JP2006033545A - Optical communication system between train and land - Google Patents

Optical communication system between train and land Download PDF

Info

Publication number
JP2006033545A
JP2006033545A JP2004211041A JP2004211041A JP2006033545A JP 2006033545 A JP2006033545 A JP 2006033545A JP 2004211041 A JP2004211041 A JP 2004211041A JP 2004211041 A JP2004211041 A JP 2004211041A JP 2006033545 A JP2006033545 A JP 2006033545A
Authority
JP
Japan
Prior art keywords
station
train
ground
antenna
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211041A
Other languages
Japanese (ja)
Inventor
Mikio Tanaka
幹夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2004211041A priority Critical patent/JP2006033545A/en
Publication of JP2006033545A publication Critical patent/JP2006033545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a communication system which enables the transmission of data of a large capacity between a train traveling at a high speed and the land. <P>SOLUTION: A land side arithmetic processor 11 calculates predictive directions from earth stations 11-13 to a train station based on train data including the location and the speed of the train and railroad track data, etc. including gradients and curves of the track. Antenna direction control mechanisms 11b-13b automatically control so as to align antenna directions of the earth stations with the predictive directions. A train side arithmetic processor 31 applies similar processings to calculate the predictive directions from the train station 30 to the earth stations 11-13. An antenna direction control mechanism 35b automatically controls to align the antenna direction of the train station with the predictive directions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高速走行中の列車と地上との間で情報の伝達を行う光通信システムに関する。 The present invention relates to an optical communication system that transmits information between a train running at high speed and the ground.

高速走行中の列車と地上との間で情報の伝達を行う通信システムは、空間波を用いた無線通信システム、漏洩同軸ケーブルを用いたLCX通信システムが一般的である。例えば、特開平9−327057(特許文献1)には、移動通信網と鉄道管理網とで構成された移動通信システムにおいて、PHSの端末が列車内で通信を行うため、前記端末の位置情報を列車内無線基地局及び位置情報データベースに記憶し、また、無線基地局位置データベースには鉄道網周辺に設置されている無線基地局の位置情報を記憶し、移動通信交換局に着信があった場合、各データベースの位置情報を照合し、前記端末が存在する列車を呼び出す無線基地局を選択し、PHSの列車内無線基地局経由で、前記端末に着信を行う移動通信システムが開示されている。 As a communication system for transmitting information between a train traveling at high speed and the ground, a wireless communication system using a spatial wave and an LCX communication system using a leaky coaxial cable are generally used. For example, in Japanese Patent Laid-Open No. 9-327057 (Patent Document 1), in a mobile communication system composed of a mobile communication network and a railroad management network, a PHS terminal communicates within a train. When the radio base station in the train and the location information database are stored, and the location information of the radio base stations installed around the railway network is stored in the radio base station location database, and the mobile communication switching center receives an incoming call. A mobile communication system is disclosed in which location information in each database is collated, a radio base station that calls a train in which the terminal exists is selected, and the terminal is terminated via a PHS in-train radio base station.

ところで、今後、列車内旅客向けにインターネット利用のサービスを提供することや業務用に大量の画像を伝送するなどを実現するためには、従来より格段に大容量(例えば1Gbps)の通信を可能にする必要がある。このような大容量通信は、上述の如き従来の通信システムでは不可能である。 By the way, in order to provide Internet-based services for passengers in trains and to transmit a large amount of images for business use, it will be possible to communicate at a much higher capacity (for example, 1 Gbps) than before. There is a need to. Such a large-capacity communication is not possible with the conventional communication system as described above.

そこで、従来よりも高い周波数(数10GHz帯以上)の電波(ミリ波等)や光、赤外線等を使う方法が有力である。しかし、これらの電波や光の問題点としては、波長が非常に短いことから、電波の直進性が強く、電波のビーム幅が狭く、到達範囲の制限が大きいということである。上記の理由から、送受信のアンテナの向きをかなりの高精度で一致させる必要がある。即ち、電波発射の狙いを定める必要がある。このため、従来よりも高い周波数(数10GHz帯以上)の電波(ミリ波等)や光、赤外線等を用いて高速移動体と地上との間で通信する通信システムは未だ実用化されるに到っていない。 Therefore, a method using radio waves (millimeter waves or the like) having a higher frequency (several tens of GHz or more), light, infrared rays, or the like is more effective. However, the problems with these radio waves and light are that the wavelength is very short, so that the radio waves are traveling straight, the beam width of the radio waves is narrow, and the reach range is large. For the above reasons, it is necessary to match the directions of the transmitting and receiving antennas with considerably high accuracy. That is, it is necessary to set the aim of radio wave emission. For this reason, a communication system that communicates between a high-speed moving body and the ground using radio waves (millimeter waves or the like) with higher frequency (several tens of GHz band), light, infrared rays, etc. than before has yet to be put into practical use. Not.

自動化生産工場に設置された有軌道を移動する移動体に搭載された光送受波器と地上に設置された光送受波器との間での光通信システムは、特開2000−222034号公報(特許文献2)に開示されている如く、実現可能である。自動化生産工場では、送信のための光路と受信のための光路とを同一にするように、軌道を設置できるからである。 An optical communication system between an optical transmitter / receiver mounted on a moving body moving on a track installed in an automated production factory and an optical transmitter / receiver installed on the ground is disclosed in Japanese Patent Application Laid-Open No. 2000-222034 ( As disclosed in Patent Document 2), this is feasible. This is because, in an automated production factory, the track can be installed so that the optical path for transmission and the optical path for reception are the same.

ところが、高速鉄道においては、特許文献2に開示されている方法で送信のための光路と受信のための光路とを同一にすることは不可能である。そこで、特開平10−41893号公報(特許文献3)には、列車が線路上を移動するのに伴って生じる車上投受光器と対列車投受光器とを結ぶ線の角度変化に常に応じられるように、即ち列車が線路上を移動しても光ビーム信号の送受信が常時できるように、対列車投光用の光ビーム信号を指向性のやや広いものとした列車情報伝送装置が開示されている。なお、前記列車情報伝送装置は、軌道に沿って設置された光ビーム信号の投光器及び受光器と、複数の各駅に設置され、前記投光器及び受光器を通じて相互に光ビーム通信を行う光ビーム通信端末と、前記光ビーム通信端末のうち、両末端に位置するもの同士の間を信号伝送できるように結び、ループ伝送路を形成する末端間通信手段とを備えて成る列車情報伝送装置であって、車上に前記光ビーム信号に投光器及び受光器を設置して構成されたものである。 However, in a high-speed railway, it is impossible to make the optical path for transmission and the optical path for reception the same by the method disclosed in Patent Document 2. Therefore, Japanese Patent Laid-Open No. 10-41893 (Patent Document 3) always responds to a change in the angle of the line connecting the on-vehicle projector / receiver and the anti-train projector / receiver as the train moves on the track. In other words, a train information transmission device having a slightly wider directivity for a light beam signal for light-to-train projection is disclosed so that the light beam signal can always be transmitted and received even when the train moves on the track. ing. The train information transmission device includes a light beam signal projector and receiver installed along a track, and a light beam communication terminal installed at each of a plurality of stations and performing light beam communication with each other through the projector and receiver. And a train information transmission device comprising an end-to-end communication means that connects between the light beam communication terminals that are located at both ends so that signals can be transmitted between them, and forms a loop transmission path, A light projector and a light receiver are installed on the light beam signal on the vehicle.

しかしながら、対列車投光用の光ビーム信号を指向性のやや広いものとすると、到達距離が短くなるから、軌道に沿って設置される光ビーム信号の投光器及び受光器の数が多くなり、システムの構築と保守のコスト増を招くという問題がある。また、指向性のやや広い対列車投光用の光ビーム信号は、霧や雨の影響を受け易いから、信号伝送の品質の安定性に欠けるという問題もある。 However, if the light beam signal for light projection to the train is somewhat wide in directivity, the reach distance will be shortened, so the number of light beam signal projectors and light receivers installed along the track will increase, and the system There is a problem in that it increases the cost of construction and maintenance. In addition, since the light beam signal for light-to-train projection with a relatively wide directivity is easily affected by fog and rain, there is also a problem that the quality of signal transmission is not stable.

特開2001−339350号公報(特許文献4)には、道路脇に所定距離を隔てて設置された複数の固定局と、前記道路を走行する車両に搭載された移動局との間で光ビームを用いて通信を行う移動体空間通信システムが開示されている。この通信システムにおいて、移動局は自位置をGPSで測位し、測位により得られた位置情報を固定局に無線送信する。固定局は受信した移動局の位置情報と自局の位置とから、前記移動局との間で通信が可能か否かを判定する。これによって、固定局は通信すべき相手である移動局を確実に捕捉できるようになる。   Japanese Patent Application Laid-Open No. 2001-339350 (Patent Document 4) discloses a light beam between a plurality of fixed stations installed on a side of a road at a predetermined distance and a mobile station mounted on a vehicle traveling on the road. There has been disclosed a mobile space communication system that performs communication using the. In this communication system, a mobile station measures its own position with GPS, and wirelessly transmits position information obtained by the positioning to a fixed station. The fixed station determines whether communication with the mobile station is possible based on the received position information of the mobile station and the position of the own station. As a result, the fixed station can reliably capture the mobile station with which the fixed station should communicate.

通信可能であると判定したときには、前記移動局の位置情報と自局の位置の情報に基づいて所定の演算を行い、自局のアンテナ方向制御機構を駆動して前記移動局の方向に自局のアンテナの方向を合わせ、その後は、前記移動局の方向に自動追尾させる。上記の自動追尾は、前記固定局が前記移動局からの光信号を捕捉して行われる。同時に、移動局は、上述の固定局におけるのと同様の演算制御を行って、自局のアンテナ方向制御機構を駆動して前記移動局の方向に自局のアンテナの方向を合わせ、その後は、前記移動局の方向に自動追尾させる。上記の自動追尾は、前記移動局が前記固定局からの光信号を捕捉して行われる。 When it is determined that communication is possible, a predetermined calculation is performed based on the position information of the mobile station and the position of the own station, and the antenna direction control mechanism of the own station is driven to move toward the mobile station. The direction of the antenna is adjusted, and thereafter, automatic tracking is performed in the direction of the mobile station. The automatic tracking is performed when the fixed station captures an optical signal from the mobile station. At the same time, the mobile station performs the same arithmetic control as in the above-mentioned fixed station, drives the antenna direction control mechanism of the local station to align the direction of the antenna of the local station with the direction of the mobile station, Automatic tracking in the direction of the mobile station. The automatic tracking is performed by the mobile station capturing an optical signal from the fixed station.

上述の光通信システムは、固定局と移動局との間で、相互に自動追尾して通信を行うものであるから、光ビーム信号を指向性のやや広いものとする必要がない。しかしながら、自動追尾は相手側局の光信号を捕捉しながら行うものであるため、高速鉄道には適用できないという問題がある。   Since the above-described optical communication system performs communication by automatically tracking each other between a fixed station and a mobile station, it is not necessary to make the light beam signal slightly wide in directivity. However, since automatic tracking is performed while capturing the optical signal of the partner station, there is a problem that it cannot be applied to high-speed railways.

特開平10−41893号公報Japanese Patent Laid-Open No. 10-41893 特開2000−222034号公報JP 2000-2222034 A 特開平10−41893号公報Japanese Patent Laid-Open No. 10-41893 特開2001−339350号公報JP 2001-339350 A

本発明が解決しようとする課題は、高速で走行中の列車と地上との間で大容量のデータ伝送が可能な通信システムを提供することである。   The problem to be solved by the present invention is to provide a communication system capable of transmitting a large amount of data between a train running at high speed and the ground.

上述の課題を解決するために、軌道に沿って配置された地上局から前記軌道を走行する列車に搭載された車上局の予測方向を、前記列車の位置と速度を含む列車データと、軌道の勾配とカーブを含む線路データに基づいて地上側演算処理装置によって算出し、地上側制御装置によって前記地上局のアンテナの方向を前記予測角度に追従させるようにした。
同時に、前記地上局と前記車上局との間を結ぶ線と基準線との間の予測角度を、前記列車の位置と速度を含む列車データと、軌道の勾配とカーブを含む線路データに基づいて車上側演算処理装置によって算出し、車上側制御装置によって前記車上局のアンテナの方向を前記予測角度に追従させるようにした。
In order to solve the above-mentioned problems, the predicted direction of the onboard station mounted on the train traveling on the track from the ground station arranged along the track, the train data including the position and speed of the train, and the track On the basis of the track data including the slope and the curve, the ground side processing unit calculates the antenna direction of the ground station to follow the predicted angle.
At the same time, the predicted angle between the line connecting the ground station and the on-board station and the reference line is based on the train data including the position and speed of the train, and the track data including the track gradient and curve. Then, the vehicle upper side arithmetic processing device calculates the direction of the antenna of the on-board station to follow the predicted angle.

本発明により、高速で走行中の列車と地上との間で大容量のデータ伝送が可能になり、それを列車内で再発信することで、旅客が携帯電話等の携帯型情報機器によって映像データを含む大量のデータを入手できるようになった。 According to the present invention, a large amount of data can be transmitted between a train running at high speed and the ground. By re-transmitting the data within the train, passengers can use the portable information device such as a mobile phone to transmit video data. A large amount of data including can now be obtained.

本発明を実施するための最良の形態は、軌道に沿って設置された複数の地上局と、軌道を走行する列車に搭載された車上局との間で光ビームにより通信を行う列車と地上との間の通信システムであって、列車データと線路データに基づいて地上局と車上局のそれぞれのアンテナを最適な方向に自動的に追従させるようにしたことを特徴とする光通信システムである。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention is that a train that communicates by a light beam between a plurality of ground stations installed along a track and an on-board station mounted on a train traveling on the track, and the ground An optical communication system characterized in that the antennas of the ground station and the on-board station are automatically made to follow in an optimum direction based on train data and track data. is there.

即ち、軌道に沿って設置された複数の地上局と、軌道を走行する列車に搭載された車上局との間で光ビームにより通信を行う列車と地上との間の通信システムにおいて、前記地上局は地上側演算処理手段と前記地上局のアンテナ方向制御機構を駆動する制御手段とを備えており、且つ、前記車上局は車上側演算処理手段と前記車上局のアンテナ方向制御機構を駆動する制御手段とを備えている。 That is, in a communication system between a train and the ground that communicates by a light beam between a plurality of ground stations installed along a track and an on-board station mounted on a train traveling on the track, The station comprises ground side arithmetic processing means and control means for driving the antenna direction control mechanism of the ground station, and the onboard station has onboard side arithmetic processing means and the antenna direction control mechanism of the onboard station. Control means for driving.

前記地上局において、前記地上側演算処理手段は自局の通信区間に入ってきた列車の列車データと当該区間の線路データに基づいて前記車上局の予測位置を算出し且つ前記地上局のアンテナの方向を前記車上局に合わせるための予測方向を算出する。そして、前記制御手段は前記予測方向に追従するように前記地上局のアンテナ方向制御機構を駆動する。前記予測方向は、緯度と経度の2つのそれぞれの角度で与えられる。 In the ground station, the ground-side arithmetic processing means calculates a predicted position of the on-board station based on train data of the train that has entered the communication section of the local station and track data of the section, and the antenna of the ground station A predicted direction for adjusting the direction of the vehicle to the on-board station is calculated. The control means drives the antenna direction control mechanism of the ground station so as to follow the predicted direction. The prediction direction is given by two angles, latitude and longitude.

同時に、前記車上局において、前記車上側演算処理手段は前記通信区間の自列車の列車データと当該区間の線路データに基づいて自局位置を計算し且つ車上アンテナの方向を前記地上局に合わせるための予測方向を算出する。そして、前記制御手段は前記予測方向に追従するように前記車上局のアンテナ方向制御機構を駆動する。前記予測方向は、緯度と経度の2つのそれぞれの角度で与えられる。 At the same time, in the on-board station, the vehicle upper side arithmetic processing means calculates the position of the own station based on the train data of the own train in the communication section and the track data of the section, and sets the direction of the on-board antenna to the ground station. Calculate the prediction direction for matching. Then, the control means drives the antenna direction control mechanism of the onboard station so as to follow the predicted direction. The prediction direction is given by two angles, latitude and longitude.

図1に示す本発明の一実施例の光通信システムにおいて、軌道に沿って配置された複数の地上局は、軌道に沿って配置された複数の地上送受信局11、12、13、これら複数の地上送受信局に共用の地上側演算制御装置21、通信部22、切替部23、及びデータベース24とで構成されている。 In the optical communication system according to the embodiment of the present invention shown in FIG. 1, the plurality of ground stations arranged along the trajectory include a plurality of ground transmitting / receiving stations 11, 12, 13 arranged along the trajectory. It is composed of a ground-side arithmetic control device 21, a communication unit 22, a switching unit 23, and a database 24 shared by the ground transmitting / receiving station.

地上送受信局11は、送受信アンテナ11aとアンテナ方向制御機構11bとを含んで構成されている。また、地上送受信局12は、送受信アンテナ12aとアンテナ方向制御機構12bとを含んで構成されている。更に、地上送受信局13は、送受信アンテナ13aとアンテナ方向制御機構13bとを含んで構成されている。 The ground transmission / reception station 11 includes a transmission / reception antenna 11a and an antenna direction control mechanism 11b. The ground transmitting / receiving station 12 includes a transmitting / receiving antenna 12a and an antenna direction control mechanism 12b. Further, the terrestrial transmission / reception station 13 includes a transmission / reception antenna 13a and an antenna direction control mechanism 13b.

一方、車上局30は、車上側演算制御装置31、通信部32、データベース34、及び車上送受信局35とで構成されている。そして、車上送受信局35は、送受信アンテナ35aとアンテナ方向制御機構35bとを含んで構成されている。 On the other hand, the on-board station 30 includes an upper-side arithmetic control device 31, a communication unit 32, a database 34, and an on-board transmission / reception station 35. The on-vehicle transmission / reception station 35 includes a transmission / reception antenna 35a and an antenna direction control mechanism 35b.

ところで、方位は緯度と経度の2つで特定されるものである。しかしながら、説明を複雑にしないために、アンテナからの光ビームの入出射方向となる予測方向は1つの予測角度のみで与えられるものとして、本発明を説明する。 By the way, the azimuth is specified by two of latitude and longitude. However, in order not to complicate the description, the present invention will be described on the assumption that the predicted direction, which is the incoming / outgoing direction of the light beam from the antenna, is given by only one predicted angle.

図3において、複数の地上送受信局の送受信アンテナ11a、12a、13a、14aは軌道1に沿って設置されている。送受信アンテナ11aと12aの間の距離はL1、送受信アンテナ12aと13aの間の距離はL2、地上送受信局の送受信アンテナ13aと14aの間の距離はL3である。地上送受信局11の通信区間はD1、地上送受信局12の通信区間はD2、地上送受信局13の通信区間はD3である。 In FIG. 3, transmission / reception antennas 11 a, 12 a, 13 a, 14 a of a plurality of terrestrial transmission / reception stations are installed along a track 1. The distance between the transmission / reception antennas 11a and 12a is L1, the distance between the transmission / reception antennas 12a and 13a is L2, and the distance between the transmission / reception antennas 13a and 14a of the ground transmission / reception station is L3. The communication section of the ground transmitting / receiving station 11 is D1, the communication section of the ground transmitting / receiving station 12 is D2, and the communication section of the ground transmitting / receiving station 13 is D3.

車上局30を搭載した列車は、軌道1上を図の右から左の方向に移動する。すると、送受信アンテナ11a、12a、13a、14aは、そのアンテナ方向を前記列車の移動に追従させる。即ち、図3において、送受信アンテナ12aは角度α1の範囲でリアルタイムに方向を変え、送受信アンテナ13aは角度α2の範囲でリアルタイムに方向を変え、送受信アンテナ14aは角度α3の範囲でリアルタイムに方向を変える。 A train carrying the onboard station 30 moves on the track 1 from the right to the left in the figure. Then, the transmission / reception antennas 11a, 12a, 13a, and 14a make their antenna directions follow the movement of the train. That is, in FIG. 3, the transmitting / receiving antenna 12a changes direction in real time in the range of angle α1, the transmitting / receiving antenna 13a changes direction in real time in the range of angle α2, and the transmitting / receiving antenna 14a changes direction in real time in the range of angle α3. .

車上局30を搭載した列車は、軌道1上を図の右から左の方向に移動すると、車上局30のアンテナ35aも方向をリアルタイムに変える。図4の如き位置関係であれば、地上送受信局の送受信アンテナ11aは角度αの範囲でリアルタイムに方向を変え、車上局30のアンテナ35aは角度βの範囲でリアルタイムに方向を変える。 When the train carrying the onboard station 30 moves on the track 1 from the right to the left in the figure, the antenna 35a of the onboard station 30 also changes the direction in real time. In the positional relationship as shown in FIG. 4, the transmitting / receiving antenna 11a of the ground transmitting / receiving station changes its direction in real time in the range of the angle α, and the antenna 35a of the on-board station 30 changes its direction in real time in the range of the angle β.

次に、図1、図3、図4を参照して、地上局アンテナの自動追尾がどのようにして行われるか説明する。図3は、列車2が地上送受信局11の通信区間D1から地上送受信局12の通信区間はD2に入る瞬間を示している。このとき、列車2が通信区間D1から信区間D2に入る瞬間を示す信号は、図示しない列車位置検出システムから地上側演算制御装置21に入力される。 Next, how the automatic tracking of the ground station antenna is performed will be described with reference to FIG. 1, FIG. 3, and FIG. FIG. 3 shows a moment when the train 2 enters D2 from the communication section D1 of the ground transmitting / receiving station 11 to the communication section of the ground transmitting / receiving station 12. At this time, a signal indicating the moment when the train 2 enters the communication section D2 from the communication section D1 is input to the ground-side arithmetic control device 21 from a train position detection system (not shown).

すると、地上側演算制御装置21は切替え部23を制御して通信部22を地上送受信局11から地上送受信局12に切替える。続いて、地上側演算制御装置21は通信区間D2に入ってきた列車2の列車データと当該区間の線路データ、及び地上局の配置データに基づいて、自局と車上局30との間の予測相対位置を算出する。続いて、地上側演算制御装置21は地上送受信局12のアンテナ12aの方向を車上局30に合わせるための予測角度α2を算出し、この予測角度α2を地上送受信局12のアンテナ方向制御機構12bに与える。すると、サーボ機構であるアンテナ方向制御機構12bは、予測角度α2に基づいてアンテナ12aの方向を自動的に制御する。このようにして、アンテナ12aは車上局30の方向に自動追尾する。 Then, the ground side arithmetic control device 21 controls the switching unit 23 to switch the communication unit 22 from the ground transmitting / receiving station 11 to the ground transmitting / receiving station 12. Subsequently, the ground-side arithmetic and control unit 21 determines between the own station and the on-board station 30 based on the train data of the train 2 that has entered the communication section D2, the track data of the section, and the arrangement data of the ground station. Calculate the predicted relative position. Subsequently, the ground-side arithmetic and control unit 21 calculates a predicted angle α2 for aligning the direction of the antenna 12a of the ground transmitting / receiving station 12 with the on-board station 30, and uses the predicted angle α2 as the antenna direction control mechanism 12b of the ground transmitting / receiving station 12. To give. Then, the antenna direction control mechanism 12b, which is a servo mechanism, automatically controls the direction of the antenna 12a based on the predicted angle α2. In this way, the antenna 12a automatically tracks in the direction of the onboard station 30.

同時に、車上局30おいて、車上側演算制御装置31は前記通信区間D2の自列車の列車データと当該区間の線路データ、及び地上局の配置データに基づいて、自局と地上送受信局12との予測相対位置を算出する。続いて、車上側演算制御装置31は車上送受信局35のアンテナ35aの方向を地上送受信局12に合わせるための予測角度βを算出し、この予測角度βを車上送受信局35のアンテナ方向制御機構35bに与える。すると、サーボ機構であるアンテナ方向制御機構35bは、予測角度βに基づいてアンテナ35aの方向を自動的に制御する。このようにして、アンテナ35aは地上送受信局12の方向に自動追尾する。 At the same time, in the on-board station 30, the on-board side arithmetic control device 31 determines the own station and the ground transmitting / receiving station 12 based on the train data of the own train in the communication section D2, the track data of the section, and the arrangement data of the ground station. The predicted relative position is calculated. Subsequently, the vehicle upper side arithmetic control device 31 calculates a predicted angle β for aligning the direction of the antenna 35 a of the on-board transmitting / receiving station 35 with the ground transmitting / receiving station 12, and uses this predicted angle β to control the antenna direction of the on-board transmitting / receiving station 35. This is given to the mechanism 35b. Then, the antenna direction control mechanism 35b, which is a servo mechanism, automatically controls the direction of the antenna 35a based on the predicted angle β. In this way, the antenna 35a automatically tracks in the direction of the ground transmitting / receiving station 12.

列車2が地上送受信局12の通信区間D2から地上送受信局13の通信区間はD3に入ると、地上送受信局13と車上局30とが光通信を行うようになるが、地上送受信局12から地上送受信局13への通信の切替え、地上送受信局13のアンテナの自動追尾、及び車上局30のアンテナの自動追尾は、上述と同様に行われる。 When the train 2 enters the communication section D2 of the ground transmission / reception station 12 through the communication section D3 of the ground transmission / reception station 12, the ground transmission / reception station 13 and the onboard station 30 perform optical communication. The switching of communication to the ground transmitting / receiving station 13, the automatic tracking of the antenna of the ground transmitting / receiving station 13, and the automatic tracking of the antenna of the on-board station 30 are performed in the same manner as described above.

ところで、列車位置信号を地上側演算制御装置21に与えられ列車位置検出システムは、従来の列車無線通信システムを利用することができる。或いは、地上局の通信区間が切替る位置に列車検出用センサを設置し、この列車検出用センサの信号を地上側演算制御装置21に無線送信するシステムを構築してもよい。   By the way, the train position signal is given to the ground side arithmetic control device 21, and the train position detection system can use a conventional train radio communication system. Alternatively, a train detection sensor may be installed at a position where the communication section of the ground station is switched, and a system for wirelessly transmitting a signal of the train detection sensor to the ground-side arithmetic control device 21 may be constructed.

また、車上側演算制御装置31に与えられ列車位置検信号は、上述の列車検出用センサの信号を利用することができるが、車上の列車制御システムを利用して入手するようにしてもよい。 Further, the train position detection signal given to the vehicle upper side arithmetic control device 31 can use the signal of the above-described train detection sensor, but may be obtained using a train control system on the vehicle. .

なお、上述の実施例では、地上側において地上送受信局11〜13は通信部22と地上側演算制御装置21を共用しているとしたが、地上送受信局11〜13がそれぞれ通信部を備えるようにしてもよい。或いは、地上送受信局11〜13がそれぞれ地上側演算制御装置21を備えるようにしてもよい。また、複数の地上局の等間隔に配置されるものではなく、軌道のカーブや勾配等の各種の条件を考慮して決められるものであることは言うまでもない。   In the above-described embodiment, the ground transmission / reception stations 11 to 13 share the communication unit 22 and the ground-side arithmetic control device 21 on the ground side. However, the ground transmission / reception stations 11 to 13 each include a communication unit. It may be. Alternatively, the terrestrial transmission / reception stations 11 to 13 may each include the ground-side arithmetic control device 21. Further, it goes without saying that they are not arranged at equal intervals among a plurality of ground stations but are determined in consideration of various conditions such as trajectory curves and gradients.

本発明の一実施例の通信システムの概要並びに地上局のブロック構成を示した図である。It is the figure which showed the outline | summary of the communication system of one Example of this invention, and the block configuration of a ground station. 車上局の一実施例のブロック構成を示した図である。It is the figure which showed the block configuration of one Example of an onboard station. 地上局の配置関係、地上局と車上局の位置関係、及び地上局の通信区間の一例を示した図である。It is the figure which showed an example of the arrangement | positioning relationship of a ground station, the positional relationship of a ground station and an onboard station, and the communication area of a ground station. 地上局の通信区間における当該地上局のアンテナの可変角度α並びに車上局のアンテナの可変角度βの一例を示した図である。It is the figure which showed an example of the variable angle (alpha) of the antenna of the said ground station in the communication area of a ground station, and the variable angle (beta) of the antenna of an on-board station.

符号の説明Explanation of symbols

1 軌道
2 列車
11、12、13 地上送受信局
11a、12a、13a アンテナ
11b、12b、13b アンテナ方向制御機構
21 地上側演算制御装置
22 通信部
23 切替部
24 データベース
30 車上局
31 車上側演算制御装置
32 通信部
34 データベース
35 車上送受信局
35a アンテナ
35b アンテナ方向制御機構


DESCRIPTION OF SYMBOLS 1 Track 2 Train 11, 12, 13 Ground transmitting / receiving station 11a, 12a, 13a Antenna 11b, 12b, 13b Antenna direction control mechanism 21 Ground side arithmetic control apparatus 22 Communication part 23 Switching part 24 Database 30 Car upper station 31 Car upper arithmetic control Device 32 Communication unit 34 Database 35 On-vehicle transmission / reception station 35a Antenna 35b Antenna direction control mechanism


Claims (3)

軌道に沿って設置された複数の地上局と、軌道を走行する列車に搭載された車上局との間で光ビームにより通信を行う列車と地上との間の光通信システムにおいて、
前記地上局は、前記地上局の通信区間に入ってきた列車の列車データと当該区間の線路データに基づいて前記車上局の予測位置を算出し且つ自局アンテナの方向を前記車上局に合わせるための予測方向を算出する地上側演算処理手段と、前記地上側演算処理手段により算出された予測方向に追従するように自局のアンテナ方向制御機構を駆動する制御手段とを備えており、
且つ、前記車上局は、前記通信区間の自列車の列車データと当該区間の線路データに基づいて自局位置を計算し且つ自局アンテナの方向を前記地上局に合わせるための予測方向を算出する車上側演算処理手段と、前記車上側演算処理手段により算出された予測方向に追従するように自局のアンテナ方向制御機構を駆動する制御手段とを備えていることを特徴とする列車と地上との間の光通信システム。
In an optical communication system between a train and the ground that communicates by a light beam between a plurality of ground stations installed along a track and an on-board station mounted on a train traveling on the track,
The ground station calculates the predicted position of the onboard station based on the train data of the train that has entered the communication section of the ground station and the track data of the section, and sets the direction of the local station antenna to the onboard station. A ground side arithmetic processing means for calculating a prediction direction for matching, and a control means for driving the antenna direction control mechanism of the local station so as to follow the prediction direction calculated by the ground side arithmetic processing means,
In addition, the on-board station calculates its own station position based on the train data of the own train in the communication section and the track data of the section, and calculates a predicted direction for aligning the direction of the own station antenna with the ground station. Vehicle upper side arithmetic processing means, and control means for driving the antenna direction control mechanism of the own station so as to follow the predicted direction calculated by the vehicle upper side arithmetic processing means. Optical communication system between.
前記地上側演算処理手段は、複数の地上局によって共用されていることを特徴とする請求項1の列車と地上との間の光通信システム。 The optical communication system between a train and the ground according to claim 1, wherein the ground side arithmetic processing means is shared by a plurality of ground stations. 前記地上局は通信部を共用しており、それぞれのアンテナとその角度調整機構とその制御手段が、軌道に沿って設置されていることを特徴とする請求項1又は2の列車と地上との間の光通信システム。




















The said ground station shares a communication part, Each antenna, its angle adjustment mechanism, and its control means are installed along the track | orbit, The train of Claim 1 or 2 characterized by the above-mentioned Optical communication system between.




















JP2004211041A 2004-07-20 2004-07-20 Optical communication system between train and land Pending JP2006033545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211041A JP2006033545A (en) 2004-07-20 2004-07-20 Optical communication system between train and land

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211041A JP2006033545A (en) 2004-07-20 2004-07-20 Optical communication system between train and land

Publications (1)

Publication Number Publication Date
JP2006033545A true JP2006033545A (en) 2006-02-02

Family

ID=35899339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211041A Pending JP2006033545A (en) 2004-07-20 2004-07-20 Optical communication system between train and land

Country Status (1)

Country Link
JP (1) JP2006033545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187740A1 (en) * 2012-06-15 2013-12-19 엘지전자 주식회사 Wireless communication system for high-speed moving object that moves along fixed route
JP2014220676A (en) * 2013-05-09 2014-11-20 日本電気株式会社 Optical space communication system, communication station, and its control method
KR101813465B1 (en) * 2017-07-26 2018-01-03 한국철도기술연구원 Apparatus and method for protecting communication device of railway vehicle
WO2018103263A1 (en) * 2016-12-08 2018-06-14 中车株洲电力机车研究所有限公司 Method and apparatus for free space optic communication between train and ground base station

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112333A (en) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp Spatial light transmission equipment
JPH06252852A (en) * 1992-12-03 1994-09-09 Yagi Antenna Co Ltd Spatial optical transmission communication equipment
JPH09327057A (en) * 1996-06-06 1997-12-16 Hitachi Ltd Mobile communication system and its communication control method
JPH1041893A (en) * 1996-07-25 1998-02-13 Toshiba Transport Eng Kk Transmistter for train information
JPH10206185A (en) * 1997-01-20 1998-08-07 Hitachi Ltd Method for detecting position of train
JP2000211487A (en) * 1999-01-20 2000-08-02 Mitsubishi Electric Corp Skid control device for rolling stock
JP2001339350A (en) * 2000-05-26 2001-12-07 Canon Inc Mobile free-space optical space communication unit
JP2002258945A (en) * 2001-03-05 2002-09-13 Hitachi Kokusai Electric Inc Monitor and control system for mobile object
JP2002294609A (en) * 2001-04-03 2002-10-09 Mitsubishi Electric Corp Rail breakage detecting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112333A (en) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp Spatial light transmission equipment
JPH06252852A (en) * 1992-12-03 1994-09-09 Yagi Antenna Co Ltd Spatial optical transmission communication equipment
JPH09327057A (en) * 1996-06-06 1997-12-16 Hitachi Ltd Mobile communication system and its communication control method
JPH1041893A (en) * 1996-07-25 1998-02-13 Toshiba Transport Eng Kk Transmistter for train information
JPH10206185A (en) * 1997-01-20 1998-08-07 Hitachi Ltd Method for detecting position of train
JP2000211487A (en) * 1999-01-20 2000-08-02 Mitsubishi Electric Corp Skid control device for rolling stock
JP2001339350A (en) * 2000-05-26 2001-12-07 Canon Inc Mobile free-space optical space communication unit
JP2002258945A (en) * 2001-03-05 2002-09-13 Hitachi Kokusai Electric Inc Monitor and control system for mobile object
JP2002294609A (en) * 2001-04-03 2002-10-09 Mitsubishi Electric Corp Rail breakage detecting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187740A1 (en) * 2012-06-15 2013-12-19 엘지전자 주식회사 Wireless communication system for high-speed moving object that moves along fixed route
US9264115B2 (en) 2012-06-15 2016-02-16 Lg Electronics Inc. Wireless communication system for high-speed moving object that moves along fixed route
JP2014220676A (en) * 2013-05-09 2014-11-20 日本電気株式会社 Optical space communication system, communication station, and its control method
WO2018103263A1 (en) * 2016-12-08 2018-06-14 中车株洲电力机车研究所有限公司 Method and apparatus for free space optic communication between train and ground base station
CN108566245A (en) * 2016-12-08 2018-09-21 中车株洲电力机车研究所有限公司 A kind of free space optical communication method and device of train and ground base station
KR101813465B1 (en) * 2017-07-26 2018-01-03 한국철도기술연구원 Apparatus and method for protecting communication device of railway vehicle
US10084565B1 (en) 2017-07-26 2018-09-25 Korea Railroad Research Institute Apparatus and method for protecting communication device of railroad car

Similar Documents

Publication Publication Date Title
CA2693077C (en) Systems and methods for mitigating radio relay link interference in mobile satellite communications
EP1401229A1 (en) Method and apparatus for faciliting handovers for a group of mobile radios
JP2003528480A5 (en)
US11700514B2 (en) Method for a wireless communication from a first transportation vehicle to a road infrastructure station and apparatus for use in a transportation vehicle and adapted transportation vehicle
EP3646481B1 (en) Communicating with a mobile device
KR20220045311A (en) V2x network handover system and method thereof
KR100901897B1 (en) Low-height, low-cost, high-gain antenna and system for mobile platforms
CN103873119A (en) Vehicle-mounted double-antenna communication method
JP2006033545A (en) Optical communication system between train and land
Al-Mohammed et al. FSO communication system for high-speed trains under varying visibility conditions
RU2535923C1 (en) System for radio communication with mobile objects
US11610478B2 (en) Communication system and method for controlling cooperation between edge devices arranged in vehicle
KR100576666B1 (en) Satellite communication method, and mobile station and gateway station for use with the satellite communication method
US7251223B1 (en) Low-height, low-cost, high-gain antenna and system for mobile platforms
US20240155373A1 (en) Information processing device and information processing method
WO2024075317A1 (en) Wireless communication system, user terminal, and wireless communication method
CN114285442B (en) Beam tracking method based on train position triggering
US20240135820A1 (en) Information processing device and information processing method
JP2023020182A (en) Automatic tracking method of antenna and automatic tracking system of antenna
CN117015818A (en) Information processing apparatus and information processing method
GB2591633A (en) Communicating with a mobile device
KR20230145198A (en) Information processing devices and information processing methods
JPH08152324A (en) Unmanned survey system
JP2004235849A (en) Radio signal transmission system
WO1997041450A1 (en) High speed data link

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413