成株式会社 Mirror surface sandwich panel
JPH04281983A (en) * 1990-11-06 1992-10-07 Peter Paolino Sam Pane-fitted panel and method for its manufacture
JPH0662194U (en) * 1992-01-23 1994-09-02 清一 小仲 Translucent Sandwich film, core or window glass combination translucent panel
JPH06146733A (en) * 1992-11-02 1994-05-27 Fumi Tec:Kk Filter for natural ventilation equipment
JPH10280818A (en) * 1997-04-10 1998-10-20 Figura Kk Double layer glass containing louver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526212A (en) * 2009-05-07 2012-10-25 フォトソーラー・アーエス Integration of optical elements in an insulating glass unit
US8619366B2 (en) 2009-05-07 2013-12-31 Photosolar A/S Integration of optical element in insulated glazing
JP2013527350A (en) * 2010-05-27 2013-06-27 ソラチューブ インターナショナル インコーポレイテッド Thermal insulation window splitting apparatus and method
JP2015017500A (en) * 2014-10-21 2015-01-29 フォトソーラー・アーエス Integration of optical element in insulated glass unit

Similar Documents

Publication Publication Date Title
AU601425B2 (en) Thermal wall element
JP6684704B2 (en) Daylighting device
JPWO2008102762A1 (en) LIGHT SOURCE DEVICE, LIGHTING DEVICE USING THE SAME, AND PLANT GROWING DEVICE USING THE LIGHTING DEVICE
AU2003204904B2 (en) Light channeling window panel for shading and illuminating rooms
JP5499382B2 (en) Daylighting equipment
JP2007085082A (en) Blind device
JP2006037499A (en) Solar radiation adjusting body
JP6349081B2 (en) refrigerator
JP2009102182A (en) Light control glass
JP3864677B2 (en) Illumination device and color rendering improvement filter
JP3656794B2 (en) Daylighting and insulation windows
JP5656147B2 (en) Light control transparent window material
JPH11350844A (en) Daylighting and heat insulating window
JP6385959B2 (en) Condensing optical element and condensing device provided with the same
CN104575270B (en) Information is provided using optical element
JP5208993B2 (en) Natural light illumination structure and natural light illumination method for indoor space
US10119667B1 (en) Light-redirecting optical daylighting system
KR101460887B1 (en) Reflecting heat insulation
JP2007311033A (en) Daylighting device, and member for structuring daylighting device
CA1192791A (en) Light wall panel with reflector profile strips
JP2016173008A (en) Daylighting structure for building
JP2005226278A (en) Blind
JP7390167B2 (en) window panels
JP4305455B2 (en) Light guide device
JP2005022901A (en) Light pervious heat-insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100122

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Effective date: 20101109

Free format text: JAPANESE INTERMEDIATE CODE: A02