JP2006035410A - Robot controller adding novel function - Google Patents

Robot controller adding novel function Download PDF

Info

Publication number
JP2006035410A
JP2006035410A JP2004243015A JP2004243015A JP2006035410A JP 2006035410 A JP2006035410 A JP 2006035410A JP 2004243015 A JP2004243015 A JP 2004243015A JP 2004243015 A JP2004243015 A JP 2004243015A JP 2006035410 A JP2006035410 A JP 2006035410A
Authority
JP
Japan
Prior art keywords
grinding
robot
target
grinder
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004243015A
Other languages
Japanese (ja)
Inventor
Keiji Tanimoto
圭司 谷本
Kiyotaka Ueda
清隆 植田
Akinori Kondo
秋則 近藤
Takayuki Yabuki
孝之 矢吹
Masao Tanimoto
政男 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatec KK
Original Assignee
Koatec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatec KK filed Critical Koatec KK
Priority to JP2004243015A priority Critical patent/JP2006035410A/en
Publication of JP2006035410A publication Critical patent/JP2006035410A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a finishing technology of an automated robot up to a skilled worker's domain in weld bead peripheral part and die finishing. <P>SOLUTION: This robot controller computes target grinding volume from the difference between a three-dimensional shape measured value and target shape to further enhance grinding accuracy to form a smooth free curved surface in finishing by the automated robot, and computes an operating track of the robot with a time factor, i.e., feed speed information on a grinder in addition to grinding position information to improve track follow-up performance, thus attaining the target finished surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶接ビード、金型仕上げの自動仕上げ装置において、位置及びグラインダー送り速度情報を取り入れて、研削精度を向上せしめた仕上げ用ロボットコントローラーに関する。The present invention relates to a finishing robot controller that incorporates position and grinder feed speed information to improve grinding accuracy in an automatic finishing apparatus for welding beads and die finishing.

自動車のドアフレームに見られるように、溶接により生ずる溶接ビードは、熟練作業者の手作業で、あたかも溶接されていないように仕上げられている。長年ロボットによる自動化が望まれていたが、実用的なシステムは、まだ開発されていないのが現状である。溶接ビード仕上げ作業を自動化できない要因は、二つある。その一つは、接合部に段差が生じることがある。また、溶接歪により溶接ビード周辺部が変形する。これらはワーク毎に異なり予測できないため、ティーチング・プレイバックによるロボット制御では、自動仕上げを実現することができない。二つ目は、溶接した痕跡を認識させないためには、溶接ビード周辺部を滑らかな自由曲面に仕上げる必要がある。そのためには,グラインダーの位置と送り速度の両方を指示する必要があり,通常の産業用ロボットでは始点終点の位置決め精度は良いが,その区間内の位置と速度は正確性を欠くことが知られており不可能である。また,NCコントローラにおける切削位置は,加工点毎に送り速度を設定することができないため不可能であった。本発明者らは、その対策として,単位時間研削量を実測により定量化し、立体形状測定と目標形状より研削目標体積を求め,その数値をロボット動作軌道計算に利用する方法を見出した。この方法を実現するために研削位置のみでなく時間的ファクターを取り入れて、送り速度情報により軌道追従制御機能を持たせたロボットコントローラを必要とする。しかし,このような自動仕上げが可能なロボットコントローラは知られていない。As seen in automobile door frames, the weld beads produced by welding are finished as if they were not welded by a skilled worker. Although automation with a robot has been desired for many years, no practical system has been developed yet. There are two factors that can not automate the welding bead finishing operation. One of them is that a step may occur at the joint. Further, the weld bead peripheral portion is deformed by welding distortion. Since these differ depending on the workpiece and cannot be predicted, automatic finishing cannot be realized by robot control by teaching and playback. Second, it is necessary to finish the periphery of the weld bead into a smooth free-form surface in order not to recognize the welded trace. For that purpose, it is necessary to indicate both the position of the grinder and the feed speed. In ordinary industrial robots, the positioning accuracy at the start and end points is good, but the position and speed in that section are known to be inaccurate. It is impossible. Further, the cutting position in the NC controller is impossible because the feed rate cannot be set for each processing point. As a countermeasure, the present inventors have found a method in which the grinding amount per unit time is quantified by actual measurement, the grinding target volume is obtained from the solid shape measurement and the target shape, and the numerical value is used for the robot motion trajectory calculation. In order to realize this method, a robot controller that incorporates not only a grinding position but also a time factor and has a trajectory tracking control function based on feed speed information is required. However, there is no known robot controller capable of such automatic finishing.

先行特許から見た背景技術は、次の通りである。ティーチングした基本的なロボット経路に、スリット光を用いて検出した溶接ビードの幅情報を加えてロボット経路を自動生成する技術が知られている(特許文献1)。また、事前に得たロボット経路に溶接ビードの幅情報を加えて補正しながらロボットを動かす方法も公知である(特許文献2)。さらに、一歩進んだ溶接ビード仕上げ法として、単なる溶接ビードの幅だけでなく、薄板突き合わせで生ずる段差をも考慮して、溶接ビード周辺を研削して、滑らかな自由曲面を形成する技術が公開されている。これでは、推定完成曲面を目標として、研削量からロボット経路を生成させている(特許文献3)。しかし、研削場所のみでなく、時間的ファクターを取り入れた位置と送り速度の制御を可能にしたロボットコントローラーはない。The background art as seen from the prior patent is as follows. A technique is known in which a robot path is automatically generated by adding width information of a weld bead detected using slit light to a basic robot path taught (Patent Document 1). Further, a method of moving the robot while correcting by adding the weld bead width information to the robot path obtained in advance is also known (Patent Document 2). Furthermore, as a weld bead finishing method that has advanced one step further, a technology that forms a smooth free-form surface by grinding the periphery of the weld bead in consideration of not only the width of the weld bead but also the level difference caused by thin plate butting is disclosed. ing. In this case, the robot path is generated from the grinding amount with the estimated completed curved surface as a target (Patent Document 3). However, there is no robot controller that makes it possible to control not only the grinding location but also the position and feed rate that incorporate time factors.

日本精密工学会誌 68巻 No7 953ページ 2002年Journal of Japan Society for Precision Engineering 68 Vol.7 953 2002 日本ロボット学会誌 17巻 No1 147ページ 1999年Journal of the Robotics Society of Japan Volume 17 No1 Page 147 1999 特開平05−345255号JP 05-345255 A 特開平05−337785号JP 05-337785 A 特開2002−283099JP 2002-283099 A

本発明で解決しようとしている課題は、単に溶接ビードの除去ではなく、溶接ビード周辺に、滑らかな自由曲面を形成させることを目標としている。そのためには、砥石ベルトの押付け圧力や砥石周速度のような間接的条件管理だけではなく、管理できない砥粒の変化や砥石寿命をも包含した単位時間研削量を、定期的に測定し、ドアサッシュの薄板突き合わせのような段差の生じ易い曲面溶接ビードの研削にも役立つ特許文献3よりもさらに精度の高いロボットコントローラーの開発が課題であった。とくに、熟練作業者に近い仕上げ品質を得るため位置情報に加えて、グラインダー送り速度を設定し、ロボットの動作軌道を制御するロボットコントローラーの開発が課題であった。The problem to be solved by the present invention is not to simply remove the weld bead, but to form a smooth free-form surface around the weld bead. To that end, not only the indirect condition management such as the pressing force of the grinding wheel belt and the grinding wheel peripheral speed, but also the amount of grinding per unit time including the change of abrasive grains and the grinding wheel life that cannot be managed are measured periodically, and the door The development of a robot controller with higher accuracy than that of Patent Document 3, which is useful for grinding a curved weld bead that is likely to cause a step such as a sash butt, was a problem. In particular, the development of a robot controller that controls the robot's motion trajectory by setting the grinder feed speed in addition to the positional information was a challenge in order to obtain a finish quality close to that of skilled workers.

図1によってのように、研削パターンを仕上げ目標形状に投影し、三次元空間上の自由曲線データとして経路を求める。次いで、経路上の研削目標体積と砥石の単位時間研削量からグラインダー送り速度を設定し、ロボットの動作軌道を決定する。As shown in FIG. 1, a grinding pattern is projected onto a finished target shape, and a path is obtained as free curve data in a three-dimensional space. Next, the grinder feed speed is set from the grinding target volume on the path and the grinding amount per unit time of the grindstone, and the motion trajectory of the robot is determined.

ロボットの動作軌道が決まると、一定時間間隔のグラインダー位置と姿勢を求め、ロボットの各軸データに変換する。CAMで云う切削位置データに時間的ファクターを導入して位置と送り速度を正確に定義する。本発明者らは、この位置と送り速度情報を持った点群データを、タイム・ベース切削位置と名づけ、このタイム・ベース切削位置をLAN経由で送り、軌道追従制御機能を持たせ課題を解決した。When the robot trajectory is determined, the grinder position and posture at regular time intervals are obtained and converted into each axis data of the robot. A time factor is introduced into the cutting position data called CAM to accurately define the position and feed rate. The present inventors named the point cloud data having this position and feed speed information as the time base cutting position, and sent this time base cutting position via the LAN to provide a trajectory tracking control function to solve the problem. did.

薄い鉄板を突き合わせて溶接する場合に生じる溶接ビードは、熟練作業者の手作業によりあたかも溶接されていないように仕上げられている。しかし、手作業並みのロボット仕上げシステムは開発されていなかった。その要因は、曲面溶接では接合部段差が、わずかに発生する。また、溶接歪により溶接ビード周辺部が変形する。これらの接合部段差と歪は、ワーク毎に異なるため産業用ロボット制御では、自動仕上げを実現できない。さらに溶接ビード部のみの研削とは異なり、溶接ビード周辺部を滑らかな自由曲面にするには、ワーク毎に異なる三次元形状への対応が困難であった。本発明は、これらの問題点を解決し、算出した目標形状に対して、ロボットが正確に仕上げることが実現できた効果は大きい。A weld bead generated when welding a thin steel plate is finished as if it were not welded by a manual operation of a skilled worker. However, a robot finishing system comparable to manual work has not been developed. The cause is that a slight difference in level difference occurs in the curved surface welding. Further, the weld bead peripheral portion is deformed by welding distortion. Since these joint step and distortion differ for each workpiece, automatic finishing cannot be realized by industrial robot control. Furthermore, unlike the grinding of only the weld bead part, in order to make the peripheral part of the weld bead a smooth free-form surface, it is difficult to cope with a different three-dimensional shape for each workpiece. The present invention has a great effect of solving these problems and realizing that the robot can accurately finish the calculated target shape.

熟練作業者の巧みな手作業なみに、ロボットが仕上げるための最良の形態について述べる。ロボットの動作軌道生成と制御を以下の手順で行う。仕上げ目標形状が決まると、三次元測定結果と目標形状との差分から研削目標体積を求める。研削目標体積は、溶接歪や接合部段差の影響により場所により2倍以上異なる場合が多い。この研削目標体積を忠実に研削するロボットの動きを実現すればよい。そこで次に重要なことは、砥石ベルトの単位時間研削量の定量化であり、さらに、経路上の研削目標体積と砥石の単位時間研削量からグラインダー送り速度を設定し、ロボット動作軌道の決定である。The best mode for the robot to finish, just like the skillful manual work of skilled workers, is described. The robot trajectory is generated and controlled in the following procedure. When the finishing target shape is determined, the grinding target volume is obtained from the difference between the three-dimensional measurement result and the target shape. The grinding target volume is often different by a factor of two or more depending on the location due to the influence of welding distortion and joint step difference. What is necessary is just to implement | achieve the motion of the robot which grinds this grinding target volume faithfully. Therefore, the next important thing is quantification of the grinding amount per unit time of the grinding wheel, and further, the grinder feed speed is set from the grinding target volume on the path and the grinding amount per unit time of the grinding wheel, and the robot motion trajectory is determined. is there.

図1は、ロボット動作軌道である。1は、研削されるワークであり、2は、グラインダーである。3は、研削領域を示している。4がグラインダーの軌跡である。図のように、研削パターンを仕上げ目標形状に投影して、三次元空間上の自由曲線データとして経路を求める。つぎに、経路上の研削目標体積と砥石の単位時間研削量からグラインダー送り速度を設定し、ロボットの動作軌道を決める。ロボットの動作軌道が決まると、一定時間間隔のグラインダー位置と姿勢を求め、ロボットの各軸データに変換する。FIG. 1 shows a robot motion trajectory. 1 is a workpiece to be ground, and 2 is a grinder. Reference numeral 3 denotes a grinding region. 4 is the locus of the grinder. As shown in the figure, the grinding pattern is projected onto the finishing target shape, and the path is obtained as free curve data in a three-dimensional space. Next, the grinder feed speed is set from the grinding target volume on the path and the grinding amount per unit time of the grindstone, and the robot trajectory is determined. Once the robot's motion trajectory is determined, the grinder position and orientation at regular time intervals are determined and converted to robot axis data.

本発明のロボットコントローラーは、位置サーボをベースに、速度フィードフォワード制御を入れ、軌道追従性を向上させた。本発明者らは、タイム・ベース切削位置データによる軌道追従性について、図2に模式的に示すような、待機・研削・退避の一連動作の動作目標速度と位置制御エラーの結果を得た。5が、動作目標速度であり、6が、位置制御エラーである。図2の横軸の時間軸のa−bが、待機位置からワークに接触する動作で、横軸のb−cが、研削動作である。この研削動作の目標速度は、研削体積に応じて、変化させている。研削動作中の位置制御エラーは、±25ミクロンに入っており、軌道追従性が確保されている。位置制御エラーが、±200ミクロンを越えると仕上げ面に傷が発生し、品質不良になる。The robot controller according to the present invention improves the trajectory following performance by using speed feedforward control based on the position servo. The inventors obtained the results of the target speed and position control error of a series of standby / grind / retract operations as schematically shown in FIG. 2 with respect to the trajectory followability based on the time-based cutting position data. 5 is an operation target speed, and 6 is a position control error. The time axis ab on the horizontal axis in FIG. 2 is an operation for contacting the workpiece from the standby position, and the line bc on the horizontal axis is a grinding operation. The target speed of this grinding operation is changed according to the grinding volume. The position control error during the grinding operation is within ± 25 microns, and the trajectory followability is ensured. If the position control error exceeds ± 200 microns, scratches occur on the finished surface, resulting in poor quality.

図1のような研削パターンを仕上げ目標形状に投影することにより、三次元空間上の自由曲面データとして経路を求めた。次いで、経路上の研削目標体積と砥石の単位時間研削量からグラインダー送り速度を設定し、ロボットの動作軌道を求めた。ロボットの動作軌道が決まった後、3〜10ミリ秒の一定時間間隔のグラインダー位置と姿勢を求めて、ロボットの各軸データに変換した。つまりCAMで云う切削位置的なデータに時間的な意味を付与し、位置と送り速度を正確に定義した。この位置と送り速度情報をもった点群データを、タイム・ベース切削位置と呼び、このデータをLAN経由で位置と送り速度の制御を可能にした。By projecting a grinding pattern as shown in FIG. 1 onto a finished target shape, a path was obtained as free-form surface data in a three-dimensional space. Next, the grinder feed speed was set from the grinding target volume on the path and the grinding amount per unit time of the grindstone, and the motion trajectory of the robot was obtained. After the robot trajectory was determined, the grinder position and posture at fixed time intervals of 3 to 10 milliseconds were obtained and converted to robot axis data. In other words, a time meaning was given to the cutting position data referred to by CAM, and the position and the feed rate were accurately defined. The point cloud data with this position and feed rate information is called the time-based cutting position, and this data enables control of the position and feed rate via the LAN.

図2は、待機・研削・退避の一連動作の動作目標速度と位置制御エラーをグラフに示したものである。横軸は、ゼロから3秒までの時間軸である。縦軸は、曲線5の動作目標速度と曲線6の位置制御エラーである。このグラフで、a−bは、0.0〜0.7秒であり、0.7秒でグラインダーがワークに接触し、2.6秒まで研削動作があった。この研削動作の目標速度は研削体積により変化していた。曲線6の0.7〜2.6秒における位置エラーは、24ミリミクロンであり、軌道追従性が確保された。単位時間研削量の他に、グラインダーの位置、送り速度等による制御を取り入れて、軌道追従制御機能を持った精度の高い溶接ビードの周辺部の滑らかな仕上げ用のロボットコントローラーが完成した。FIG. 2 is a graph showing an operation target speed and a position control error in a series of operations of standby, grinding, and retraction. The horizontal axis is a time axis from zero to 3 seconds. The vertical axis represents the operation target speed of the curve 5 and the position control error of the curve 6. In this graph, ab was 0.0 to 0.7 seconds, the grinder contacted the workpiece in 0.7 seconds, and grinding operation was performed up to 2.6 seconds. The target speed of this grinding operation varied with the grinding volume. The position error of the curve 6 from 0.7 to 2.6 seconds was 24 millimicrons, and the trajectory tracking performance was ensured. In addition to the grinding amount per unit time, the robot controller for smooth finishing of the periphery of the weld bead with high accuracy and the trajectory tracking control function has been completed.

具体的な工具として実施例を説明するならば、三次元空間上の自由曲面或いは平面上の溶接ビード又はバリを仕上げる装置において、立体形状測定結果から形状計算された工具位置情報と、研削目標量から計算された工具送り速度を、工具の所定時間間隔の動作位置及び姿勢として記載された点群データにより、工具の送り速度と位置を制御するロボットコントローラーである。If an embodiment is described as a specific tool, in a device for finishing a weld bead or a burr on a free-form surface or a plane in a three-dimensional space, tool position information calculated from a solid shape measurement result and a grinding target amount Is a robot controller that controls the feed speed and position of the tool based on the point cloud data described as the tool feed speed calculated from the above as the operation position and posture of the tool at predetermined time intervals.

薄板を突き合わせて溶接し、ドアサッシュを製作する場合の他、自動車ボディー部品で、あたかも溶接されていないように仕上げる必要のある場合や鉄板プレス用金型、プラスチック成形用の金型の仕上げにも利用できる。In addition to manufacturing a door sash by butt-welding thin plates, it is also necessary to finish automobile body parts as if they are not welded, and to finish molds for pressing iron plates and plastic molds. Available.

グラインダーロボットの動作軌道の模式図Schematic diagram of motion trajectory of grinder robot 待機・研削・退避の一連動作と研削動作の目標速度並びに位置制御エラーの模式図 Xは横軸で、研削時間である。a−bは待機位置からワークへ接触する動作 b−cは研削動作の期間である。c−dは退避の動作である。Yは縦軸で、切削動作目標速度と位置制御エラーの変化である。Schematic diagram of a series of standby / grinding / retreat operations, target speed of grinding operation and position control error X is the horizontal axis and is the grinding time. a-b is an operation of contacting the workpiece from the standby position, and b-c is a period of the grinding operation. cd is an evacuation operation. Y is the vertical axis, which is a change in the cutting operation target speed and the position control error.

符号の説明Explanation of symbols

1被研削ワーク
2グラインダー
3研削領域
4グラインダーの軌道
5切削動作目標速度の時間変化
6位置制御エラー
1 Workpiece to be ground 2 Grinder 3 Grinding area 4 Grinder track 5 Cutting operation Target speed change with time 6 Position control error

Claims (2)

立体形状測定と目標形状より研削目標体積を求め、自動研削仕上げをする装置において、定期的或いは決めた時間間隔でグラインダーの単位時間研削量を測定して、時間単位の目標値を計測して、グラインダー工具経路を決定するに当たり、研削位置情報に加えて、時間的ファクターを取り入れ、位置とグラインダー送り速度情報による制御を可能にした研削仕上げロボットコントローラーIn the device that calculates the grinding target volume from the three-dimensional shape measurement and the target shape and performs automatic grinding finish, measure the grinder unit time grinding amount at regular or determined time intervals, measure the target value in time unit, When determining the grinder tool path, a grinding robot controller that incorporates a time factor in addition to the grinding position information and enables control based on the position and grinder feed speed information. 三次元空間上の自由曲面或いは平面上の溶接ビード又はバリ,金型を仕上げる装置において、立体形状から計算された工具位置情報と、研削目標量から計算された工具送り速度を、工具の所定時間間隔の動作位置及び姿勢として記載された点群データにより、工具の送り速度と位置を制御するロボットコントローラーThe tool position information calculated from the three-dimensional shape and the tool feed rate calculated from the grinding target amount are used for the predetermined time of the tool in the equipment that finishes the weld bead or burr on the free curved surface or flat surface in the three-dimensional space. Robot controller that controls the feed rate and position of the tool based on point cloud data described as the movement position and orientation of the interval
JP2004243015A 2004-07-26 2004-07-26 Robot controller adding novel function Pending JP2006035410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243015A JP2006035410A (en) 2004-07-26 2004-07-26 Robot controller adding novel function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243015A JP2006035410A (en) 2004-07-26 2004-07-26 Robot controller adding novel function

Publications (1)

Publication Number Publication Date
JP2006035410A true JP2006035410A (en) 2006-02-09

Family

ID=35900932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243015A Pending JP2006035410A (en) 2004-07-26 2004-07-26 Robot controller adding novel function

Country Status (1)

Country Link
JP (1) JP2006035410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103128645A (en) * 2013-03-21 2013-06-05 上海交通大学 Active compliance robot grinding system with controlled pressure and changeable speed and method
JP2013219614A (en) * 2012-04-10 2013-10-24 Seiko Epson Corp Electronic device, electronic apparatus, manufacturing method of base substrate, and manufacturing method of electronic device
JP2015085415A (en) * 2013-10-29 2015-05-07 株式会社神戸製鋼所 Method and system for abrasive grinding of plastic machining tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219614A (en) * 2012-04-10 2013-10-24 Seiko Epson Corp Electronic device, electronic apparatus, manufacturing method of base substrate, and manufacturing method of electronic device
CN103128645A (en) * 2013-03-21 2013-06-05 上海交通大学 Active compliance robot grinding system with controlled pressure and changeable speed and method
CN103128645B (en) * 2013-03-21 2015-06-17 上海交通大学 Active compliance robot grinding system with controlled pressure and changeable speed and method
JP2015085415A (en) * 2013-10-29 2015-05-07 株式会社神戸製鋼所 Method and system for abrasive grinding of plastic machining tool

Similar Documents

Publication Publication Date Title
JP5981143B2 (en) Robot tool control method
JP2017037640A (en) Machine toolpath compensation using vibration sensing
US7070368B2 (en) Method for setting a machining feed rate and a machine tool using the same
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
JP2006058961A (en) Finish machining device
US6876899B2 (en) Method for automatic riser gate removal compensating for variance in casting
JP4995976B1 (en) Numerical control device that performs in-position check of rotating shaft
WO2013005590A1 (en) Grinding disc and grinding method
US20090215361A1 (en) Method for near-net-shape machining of curved contours
CN109940475B (en) Robot polishing and deburring device and method
JP5765557B2 (en) Trajectory tracking device and method for machining robot
JP2006035410A (en) Robot controller adding novel function
JP6323744B2 (en) Polishing robot and its control method
CN112719290B (en) Method and system for manufacturing workpiece
JP4859941B2 (en) Processing apparatus and processing method
JP7115706B2 (en) High-precision machining system and high-precision machining method
JP2006035307A (en) Automatic weld bead finishing system
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP2006035409A (en) Grinder with novel function mounted to robot
JPH0857764A (en) Robot control device
US20170361406A1 (en) Orbital Friction Surfacing of Remanufactured Cast-Iron Components
Krantz et al. Robotized polishing and deburring with force feedback control
CN109270890B (en) Workpiece turning method and turning control system
JPH03256682A (en) Robot control device
CN105711107A (en) Method for reversely seeking locating basis of automatic belt laying machine