JP2006032910A - Thermistor thin film and its forming method - Google Patents

Thermistor thin film and its forming method Download PDF

Info

Publication number
JP2006032910A
JP2006032910A JP2005144921A JP2005144921A JP2006032910A JP 2006032910 A JP2006032910 A JP 2006032910A JP 2005144921 A JP2005144921 A JP 2005144921A JP 2005144921 A JP2005144921 A JP 2005144921A JP 2006032910 A JP2006032910 A JP 2006032910A
Authority
JP
Japan
Prior art keywords
thin film
film
thermistor thin
thermistor
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005144921A
Other languages
Japanese (ja)
Inventor
Shunichiro Ishigami
俊一郎 石神
Kunio Yamaguchi
邦生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005144921A priority Critical patent/JP2006032910A/en
Priority to PCT/JP2005/011021 priority patent/WO2006003791A1/en
Priority to CN2005800195136A priority patent/CN1969345B/en
Priority to KR1020067027852A priority patent/KR101121399B1/en
Priority to TW094120307A priority patent/TW200605101A/en
Publication of JP2006032910A publication Critical patent/JP2006032910A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermistor film optimal for an infrared detecting sensor where a transition metal oxide film is used, without causing mechanical damage, such as deformations, cracks or the like to the film. <P>SOLUTION: The thermistor thin film is formed of a composite metal oxide of Mn<SB>3</SB>O<SB>4</SB>-Co<SB>3</SB>O<SB>4</SB>or Mn<SB>3</SB>O<SB>4</SB>-Co<SB>3</SB>O<SB>4</SB>-Fe<SB>2</SB>O<SB>3</SB>, 0.05 to 0.2 μm in film thickness, and is composed of crystals containing at least 90% crystal grains having an aspect ratio of 0.5 to less than 2.0. The thermistor thin film is formed through the method, wherein a film of 0.05 to 0.2 μm film thickness and formed of Mn<SB>3</SB>O<SB>4</SB>-Co<SB>3</SB>O<SB>4</SB>or Mn<SB>3</SB>O<SB>4</SB>-Co<SB>3</SB>O<SB>4</SB>-Fe<SB>2</SB>O<SB>3</SB>composite metal oxide is formed on an underlying layer of SiO<SB>2</SB>through a sputtering method and is then subjected to a thermal treatment in an atmosphere or a mixed atmosphere of nitrogen and oxygen at a temperature of 550 to 650°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、赤外線検出センサに用いるサーミスタ薄膜及びその製造方法に関するものである。   The present invention relates to a thermistor thin film used for an infrared detection sensor and a manufacturing method thereof.

近年、非接触で温度を測定できる赤外線検出素子の開発が盛んになってきている。赤外線検出素子は、物体や人体から放出される微弱な赤外線を検出するのに用いられることが多く、高感度であることが要求される。赤外線検出素子には、熱電対を直列に接続したサーモパイル型、特定材料の焦電効果を利用した焦電型、特定金属酸化物の抵抗率温度依存性を利用したサーミスタ型の三種類がある。
これらのうちサーミスタ型の赤外線検出素子は、高い直流出力が得られ、且つ、小型化、高集積化に適していることが知られており、低価格化も期待できることから各種装置の温度センサとして広く用いられている(例えば、特許文献1参照。)。特に、サーミスタ薄膜を半導体基板上に形成し、各種配線などを施してセンサとしたものが注目されはじめた(例えば、特許文献2参照。)。
In recent years, development of infrared detection elements that can measure temperature in a non-contact manner has become active. Infrared detectors are often used to detect weak infrared rays emitted from an object or a human body, and are required to have high sensitivity. There are three types of infrared detection elements: a thermopile type in which thermocouples are connected in series, a pyroelectric type using the pyroelectric effect of a specific material, and a thermistor type using the resistivity temperature dependence of a specific metal oxide.
Of these, thermistor-type infrared detectors are known to be suitable for miniaturization and high integration because they can provide high DC output, and can be expected to be low in price. Widely used (see, for example, Patent Document 1). In particular, a sensor formed by forming a thermistor thin film on a semiconductor substrate and applying various wirings has begun to attract attention (see, for example, Patent Document 2).

これらのサーミスタ型の赤外線検出素子の一般的な構造は、基板上に形成された熱絶縁膜の上に、サーミスタと一対の電極からなり、赤外線が当たって、サーミスタの温度が変化すると、サーミスタの抵抗が変化するので、この抵抗変化を一対の電極で検出して、赤外線が検知できるようになっている。検出感度を高めるために、表面に赤外線吸収膜を設けて、サーミスタの温度変化および抵抗変化が迅速に行われるようにしたものである。
サーミスタとしては、Mn、NiO、CoO、Fe等の遷移金属酸化物やMn−Ni系複合金属酸化物、Mn−Co系複合金属酸化物、Mn−Co−Fe系複合金属酸化物あるいはMn−Co−Ni系複合金属酸化物等が使用される。また、多結晶シリコンやアモルファスシリコン等の半導体も使用されている(例えば、特許文献3参照。)。
サーミスタ型の赤外線検出素子においては、熱的応答性を高速化するために(熱時定数を小さくするために)、素子の熱容量を下げることが望まれている。このためシリコン半導体を用いた赤外線検出素子における感温部の膜厚は、0.1μmないし1μmに設定されている。
特開平6−137939号公報 特開平6−281750号公報 特開2000−49004号公報
The general structure of these thermistor-type infrared detectors consists of a thermistor and a pair of electrodes on a thermal insulation film formed on a substrate. When the temperature of the thermistor changes when it is exposed to infrared rays, Since resistance changes, this resistance change is detected by a pair of electrodes, and infrared rays can be detected. In order to increase the detection sensitivity, an infrared absorption film is provided on the surface so that the temperature change and resistance change of the thermistor can be performed quickly.
Thermistors include transition metal oxides such as Mn 3 O 4 , NiO, CoO, and Fe 2 O 3 , Mn—Ni composite metal oxides, Mn—Co composite metal oxides, and Mn—Co—Fe composite metals. An oxide or a Mn—Co—Ni based composite metal oxide is used. Further, semiconductors such as polycrystalline silicon and amorphous silicon are also used (for example, see Patent Document 3).
In a thermistor type infrared detection element, it is desired to reduce the heat capacity of the element in order to increase the thermal response (to reduce the thermal time constant). For this reason, the film thickness of the temperature sensitive part in the infrared detecting element using a silicon semiconductor is set to 0.1 μm to 1 μm.
JP-A-6-137939 JP-A-6-281750 JP 2000-49004 A

サーミスタ型の赤外線検出素子は、半導体基板上にサーミスタ薄膜を形成し、同じ半導体基板に各種機能素子を一体形成して小型化、高集積化した温度センサの用途が拡大している。半導体基板として最も多く用いられているシリコン基板を使用する場合、シリコン基板上に形成する下地の絶縁膜と複合金属酸化物との熱膨張係数の差異に起因した変形や亀裂などで機械的破損が生じてしまい、健全な複合金属酸化物薄膜を得ることが困難である。すなわち、シリコン基板の熱膨張係数は4.15×10−6/Kであるものの、絶縁膜として使用する酸化シリコンの熱膨張係数は約0.6×10−6/Kであり、これに対して、Mn−Co系複合金属酸化物の熱膨張係数は約13×10−6/Kであり、20倍以上も大きい。
一般に遷移金属酸化物からなるサーミスタ膜は、成膜後600℃前後の熱処理によって赤外線センサとして必要な抵抗率やB定数等の特性値を適正に付与するが、600℃前後の熱処理に耐えるサーミスタ膜を得ることが困難であった。
Thermistor-type infrared detection elements are increasingly used for temperature sensors that are miniaturized and highly integrated by forming a thermistor thin film on a semiconductor substrate and integrally forming various functional elements on the same semiconductor substrate. When using the most commonly used silicon substrate as a semiconductor substrate, mechanical damage is caused by deformation or cracks due to the difference in thermal expansion coefficient between the underlying insulating film formed on the silicon substrate and the composite metal oxide. As a result, it is difficult to obtain a sound composite metal oxide thin film. That is, although the thermal expansion coefficient of the silicon substrate is 4.15 × 10 −6 / K, the thermal expansion coefficient of silicon oxide used as the insulating film is about 0.6 × 10 −6 / K. The thermal expansion coefficient of the Mn—Co based composite metal oxide is about 13 × 10 −6 / K, which is 20 times or more.
In general, a thermistor film made of a transition metal oxide appropriately imparts characteristic values such as resistivity and B constant necessary for an infrared sensor by heat treatment at around 600 ° C. after film formation, but withstands heat treatment at around 600 ° C. It was difficult to get.

遷移金属酸化物からなるサーミスタの膜厚が厚すぎると、下地層との熱膨張係数の差異に起因した変形や亀裂などの機械的破損が生じ易くなる。逆に、サーミスタ膜厚が薄すぎると、形成時の膜厚制御が困難となり、膜の均一性に欠けるので健全で特性の安定したサーミスタ膜が得られないという問題がある。
サーミスタ型の赤外線センサの三次元的構造や配線構造、橋梁化などについては検証が進んでいるものの、サーミスタとして採用する遷移金属酸化物膜の膜厚については赤外線に対する応答特性や製造プロセス面での制約を考慮して最適膜厚を設定する段階には至っていない。
本発明は上記事情に鑑みなされたものであって、遷移金属酸化物膜を使用した赤外線検出センサ用として最適なサーミスタ膜を、変形や亀裂などの機械的破損を生じることなく確実に形成する方法を提供することを目的とする。
If the film thickness of the thermistor made of a transition metal oxide is too thick, mechanical damage such as deformation and cracking due to the difference in thermal expansion coefficient from the underlayer tends to occur. On the contrary, if the thermistor film thickness is too thin, it is difficult to control the film thickness at the time of formation, and there is a problem that a thermistor film having a stable and stable characteristic cannot be obtained because the film is not uniform.
Although the three-dimensional structure, wiring structure, and bridge construction of thermistor-type infrared sensors have been verified, the film thickness of the transition metal oxide film used as the thermistor depends on the infrared response characteristics and the manufacturing process. The stage for setting the optimum film thickness in consideration of the constraints has not been reached.
The present invention has been made in view of the above circumstances, and a method for reliably forming an optimal thermistor film for an infrared detection sensor using a transition metal oxide film without causing mechanical damage such as deformation or cracking. The purpose is to provide.

本発明のサーミスタ薄膜は、二酸化珪素(SiO)層上に直接形成されたMn−CoもしくはMn−Co−Fe系複合金属酸化物からなるサーミスタ薄膜であって、その膜厚が0.05〜0.2μmで、かつ該サーミスタ薄膜がアスペクト比が0.5を越え2.0未満の結晶粒が90%以上を占める結晶からなるサーミスタ薄膜とした。
このようなサーミスタ膜とすることにより、赤外線検出センサ用として最適なサーミスタ膜を、変形や亀裂などの機械的破損を生じることなく確実に得ることができる。
The thermistor thin film of the present invention is made of Mn 3 O 4 —Co 3 O 4 or Mn 3 O 4 —Co 3 O 4 —Fe 2 O 3 based composite metal oxide directly formed on a silicon dioxide (SiO 2 ) layer. A thermistor thin film, wherein the thermistor thin film has a thickness of 0.05 to 0.2 μm, and the thermistor thin film has a crystal in which 90% or more of crystal grains having an aspect ratio of more than 0.5 and less than 2.0 are included. A thin film was formed.
By using such a thermistor film, an optimum thermistor film for an infrared detection sensor can be reliably obtained without causing mechanical damage such as deformation or cracking.

本発明のサーミスタ薄膜においては、前記二酸化珪素層の厚さが0.1〜0.5μmであるのが好ましい。
絶縁層として充分な機能を発揮させるとともに、塑性流動作用を利用して熱膨張差に起因する応力を緩和し、健全なサーミスタ薄膜を得るためである。
In the thermistor thin film of the present invention, the silicon dioxide layer preferably has a thickness of 0.1 to 0.5 μm.
This is because a sufficient thermistor function is exhibited and stress due to the difference in thermal expansion is relieved using a plastic flow action to obtain a healthy thermistor thin film.

本発明のサーミスタ薄膜においては、基板としてシリコン基板を使用し、該シリコン基板表面に前記二酸化珪素層を介して形成されてなるサーミスタ薄膜とすることが好ましい。
基板としてシリコン基板を使用することにより、各種半導体素子を一体形成し各種機能を付加した高性能な赤外線検出素子とすることが容易となるからである。
In the thermistor thin film of the present invention, it is preferable to use a silicon substrate as a substrate and to form a thermistor thin film formed on the surface of the silicon substrate via the silicon dioxide layer.
This is because by using a silicon substrate as the substrate, it becomes easy to form a high-performance infrared detection element in which various semiconductor elements are integrally formed and various functions are added.

本発明のサーミスタ薄膜の形成方法は、二酸化珪素層上に膜厚が0.05〜0.2μmのMn−CoもしくはMn−Co−Fe系複合金属酸化物膜をスパッタ成膜した後、550℃〜650℃の温度で大気雰囲気中もしくは窒素と酸素の混合雰囲気中で熱処理するサーミスタ薄膜の形成方法を採用した。
このような方法を採用することにより、赤外線検出センサ用として最適特性を有するサーミスタ膜を、変形や亀裂などの機械的破損を生じることなく確実に得ることができる。
The method for forming the thermistor thin film according to the present invention is the Mn 3 O 4 —Co 3 O 4 or Mn 3 O 4 —Co 3 O 4 —Fe 2 O 3 film having a thickness of 0.05 to 0.2 μm on the silicon dioxide layer. A method for forming a thermistor thin film was employed in which a heat treatment was carried out in an air atmosphere or a mixed atmosphere of nitrogen and oxygen at a temperature of 550 ° C. to 650 ° C. after the system composite metal oxide film was formed by sputtering.
By adopting such a method, it is possible to reliably obtain a thermistor film having optimum characteristics for an infrared detection sensor without causing mechanical damage such as deformation or cracking.

本発明のサーミスタ薄膜の形成方法においては、表面に二酸化珪素層を有するシリコン基板を使用することができる。
半導体素子製造用の基板として、表面に熱酸化膜を形成したシリコン基板が広く使用されており、容易に入手できるからである。
In the method for forming a thermistor thin film of the present invention, a silicon substrate having a silicon dioxide layer on the surface can be used.
This is because a silicon substrate having a surface formed with a thermal oxide film is widely used as a substrate for manufacturing semiconductor elements and can be easily obtained.

本発明のサーミスタ薄膜の形成方法においては、前記熱処理する際の昇温速度を8〜12℃/minとし、降温速度を2〜6℃/minとすることが好ましい。
熱処理する際の昇温速度及び降温速度を正確に制御することにより、亀裂等の損傷の発生を防ぐとともに、赤外線検出センサ用として最適な抵抗率やB定数を付与することができるからである。
In the formation method of the thermistor thin film of this invention, it is preferable that the temperature increase rate at the time of the said heat processing shall be 8-12 degreeC / min, and a temperature decrease rate shall be 2-6 degreeC / min.
This is because by accurately controlling the heating rate and the cooling rate during the heat treatment, it is possible to prevent the occurrence of damage such as cracks and to provide the optimum resistivity and B constant for the infrared detection sensor.

本発明のサーミスタ薄膜の形成方法においては、二酸化珪素層上にアズスパッタ状態で圧縮と引張りの内部応力を有する複合金属酸化物膜を成膜した後、熱処理により引張り内部応力のみを有する複合金属酸化物膜とすることが好ましい。
歪みや亀裂のない健全なサーミスタ薄膜を得るためである。
In the method for forming a thermistor thin film of the present invention, a composite metal oxide film having a compressive and tensile internal stress in an as-sputtered state is formed on a silicon dioxide layer, and then a composite metal oxide having only a tensile internal stress by heat treatment. A film is preferred.
This is to obtain a healthy thermistor thin film free from distortion and cracks.

本発明のサーミスタ薄膜の形成方法においては、二酸化珪素層上にアズスパッタ状態でアスペクト比が1.0を越え5.0未満の結晶粒が90%以上を占める結晶からなる複合金属酸化物膜を成膜した後、熱処理によりアスペクト比が0.5を越え2.0未満の結晶粒が90%以上を占める結晶からなる複合金属酸化物膜とすることが好ましい。
亀裂等の損傷が無く健全で、しかも赤外線検出センサ用として最適な抵抗率やB定数を付与するためである。
In the method for forming a thermistor thin film of the present invention, a composite metal oxide film comprising crystals in which 90% or more of crystal grains having an aspect ratio of more than 1.0 and less than 5.0 in an as-sputtered state is formed on a silicon dioxide layer. After the film formation, it is preferable to form a composite metal oxide film composed of crystals in which 90% or more of crystal grains having an aspect ratio of more than 0.5 and less than 2.0 are formed by heat treatment.
This is to provide the optimum resistivity and B constant for an infrared detection sensor without damage such as cracks and sound.

本発明のサーミスタ薄膜を使用すれば、バルクサーミスタと同等の抵抗率、B定数を有するサーミスタ薄膜が得られ、センサの小型化に寄与できる。
また、本発明のサーミスタ薄膜の形成方法によれば、機械的強度や膜の均一性に優れ、成膜バッチ間の再現性に優れたサーミスタ薄膜が得られる。
If the thermistor thin film of this invention is used, the thermistor thin film which has a resistivity and B constant equivalent to a bulk thermistor will be obtained, and it can contribute to size reduction of a sensor.
Further, according to the thermistor thin film forming method of the present invention, a thermistor thin film having excellent mechanical strength and film uniformity and excellent reproducibility between film forming batches can be obtained.

本発明で使用するサーミスタ薄膜は、(Mn,Co)もしくは(Mn,Co,Fe)のスピネル構造の複合金属酸化物である。MnとCoのモル比は4:6程度が適当である。Feを含む場合はMn:Co:Feのモル比は(20〜60):(2〜65):(9〜40)程度が適当である。これらの複合金属酸化物薄膜は半導体の性状を呈し、温度が上昇すると抵抗が低くなる性質を有している。 The thermistor thin film used in the present invention is a composite metal oxide having a spinel structure of (Mn, Co) 3 O 4 or (Mn, Co, Fe) 3 O 4 . An appropriate molar ratio of Mn to Co is about 4: 6. When Fe is included, the molar ratio of Mn: Co: Fe is suitably about (20-60) :( 2-65) :( 9-40). These composite metal oxide thin films exhibit the properties of a semiconductor, and have a property that resistance decreases as the temperature rises.

一般に複合金属酸化物サーミスタ薄膜は、成膜後所定の熱処理を施すことにより、赤外線検出センサ用として最適な電気特性を発揮するようになる。図1にMn−Co(40mol%:60mol%)複合金属酸化物の熱処理温度と抵抗率Rの関係を示す。 また、図2には同じく熱処理温度とB定数の関係を示す。図1,図2は二酸化珪素(SiO)層状の厚さ0.2μmのスパッタ膜について、1時間の熱処理を施した場合の結果である。
サーミスタ薄膜として期待される電気特性は、バルク・レベルと同様に、抵抗率Rは3.5kΩ・cm以下2.0kΩ・cm程度の範囲、B定数はB25/50値で3,500〜3,600K程度である。
図に示すようにこの複合金属酸化物サーミスタ薄膜は、アズスパッタ状態では抵抗率Rは10〜20kΩ・cmで、熱処理温度が高くなると抵抗率Rは低くなってくる。また、B定数は4,000〜4,500Kで、熱処理温度が高くなるほどB25/50値も低くなってくる。
図1及び図2から、目標とする電気特性を得るのは600℃±50℃の温度範囲で熱処理すればよいことが判る。
In general, a composite metal oxide thermistor thin film exhibits optimum electrical characteristics for an infrared detection sensor by performing a predetermined heat treatment after film formation. FIG. 1 shows the relationship between the heat treatment temperature and the resistivity R of Mn 3 O 4 —Co 3 O 4 (40 mol%: 60 mol%) composite metal oxide. FIG. 2 also shows the relationship between the heat treatment temperature and the B constant. FIG. 1 and FIG. 2 show the results when heat treatment is performed for 1 hour on a silicon dioxide (SiO 2 ) layer-like sputtered film having a thickness of 0.2 μm.
The electrical characteristics expected as a thermistor thin film are as follows. The resistivity R is in the range of about 3.5 kΩ · cm to 2.0 kΩ · cm, and the B constant is B25 / 50 value of 3,500-3, as in the bulk level. It is about 600K.
As shown in the figure, this composite metal oxide thermistor thin film has a resistivity R of 10 to 20 kΩ · cm in an as-sputtered state, and the resistivity R decreases as the heat treatment temperature increases. The B constant is 4,000 to 4,500 K, and the B25 / 50 value decreases as the heat treatment temperature increases.
It can be seen from FIGS. 1 and 2 that the target electrical characteristics can be obtained by heat treatment in the temperature range of 600 ° C. ± 50 ° C.

一般に複合金属酸化物サーミスタ薄膜は、シリコン基板のような半導体基板の表面にシリコン酸化膜からなる絶縁膜を介してスパッタにより形成する。その後所定の熱処理を施して所望の電気特性を発揮するようになる。
前述したとおり、下地層となる二酸化珪素層と(Mn,Co)もしくは(Mn,Co,Fe)系の複合金属酸化物膜との間には、熱膨張率の差が200倍以上もあり、薄膜を形成した後600℃前後の熱処理を施すと、中心部に熱膨張率の差に起因する亀裂が発生して健全な薄膜が得られない。
In general, a composite metal oxide thermistor thin film is formed on the surface of a semiconductor substrate such as a silicon substrate by sputtering through an insulating film made of a silicon oxide film. Thereafter, a predetermined heat treatment is performed so that desired electrical characteristics are exhibited.
As described above, there is a difference in coefficient of thermal expansion between the silicon dioxide layer serving as the base layer and the (Mn, Co) 3 O 4 or (Mn, Co, Fe) 3 O 4 based composite metal oxide film. If the heat treatment is performed at about 600 ° C. after the thin film is formed, a crack due to the difference in the coefficient of thermal expansion occurs at the center, and a healthy thin film cannot be obtained.

本発明者らは熱膨張差の影響を緩和させるために、酸化膜を有するシリコン基板の表面に、熱膨張率が(1〜10)×10−6/Kと複合金属酸化物サーミスタ薄膜と数倍しか違わない酸化アルミニウム(Al)膜を介して複合金属酸化物サーミスタ薄膜を形成することを試みた。
しかし、Al層表面に(Mn,Co)系複合金属酸化物サーミスタ薄膜を形成して高温で熱処理を施すと、熱処理温度が200℃でも中心部に亀裂が発生し、亀裂は熱処理温度が高くなるほど、また、サーミスタ薄膜の膜厚が厚くなるほど著しくなり、サーミスタ薄膜を得るのに必要な600℃の温度にはとても耐えられず、健全なサーミスタ薄膜を得ることはできなかった。
In order to alleviate the influence of the difference in thermal expansion, the present inventors have a coefficient of thermal expansion of (1-10) × 10 −6 / K, a composite metal oxide thermistor thin film, and a number on the surface of a silicon substrate having an oxide film. An attempt was made to form a composite metal oxide thermistor thin film through an aluminum oxide (Al 2 O 3 ) film that differs only twice.
However, when a (Mn, Co) 3 O 4 -based composite metal oxide thermistor thin film is formed on the surface of the Al 2 O 3 layer and subjected to heat treatment at a high temperature, a crack occurs at the center even at a heat treatment temperature of 200 ° C. The higher the heat treatment temperature and the thicker the thermistor thin film, the more marked it becomes, and it could not withstand the temperature of 600 ° C. necessary to obtain the thermistor thin film, and a healthy thermistor thin film could not be obtained. .

ところがシリコン基板表面の二酸化珪素層を介して(Mn,Co)系複合金属酸化物サーミスタ薄膜を直接形成したところ、以外にも600℃の熱処理温度に耐える健全な複合金属酸化物サーミスタ薄膜が得られることを見いだした。この場合、複合金属酸化物サーミスタ薄膜の膜厚が厚くなると亀裂が発生しやすくなることも判明した。
図3に二酸化珪素層上に(Mn,Co)系複合金属酸化物サーミスタ薄膜を直接形成し、600℃で熱処理した場合のサーミスタ薄膜の膜厚とクラックの発生割合の関係を示す。図3に示すとおり、膜厚が0.2μmを越えるとクラックが発生するのが認められるようになり、膜厚が厚くなるほどクラックが発生する割合は増加する傾向にある。このことから、サーミスタとして必要な電気特性を得るための600℃の熱処理温度に耐えて、健全な複合金属酸化物サーミスタ薄膜を得るには、膜厚を0.2μm以下に抑え二酸化珪素層上にスパッタ法で直接形成すればよいことが判明した。
また、(Mn,Co)もしくは(Mn,Co,Fe)のスピネル構造の複合金属酸化物の健全な薄膜を得るためには、0.05μm以上の膜厚が必要である。膜厚が0.05μm未満では、均一で健全な膜を得ることはできない。
However, when a (Mn, Co) 3 O 4 -based composite metal oxide thermistor thin film is directly formed through a silicon dioxide layer on the surface of the silicon substrate, a healthy composite metal oxide thermistor thin film that can withstand a heat treatment temperature of 600 ° C. I found out that In this case, it was also found that cracks are likely to occur when the composite metal oxide thermistor thin film becomes thick.
FIG. 3 shows the relationship between the thickness of the thermistor thin film and the crack generation ratio when a (Mn, Co) 3 O 4 based composite metal oxide thermistor thin film is directly formed on the silicon dioxide layer and heat-treated at 600 ° C. As shown in FIG. 3, when the film thickness exceeds 0.2 μm, it is recognized that cracks are generated, and as the film thickness increases, the ratio of occurrence of cracks tends to increase. Therefore, in order to withstand a heat treatment temperature of 600 ° C. for obtaining the electrical characteristics necessary for the thermistor and to obtain a sound composite metal oxide thermistor thin film, the film thickness is suppressed to 0.2 μm or less on the silicon dioxide layer. It has been found that the film may be formed directly by sputtering.
In addition, in order to obtain a healthy thin film of a composite metal oxide having a spinel structure of (Mn, Co) 3 O 4 or (Mn, Co, Fe) 3 O 4 , a film thickness of 0.05 μm or more is required. . If the film thickness is less than 0.05 μm, a uniform and sound film cannot be obtained.

本発明者等は亀裂発生のメカニズムを解明するため、直径100mmのシリコン基板に厚さ0.5μmの二酸化珪素膜を熱酸化により形成したものと、同じく直径100mmのシリコン基板に厚さ0.5μmの二酸化珪素膜を熱酸化により形成し、さらにその上に厚さ0.1μmのAlをスピンコート法によって成膜した2枚の基板表面に、厚さ0.2μmの(Mn,Co)膜を形成してアズスパッタ状態と600℃で60分間熱処理した後の膜内の内部応力変化を測定した。その結果を図4から図7に示す。
図4はAl層表面に(Mn,Co)膜を成膜した場合のアズスッパタ状態における内部応力の測定結果である。図において横軸は基板中心からの距離(単位:mm)、縦軸は応力(任意単位)である。図に示すように、Al表面に成膜した場合は、アズスッパタ状態ですべての位置で低い引張応力を示している。図5は熱処理後に測定した結果である。熱処理を施すと基板の半径方向にほぼ一定の高い引張応力となる。
In order to elucidate the mechanism of crack generation, the present inventors have formed a silicon dioxide film having a thickness of 0.5 μm on a silicon substrate having a diameter of 100 mm by thermal oxidation, and a thickness of 0.5 μm on a silicon substrate having a diameter of 100 mm. A silicon dioxide film is formed by thermal oxidation, and 0.1 μm thick Al 2 O 3 is further formed thereon by spin coating, on the surface of two substrates (0.2 μm thick (Mn, Co ) After the 3 O 4 film was formed and subjected to the as-sputtered state and the heat treatment at 600 ° C. for 60 minutes, the internal stress change in the film was measured. The results are shown in FIGS.
FIG. 4 shows the measurement results of internal stress in the as-sputtered state when a (Mn, Co) 3 O 4 film is formed on the surface of the Al 2 O 3 layer. In the figure, the horizontal axis represents the distance from the substrate center (unit: mm), and the vertical axis represents the stress (arbitrary unit). As shown in the figure, when a film is formed on the Al 2 O 3 surface, low tensile stress is exhibited at all positions in an as-sputtered state. FIG. 5 shows the results measured after the heat treatment. When heat treatment is performed, a high tensile stress is obtained that is substantially constant in the radial direction of the substrate.

これに対して図6,図7は二酸化珪素膜の表面に(Mn,Co,Fe)膜を直接成膜した場合を示し、図6はアズスパッタ状態、図7は熱処理後に測定した結果である。
図に示すように二酸化珪素膜の表面に直接成膜した場合は、アズスッパタ状態では基板の半径方向内側から外側に向かって内部応力は引張応力からの圧縮応力に変化している。これを熱処理すると図7に示すように、基板の半径方向にほぼ一定の引張応力となる。応力レベルはAl層有りのサンプルよりも若干低くなっている。
On the other hand, FIGS. 6 and 7 show the case where the (Mn, Co, Fe) 3 O 4 film is directly formed on the surface of the silicon dioxide film, FIG. 6 is an as-sputtered state, and FIG. It is.
As shown in the figure, when the film is formed directly on the surface of the silicon dioxide film, the internal stress changes from the tensile stress to the compressive stress in the as-sputtered state from the inner side to the outer side in the radial direction of the substrate. When this is heat-treated, as shown in FIG. 7, it becomes a substantially constant tensile stress in the radial direction of the substrate. The stress level is slightly lower than the sample with the Al 2 O 3 layer.

図4〜図7に示されるように、応力面内分布はAl層の有無に拘わらず熱処理後に基板の半径方向においてほぼ一定となっているものの、Al層無しのサンプルの方が応力レベルはAl層有りのサンプルよりも若干低くなっている。すなわち、亀裂が生じ難くなっている。
これは下地層として使用した二酸化珪素層の表面に(Mn,Co)膜を成膜した場合には、熱処理時に二酸化珪素膜が塑性流動(リフロー)を起こして(Mn,Co)膜との界面で再配列が生じるので、応力が緩和されるものと推定される。
このような塑性流動(リフロー)を起こす二酸化珪素層の厚さは、0.1〜0.5μm必要である。この程度の厚さがあれば、絶縁層として充分な機能を発揮するとともに、塑性流動作用を利用して熱膨張差に起因する応力を緩和して、健全なサーミスタ薄膜を得ることができる。
一方、Al層の表面に(Mn,Co)膜を成膜した場合には、Al層の表面に存在すると思われるスピンコートに起因する微少凹凸が導入されて、熱処理後にそれが原因となって亀裂が入るものと推定される。また、Alスピンコート時に含有されるバインダー成分が焼成熱処理によって蒸発した後に、Al層内に強力な引張応力が導入されることも原因の一つと予想される。
As shown in FIGS. 4 to 7, although the stress plane distribution is substantially constant in the radial direction of the substrate after the heat treatment or without the Al 2 O 3 layer, the sample of the Al 2 O 3 layer without The stress level is slightly lower than that of the sample with the Al 2 O 3 layer. That is, cracks are difficult to occur.
This is because when a (Mn, Co) 3 O 4 film is formed on the surface of a silicon dioxide layer used as an underlayer, the silicon dioxide film undergoes plastic flow (reflow) during heat treatment, and (Mn, Co) 3. Since rearrangement occurs at the interface with the O 4 film, it is estimated that the stress is relieved.
The thickness of the silicon dioxide layer that causes such plastic flow (reflow) needs to be 0.1 to 0.5 μm. With such a thickness, a sufficient function as an insulating layer can be exhibited, and a stress caused by a difference in thermal expansion can be relieved using a plastic flow action to obtain a healthy thermistor thin film.
On the other hand, when it is formed on the surface of the Al 2 O 3 layer a (Mn, Co) 3 O 4 film is introduced is very small irregularities caused by the spin-coating that might be present on the surface of the Al 2 O 3 layer It is presumed that cracks are caused after heat treatment. Another possible cause is that a strong tensile stress is introduced into the Al 2 O 3 layer after the binder component contained during the Al 2 O 3 spin coating evaporates by the baking heat treatment.

二酸化珪素(SiO)層はシリコン基板表面を熱酸化して形成したものを利用することができる。シリコン半導体素子を形成する場合には、シリコン基板表面に絶縁膜としてSiO膜を形成し、その上に各種素子を形成して素子間を電気的に接続する信号線や電源線、接地線を形成して配線していく。熱酸化法では、シリコン(Si)と酸素(O)や水蒸気(HO)を高温で反応させて形成するものである。熱酸化法には例えば、窒素(N)をキャリアガスとして酸素ガスを流すドライO酸化法、加熱水を通して酸素を供給するウエットO酸化法、スチームによるスチーム酸化法、水素ガスと酸素ガスを外部で燃焼させて発生する水蒸気を供給するパイロジェニック酸化法、酸素ガスを液体窒素を通して窒素ガスをキャリアとして流すO分圧酸化法、あるいは窒素ガスと酸素ガスと一緒に塩酸ガスを点火した塩酸酸化法などがある。
熱酸化法で形成されるSiO層の厚さは、酸化処理温度や時間、あるいは酸素ガスやスチームの流量等によって決まる。従ってこれらの要因を制御して厚さ0.1〜0.5μmのSiO層を形成すればよい。
このようにシリコン基板を使用すれば、半導体素子の形成とサーミスタの形成を一貫した行程で行うことができるので、高機能素子を得られる点でも有利である。
As the silicon dioxide (SiO 2 ) layer, a silicon substrate surface formed by thermal oxidation can be used. In the case of forming a silicon semiconductor element, a SiO 2 film is formed as an insulating film on the surface of the silicon substrate, and various elements are formed thereon, and signal lines, power lines, and ground lines are electrically connected between the elements. Form and wire. In the thermal oxidation method, silicon (Si) is reacted with oxygen (O 2 ) or water vapor (H 2 O) at a high temperature to form. Thermal oxidation methods include, for example, a dry O 2 oxidation method in which oxygen gas is supplied using nitrogen (N 2 ) as a carrier gas, a wet O 2 oxidation method in which oxygen is supplied through heated water, a steam oxidation method using steam, hydrogen gas and oxygen gas Pyrogenic oxidation method that supplies water vapor generated by external combustion, O 2 partial pressure oxidation method in which oxygen gas is passed through liquid nitrogen and nitrogen gas as a carrier, or hydrochloric acid gas is ignited together with nitrogen gas and oxygen gas There is a hydrochloric acid oxidation method.
The thickness of the SiO 2 layer formed by the thermal oxidation method is determined by the oxidation treatment temperature and time, the flow rate of oxygen gas or steam, and the like. Therefore, these factors should be controlled to form a SiO 2 layer having a thickness of 0.1 to 0.5 μm.
If a silicon substrate is used in this way, the formation of a semiconductor element and the formation of a thermistor can be performed in a consistent process, which is advantageous in that a highly functional element can be obtained.

二酸化珪素(SiO)層はシリコン基板上ばかりでなく、アルミナやガラス基板上に化学気相成長法(CVD)等を使用して形成したものでも利用することができる。 The silicon dioxide (SiO 2 ) layer can be used not only on the silicon substrate but also on the alumina or glass substrate formed by chemical vapor deposition (CVD) or the like.

次に、このようにして得た(Mn,Co)系複合酸化物サーミスタ膜について説明する。
本発明のサーミスタ薄膜の結晶をTEMにより観察した。図8はアズスパッタ状態のサーミスタ薄膜断面のTEM像を示す。本発明のサーミスタ薄膜3はSiO層2表面に堆積した微細な結晶から構成されているのが判る。図9はこの微細結晶の寸法を測定した結果である。図中曲線(a)は基板面に平行な横断面の結晶寸法を示し、曲線(b)は基板面に垂直な縦断面(即ち、膜の成長方向)の結晶寸法を示す。図9に示すように基板面に平行な横断面の結晶寸法は40nm以下に集中しており、基板面に垂直な縦断面の結晶寸法は、40nmを中心に140nmまで散らばっている。これをアスペクト比で示したのが図10である。図10に示すアスペクト比は、基板の深さ方向の結晶粒径を基板の直径方向の結晶粒径で除した値で示した。図10に示すように、アズスパッタ状態のサーミスタ薄膜は、膜の成長方向に伸びたアスペクト比が2以上の結晶を主体とするものであることが判る。
Next, the (Mn, Co) 3 O 4 based composite oxide thermistor film thus obtained will be described.
The crystal of the thermistor thin film of the present invention was observed by TEM. FIG. 8 shows a TEM image of a cross section of the thermistor thin film in the as-sputtered state. It can be seen that the thermistor thin film 3 of the present invention is composed of fine crystals deposited on the surface of the SiO 2 layer 2. FIG. 9 shows the result of measuring the dimensions of this fine crystal. In the figure, the curve (a) shows the crystal size of a cross section parallel to the substrate surface, and the curve (b) shows the crystal size of a vertical cross section (that is, the film growth direction) perpendicular to the substrate surface. As shown in FIG. 9, the crystal dimensions of the transverse section parallel to the substrate surface are concentrated to 40 nm or less, and the crystal dimensions of the longitudinal section perpendicular to the substrate surface are scattered up to 140 nm centering on 40 nm. This is shown by the aspect ratio in FIG. The aspect ratio shown in FIG. 10 is represented by a value obtained by dividing the crystal grain size in the depth direction of the substrate by the crystal grain size in the diameter direction of the substrate. As shown in FIG. 10, the thermistor thin film in the as-sputtered state is mainly composed of crystals having an aspect ratio of 2 or more extending in the film growth direction.

同様にして上記のサーミスタ薄膜を600℃で60分間熱処理した後の結晶を観察した。図11は断面のTEM像を示し、図12は結晶の寸法を測定した結果であり、図13はアスペクト比を示す図である。これらの図から明らかなとおり、熱処理することにより結晶は大きく成長して丸味を帯びてくる。すなわち、図12に示すように結晶粒の各方向とも40nmを中心に180nm程度まで広がっている。図13に示すアスペクト比を見ると、平均は1.34で、アスペクト比が0.5を越え2.0未満の結晶粒が90%以上を占め、ほぼ正方形に近くなった結晶粒が多くなっている。
このような結晶粒を有するサーミスタ薄膜とすれば、バルク・サーミスタと同等の抵抗率R:3.5kΩ・cm以下2.0kΩ・cm程度、B定数(B25/50値):3,500〜3,600K程度の電気特性が得られ、実用上きわめて有用となる。
Similarly, the crystals after the thermistor thin film was heat treated at 600 ° C. for 60 minutes were observed. FIG. 11 shows a cross-sectional TEM image, FIG. 12 shows the result of measuring the crystal dimensions, and FIG. 13 shows the aspect ratio. As is clear from these figures, the crystal grows large and rounded by heat treatment. That is, as shown in FIG. 12, each direction of the crystal grain extends to about 180 nm centering on 40 nm. Looking at the aspect ratio shown in FIG. 13, the average is 1.34, and crystal grains with an aspect ratio exceeding 0.5 and less than 2.0 occupy 90% or more, and there are many crystal grains that are almost square. ing.
If the thermistor thin film having such crystal grains is used, the resistivity R equivalent to that of the bulk thermistor is about 3.5 kΩ · cm or less and about 2.0 kΩ · cm, and the B constant (B25 / 50 value) is 3,500-3. , An electrical characteristic of about 600K is obtained, which is extremely useful in practice.

このような結晶粒を有し、上記の電気特性を具備したサーミスタ薄膜を健全な状態で得るには、成膜後の熱処理を600℃±50℃、すなわち550℃〜650℃で60分間以上大気雰囲気中もしくは窒素と酸素の混合雰囲気中で熱処理するとともに、熱処理時の昇温速度を降温速度を緩やかにして、熱応力の発生を極力抑える必要がある。
すなわち、成膜後の熱処理に際して昇温速度を8〜12℃/minとし、降温速度は2〜6℃/minとすることが好ましい。昇温速度や降温速度が上記範囲を外れると熱処理効率が悪くなるほか、熱応力が発生して健全なサーミスタ膜が得られ難くなる。
このような温度条件で熱処理を施せば、アスペクト比が0.5を越え2.0未満の結晶粒が90%以上を占め、抵抗率Rが3.5kΩ・cm以下2.0kΩ・cm程度で、B定数(B25/50値)が3,500〜3,600Kの電気特性を有するサーミスタ薄膜を、健全な状態で確実に得ることができる。
In order to obtain a thermistor thin film having such crystal grains and having the above-mentioned electrical characteristics in a healthy state, heat treatment after film formation is performed at 600 ° C. ± 50 ° C., that is, 550 ° C. to 650 ° C. for 60 minutes or more in the atmosphere. In addition to heat treatment in an atmosphere or a mixed atmosphere of nitrogen and oxygen, it is necessary to moderate the rate of temperature increase during the heat treatment and to suppress the generation of thermal stress as much as possible.
That is, it is preferable that the heating rate is 8 to 12 ° C./min and the cooling rate is 2 to 6 ° C./min during the heat treatment after film formation. If the rate of temperature rise or the rate of temperature fall outside the above range, the heat treatment efficiency will deteriorate, and thermal stress will occur, making it difficult to obtain a healthy thermistor film.
When heat treatment is performed under such temperature conditions, crystal grains with an aspect ratio exceeding 0.5 and less than 2.0 occupy 90% or more, and the resistivity R is about 3.5 kΩ · cm or less and about 2.0 kΩ · cm. A thermistor thin film having electrical characteristics with a B constant (B25 / 50 value) of 3,500 to 3,600 K can be reliably obtained in a healthy state.

さらに、サーミスタ薄膜の面内均一性を調べるため、X線光電子分光分析(XPS)によりMn,Co,Fe,C,O元素の面内濃度分布を測定した。その結果、基板中心から外周方向の測定点に向かって組成変動は無く、各元素とも面内に均一に分布していた。
また、熱処理温度を変えた場合のサーミスタ薄膜をスパッタエッチングにより掘り下げ、薄膜中の酸素濃度の変化を調べた。その結果、熱処理温度を変えても酸素濃度プロファイルは成膜直後と変わらず、熱処理によって酸素組成変化を生じていないことが判った。
また、熱処理温度を200℃から600℃の範囲で変化させたサーミスタ薄膜について、薄膜中の深さ方向の酸素濃度の変化をオージェ電子分光分析法により解析した。その結果、各熱処理温度において成膜の進行に伴う酸素濃度に変化は無いことが判った。このことから600℃前後の熱処理によって電気特性が向上するのは、化学量論的な組成変化によるのではなく、熱処理によって結晶粒形が整うことによる効果が大きいことが推測される。
Furthermore, in order to investigate the in-plane uniformity of the thermistor thin film, the in-plane concentration distribution of Mn, Co, Fe, C, and O elements was measured by X-ray photoelectron spectroscopy (XPS). As a result, there was no composition variation from the center of the substrate toward the measurement point in the outer peripheral direction, and each element was uniformly distributed in the plane.
Further, the thermistor thin film was dug by sputter etching when the heat treatment temperature was changed, and the change in oxygen concentration in the thin film was investigated. As a result, it was found that even if the heat treatment temperature was changed, the oxygen concentration profile was not changed immediately after film formation, and no oxygen composition change was caused by the heat treatment.
Further, with respect to the thermistor thin film in which the heat treatment temperature was changed in the range of 200 ° C. to 600 ° C., the change in the oxygen concentration in the depth direction in the thin film was analyzed by Auger electron spectroscopy. As a result, it was found that there was no change in the oxygen concentration accompanying the progress of film formation at each heat treatment temperature. From this, it is presumed that the electrical characteristics are improved by the heat treatment at around 600 ° C. not by the stoichiometric composition change, but by the effect of adjusting the crystal grain shape by the heat treatment.

次に、実施例をあげて本発明を具体的に説明する。
先ず、直径100mmのシリコン基板表面にドライO熱酸化法により厚さ0.5μmの二酸化珪素(SiO)層を形成した。
次いでこのシリコン基板を通常のスパッタ装置に装着し、直径125mmでMnとCoのモル比が40%対60%の複合酸化物ターゲットを使用して、厚さ0.2μmの(Mn,Co)複合酸化物サーミスタ薄膜を形成した。スパッタ成膜条件は、ターゲットを下側にシリコン基板を上側に間隔60mmで配置して、雰囲気圧力10mTorrとし、アルゴン流量50SCCMで150Wの高周波電力を印荷して成膜した。
次に、(Mn,Co)複合酸化物サーミスタ薄膜を形成したシリコン基板を大気雰囲気中で600±5℃の温度範囲に制御して、60分間熱処理を行った。
得られたサーミスタ薄膜は、基板全面にわたって均一で少しの亀裂も認めら得なかった。
さらに、得られたサーミスタ薄膜の電気特性を測定したところ、抵抗率は3.0kΩ・cm、B定数(B25/50値)は3,550Kであった。
Next, the present invention will be specifically described with reference to examples.
First, a silicon dioxide (SiO 2 ) layer having a thickness of 0.5 μm was formed on the surface of a silicon substrate having a diameter of 100 mm by a dry O 2 thermal oxidation method.
Next, this silicon substrate was mounted on a normal sputtering apparatus, and a 0.2 μm thick composite oxide target having a diameter of 125 mm and a molar ratio of Mn 3 O 4 and Co 3 O 4 of 40% to 60% was used. A (Mn, Co) 3 O 4 composite oxide thermistor thin film was formed. The sputter deposition conditions were as follows: the target was placed on the lower side and the silicon substrate was placed on the upper side with a spacing of 60 mm, the atmospheric pressure was 10 mTorr, and the high-frequency power of 150 W was applied at an argon flow rate of 50 SCCM.
Next, the silicon substrate on which the (Mn, Co) 3 O 4 composite oxide thermistor thin film was formed was controlled in a temperature range of 600 ± 5 ° C. in an air atmosphere and heat-treated for 60 minutes.
The obtained thermistor thin film was uniform over the entire surface of the substrate and no cracks were observed.
Furthermore, when the electrical properties of the obtained thermistor thin film were measured, the resistivity was 3.0 kΩ · cm and the B constant (B25 / 50 value) was 3,550K.

本発明のサーミスタ薄膜の熱処理温度と抵抗率の関係を示す図である。It is a figure which shows the relationship between the heat processing temperature and resistivity of the thermistor thin film of this invention. 本発明のサーミスタ薄膜の熱処理温度とB定数の関係を示す図である。It is a figure which shows the relationship between the heat processing temperature of the thermistor thin film of this invention, and B constant. サーミスタ薄膜の膜厚とクラック発生割合の関係を示す図である。It is a figure which shows the relationship between the film thickness of a thermistor thin film, and a crack generation rate. アズスパッタ状態の膜内の内部応力の一例を示す図である。It is a figure which shows an example of the internal stress in the film | membrane of an as-sputtered state. 熱処理後の膜内の内部応力の一例を示す図である。It is a figure which shows an example of the internal stress in the film | membrane after heat processing. 本発明のアズスパッタ状態の膜内の内部応力を示す図である。It is a figure which shows the internal stress in the film | membrane of the as-sputtered state of this invention. 本発明の熱処理後の膜内の内部応力を示す図である。It is a figure which shows the internal stress in the film | membrane after the heat processing of this invention. 本発明のアズスパッタ状態の薄膜断面を示す図である。It is a figure which shows the thin film cross section of the as-sputtered state of this invention. 本発明のアズスパッタ状態の結晶粒径を示す図である。It is a figure which shows the crystal grain diameter of the as-sputter state of this invention. 本発明のアズスパッタ状態の結晶のアスペクト比を示す図である。It is a figure which shows the aspect ratio of the crystal of the as-sputtered state of this invention. 本発明の熱処理後の薄膜断面を示す図である。It is a figure which shows the thin film cross section after the heat processing of this invention. 本発明の熱処理後の結晶粒径を示す図である。It is a figure which shows the crystal grain diameter after the heat processing of this invention. 本発明の熱処理後の結晶のアスペクト比を示す図である。It is a figure which shows the aspect-ratio of the crystal | crystallization after the heat processing of this invention.

符号の説明Explanation of symbols

2 SiO
3 サーミスタ薄膜
2 SiO 2 layer 3 Thermistor thin film

Claims (8)

二酸化珪素層上に直接形成されたMn−CoもしくはMn−Co−Fe系複合金属酸化物からなるサーミスタ薄膜であって、その膜厚が0.05〜0.2μmで、かつ該サーミスタ薄膜がアスペクト比が0.5を越え2.0未満の結晶粒が90%以上を占める結晶からなることを特徴とするサーミスタ薄膜。 A thermistor thin film made of Mn 3 O 4 —Co 3 O 4 or Mn 3 O 4 —Co 3 O 4 —Fe 2 O 3 based composite metal oxide directly formed on a silicon dioxide layer, the film thickness of which is A thermistor thin film comprising 0.05 to 0.2 μm of the thermistor thin film, wherein the thermistor thin film is composed of crystals in which 90% or more of crystal grains having an aspect ratio of more than 0.5 and less than 2.0 are included. 前記二酸化珪素層の厚さが0.1〜0.5μmであることを特徴とする請求項1に記載のサーミスタ薄膜。   The thermistor thin film according to claim 1, wherein the silicon dioxide layer has a thickness of 0.1 to 0.5 μm. 基板としてシリコン基板を使用し、該シリコン基板表面に前記二酸化珪素層を介して形成されてなることを特徴とする請求項1または請求項2に記載のサーミスタ薄膜。   The thermistor thin film according to claim 1 or 2, wherein a silicon substrate is used as a substrate and is formed on the surface of the silicon substrate via the silicon dioxide layer. 二酸化珪素層上に膜厚が0.05〜0.2μmのMn−CoもしくはMn−Co−Fe系複合金属酸化物膜をスパッタ成膜した後、550℃〜650℃の温度で大気雰囲気中もしくは窒素と酸素の混合雰囲気中で熱処理することを特徴とするサーミスタ薄膜の形成方法。 A Mn 3 O 4 —Co 3 O 4 or Mn 3 O 4 —Co 3 O 4 —Fe 2 O 3 based composite metal oxide film having a thickness of 0.05 to 0.2 μm is formed on the silicon dioxide layer by sputtering. And forming a thermistor thin film, which is heat-treated in an air atmosphere or a mixed atmosphere of nitrogen and oxygen at a temperature of 550 ° C. to 650 ° C. 表面に二酸化珪素層を有するシリコン基板を使用することを特徴とする請求項4に記載のサーミスタ薄膜の形成方法。   5. The method of forming a thermistor thin film according to claim 4, wherein a silicon substrate having a silicon dioxide layer on a surface thereof is used. 前記熱処理する際の昇温速度を8〜12℃/minとし、降温速度を2〜6℃/minとすることを特徴とする請求項4または請求項5に記載のサーミスタ薄膜の形成方法。   The method for forming a thermistor thin film according to claim 4 or 5, wherein a rate of temperature rise during the heat treatment is 8 to 12 ° C / min and a rate of temperature drop is 2 to 6 ° C / min. 二酸化珪素層上にアズスパッタ状態で圧縮と引張りの内部応力を有する複合金属酸化物膜を成膜した後、熱処理により引張り内部応力のみを有する複合金属酸化物膜とすることを特徴とする請求項4から請求項6のいずれか1項に記載のサーミスタ薄膜の形成方法。   5. A composite metal oxide film having only tensile internal stress is formed by heat treatment after forming a composite metal oxide film having compressive and tensile internal stress in an as-sputtered state on the silicon dioxide layer. A method for forming a thermistor thin film according to any one of claims 1 to 6. 二酸化珪素層上にアズスパッタ状態でアスペクト比が1.0を越え5.0未満の結晶粒が90%以上を占める結晶からなる複合金属酸化物膜を成膜した後、熱処理によりアスペクト比が0.5を越え2.0未満の結晶粒が90%以上を占める結晶からなる複合金属酸化物膜とすることを特徴とする請求項4から請求項7のいずれか1項に記載のサーミスタ薄膜の形成方法。
A composite metal oxide film made of crystals in which 90% or more of crystal grains having an aspect ratio of more than 1.0 and less than 5.0 in an as-sputtered state is formed on the silicon dioxide layer, and then the aspect ratio is set to 0. 0 by heat treatment. The formation of the thermistor thin film according to any one of claims 4 to 7, wherein the thermistor thin film is a composite metal oxide film composed of crystals in which crystal grains exceeding 5 and less than 2.0 account for 90% or more. Method.
JP2005144921A 2004-06-18 2005-05-18 Thermistor thin film and its forming method Pending JP2006032910A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005144921A JP2006032910A (en) 2004-06-18 2005-05-18 Thermistor thin film and its forming method
PCT/JP2005/011021 WO2006003791A1 (en) 2004-06-18 2005-06-16 Thermistor thin-film and method of forming the same
CN2005800195136A CN1969345B (en) 2004-06-18 2005-06-16 Thermistor thin film and its forming method
KR1020067027852A KR101121399B1 (en) 2004-06-18 2005-06-16 Thermistor thin-film and method of forming the same
TW094120307A TW200605101A (en) 2004-06-18 2005-06-17 Thermistor thin-film and its forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004181301 2004-06-18
JP2005144921A JP2006032910A (en) 2004-06-18 2005-05-18 Thermistor thin film and its forming method

Publications (1)

Publication Number Publication Date
JP2006032910A true JP2006032910A (en) 2006-02-02

Family

ID=35898830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144921A Pending JP2006032910A (en) 2004-06-18 2005-05-18 Thermistor thin film and its forming method

Country Status (1)

Country Link
JP (1) JP2006032910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287812A (en) * 2006-04-14 2007-11-01 Mitsubishi Materials Corp Thermistor thin film, infrared detection sensor and method of manufacturing them
JP2008084991A (en) * 2006-09-26 2008-04-10 Mitsubishi Materials Corp Thermistor thin film and thin film thermistor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208803A (en) * 1984-04-02 1985-10-21 株式会社日立製作所 Method of producing thin film thermistor
JPS63266801A (en) * 1987-04-24 1988-11-02 Ooizumi Seisakusho:Kk Manufacture of thin film thermistor
JPS63283102A (en) * 1987-05-15 1988-11-21 Nkk Corp Thermistor
JPH0451407A (en) * 1990-06-18 1992-02-19 Toshiba Corp Manufacture of ferroelectric thin film
JPH10256004A (en) * 1997-03-11 1998-09-25 Shibaura Denshi:Kk Thin-film thermistor
JP2000348903A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Thin-film thermistor element and manufacture of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208803A (en) * 1984-04-02 1985-10-21 株式会社日立製作所 Method of producing thin film thermistor
JPS63266801A (en) * 1987-04-24 1988-11-02 Ooizumi Seisakusho:Kk Manufacture of thin film thermistor
JPS63283102A (en) * 1987-05-15 1988-11-21 Nkk Corp Thermistor
JPH0451407A (en) * 1990-06-18 1992-02-19 Toshiba Corp Manufacture of ferroelectric thin film
JPH10256004A (en) * 1997-03-11 1998-09-25 Shibaura Denshi:Kk Thin-film thermistor
JP2000348903A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Thin-film thermistor element and manufacture of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287812A (en) * 2006-04-14 2007-11-01 Mitsubishi Materials Corp Thermistor thin film, infrared detection sensor and method of manufacturing them
JP2008084991A (en) * 2006-09-26 2008-04-10 Mitsubishi Materials Corp Thermistor thin film and thin film thermistor device

Similar Documents

Publication Publication Date Title
JP2006324520A (en) Thermistor thin film and its manufacturing method
WO2016138840A1 (en) Copper thermal resistance thin film temperature sensor chip, and preparation method therefor
CN104641208B (en) Temperature sensor
US9659691B2 (en) Thin-film thermistor element and method of manufacturing the same
TWI588459B (en) Temperature sensor
KR101121399B1 (en) Thermistor thin-film and method of forming the same
CN104170031A (en) Metal nitride film for thermistor, process for producing same, and thermistor sensor of film type
CN105144309A (en) Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
JP2006032910A (en) Thermistor thin film and its forming method
JP2008084991A (en) Thermistor thin film and thin film thermistor device
Tang et al. Investigation and control of microcracks in tin oxide gas sensing thin-films
JP2008244344A (en) Thin film thermistor element and manufacturing method of thin film thermistor element
JP4802013B2 (en) Temperature sensor and manufacturing method thereof
WO2013190793A1 (en) Infrared detection device
JP2001247958A (en) Method for manufacturing bolometer material, and bolometer element
Chung et al. RTD characteristics for micro-thermal sensors
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
JPH11271145A (en) Detection film for use in bolometer and its formation, and bolometer element
KR101477143B1 (en) Method of manufacturing Vanadiun dioxide film and bolometer, and bolometer and IR detector manufactured by the same
JP2006261655A (en) Method for manufacturing thin film thermistor and thin film thermistor
JP2007287812A (en) Thermistor thin film, infrared detection sensor and method of manufacturing them
TWI809689B (en) Microbolometer and method of manufacturing the same
JP3455146B2 (en) Method of manufacturing temperature-sensitive material film and far-infrared sensor using temperature-sensitive material film manufactured by the manufacturing method
JP4962088B2 (en) Thin film thermistor and thin film thermistor manufacturing method
JP2006229023A (en) Method of manufacturing thin film thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124