JP2006037007A - Polyphenylene sulfide made to have higher melting point and method for producing the same - Google Patents

Polyphenylene sulfide made to have higher melting point and method for producing the same Download PDF

Info

Publication number
JP2006037007A
JP2006037007A JP2004221732A JP2004221732A JP2006037007A JP 2006037007 A JP2006037007 A JP 2006037007A JP 2004221732 A JP2004221732 A JP 2004221732A JP 2004221732 A JP2004221732 A JP 2004221732A JP 2006037007 A JP2006037007 A JP 2006037007A
Authority
JP
Japan
Prior art keywords
temperature
melting point
polyphenylene sulfide
heat treatment
pps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221732A
Other languages
Japanese (ja)
Inventor
Takeshi Higashihara
武志 東原
Shunsuke Horiuchi
俊輔 堀内
Atsushi Ishio
敦 石王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004221732A priority Critical patent/JP2006037007A/en
Publication of JP2006037007A publication Critical patent/JP2006037007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polyphenylene sulfide (PPS) made to have a higher melting point with improved heat resistance and provide a method for efficiently producing the PPS. <P>SOLUTION: The PPS made to have the higher melting point and having >283°C melting point is produced by heat treating a polyphenylene sulfide in a nonoxidative atmosphere under a specific condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高融点化ポリフェニレンスルフィド(以下、高融点化PPSと略すこともある)およびその製造方法に関するものである。さらに詳しくは、耐熱性の向上した高融点化PPSおよびこの高融点化PPSを効率的に製造する方法に関するものである。   The present invention relates to a high melting point polyphenylene sulfide (hereinafter sometimes abbreviated as high melting point PPS) and a method for producing the same. More specifically, the present invention relates to a high melting point PPS with improved heat resistance and a method for efficiently producing the high melting point PPS.

ポリフェニレンスルフィド(以下、PPSと略すこともある)は、耐熱性・機械特性・難燃性・耐薬品性などに優れており、従来から射出成形用・押出成形用に幅広く使用されている。特にPPSの耐熱性については、融点が約280℃と高く、同等融点を有する樹脂の中では比較的安価であるため、高い耐熱性が要求される分野への利用展開が近年急速に進んでいる。このPPSの特徴である耐熱性を更に向上させるための代表的な方法としては、ポリフェニレンスルフィドケトン等の共重合法(例えば、特許文献1参照)が知られているが、この方法では異種モノマーを用いるため製造が煩雑であるという問題があった。   Polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) is excellent in heat resistance, mechanical properties, flame retardancy, chemical resistance, and the like, and has been widely used for injection molding and extrusion molding. In particular, the heat resistance of PPS has a high melting point of about 280 ° C., and is relatively inexpensive among resins having the same melting point. Therefore, the use development in a field requiring high heat resistance has been rapidly advanced in recent years. . As a typical method for further improving the heat resistance characteristic of this PPS, a copolymerization method such as polyphenylene sulfide ketone (for example, see Patent Document 1) is known. There is a problem that the manufacturing is complicated because it is used.

一方、PPSは、成形等で熱処理を施して用いることが知られており、代表的には、ベント口を設けた押出機を用いて減圧条件下で溶融押出しを行う方法(例えば、特許文献2参照)が例示できる。しかし、この特許文献2には、その溶融混練時間、すなわち熱処理時間や、溶融混練後に得られるものの融点については何ら記載されておらず、通常、減圧条件下で溶融押出を行っても押出機内での滞留時間が短いため、283℃以上の高融点化PPSを得ることが可能な方法とはいえなかった。   On the other hand, PPS is known to be used after being subjected to heat treatment by molding or the like, and typically, a method of performing melt extrusion under reduced pressure using an extruder provided with a vent port (for example, Patent Document 2). For example). However, this Patent Document 2 does not describe the melt-kneading time, that is, the heat treatment time, or the melting point of what is obtained after the melt-kneading. Therefore, it was not a method capable of obtaining a high melting point PPS of 283 ° C. or higher.

また、「融点が285℃の線状PPS」を実施例に開示する文献(例えば、特許文献3参照)も知られているが、融点は通常、測定条件の違いにより測定値に差異が生じるため、測定条件が規定されていない特許文献3では、PPSの融点については議論することができない。さらに、特許文献3では、酸素濃度の低い(5vol%)状態で、310℃で40分間熱処理をしたことが記載されているが、この方法によっても熱処理温度に対する熱処理時間が十分でないため、熱処理して得られるPPSの融点はほとんど上昇しないものと認められる。
特開平6−25416号公報(第2頁) 特開平2−219624号公報(第1頁) 特開平11−158280号公報(第6頁)
Further, a document disclosing “linear PPS having a melting point of 285 ° C.” in an example is also known (for example, refer to Patent Document 3). In Patent Document 3 where the measurement conditions are not defined, the melting point of PPS cannot be discussed. Further, Patent Document 3 describes that heat treatment was performed at 310 ° C. for 40 minutes in a low oxygen concentration (5 vol%) state. It is recognized that the melting point of the resulting PPS hardly increases.
JP-A-6-25416 (page 2) JP-A-2-219624 (first page) JP 11-158280 A (page 6)

本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたものである。   The present invention has been achieved as a result of studying the solution of the problems in the prior art described above as an issue.

したがって、本発明の目的は、耐熱性の向上した高融点化PPS、およびこの高融点化PPSを効率良く製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a high melting point PPS with improved heat resistance and a method for efficiently producing this high melting point PPS.

上記目的を達成するため本発明によれば、パーキンエルマー社製DSC−7を用い、a)室温〜340℃に昇温(昇温速度:20℃/分)、b)340℃で1分保持、c)340℃から100℃に冷却(降温速度:20℃/分)、d)100℃で1分保持、e)100℃から340℃に昇温(昇温速度:20℃/分)、f)340℃で1分保持、g)340℃から100℃に冷却(降温速度:20℃/分)を連続で行い、前記e)で観測された融解ピークの頂点温度で示される融点が283℃を超える高融点化ポリフェニレンスルフィド、およびポリフェニレンスルフィドを、非酸化性雰囲気下、下記式(1)を満たす条件で熱処理することにより得られたポリフェニレンスルフィドであって、パーキンエルマー社製DSC−7を用い、a)室温〜340℃に昇温(昇温速度:20℃/分)、b)340℃で1分保持、c)340℃から100℃に冷却(降温速度:20℃/分)、d)100℃で1分保持、e)100℃から340℃に昇温(昇温速度:20℃/分)、f)340℃で1分保持、g)340℃から100℃に冷却(降温速度:20℃/分)を連続で行い、前記e)で観測された融解ピークの頂点温度で示される融点が283℃を超える高融点化ポリフェニレンスルフィドが提供される。   In order to achieve the above object, according to the present invention, a DSC-7 manufactured by PerkinElmer Co., Ltd. is used, and a) the temperature is raised from room temperature to 340 ° C. C) cooling from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min), d) holding at 100 ° C. for 1 minute, e) temperature increase from 100 ° C. to 340 ° C. (temperature increase rate: 20 ° C./min), f) Hold at 340 ° C. for 1 minute, g) Cool continuously from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./minute), and the melting point indicated by the peak temperature of the melting peak observed in the above e) is 283 A polyphenylene sulfide obtained by heat-treating a high-melting polyphenylene sulfide having a melting point higher than 0 ° C. and polyphenylene sulfide under a non-oxidizing atmosphere under a condition satisfying the following formula (1): Use a) Room temperature ~ Temperature rise to 40 ° C. (temperature increase rate: 20 ° C./min), b) hold at 340 ° C. for 1 minute, c) cooling from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min), d) 1 at 100 ° C. E) temperature rise from 100 ° C. to 340 ° C. (temperature increase rate: 20 ° C./min), f) hold at 340 ° C. for 1 minute, g) cooling from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min) ) Is continuously performed, and a high-melting polyphenylene sulfide having a melting point exceeding 283 ° C. indicated by the peak temperature of the melting peak observed in the above e) is provided.

Figure 2006037007
Figure 2006037007

(ただし、式中のTは熱処理温度(℃)であって、ポリフェニレンスルフィドの融点を越え分解温度未満の範囲の温度、好ましくは300℃を越え400℃未満の範囲の温度であり、tは熱処理時間(分)を示す。)   (Wherein T is a heat treatment temperature (° C.) and is a temperature in the range exceeding the melting point of polyphenylene sulfide and less than the decomposition temperature, preferably in the range of more than 300 ° C. and less than 400 ° C., and t is a heat treatment temperature. Indicates time (minutes).)

また、本発明の上記高融点化PPSの製造方法は、ポリフェニレンスルフィドを、非酸化性雰囲気下、下記式(1)を満たす条件で熱処理することにより、ポリフェニレンスルフィドの融点を上昇させることを特徴とする。   The method for producing the high melting point PPS of the present invention is characterized in that the melting point of polyphenylene sulfide is increased by heat-treating polyphenylene sulfide in a non-oxidizing atmosphere under the condition satisfying the following formula (1). To do.

Figure 2006037007
Figure 2006037007

(ただし、式中のTは熱処理温度(℃)であって、ポリフェニレンスルフィドの融点を越え分解温度未満の範囲の温度、好ましくは300℃を越え400℃未満の範囲の温度であり、tは熱処理時間(分)を示す。)   (Wherein T is a heat treatment temperature (° C.) and is a temperature in the range exceeding the melting point of polyphenylene sulfide and less than the decomposition temperature, preferably in the range of more than 300 ° C. and less than 400 ° C., and t is a heat treatment temperature. Indicates time (minutes).)

本発明によれば、以下に説明するとおり、耐熱性の向上した高融点化PPSを効率的に製造することができる。   According to the present invention, as described below, a high melting point PPS with improved heat resistance can be efficiently produced.

本発明におけるPPSの構造式は、−(フェニレン基−S)−の繰り返し単位を主要構成単位とする。好ましくは当該繰り返し単位を80モル%以上含有する重合体である。フェニレン基には−(パラフェニレン基−S)−、−(メタフェニレン基−S)−、−(オルトフェニレン基−S)−であらわされる単位があり、フェニレン基は水素、アルキル基、アルコキシ基、ハロゲン基等から選ばれた置換基で構成されており、好ましくは水素を置換基として構成するフェニレン基である。なかでも特に好ましいのは、式(A)であらわされる−(パラフェニレン基−S)−であり、該構成単位が好ましくは80モル%以上、特に好ましくは90モル%以上含有するものである。   The structural formula of PPS in the present invention has a repeating unit of-(phenylene group -S)-as a main structural unit. A polymer containing 80 mol% or more of the repeating unit is preferred. The phenylene group includes units represented by-(paraphenylene group-S)-,-(metaphenylene group-S)-, and-(orthophenylene group-S)-. The phenylene group is hydrogen, an alkyl group, or an alkoxy group. , A phenylene group composed of hydrogen as a substituent. Of these,-(paraphenylene group -S)-represented by the formula (A) is particularly preferable, and the structural unit is preferably contained in an amount of 80 mol% or more, particularly preferably 90 mol% or more.

Figure 2006037007
Figure 2006037007

この繰り返し単位を主要構成単位とする限り、少量の分岐単位または架橋単位を含むことができる。   As long as this repeating unit is a main constituent unit, it can contain a small amount of branching units or crosslinking units.

また、本発明におけるPPSは、上記繰り返し単位を含むランダム共重合体、ブロック共重合体およびそれらの混合物のいずれかであってもよい。   Further, the PPS in the present invention may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.

更に、各種PPSは、その分子量に特に制限はないが、通常、溶融粘度が5〜5,000Pa・s(300℃、剪断速度200/秒)の範囲が好ましい範囲として例示できる。このような溶融粘度の範囲であれば、例えば重合時に適量の架橋剤、例えばトリハロゲン化ベンゼンを用いて得たPPSや、熱処理により架橋構造を形成したPPSも許容される。   Furthermore, although there are no particular limitations on the molecular weight of various PPSs, a preferred range is usually a melt viscosity of 5 to 5,000 Pa · s (300 ° C., shear rate 200 / sec). Within such a range of melt viscosity, for example, PPS obtained using an appropriate amount of a crosslinking agent such as trihalogenated benzene at the time of polymerization, or PPS formed with a crosslinked structure by heat treatment is acceptable.

本発明においては、PPSの製造方法を特に限定しないが、一例としてポリハロゲン芳香族化合物とアルカリ金属硫化物とを極性有機溶媒中において高温高圧下で重合して得られるものが挙げられる。得られた重合物には溶媒などが含まれているため、重合物からPPSを回収する工程が必要である。回収方法は特に限定されるものではなく、例えば反応後の重合物を徐冷し、得られたものに含まれる低分子量成分や重合溶媒などを濾別して除去することにより固形状のPPSを回収する方法や、高温高圧の状態から常圧もしくは減圧の雰囲気下に重合物を吐出し、重合溶媒の回収を行うと同時に固形状のPPSを回収する方法などが挙げられる。   In the present invention, the production method of PPS is not particularly limited, but examples thereof include those obtained by polymerizing a polyhalogen aromatic compound and an alkali metal sulfide in a polar organic solvent under high temperature and high pressure. Since the obtained polymer contains a solvent and the like, a step of recovering PPS from the polymer is necessary. The recovery method is not particularly limited. For example, solid PPS is recovered by slowly cooling the polymer after the reaction, and filtering off and removing low molecular weight components and polymerization solvent contained in the obtained product. Examples thereof include a method and a method in which a polymer is discharged from a high temperature and high pressure state to an atmosphere of normal pressure or reduced pressure, and the polymerization solvent is recovered and at the same time, solid PPS is recovered.

本発明でいう融点とは、一定圧力のもとで固相状態にあるPPSが、液相状態と平衡を保つ時の温度であり、融解点ともいわれる。本発明における融点とは、示差走査型熱量計(以下DSCと略すこともある)を用い、測定をa)室温〜340℃に昇温(昇温速度:20℃/分)、b)340℃で1分保持、c)340℃から100℃に冷却(降温速度:20℃/分)、d)100℃で1分保持、e)100℃から340℃に昇温(昇温速度:20℃/分)、f)340℃で1分保持、g)340℃から100℃に冷却(降温速度:20℃/分)の温度プログラムで行い、前記e)で観測される融解ピークの頂点温度である。   The melting point in the present invention is a temperature at which PPS in a solid phase under a constant pressure maintains an equilibrium with a liquid phase, and is also referred to as a melting point. The melting point in the present invention is a differential scanning calorimeter (hereinafter sometimes abbreviated as DSC), and the measurement is a) temperature rising from room temperature to 340 ° C. (temperature rising rate: 20 ° C./min), b) 340 ° C. C) Cooling from 340 ° C. to 100 ° C. (Temperature drop rate: 20 ° C./min), d) Holding at 100 ° C. for 1 min, e) Temperature rise from 100 ° C. to 340 ° C. (Temperature rise rate: 20 ° C.) F) Hold for 1 minute at 340 ° C., g) Perform a temperature program of cooling from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min), and at the peak temperature of the melting peak observed in e) above is there.

本発明の高融点化PPSは、上記の方法で測定した融点が283℃を越えるものであり、従来のPPSに比較して耐熱性がはるかに向上したものである。   The high melting point PPS of the present invention has a melting point measured by the above method of over 283 ° C., and has a much improved heat resistance as compared with the conventional PPS.

本発明の高融点化PPSは、PPSを、非酸化性雰囲気下、特定の熱処理温度で、特定の時間熱処理することにより、PPSの融点を上昇させることにより製造されるが、ここでいう非酸化性雰囲気、熱処理温度、熱処理時間、および高融点化PPSについて以下に説明する。   The high melting point PPS of the present invention is produced by increasing the melting point of PPS by heat-treating PPS at a specific heat treatment temperature for a specific time in a non-oxidizing atmosphere. The atmosphere, heat treatment temperature, heat treatment time, and high melting point PPS will be described below.

[非酸化性雰囲気]
本発明における非酸化性雰囲気とは、酸素濃度が1.0容量%未満のことであり、非酸化性雰囲気をつくりだす方法としては、減圧を行うか、ヘリウム、アルゴン、窒素などの不活性気体を用いる方法が例示できる。これらの気体は、1種類または2種類以上を混合して用いても良い。経済性の観点からすると減圧を行うか窒素を用いることが好ましい。酸化性雰囲気下で融点を超えて熱処理を行うと、短時間の熱処理ではPPS分子どうしの架橋反応が進行することにより融点は低下する傾向にあり、更に長時間の熱処理では不溶不融化しやすくなるため好ましくない。
[Non-oxidizing atmosphere]
The non-oxidizing atmosphere in the present invention means that the oxygen concentration is less than 1.0% by volume. As a method for producing the non-oxidizing atmosphere, an inert gas such as helium, argon, nitrogen or the like is used. The method to be used can be exemplified. These gases may be used alone or in combination of two or more. From the economical viewpoint, it is preferable to perform pressure reduction or use nitrogen. When heat treatment is performed at a temperature exceeding the melting point in an oxidizing atmosphere, the melting point tends to decrease due to the progress of the cross-linking reaction between PPS molecules in a short time heat treatment, and insolubility and infusibility are likely to occur in a long time heat treatment. Therefore, it is not preferable.

[熱処理温度および熱処理時間]
本発明において、PPSを十分に高融点化するための熱処理時間は、熱処理温度によって好ましい時間が変わり、下記の式(1)を満たす条件で熱処理する必要があることが実験データから判明した。同様に、式(2)を満たす熱処理条件が好ましいことも実験データから判明した。式(3)の範囲では、283℃を超えて融点を上昇させることが困難であり、式(4)の範囲では分解反応が進行し融点が低下する傾向となる。
[Heat treatment temperature and heat treatment time]
In the present invention, the heat treatment time for sufficiently increasing the melting point of PPS varies depending on the heat treatment temperature, and it has been found from experimental data that it is necessary to perform heat treatment under conditions satisfying the following formula (1). Similarly, it has been found from experimental data that a heat treatment condition satisfying the formula (2) is preferable. In the range of formula (3), it is difficult to raise the melting point above 283 ° C., and in the range of formula (4), the decomposition reaction proceeds and the melting point tends to decrease.

Figure 2006037007
Figure 2006037007

Figure 2006037007
Figure 2006037007

Figure 2006037007
Figure 2006037007

Figure 2006037007
Figure 2006037007

(ただし、式中のTは熱処理温度(℃)であって、ポリフェニレンスルフィドの融点を越え分解温度未満の範囲の温度であり、tは熱処理時間(分)を示す。)   (However, T in the formula is a heat treatment temperature (° C.), which is a temperature in the range exceeding the melting point of polyphenylene sulfide and less than the decomposition temperature, and t represents a heat treatment time (minute).)

本発明における熱処理法で高融点化PPSを得る場合、熱処理温度は上記のとおり融点を超える温度であることが必要であるが、300℃を越え400℃未満の範囲の温度であることが好ましく、300℃を越え370℃未満の範囲の温度であることがより好ましい。PPSを非酸化性雰囲気下、融点以下で熱処理を行うと、熱処理後の融点が熱処理前の融点とほぼ同程度であり融点の上昇は見られない。また、400℃以上の熱処理ではPPSの分解反応が進行し、逆に融点が低下する傾向となるため好ましくない。   When obtaining a high melting point PPS by the heat treatment method in the present invention, the heat treatment temperature needs to be a temperature exceeding the melting point as described above, but is preferably a temperature exceeding 300 ° C. and less than 400 ° C., The temperature is more preferably in the range of more than 300 ° C. and less than 370 ° C. When PPS is heat-treated in a non-oxidizing atmosphere below the melting point, the melting point after the heat treatment is almost the same as the melting point before the heat treatment, and no increase in the melting point is observed. Further, heat treatment at 400 ° C. or higher is not preferable because the decomposition reaction of PPS proceeds and the melting point tends to decrease.

[高融点化PPS]
熱処理を行う前のPPSは、通常280℃付近に融点を有する耐熱性の高い結晶性樹脂であるが、このPPSに上記のごとく熱処理を施すと、融点が283℃を超えるものが得られ、特に好ましい条件で熱処理を施すことにより、熱処理後のPPSの融点が285℃を超えるものが得られる。かくのごとくして得られたものが本発明の高融点化PPSである。この高融点化PPSを得るための熱処理方法としては、静置状態で行う方法や溶融押出しで行う方法が挙げられる。
[High melting point PPS]
The PPS before heat treatment is a highly heat-resistant crystalline resin having a melting point of usually around 280 ° C. However, when this PPS is subjected to heat treatment as described above, a resin having a melting point exceeding 283 ° C. is obtained. By performing the heat treatment under preferable conditions, a PPS having a melting point exceeding 285 ° C. after the heat treatment can be obtained. Thus, what was obtained is the high melting point PPS of the present invention. Examples of the heat treatment method for obtaining the high melting point PPS include a method of standing still and a method of melt extrusion.

また、熱処理後の高融点化PPSは、熱処理前のPPSよりもDSC測定で観測される溶融結晶化温度が高くなる傾向にあり、成形加工時に本発明の熱処理を施すと結晶化に要する時間が短くでき成形加工時間が短縮できるなど、従来よりも生産効率の向上につながるという特徴も有している。   Further, the high melting point PPS after the heat treatment tends to have a higher melt crystallization temperature observed by DSC measurement than the PPS before the heat treatment, and the time required for crystallization when the heat treatment of the present invention is performed during the molding process. It also has the feature that it can lead to improved production efficiency than before, such as shortening and shortening the molding time.

以下に、本発明を実施例によりさらに具体的に説明する。融点の測定は以下の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. The melting point was measured by the following method.

[融点測定] PPSおよびこの樹脂を融点以上で熱処理して得られた高融点化PPSを測定試料とした。測定は、パーキンエルマー社製DSC−7を用い、a)室温〜340℃に昇温(昇温速度:20℃/分)、b)340℃で1分保持、c)340℃から100℃に冷却(降温速度:20℃/分)、d)100℃で1分保持、e)100℃から340℃に昇温(昇温速度:20℃/分)、f)340℃で1分保持、g)340℃から100℃に冷却(降温速度:20℃/分)を連続で行い、前記e)で観測される融解ピークの頂点温度を融点とした。また、前記c)で観測される溶融結晶化ピークの頂点を溶融結晶化温度とした。測定試料は約10mgであり、窒素雰囲気下で測定を行った。   [Measurement of Melting Point] PPS and a high melting point PPS obtained by heat-treating this resin at a temperature equal to or higher than the melting point were used as measurement samples. The measurement uses DSC-7 manufactured by PerkinElmer Co., Ltd. a) Temperature rise from room temperature to 340 ° C. (temperature rise rate: 20 ° C./min), b) hold at 340 ° C. for 1 minute, c) from 340 ° C. to 100 ° C. Cooling (temperature decrease rate: 20 ° C./min), d) holding at 100 ° C. for 1 minute, e) raising the temperature from 100 ° C. to 340 ° C. (heating rate: 20 ° C./min), f) holding at 340 ° C. for 1 minute, g) Cooling was continuously performed from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min), and the peak temperature of the melting peak observed in the above e) was defined as the melting point. Further, the peak of the melt crystallization peak observed in the above c) was taken as the melt crystallization temperature. The measurement sample was about 10 mg and was measured under a nitrogen atmosphere.

[実施例1]
PPSとしては東レ(株)製 トレリナM2888(溶融粘度50Pa・s(300℃、剪断速度200/秒))を用いた。このPPSを3gはかり取り、これを真空乾燥機に入れ、真空乾燥機内の圧力が100Pa(酸素濃度換算で0.02容量%)となるまで減圧を行った後、320℃で120分熱処理を行った。熱処理後、室温まで放冷したものをDSC測定に供した。この測定結果を表1に示す。
[Example 1]
Toraya M2888 (melt viscosity 50 Pa · s (300 ° C., shear rate 200 / sec)) manufactured by Toray Industries, Inc. was used as the PPS. 3 g of this PPS is weighed out, put in a vacuum dryer, reduced in pressure until the pressure in the vacuum dryer reaches 100 Pa (0.02 vol% in terms of oxygen concentration), and then heat treated at 320 ° C. for 120 minutes. It was. After heat treatment, the product was allowed to cool to room temperature and subjected to DSC measurement. The measurement results are shown in Table 1.

[実施例2]
熱処理を305℃で375分行ったこと以外は、実施例1と同様に熱処理したPPSのDSC測定結果を表1に併せて示す。
[Example 2]
Table 1 also shows the DSC measurement results of the PPS heat-treated in the same manner as in Example 1 except that the heat treatment was performed at 305 ° C. for 375 minutes.

[実施例3]
熱処理を350℃で20分行ったこと以外は、実施例1と同様に熱処理したPPSのDSC測定結果を表1に併せて示す。
[Example 3]
Table 1 also shows the DSC measurement results of the PPS heat-treated in the same manner as in Example 1 except that the heat treatment was performed at 350 ° C. for 20 minutes.

[比較例1]
実施例1で用いたPPSを熱処理することなくDSC測定に供した測定結果を表1に併せて示す。
[Comparative Example 1]
Table 1 also shows the measurement results obtained by subjecting the PPS used in Example 1 to DSC measurement without heat treatment.

[比較例2]
熱処理を275℃で120分行ったこと以外は、実施例1と同様に熱処理したPPSのDSC測定結果を表1に併せて示す。
[Comparative Example 2]
Table 1 also shows the DSC measurement results of the PPS heat-treated in the same manner as in Example 1 except that the heat treatment was performed at 275 ° C. for 120 minutes.

[比較例3]
熱処理を320℃で30分行ったこと以外は、実施例1と同様に熱処理したPPSのDSC測定結果を表1に併せて示す。
[Comparative Example 3]
Table 1 also shows the DSC measurement results of the PPS heat-treated in the same manner as in Example 1 except that the heat treatment was performed at 320 ° C. for 30 minutes.

[比較例4]
熱処理を350℃で120分行ったこと以外は、実施例1と同様に熱処理したPPSのDSC測定結果を表1に併せて示す。
[Comparative Example 4]
Table 1 also shows the DSC measurement results of the PPS heat-treated in the same manner as in Example 1 except that the heat treatment was performed at 350 ° C. for 120 minutes.

[比較例5]
熱処理を大気中で行ったこと以外は、実施例1と同様に熱処理したPPSのDSC測定結果を表1に併せて示す。
[Comparative Example 5]
Table 1 also shows the DSC measurement results of the PPS heat-treated in the same manner as in Example 1 except that the heat treatment was performed in the air.

また、実施例1〜3および比較例3〜4における熱処理温度に対する熱処理時間の関係を表すグラフを図1に示す。   Moreover, the graph showing the relationship of the heat processing time with respect to the heat processing temperature in Examples 1-3 and Comparative Examples 3-4 is shown in FIG.

Figure 2006037007
Figure 2006037007

1):融解ピーク観測不能
2):溶融結晶化ピーク観測不能
1): Melt peak cannot be observed 2): Melt crystallization peak cannot be observed

表1および図1の結果から明らかなように、実施例1では特に好ましい条件で熱処理を施すことにより、熱処理を行わなかった比較例1と比べて、融点が285℃を超えて向上することがわかる。また、好ましい条件で熱処理を行った実施例2および実施例3は、融点が283℃を超えて向上することがわかる。一方、融点以下で熱処理を行った比較例2、および式(1)の条件範囲外で熱処理を行った比較例3および比較例4は、実施例1と比較して融点が同程度か少し上昇する程度であることがわかる。また、酸化性雰囲気で行った比較例5は、融解ピークおよび溶融結晶化ピークが観測されないため、融点上昇には好ましくない条件であることがわかる。   As is apparent from the results of Table 1 and FIG. 1, in Example 1, the heat treatment was performed under particularly preferable conditions, and the melting point was improved by over 285 ° C. compared with Comparative Example 1 in which heat treatment was not performed. Recognize. Moreover, it turns out that melting | fusing point improves in Example 2 and Example 3 which heat-processed on preferable conditions exceeding 283 degreeC. On the other hand, in Comparative Example 2 in which heat treatment was performed at a temperature lower than the melting point, and in Comparative Example 3 and Comparative Example 4 in which heat treatment was performed outside the condition range of the formula (1), the melting point was about the same or slightly increased as compared with Example 1. It turns out that it is a grade to do. Moreover, since the melting peak and the melt crystallization peak are not observed in Comparative Example 5 performed in an oxidizing atmosphere, it is understood that the conditions are not preferable for increasing the melting point.

本発明によれば、耐熱性の向上した高融点化ポリフェニレンスルフィドを経済性良く効率的に製造することができ、かくして得られる高融点化PPSは、射出成形用・押出成形用に幅広く使用することができる。   According to the present invention, a high melting point polyphenylene sulfide having improved heat resistance can be produced efficiently and efficiently, and the resulting high melting point PPS can be widely used for injection molding and extrusion molding. Can do.

実施例1〜3および比較例3〜4における熱処理温度に対する熱処理時間の関係を表すグラフである。It is a graph showing the relationship of the heat processing time with respect to the heat processing temperature in Examples 1-3 and Comparative Examples 3-4.

Claims (5)

パーキンエルマー社製DSC−7を用い、a)室温〜340℃に昇温(昇温速度:20℃/分)、b)340℃で1分保持、c)340℃から100℃に冷却(降温速度:20℃/分)、d)100℃で1分保持、e)100℃から340℃に昇温(昇温速度:20℃/分)、f)340℃で1分保持、g)340℃から100℃に冷却(降温速度:20℃/分)を連続で行い、前記e)で観測された融解ピークの頂点で示される融点が283℃を超える高融点化ポリフェニレンスルフィド。 Using DSC-7 manufactured by PerkinElmer, Inc.) a) Temperature rising from room temperature to 340 ° C. (temperature rising rate: 20 ° C./min), b) holding at 340 ° C. for 1 minute, c) cooling from 340 ° C. to 100 ° C. (temperature decreasing) D) held at 100 ° C. for 1 minute, e) heated from 100 ° C. to 340 ° C. (temperature rising rate: 20 ° C./minute), f) held at 340 ° C. for 1 minute, g) 340 A high-melting polyphenylene sulfide having a melting point exceeding 283 ° C., which is continuously cooled from 100 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min) and indicated by the peak of the melting peak observed in e). ポリフェニレンスルフィドを、非酸化性雰囲気下、下記式(1)を満たす条件で熱処理することにより得られたポリフェニレンスルフィドであって、パーキンエルマー社製DSC−7を用い、a)室温〜340℃に昇温(昇温速度:20℃/分)、b)340℃で1分保持、c)340℃から100℃に冷却(降温速度:20℃/分)、d)100℃で1分保持、e)100℃から340℃に昇温(昇温速度:20℃/分)、f)340℃で1分保持、g)340℃から100℃に冷却(降温速度:20℃/分)を連続で行い、前記e)で観測された融解ピークの頂点で示される融点が283℃を超える高融点化ポリフェニレンスルフィド。
Figure 2006037007
(ただし、式中のTは熱処理温度(℃)であって、ポリフェニレンスルフィドの融点を越え分解温度未満の範囲の温度、tは熱処理時間(分)を示す。)
Polyphenylene sulfide obtained by heat-treating polyphenylene sulfide in a non-oxidizing atmosphere under conditions satisfying the following formula (1), using DSC-7 manufactured by Perkin Elmer, Inc., a) rising from room temperature to 340 ° C Temperature (temperature increase rate: 20 ° C./min), b) hold at 340 ° C. for 1 minute, c) cool from 340 ° C. to 100 ° C. (temperature decrease rate: 20 ° C./min), d) hold at 100 ° C. for 1 minute, e ) Temperature rise from 100 ° C. to 340 ° C. (temperature rise rate: 20 ° C./min), f) hold at 340 ° C. for 1 minute, g) cooling from 340 ° C. to 100 ° C. (temperature drop rate: 20 ° C./min) continuously A high-melting polyphenylene sulfide having a melting point of 283 ° C. exceeding the melting peak observed in e).
Figure 2006037007
(However, T in the formula is the heat treatment temperature (° C.), which is a temperature in the range of exceeding the melting point of polyphenylene sulfide and less than the decomposition temperature, and t is the heat treatment time (minutes).)
前記熱処理温度Tが、300℃を越え400℃未満の範囲の温度である請求項2に記載の高融点化ポリフェニレンスルフィド。 The high-melting polyphenylene sulfide according to claim 2, wherein the heat treatment temperature T is in the range of more than 300 ° C and less than 400 ° C. ポリフェニレンスルフィドを、非酸化性雰囲気下、下記式(1)を満たす条件で熱処理することにより、ポリフェニレンスルフィドの融点を上昇させることからなる請求項1〜3のいずれか1項に記載の高融点化ポリフェニレンスルフィドの製造方法。
Figure 2006037007
(ただし、式中のTは熱処理温度(℃)であり、ポリフェニレンスルフィドの融点を越え分解温度未満の範囲の温度、tは熱処理時間(分)を示す。)
The high melting point according to any one of claims 1 to 3, wherein the polyphenylene sulfide is heat-treated in a non-oxidizing atmosphere under a condition satisfying the following formula (1) to raise the melting point of the polyphenylene sulfide. A method for producing polyphenylene sulfide.
Figure 2006037007
(However, T in the formula is a heat treatment temperature (° C.), a temperature in the range exceeding the melting point of polyphenylene sulfide and less than the decomposition temperature, and t represents a heat treatment time (minute).)
前記熱処理温度Tが、300℃を越え400℃未満の範囲の温度である請求項4に記載の高融点化ポリフェニレンスルフィドの製造方法。 The method for producing a high-melting polyphenylene sulfide according to claim 4, wherein the heat treatment temperature T is a temperature in the range of more than 300 ° C and less than 400 ° C.
JP2004221732A 2004-07-29 2004-07-29 Polyphenylene sulfide made to have higher melting point and method for producing the same Pending JP2006037007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221732A JP2006037007A (en) 2004-07-29 2004-07-29 Polyphenylene sulfide made to have higher melting point and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221732A JP2006037007A (en) 2004-07-29 2004-07-29 Polyphenylene sulfide made to have higher melting point and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006037007A true JP2006037007A (en) 2006-02-09

Family

ID=35902343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221732A Pending JP2006037007A (en) 2004-07-29 2004-07-29 Polyphenylene sulfide made to have higher melting point and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006037007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076396B2 (en) * 2005-09-01 2011-12-13 Sumitomo Osaka Cement Co., Ltd Ultrarapid hardening cement composition and dispersant for ultrarapid hardening cement composition
JP5018970B2 (en) * 2009-08-27 2012-09-05 東レ株式会社 Polyarylene sulfide and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076396B2 (en) * 2005-09-01 2011-12-13 Sumitomo Osaka Cement Co., Ltd Ultrarapid hardening cement composition and dispersant for ultrarapid hardening cement composition
JP5018970B2 (en) * 2009-08-27 2012-09-05 東レ株式会社 Polyarylene sulfide and process for producing the same
JPWO2011024879A1 (en) * 2009-08-27 2013-01-31 東レ株式会社 Polyarylene sulfide and process for producing the same
KR101242452B1 (en) * 2009-08-27 2013-03-12 도레이 카부시키가이샤 Polyarylene sulfide and method for producing same
US8546518B2 (en) 2009-08-27 2013-10-01 Toray Industries, Inc. Polyarylene sulfide and method for producing the same

Similar Documents

Publication Publication Date Title
Li et al. Shape memory effect of ethylene–vinyl acetate copolymers
Gregorio Jr Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions
Han et al. A hybrid material approach toward solution‐processable dielectrics exhibiting enhanced breakdown strength and high energy density
Maier Low dielectric constant polymers for microelectronics
TW201136990A (en) Polyarylene sulfide having excellent and sustainable property, and preparation method thereof
WO2007034800A1 (en) Polyarylene sulfide and process for production thereof
JP6030620B2 (en) Preparation of polyamide-imide, graphite film, and graphite film
He et al. Effect of multiwalled carbon nanotubes on crystallization behavior of poly (vinylidene fluoride) in different solvents
KR20160102525A (en) Polyarylene sulfide resin composition and molded article comprising same
Zhong et al. Miscibility and morphology of thermosetting polymer blends of novolac resin with poly (ethylene oxide)
Halim et al. Thermal properties and intermolecular interaction of blends of poly (ethylene oxide) and poly (methyl acrylate)
Yuan et al. Deep eutectic solvent—a novel additive to induce gamma crystallization and alpha‐to‐gamma phase transition of PVDF
JP3203285B2 (en) Method for producing low-corrosion polyarylene sulfide
Yuan et al. Novel low‐dielectric‐constant copolyimide thin films composed with SiO2 hollow spheres
JP2006037007A (en) Polyphenylene sulfide made to have higher melting point and method for producing the same
JP2010070630A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP2005330471A (en) Polybenzazol polymer and molded product produced using the same
GB2192831A (en) Polyphenylene sulfide film
JPS61162544A (en) Production of polytetrafluoroethylene
JP2575364B2 (en) Microspherulitic polyarylene thioether and method for producing the same
Yang et al. Crystallization and crosslinking of polyamide‐1010 under elevated pressure
Yu et al. Thermal degradation kinetics of poly (aryl ether sulfone 1, 3, 5-triazine) s containing phthalazinone moieties
JPH0757819B2 (en) Heat-resistant film and manufacturing method thereof
Li et al. Supercritical carbon dioxide‐assisted dispersion of sodium benzoate in polypropylene and crystallization behavior of the resulting polypropylene
Zhu et al. Construction of porous poly (aryl sulfide sulfone) film with low dielectric constant and excellent mechanical property