JP2006032620A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2006032620A
JP2006032620A JP2004208717A JP2004208717A JP2006032620A JP 2006032620 A JP2006032620 A JP 2006032620A JP 2004208717 A JP2004208717 A JP 2004208717A JP 2004208717 A JP2004208717 A JP 2004208717A JP 2006032620 A JP2006032620 A JP 2006032620A
Authority
JP
Japan
Prior art keywords
layer
electrode
semiconductor
barrier layer
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004208717A
Other languages
Japanese (ja)
Inventor
Bunichi Kitani
文一 木谷
Takeshi Higashimatsu
剛 東松
Mitsutoshi Ogasawara
光敏 小笠原
Hiroshi Emoto
寛 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO 21 Inc
Original Assignee
ECO 21 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO 21 Inc filed Critical ECO 21 Inc
Priority to JP2004208717A priority Critical patent/JP2006032620A/en
Publication of JP2006032620A publication Critical patent/JP2006032620A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module with less occurrence of internal stress in a joint of a semiconductor layer to a barrier layer. <P>SOLUTION: The thermoelectric conversion module includes the semiconductor layer 1, the barrier layer 2 integrally joined to the outside face of the semiconductor layer 1 to suppress the reaction of the semiconductor layer 1 with an electrode material layer 3, and an electrode 4 integrally joined to the outside face of the barrier layer 2 through the electrode joint material layer 3. In the thermoelectric conversion module, the barrier layer 2 has larger linear expansion coefficient than the semiconductor layer 1 and the electrode 4. And, the difference of the linear expansion coefficient between the semiconductor layer 1 and the electrode 4 is specified to ≤9×10<SP>-6</SP>/K. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電装置あるいは電子冷却装置などに使用する熱電変換モジュールに係り、特に半導体層と電極接合材層との間にバリア層を介在した熱電変換モジュールに関するものである。   The present invention relates to a thermoelectric conversion module used for a power generation device or an electronic cooling device, and more particularly to a thermoelectric conversion module in which a barrier layer is interposed between a semiconductor layer and an electrode bonding material layer.

電子冷却装置などに使用する熱電半導体は、通常、結晶成長させたビスマス−テルル系材料を加工して使用している。加工方法としては、ビスマス−テルル系の結晶体を素子の厚みにスライスしてウェハ状の熱電半導体を得て、そのウェハ状熱電半導体の表面をエッチングする。このエッチング処理は、スライス時に生じた表面の微小なクラック層や酸化物などの加工変質層を除去すると共に、後のニッケルメッキ層との付着強度を得るために施される。これをダイシングして個々の半導体チップとし、Pb−Sn共晶体などの低融点半田で電極に接合する。   A thermoelectric semiconductor used for an electronic cooling device or the like is usually used by processing a bismuth-tellurium-based material that has been crystal-grown. As a processing method, a wafer-like thermoelectric semiconductor is obtained by slicing a bismuth-tellurium-based crystal body into the thickness of the element, and the surface of the wafer-like thermoelectric semiconductor is etched. This etching process is performed in order to remove a minute crack layer on the surface generated during slicing and a work-affected layer such as an oxide, and to obtain adhesion strength with a later nickel plating layer. This is diced into individual semiconductor chips, which are joined to electrodes with a low melting point solder such as a Pb—Sn eutectic.

また他の方法として、前記ウェハ状熱電半導体の表面をサンドブラスト等の処理で表面を粗面化し、その表面にニッケル粉末を溶射する。次に表面を研磨した後に、ダイシングして個々の半導体チップとし、半田で電極に接合する方法がある。   As another method, the surface of the wafer-like thermoelectric semiconductor is roughened by a process such as sandblasting, and nickel powder is sprayed on the surface. Next, after polishing the surface, there is a method of dicing into individual semiconductor chips and bonding them to electrodes with solder.

ところが前者の方法は、結晶成長させた半導体の機械的強度が弱いことから加工歩留まりが悪く、結晶成長にも時間がかかり、コスト高となる。また後者の方法は、前者と同様に機械的強度ならびにコストの点で問題があると共に、半導体層上に加工変質層が形成され、しかも溶射されたニッケル層は緻密でなく接合界面に酸化物や不純物が介在するため、熱電変換特性が低下する。   However, in the former method, since the mechanical strength of the semiconductor on which the crystal is grown is weak, the processing yield is poor, and the crystal growth takes time and costs are increased. In addition, the latter method has a problem in terms of mechanical strength and cost as in the former method, and a work-affected layer is formed on the semiconductor layer, and the sprayed nickel layer is not dense and oxide or Since the impurities are present, the thermoelectric conversion characteristics are deteriorated.

コストの低減を図るため、粉末燒結による熱電半導体の製造方法が検討されている。この方法は、半導体原料粉末を所定の大きさのブロック状に燒結し、それをスライスすることによりウェハ状熱電半導体を得て、その表面をエッチング処理ならびにメッキ処理を施して、それをダイシングして個々の半導体チップとし、半田で電極に接合する方法である。   In order to reduce the cost, methods for producing thermoelectric semiconductors by powder sintering have been studied. In this method, a semiconductor raw material powder is sintered into a block of a predetermined size, and a wafer-like thermoelectric semiconductor is obtained by slicing it, and the surface is subjected to etching treatment and plating treatment, and then diced. In this method, individual semiconductor chips are formed and bonded to electrodes with solder.

しかしこの粉末燒結方法は、エッチング処理により燒結した粒界がダメージを受け、ニッケルメッキを施しても電極との接合強度が結晶体の場合ほど得られず、そのために信頼性が低いという欠点がある。   However, this powder sintering method suffers from the disadvantage that the grain boundary sintered by the etching treatment is damaged, and even if nickel plating is applied, the bonding strength with the electrode cannot be obtained as in the case of the crystalline body, and therefore the reliability is low. .

この欠点を解消するため本出願人は、半導体粉末層と、その半導体と半田などの電極接合材との反応を抑制するバリア層とを燒結して一体化し、そのバリア層の上に電極接合材を介して電極を接合した熱電変換モジュールを先に提案した(特許文献1:特開平10−41553号公報)。   In order to eliminate this drawback, the present applicant consolidated and integrated the semiconductor powder layer and the barrier layer that suppresses the reaction between the semiconductor and the electrode bonding material such as solder, on the barrier layer. Previously proposed a thermoelectric conversion module in which electrodes are joined via a wire (Patent Document 1: Japanese Patent Laid-Open No. 10-41553).

図4は、この提案に基づいて製作された熱電変換モジュールの断面図である。   FIG. 4 is a cross-sectional view of a thermoelectric conversion module manufactured based on this proposal.

図中の101はBi−TeからなるP型半導体燒結層、102はBi−TeからなるN型半導体燒結層、103は反応層、104はニッケルからなる表面処理層、105はアルミニウムや銅からなるバリア層、106はニッケルメッキ層、107はPb−Sn共晶体などの低融点半田層、108は上部電極、109は下部電極である。 In the figure, 101 is a P-type semiconductor sintered layer made of Bi-Te, 102 is an N-type semiconductor sintered layer made of Bi-Te, 103 is a reaction layer, 104 is a surface treatment layer made of nickel, and 105 is made of aluminum or copper. A barrier layer, 106 is a nickel plating layer, 107 is a low melting point solder layer such as a Pb—Sn eutectic, 108 is an upper electrode, and 109 is a lower electrode.

この熱電変換モジュールはエッチング処理を施さないから粒界がダメージを受けることがなく、電極との接合強度が得られ、しかも半導体燒結層と電極接合材の間にバリア層が介在されているから、半導体と電極接合材との反応が抑制され、そのために熱電変換特性の低下が軽減できるという特長を有している。
特開平10−41553号公報
Since this thermoelectric conversion module is not subjected to etching treatment, the grain boundary is not damaged, the bonding strength with the electrode is obtained, and the barrier layer is interposed between the semiconductor sintering layer and the electrode bonding material, The reaction between the semiconductor and the electrode bonding material is suppressed, and for this reason, the deterioration of thermoelectric conversion characteristics can be reduced.
JP 10-41553 A

ところがこの熱電変換モジュールにおいても難点がない訳ではない。すなわちこの熱電変換モジュールを構成する各部材の適切な線膨張率についての検討がなされていなかった。   However, this thermoelectric conversion module is not without its disadvantages. That is, no investigation has been made on the appropriate linear expansion coefficient of each member constituting the thermoelectric conversion module.

すなわち図4に示す熱電変換モジュールにおいて、Bi−Te半導体燒結層101,102の線膨張率は17〜18×10−6/K、バリア層105に銅を用いた場合線膨張率は18×10−6/K、バリア層105にアルミニウムを用いた場合線膨張率は23×10−6/Kであり、電極108,109は通常、銅やアルミニウムが用いられているため、それらの線膨張率は前述の通りである。 That is, in the thermoelectric conversion module shown in FIG. 4, the linear expansion coefficient of the Bi—Te semiconductor sintered layers 101 and 102 is 17 to 18 × 10 −6 / K, and when the barrier layer 105 is made of copper, the linear expansion coefficient is 18 × 10. −6 / K, when aluminum is used for the barrier layer 105, the linear expansion coefficient is 23 × 10 −6 / K, and the electrodes 108 and 109 are usually made of copper or aluminum. Is as described above.

同図に示すように基板を用いないスケルトンタイプの熱電変換モジュールでは問題はないが、電極の外側に半田層を介して絶縁基板を一体に接合する構造になると、次のような問題がある。この場合、絶縁基板には通常、酸化アルミニウム、窒化アルミニウム、窒化ケイ素などが用いられる。前記酸化アルミニウムの線膨張率は7×10−6/K、窒化アルミニウムの線膨張率は4.4×10−6/K、窒化ケイ素の線膨張率は3.4×10−6/Kであるから、モジュールの中心部にある前記半導体燒結層に対して最外層の線膨張率は極端に小さく、その差は10〜15×10−6/Kと大きい。 As shown in the figure, there is no problem in a skeleton type thermoelectric conversion module that does not use a substrate, but there is the following problem when a structure in which an insulating substrate is integrally bonded to the outside of an electrode via a solder layer. In this case, aluminum oxide, aluminum nitride, silicon nitride or the like is usually used for the insulating substrate. The linear expansion coefficient of aluminum oxide is 7 × 10 −6 / K, the linear expansion coefficient of aluminum nitride is 4.4 × 10 −6 / K, and the linear expansion coefficient of silicon nitride is 3.4 × 10 −6 / K. Therefore, the linear expansion coefficient of the outermost layer is extremely small with respect to the semiconductor sintered layer in the center of the module, and the difference is as large as 10 to 15 × 10 −6 / K.

このように一体物となったモジュールの中心部と最外層との線膨張率差が10〜15×10−6/Kもあると、熱電変換モジュールを繰り返して使用しているうちに、構成部材の接合部、特に半導体燒結層とバリア層との接合部における内部応力が増大し、そのために十分な性能が得られないという難点がある。特に発電モジュールの場合は、発電している時と発電していない時の温度差が大きいため、前述の内部応力増加の傾向が大きい。 When the thermoelectric conversion module is repeatedly used when the linear expansion coefficient difference between the central portion of the module and the outermost layer is 10-15 × 10 −6 / K, the component member This increases the internal stress at the junction, particularly at the junction between the semiconductor sintered layer and the barrier layer, and thus there is a problem that sufficient performance cannot be obtained. In particular, in the case of a power generation module, since the temperature difference between when power is generated and when power is not generated is large, the above-described tendency of increasing internal stress is large.

本発明の目的は、このような従来技術の欠点を解消し、半導体層とバリア層との接合部における内部応力の発生が少ない熱電変換モジュールを提供することにある。   An object of the present invention is to provide a thermoelectric conversion module that eliminates such disadvantages of the prior art and generates less internal stress at the junction between the semiconductor layer and the barrier layer.

前記目的を達成するため本発明の第1の手段は、半導体層と、その半導体層の外側面に一体に接合されて前記半導体層と電極接合材層との反応を抑制するバリア層と、そのバリア層の外側面に電極接合材層を介して一体に接合された電極とを有する熱電変換モジュールにおいて、前記バリア層は前記半導体層ならびに電極よりも線膨張率が大きく、かつ、前記半導体層と電極の線膨張率の差が9×10−6/K以下に規制されていることを特徴とするものである。 In order to achieve the above object, the first means of the present invention includes a semiconductor layer, a barrier layer that is integrally bonded to an outer surface of the semiconductor layer and suppresses a reaction between the semiconductor layer and the electrode bonding material layer, and In the thermoelectric conversion module having an electrode integrally bonded to the outer surface of the barrier layer via an electrode bonding material layer, the barrier layer has a larger linear expansion coefficient than the semiconductor layer and the electrode, and the semiconductor layer The difference between the linear expansion coefficients of the electrodes is regulated to 9 × 10 −6 / K or less.

前記目的を達成するため本発明の第2の手段は、半導体層と、その半導体層の外側面に一体に接合されて前記半導体層と電極接合材層との反応を抑制するバリア層と、そのバリア層の外側面に電極接合材層を介して一体に接合された電極と、その電極の外側面に一体に接合された絶縁基板とを有する熱電変換モジュールにおいて、前記バリア層は前記半導体層ならびに絶縁基板よりも線膨張率が大きく、かつ、前記半導体層と絶縁基板の線膨張率の差が9×10−6/K以下に規制されていることを特徴とするものである。 In order to achieve the above object, the second means of the present invention includes a semiconductor layer, a barrier layer which is integrally bonded to an outer surface of the semiconductor layer and suppresses a reaction between the semiconductor layer and the electrode bonding material layer, and In the thermoelectric conversion module having an electrode integrally bonded to the outer surface of the barrier layer via an electrode bonding material layer, and an insulating substrate integrally bonded to the outer surface of the electrode, the barrier layer includes the semiconductor layer and The linear expansion coefficient is larger than that of the insulating substrate, and the difference in linear expansion coefficient between the semiconductor layer and the insulating substrate is regulated to 9 × 10 −6 / K or less.

本発明は前述のような構成になっているため、半導体層とバリア層との接合部における内部応力の発生が少ない熱電変換モジュールを提供することができる。   Since the present invention is configured as described above, it is possible to provide a thermoelectric conversion module that generates less internal stress at the junction between the semiconductor layer and the barrier layer.

次に本発明の実施形態を図面とともに説明する。図1は、第1実施形態に係る発電用熱電変換モジュールの断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the thermoelectric conversion module for power generation according to the first embodiment.

図中の1は半導体燒結層、2はその半導体燒結層1の上下両面に形成されたバリア層、3はそのバリア層2の外側面に設けられた電極接合材層、4はその電極接合材層3の外側面に設けられた電極である。本実施形態の熱電変換モジュールは、スケルトンタイプで絶縁基板は用いられていない。   In the figure, 1 is a semiconductor sintered layer, 2 is a barrier layer formed on both upper and lower surfaces of the semiconductor sintered layer 1, 3 is an electrode bonding material layer provided on the outer surface of the barrier layer 2, and 4 is an electrode bonding material thereof. It is an electrode provided on the outer surface of the layer 3. The thermoelectric conversion module of this embodiment is a skeleton type and does not use an insulating substrate.

前記半導体燒結層1を構成する半導体材料として、Co−Sb系半導体材料が用いられる。この半導体材料の溶融物を、高速回転している冷却ドラムの周面上にノズルから噴射することにより、溶融した半導体材料は急速に冷却して凝固し、薄いリボン状体のものが得られる。このリボン状体は強いへき開性を有しているため、リボン状体は外力を加えることにより容易に平板状に近い半導体材料粉末を得ることができる。   A Co—Sb-based semiconductor material is used as a semiconductor material constituting the semiconductor sintered layer 1. By injecting the melt of the semiconductor material from the nozzle onto the peripheral surface of the cooling drum rotating at high speed, the melted semiconductor material is rapidly cooled and solidified to obtain a thin ribbon-like body. Since this ribbon-like body has a strong cleavage property, the ribbon-like body can easily obtain a semiconductor material powder close to a flat plate shape by applying an external force.

本実施形態ではバリア層2として、線膨張率が比較的大きく(23.5×10−6/K)、弾性率が比較的小さく(7.0×10−3kgmm−2)、かつ熱伝導率が大きい(0.5cals−1cm−1−1)、純度が98.0〜99.99のアルミニウム板が使用される。 In this embodiment, the barrier layer 2 has a relatively large linear expansion coefficient (23.5 × 10 −6 / K), a relatively small elastic modulus (7.0 × 10 −3 kgmm −2 ), and heat conduction. An aluminum plate having a high rate (0.5 cals −1 cm −1 K −1 ) and a purity of 98.0 to 99.99 is used.

アルミニウム板は表面が酸化され易いから、燒結までの間の酸化防止のために保護膜で覆う必要がある。本実施形態では板厚が0.2〜0.3mmのアルミニウム板を用い、その板厚が0.1mmになるまでエッチング処理または機械的に研磨して表面の酸化皮膜を除去し、その後に5〜10μmのニッケルメッキからなる保護膜を形成する。この保護膜として、半導体材料と反応しても熱電変換特性に余り影響を与えないことからニッケルが賞用される。   Since the surface of the aluminum plate is easily oxidized, it is necessary to cover it with a protective film to prevent oxidation before sintering. In this embodiment, an aluminum plate having a plate thickness of 0.2 to 0.3 mm is used, and the oxide film on the surface is removed by etching or mechanical polishing until the plate thickness becomes 0.1 mm. A protective film made of nickel plating of 10 μm is formed. Nickel is used as the protective film because it does not significantly affect the thermoelectric conversion characteristics even if it reacts with a semiconductor material.

燒結金型内に前記保護膜を上にしてアルミニウム板を設置し、その上から前記急冷法で得られた半導体材料粉末を投入し、その粉末層の上に保護膜を下にしてアルミニウム板を設置する。   Place the aluminum plate with the protective film facing up in the sintering mold, put the semiconductor material powder obtained by the quenching method from above, put the aluminum plate with the protective film on the powder layer Install.

しかる後、燒結金型内の上下のパンチ部材によりアルミニウム板を介して粉末層をプレスすると共に、上下の導電性パンチ部材間に所定の電流を流し、粉末燒結を行う。この燒結により、上下両面にバリア層2,2を一体に結合した半導体燒結層1を得る。   After that, the powder layer is pressed through the aluminum plate by the upper and lower punch members in the sintering mold, and a predetermined current is passed between the upper and lower conductive punch members to perform powder sintering. By this sintering, the semiconductor sintered layer 1 is obtained in which the barrier layers 2 and 2 are integrally bonded on the upper and lower surfaces.

バリア層2の外側に、数%のシリコンを含むアルミニウムが主体のロウ材からなる電極接合材層3を介して、Fe−Ni−Co系合金(コバール)からなる電極4を接合して、図1に示す構造の熱電変換モジュールを構成する。   An electrode 4 made of an Fe—Ni—Co alloy (Kovar) is joined to the outside of the barrier layer 2 via an electrode joining material layer 3 made of a brazing material mainly composed of aluminum containing several percent of silicon. A thermoelectric conversion module having the structure shown in FIG.

図2は、第2実施形態に係る熱電変換モジュールの断面図である。本実施形態の場合、Co−Sb系の半導体燒結層1の上下両面にアルミニウムからなるバリア層2を一体に燒結する。バリア層2の外側に、数%のシリカを含むアルミニウムが主体のロウ材からなる電極接合材層3を介して、銅からなる電極4を接合し、さらにその上下の電極4の外側に窒化アルミからなる絶縁基板5をそれぞれ接合して、図2に示す構造の熱電変換モジュールを構成する。   FIG. 2 is a cross-sectional view of the thermoelectric conversion module according to the second embodiment. In the case of this embodiment, the barrier layer 2 made of aluminum is integrally sintered on both the upper and lower surfaces of the Co—Sb based semiconductor sintering layer 1. An electrode 4 made of copper is bonded to the outside of the barrier layer 2 through an electrode bonding material layer 3 made of a brazing material mainly composed of aluminum containing several percent of silica, and aluminum nitride is formed on the outer side of the upper and lower electrodes 4. Each of the insulating substrates 5 is joined to form a thermoelectric conversion module having the structure shown in FIG.

図3は、第3実施形態に係る熱電変換モジュールの断面図である。本実施形態の場合、Co−Sb系の半導体燒結層1の上下両面にアルミニウムからなるバリア層2を一体に燒結する。バリア層2の外側に、数%のシリコンを含むアルミニウムが主体のロウ材からなる電極接合材層3を介して、Fe−Ni−Co系合金からなる電極4を接合し、さらにその一方の電極4の外側に窒化アルミニウムからなる絶縁基板5を接合して、図3に示す構造の熱電変換モジュールを構成する。   FIG. 3 is a cross-sectional view of the thermoelectric conversion module according to the third embodiment. In the case of this embodiment, the barrier layer 2 made of aluminum is integrally sintered on both the upper and lower surfaces of the Co—Sb based semiconductor sintering layer 1. An electrode 4 made of an Fe—Ni—Co alloy is bonded to the outside of the barrier layer 2 via an electrode bonding material layer 3 made of a brazing material mainly composed of aluminum containing several percent of silicon. An insulating substrate 5 made of aluminum nitride is bonded to the outside of 4 to constitute a thermoelectric conversion module having the structure shown in FIG.

このように構造的には、図1〜3に示すような3タイプの熱電変換モジュールを例として挙げることができる。   Thus, structurally, three types of thermoelectric conversion modules as shown in FIGS. 1-3 can be mentioned as an example.

次に熱電変換モジュールを構成する各部材の具体例を示す。

(具体例1)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :Fe−Ni−Co系合金(コバール) 厚さ0.3mm
絶縁基板:なし

(具体例2)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :銅 厚さ0.3mm
絶縁基板:窒化アルミニウム 厚さ0.5mm

(具体例3)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :アルミニウム 厚さ0.3mm
絶縁基板:窒化アルミニウム 厚さ0.5mm

(具体例4)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :アルミニウム 厚さ0.3mm
絶縁基板:なし

(具体例5)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.3mm
電極 :Fe−Ni−Co系合金(コバール) 厚さ0.3mm
絶縁基板:なし

(具体例6)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.3mm
電極 :銅 厚さ0.3mm
絶縁基板:窒化アルミニウム 厚さ0.5mm

(具体例7)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.3mm
電極 :アルミニウム 厚さ0.3mm
絶縁基板:窒化アルミニウム 厚さ0.5mm

(具体例8)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:アルミニウム 厚さ0.3mm
電極 :アルミニウム 厚さ0.3mm
絶縁基板:なし

(具体例9)
半導体 :Yb0.15Co4Sb12
広さ1.5mm×1.5mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :Fe−Ni−Co系合金(コバール) 厚さ0.3mm
絶縁基板:なし

(具体例10)
半導体 :Yb0.15Co4Sb12
広さ1.5mm×1.5mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :銅 厚さ0.3mm
絶縁基板:窒化アルミニウム 厚さ0.5mm

(具体例11)
半導体 :Yb0.15Co4Sb12
広さ1.5mm×1.5mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :アルミニウム 厚さ0.3mm
絶縁基板:窒化アルミニウム 厚さ0.5mm

(具体例12)
半導体 :Yb0.15Co4Sb12
広さ1.5mm×1.5mm 厚さ10mm
バリア層:アルミニウム 厚さ0.1mm
電極 :アルミニウム 厚さ0.3mm
絶縁基板:なし

(具体例13)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:銅 厚さ0.1mm
電極 :Fe−Ni−Co系合金 厚さ0.3mm
絶縁基板:なし

(具体例14)
半導体 :Yb0.15Co4Sb12
広さ4mm×4mm 厚さ10mm
バリア層:チタン 厚さ0.1mm
電極 :Fe−Ni−Co系合金 厚さ0.3mm
絶縁基板:なし

前記具体例5〜8は具体例1〜4におけるバリア層の厚さを0.1mmから0.3mmに変更したものである。前記具体例9〜12は具体例1〜4における半導体の広さを4mm×4mmから1.5mm×1.5mmに、すなわち接合面積を変更したものである。前記具体例13は具体例1におけるバリア層をアルミニウムから銅に変更したもの、前記具体例14は具体例1におけるバリア層をアルミニウムからチタンに変更したものである。
Next, specific examples of each member constituting the thermoelectric conversion module will be shown.

(Specific example 1)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Fe-Ni-Co alloy (Kovar) Thickness 0.3mm
Insulation board: None

(Specific example 2)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Copper thickness 0.3mm
Insulating substrate: Aluminum nitride thickness 0.5mm

(Specific example 3)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Aluminum thickness 0.3mm
Insulating substrate: Aluminum nitride thickness 0.5mm

(Specific example 4)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Aluminum thickness 0.3mm
Insulation board: None

(Specific example 5)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.3mm
Electrode: Fe-Ni-Co alloy (Kovar) Thickness 0.3mm
Insulation board: None

(Specific example 6)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.3mm
Electrode: Copper thickness 0.3mm
Insulating substrate: Aluminum nitride thickness 0.5mm

(Specific example 7)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.3mm
Electrode: Aluminum thickness 0.3mm
Insulating substrate: Aluminum nitride thickness 0.5mm

(Specific example 8)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Aluminum thickness 0.3mm
Electrode: Aluminum thickness 0.3mm
Insulation board: None

(Specific example 9)
Semiconductor: Yb 0.15 Co 4 Sb 12
Width 1.5mm × 1.5mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Fe-Ni-Co alloy (Kovar) Thickness 0.3mm
Insulation board: None

(Specific Example 10)
Semiconductor: Yb 0.15 Co 4 Sb 12
Width 1.5mm × 1.5mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Copper thickness 0.3mm
Insulating substrate: Aluminum nitride thickness 0.5mm

(Specific example 11)
Semiconductor: Yb 0.15 Co 4 Sb 12
Width 1.5mm × 1.5mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Aluminum thickness 0.3mm
Insulating substrate: Aluminum nitride thickness 0.5mm

(Specific example 12)
Semiconductor: Yb 0.15 Co 4 Sb 12
Width 1.5mm × 1.5mm thickness 10mm
Barrier layer: Aluminum thickness 0.1mm
Electrode: Aluminum thickness 0.3mm
Insulation board: None

(Specific example 13)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Copper thickness 0.1mm
Electrode: Fe-Ni-Co alloy Thickness 0.3mm
Insulation board: None

(Specific example 14)
Semiconductor: Yb 0.15 Co 4 Sb 12
4mm × 4mm thickness 10mm
Barrier layer: Titanium thickness 0.1mm
Electrode: Fe-Ni-Co alloy Thickness 0.3mm
Insulation board: None

In the specific examples 5 to 8, the thickness of the barrier layer in the specific examples 1 to 4 is changed from 0.1 mm to 0.3 mm. In the specific examples 9 to 12, the semiconductor area in the specific examples 1 to 4 is changed from 4 mm × 4 mm to 1.5 mm × 1.5 mm, that is, the junction area is changed. In the specific example 13, the barrier layer in the specific example 1 is changed from aluminum to copper, and in the specific example 14, the barrier layer in the specific example 1 is changed from aluminum to titanium.


各具体例で用いられた部材の線膨張率は下記の通りである。

Co−Sb系半導体 :6〜13×10−6/K
アルミニウム :23.5×10−6/K
Fe−Ni−Co系合金: 5×10−6/K
銅 : 17×10−6/K
チタン : 8.6×10−6/K
窒化アルミニウム : 4.4×10−6/K


前記各具体例の熱電変換モジュールにおける半導体層とバリア層の間の接合面と平行な方向の内部応力を相対的に求めた結果と、その結果に基づく評価を下記に示す。なお、高温側を約430℃、低温側を約30℃にした条件で内部応力を求め、また◎印の評価は応力が小さくて優秀、〇印の評価は応力が比較的小さくて良好、×印の評価は応力が大きくて不良を示している。

The linear expansion coefficient of the member used in each specific example is as follows.

Co-Sb semiconductor: 6 to 13 × 10 −6 / K
Aluminum: 23.5 × 10 −6 / K
Fe-Ni-Co alloy: 5 × 10 −6 / K
Copper: 17 × 10 −6 / K
Titanium: 8.6 × 10 −6 / K
Aluminum nitride: 4.4 × 10 −6 / K


The results obtained by relatively obtaining the internal stress in the direction parallel to the bonding surface between the semiconductor layer and the barrier layer in the thermoelectric conversion modules of the specific examples and the evaluation based on the results are shown below. The internal stress was obtained under the condition of about 430 ° C. on the high temperature side and about 30 ° C. on the low temperature side, and the evaluation of ◎ is excellent because the stress is small, and the evaluation of ◯ is good because the stress is relatively small. The evaluation of the mark shows a failure due to a large stress.


内部応力(相対値) 評 価
具体例1 1.1 ◎
具体例2 2.1 〇
具体例3 2.4 〇
具体例4 3.2 ×

具体例5 2.3 ◎
具体例6 2.5 〇
具体例7 2.7 〇
具体例8 3.5 ×

具体例9 1.2 ◎
具体例10 2.1 〇
具体例11 2.5 〇
具体例12 3.1 ×

具体例13 1.0 ◎
具体例14 0.2 ◎

この結果から明らかなように、具体例1,5,9,13,14は、モジュール最外層に線膨張率が比較的小さいFe−Ni−Co系合金からなる電極(線膨張率:5×10−6/K)が接合されている。また、具体例2,3,6,7,10,11は、最外層に線膨張率が比較的小さい窒化アルミニウムからなる絶縁基板(線膨張率:4.4×10−6/K)が接合されている。従ってモジュール最外層とCo−Sb系半導体層(線膨張率:6〜13×10−6/K)との線膨張率の差は1.6〜8.6×10−6/Kで、9×10−6/K以下に抑えられている。そのためこれらの具体例において、評価結果は◎または〇である。

Internal stress (relative value) Evaluation Example 1 1.1 ◎
Specific Example 2 2.1 ○ Specific Example 3 2.4 ○ Specific Example 4 3.2 ×

Specific Example 5 2.3 ◎
Specific Example 6 2.5 ○ Specific Example 7 2.7 ○ Specific Example 8 3.5 ×

Example 9 1.2 ◎
Specific Example 10 2.1 ○ Specific Example 11 2.5 ○ Specific Example 12 3.1 ×

Specific Example 13 1.0
Example 14 0.2 ◎

As is apparent from this result, the specific examples 1, 5, 9, 13, and 14 are electrodes (linear expansion coefficient: 5 × 10 6) made of an Fe—Ni—Co alloy having a relatively small linear expansion coefficient in the outermost layer of the module. -6 / K) is joined. In specific examples 2, 3, 6, 7, 10, and 11, an insulating substrate (linear expansion coefficient: 4.4 × 10 −6 / K) made of aluminum nitride having a relatively small linear expansion coefficient is bonded to the outermost layer. Has been. Therefore, the difference in linear expansion coefficient between the module outermost layer and the Co—Sb based semiconductor layer (linear expansion coefficient: 6 to 13 × 10 −6 / K) is 1.6 to 8.6 × 10 −6 / K. × 10 −6 / K or less Therefore, in these specific examples, the evaluation result is “◎” or “◯”.

これら本発明に係る熱電変換モジュールは、積層方向に沿って(絶縁基板)−電極−バリア層−半導体層−バリア層−電極−(絶縁基板)の順に一体に接合されている。そしてこの構造体においてバリア層が、半導体層ならびに最外層にあたる電極あるいは絶縁基板よりも線膨張率が大きくなっている。そのためバリア層が半導体層と電極(絶縁基板)の間での応力緩和層として機能していることと、半導体層と電極(絶縁基板)の線膨張率の差が9×10−6/K以下に抑えられていることから、前述のように内部応力の発生が少ないと推測される。 These thermoelectric conversion modules according to the present invention are integrally joined in the order of (insulating substrate) -electrode-barrier layer-semiconductor layer-barrier layer-electrode- (insulating substrate) along the stacking direction. In this structure, the barrier layer has a higher coefficient of linear expansion than the semiconductor layer and the outermost electrode or insulating substrate. Therefore, the barrier layer functions as a stress relaxation layer between the semiconductor layer and the electrode (insulating substrate), and the difference in coefficient of linear expansion between the semiconductor layer and the electrode (insulating substrate) is 9 × 10 −6 / K or less. Therefore, it is estimated that the generation of internal stress is small as described above.

これに対して具体例4,8,12は、モジュール最外層に線膨張率が比較的大きいアルミニウムからなる電極(線膨張率:23.5×10−6/K)が接合されている。そのため半導体層とバリア層の間の接合面と平行な方向の内部応力が3.1 以上あり、評価結果は×である。この具体例4,8,12は図4に示す従来例とほぼ同様であるから、図4に示す従来例においても半導体層とバリア層の間に大きな応力が発生するものと推測される。 On the other hand, in specific examples 4, 8, and 12, an electrode (linear expansion coefficient: 23.5 × 10 −6 / K) made of aluminum having a relatively large linear expansion coefficient is joined to the outermost layer of the module. Therefore, the internal stress in the direction parallel to the bonding surface between the semiconductor layer and the barrier layer is 3.1 or more, and the evaluation result is x. Since these specific examples 4, 8, and 12 are almost the same as the conventional example shown in FIG. 4, it is presumed that a large stress is generated between the semiconductor layer and the barrier layer also in the conventional example shown in FIG.

前記実施形態では半導体としてYb−Co−Sb系を用いたが、その他Co−Sbをベースとしたフィルド型Co−Sb系材料として、例えば
CoSb3
YbCo4Sb12(x=0.05〜0.3)
YbFeCo4−ySb12(x=0.5〜1)(y=3〜1.5)
CeFeCo4−ySb12(z=0.5〜1)(y=3〜1.5)
またSbを含むフィルド型スクッテルダイト(skutterudite)材料、例えば
YbFeNi4−ySb12(x=0.5〜1)(y=3〜1.5)
などが用いられる。
In the above embodiment, the Yb—Co—Sb system is used as the semiconductor. However, as other Co—Sb based filled Co—Sb system materials, for example, CoSb 3
Yb x Co 4 Sb 12 (x = 0.05 to 0.3)
Yb x Fe y Co 4-y Sb 12 (x = 0.5~1) (y = 3~1.5)
Ce z Fe y Co 4-y Sb 12 (z = 0.5~1) (y = 3~1.5)
Also, a filled skutterudite material containing Sb, for example, Yb x Fe y Ni 4 -y Sb 12 (x = 0.5 to 1) (y = 3 to 1.5)
Etc. are used.

前記実施形態ではモジュール最外層として設置する電極としてFe−Ni−Co系合金(コバール)を用いたが、その他Cuの含有率が20〜30重量%のW−Cu合金(線膨張率:6〜10×10−6/K)などが用いられる。 In the embodiment, an Fe—Ni—Co alloy (Kovar) was used as an electrode to be installed as the outermost layer of the module, but other W—Cu alloys having a Cu content of 20 to 30 wt% (linear expansion coefficient: 6 to 10 × 10 −6 / K) or the like is used.

前記実施形態ではモジュール最外層として設置する絶縁基板として窒化アルミニウムを用いたが、その他窒化ケイ素(線膨張率:3.4×10−6/K)、炭化ケイ素(線膨張率:4.7×10−6/K)、酸化アルミニウム(線膨張率:7×10−6/K)などが用いられる。 In the above embodiment, aluminum nitride is used as an insulating substrate to be installed as the outermost layer of the module, but other silicon nitride (linear expansion coefficient: 3.4 × 10 −6 / K), silicon carbide (linear expansion coefficient: 4.7 ×). 10 −6 / K), aluminum oxide (linear expansion coefficient: 7 × 10 −6 / K), or the like is used.

また半導体層としてFe−Si系材料、Mg−Si系材料、Mn−Si系材料、Pb−Te系材料なども前述の条件が満足できれば適用可能である。   In addition, an Fe—Si based material, an Mg—Si based material, an Mn—Si based material, a Pb—Te based material, or the like can be used as the semiconductor layer as long as the above conditions are satisfied.

本発明の第1実施形態に係る熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module which concerns on 3rd Embodiment of this invention. 従来提案された熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module proposed conventionally.

符号の説明Explanation of symbols

1:半導体燒結層、2:バリア層、3:電極接合材層、4:電極、5:絶縁基板。   1: Semiconductor sintered layer, 2: Barrier layer, 3: Electrode bonding material layer, 4: Electrode, 5: Insulating substrate.

Claims (2)

半導体層と、その半導体層の外側面に一体に接合されて前記半導体層と電極接合材層との反応を抑制するバリア層と、そのバリア層の外側面に電極接合材層を介して一体に接合された電極とを有する熱電変換モジュールにおいて、
前記バリア層は前記半導体層ならびに電極よりも線膨張率が大きく、かつ、前記半導体層と電極の線膨張率の差が9×10−6/K以下に規制されていることを特徴とする熱電変換モジュール。
A semiconductor layer, a barrier layer that is integrally bonded to the outer surface of the semiconductor layer and suppresses a reaction between the semiconductor layer and the electrode bonding material layer, and an outer surface of the barrier layer that is integrated with the electrode bonding material layer In a thermoelectric conversion module having bonded electrodes,
The barrier layer has a larger linear expansion coefficient than the semiconductor layer and the electrode, and a difference in linear expansion coefficient between the semiconductor layer and the electrode is regulated to 9 × 10 −6 / K or less. Conversion module.
半導体層と、その半導体層の外側面に一体に接合されて前記半導体層と電極接合材層との反応を抑制するバリア層と、そのバリア層の外側面に電極接合材層を介して一体に接合された電極と、その電極の外側面に一体に接合された絶縁基板とを有する熱電変換モジュールにおいて、
前記バリア層は前記半導体層ならびに絶縁基板よりも線膨張率が大きく、かつ、前記半導体層と絶縁基板の線膨張率の差が9×10−6/K以下に規制されていることを特徴とする熱電変換モジュール。
A semiconductor layer, a barrier layer that is integrally bonded to the outer surface of the semiconductor layer and suppresses a reaction between the semiconductor layer and the electrode bonding material layer, and an outer surface of the barrier layer that is integrated with the electrode bonding material layer In a thermoelectric conversion module having a bonded electrode and an insulating substrate integrally bonded to the outer surface of the electrode,
The barrier layer has a larger linear expansion coefficient than the semiconductor layer and the insulating substrate, and a difference in linear expansion coefficient between the semiconductor layer and the insulating substrate is regulated to 9 × 10 −6 / K or less. Thermoelectric conversion module.
JP2004208717A 2004-07-15 2004-07-15 Thermoelectric conversion module Pending JP2006032620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208717A JP2006032620A (en) 2004-07-15 2004-07-15 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208717A JP2006032620A (en) 2004-07-15 2004-07-15 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2006032620A true JP2006032620A (en) 2006-02-02

Family

ID=35898599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208717A Pending JP2006032620A (en) 2004-07-15 2004-07-15 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2006032620A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007825A (en) * 2006-06-29 2008-01-17 Furukawa Co Ltd Yb-Fe-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
JP2013048234A (en) * 2011-08-10 2013-03-07 Vacuumschmelze Gmbh & Co Kg Thermoelectric module and method for producing thermoelectric module
EP2784834A4 (en) * 2011-11-22 2015-07-01 Furukawa Co Ltd Thermoelectric conversion module
JP2015518650A (en) * 2012-03-29 2015-07-02 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Production of powder metallurgy of thermoelectric elements
CN109742224A (en) * 2018-11-21 2019-05-10 深圳大学 A kind of thermoelectric element and preparation method thereof and thermo-electric device
CN112670395A (en) * 2020-12-27 2021-04-16 同济大学 Germanium telluride based thermoelectric single-leg device with high conversion efficiency and power density and preparation thereof
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components
RU2781929C1 (en) * 2022-04-18 2022-10-21 Общество с ограниченной ответственностью "Компания РМТ" (ООО "РМТ") Thermoelectric module manufacturing method and thermoelectric module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091649A (en) * 1998-09-14 2000-03-31 Ngk Insulators Ltd Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091649A (en) * 1998-09-14 2000-03-31 Ngk Insulators Ltd Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007825A (en) * 2006-06-29 2008-01-17 Furukawa Co Ltd Yb-Fe-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
JP2013048234A (en) * 2011-08-10 2013-03-07 Vacuumschmelze Gmbh & Co Kg Thermoelectric module and method for producing thermoelectric module
EP2784834A4 (en) * 2011-11-22 2015-07-01 Furukawa Co Ltd Thermoelectric conversion module
US9337409B2 (en) 2011-11-22 2016-05-10 Furukawa Co., Ltd. Thermoelectric conversion module
JP2015518650A (en) * 2012-03-29 2015-07-02 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Production of powder metallurgy of thermoelectric elements
KR101808379B1 (en) * 2012-03-29 2017-12-12 에보니크 데구사 게엠베하 Powder metallurgical production of a thermoelectric component
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components
CN109742224A (en) * 2018-11-21 2019-05-10 深圳大学 A kind of thermoelectric element and preparation method thereof and thermo-electric device
CN112670395A (en) * 2020-12-27 2021-04-16 同济大学 Germanium telluride based thermoelectric single-leg device with high conversion efficiency and power density and preparation thereof
RU2781929C1 (en) * 2022-04-18 2022-10-21 Общество с ограниченной ответственностью "Компания РМТ" (ООО "РМТ") Thermoelectric module manufacturing method and thermoelectric module

Similar Documents

Publication Publication Date Title
JPS6038867B2 (en) Isolated semiconductor device
US20180053737A1 (en) Power semiconductor device
TWI525812B (en) Power semiconductor device and manufacturing method thereof
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP4893096B2 (en) Circuit board and semiconductor module using the same
JP2013522861A (en) Thermoelectric conversion element and manufacturing method thereof
JP4699822B2 (en) Manufacturing method of semiconductor module
JP5463204B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP6440903B2 (en) Semiconductor device and manufacturing method thereof
JP2006032620A (en) Thermoelectric conversion module
WO2018061711A1 (en) Semiconductor device and manufacturing method
JPH06342940A (en) Thermoelectric generator and manufacture thereof
EP2660888A1 (en) Thermoelectric conversion member
CN109478543B (en) Semiconductor device with a plurality of semiconductor chips
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JP2010073908A (en) Semiconductor apparatus and method of manufacturing the same
WO2003069743A1 (en) Sub-mount and semiconductor device
JPH11354687A (en) Semiconductor device
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
JP2004235367A (en) Thermoelectric module
JP2005294538A (en) Thermoelectric element, manufacturing method thereof and thermoelectric module
JP6516067B2 (en) Semiconductor device
CN108369912B (en) Semiconductor device and method for manufacturing the same
JP3935062B2 (en) Thermoelectric module
JPH1140583A (en) Alloy for soldering and solder bonding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608