JP2006029448A - Vacuum heat insulating panel, and refrigerator using the same - Google Patents

Vacuum heat insulating panel, and refrigerator using the same Download PDF

Info

Publication number
JP2006029448A
JP2006029448A JP2004209180A JP2004209180A JP2006029448A JP 2006029448 A JP2006029448 A JP 2006029448A JP 2004209180 A JP2004209180 A JP 2004209180A JP 2004209180 A JP2004209180 A JP 2004209180A JP 2006029448 A JP2006029448 A JP 2006029448A
Authority
JP
Japan
Prior art keywords
vacuum heat
gas barrier
heat insulation
barrier container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004209180A
Other languages
Japanese (ja)
Inventor
Takaaki Yoshida
隆明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Marketing Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2004209180A priority Critical patent/JP2006029448A/en
Publication of JP2006029448A publication Critical patent/JP2006029448A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating panel and a refrigerator using the same, which is hardly fractured and superior in stability with lapse of time by preventing remarkable deterioration of durability of a barrier container caused by damage of a film surface caused by impact when a vacuum heat insulating panel is rubbed or touched from the external in its manufacturing process. <P>SOLUTION: In this vacuum heat insulating panel 1 formed by storing a core material 2 in the gas barrier container 3, and evacuating the inside of the gas barrier container to form a panel body, the gas barrier container is formed of a resin film on which an aluminum deposition film or an aluminum foil is laminated, and a barrier resin layer 7 against the external force is formed on a surface of an exterior material of the gas barrier container. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐久性を改善した真空断熱パネル、およびこの真空断熱パネルを用いた冷蔵庫に関する。   The present invention relates to a vacuum heat insulation panel with improved durability and a refrigerator using this vacuum heat insulation panel.

従来、冷蔵庫における断熱キャビネットの断熱材としては、熱伝導率が低く、発泡充填によりキャビネットを構成する外箱や内箱と一体化して剛体となるポリウレタンフォームを使用することが主流であったが、近年、冷蔵庫キャビネットの断熱性能をさらに向上させて熱漏洩を防ぐことで消費電力量を低減させたり、あるいは断熱壁厚を薄くして冷蔵庫としての容積効率の向上をはかるため、断熱材としての真空断熱パネルが一部で実用化されている。   Conventionally, as a heat insulating material for a heat-insulating cabinet in a refrigerator, it has been a mainstream to use a polyurethane foam that has a low thermal conductivity and is integrated with an outer box and an inner box that form a cabinet by foam filling and becomes a rigid body. In recent years, vacuum as a heat insulator has been used to further improve the heat insulation performance of refrigerator cabinets and reduce power consumption by preventing heat leakage, or by reducing the heat insulation wall thickness to improve volume efficiency as a refrigerator. Some insulation panels have been put to practical use.

冷蔵庫への採用例として、図5に基本構成を示す真空断熱パネル(51)は、材料コストを抑え、排気や真空度の維持を容易にして長期信頼性を得るため、1〜数100Pa程度の比較的高い内部圧力で機能させるため、微小空間を形成して大気圧下で形態を保持することができる連通気泡構造の樹脂フォームや無機質の微粉末、繊維をコア材(52)に用いて、このコア材(52)を合成樹脂とアルミニウム箔とのラミネートフィルム製のガスバリア容器(53)で覆い、容器(53)内を真空引きした後、開口をヒートシール(56)して密封した構成である。   As an example of application to a refrigerator, the vacuum heat insulation panel (51) having a basic configuration shown in FIG. 5 has a material cost of about 1 to several hundreds of Pa in order to obtain long-term reliability by facilitating maintenance of exhaust and vacuum. In order to function at a relatively high internal pressure, a resin foam with a cell structure that can form a minute space and maintain its form under atmospheric pressure, inorganic fine powder, and fiber are used as the core material (52). The core material (52) is covered with a gas barrier container (53) made of a laminate film of synthetic resin and aluminum foil, the inside of the container (53) is evacuated, and then the opening is heat sealed (56) to be sealed. is there.

また、コア材(52)から発生するアウトガス、およびガスバリア容器(53)のシール面や表面から内部に侵入する透過ガス等による内圧上昇に起因する経時劣化を抑えて真空度を維持するために、チタン、マグネシウム等の金属、バリウム・リチウム等の合金、酸化コバルト、酸化カルシウム、ゼオライト等の酸化物、活性炭等であって、水分、酸素、窒素等の空気成分、水素等のガスを吸着する物質からなるゲッター剤(57)を封入するのが一般的である。   In order to maintain the degree of vacuum by suppressing deterioration over time due to the outgas generated from the core material (52) and the internal pressure increase due to the permeated gas entering from the sealing surface and surface of the gas barrier container (53), Metals such as titanium and magnesium, alloys such as barium / lithium, oxides such as cobalt oxide, calcium oxide, and zeolite, activated carbon, etc., and substances that adsorb air, moisture, oxygen, nitrogen and other gases, and gases such as hydrogen In general, a getter agent (57) comprising:

断熱性能については、図6に示すように、パーライト等無機質の微粉末をコア材としたものは、微粉末固体自体の熱伝導が大きく断熱のための空間容積が少ないことから、また、連続気泡の樹脂フォームをコア材としたものは、気泡セルの大きさに強度的限界があるため、真空断熱パネルとしての熱伝導率は、0.005〜0.006W/mK程度が限界である。そして、それ以下の熱伝導率を得るものとしては、繊維径が数μm以下のグラスウールをコア材として小空間を多数形成し、0.002W/mK程度の低い熱伝導率を実現することが可能となっており、例えば、特許文献1には、結合体により平板状に形成した無機繊維集合体をコア材とした真空断熱パネルを、冷蔵庫における機械室と庫内の仕切り部に設けた構成が示されている。
特開2003−314951号公報
As for the heat insulation performance, as shown in FIG. 6, a material using inorganic fine powder such as pearlite as a core material has a large heat conduction of the fine powder solid itself and a small space volume for heat insulation. In the case where the resin foam is used as the core material, the size of the bubble cell has a strength limit, so the thermal conductivity of the vacuum heat insulating panel is about 0.005 to 0.006 W / mK. And to obtain a thermal conductivity of less than that, it is possible to realize a low thermal conductivity of about 0.002 W / mK by forming many small spaces with glass wool having a fiber diameter of several μm or less as a core material. For example, Patent Document 1 has a configuration in which a vacuum heat insulation panel having a core material made of an inorganic fiber aggregate formed in a flat plate shape by a bonded body is provided in a machine room and a partition in a refrigerator. It is shown.
JP 2003-314951 A

しかしながら、これら真空断熱パネルの配設構造は、前述したように、平板状の真空パネル(51)と注入発泡させたウレタンフォームとの複合構造であり、冷蔵庫本体の外箱内面における側面や背面、天井面や扉等の平面部分への配設は比較的容易であるが、その他の部分、例えば、機械室を形成している底板部等は凹凸が大きく形状が複雑であり、真空断熱パネルを折り曲げたり曲面に沿わせて変形させる必要があるため、パネルへの機械的ダメージが大きく、リークの原因になっていた。   However, the arrangement structure of these vacuum heat insulation panels, as described above, is a composite structure of a flat vacuum panel (51) and urethane foam that has been injected and foamed. Arrangement on flat surfaces such as ceilings and doors is relatively easy, but other parts such as the bottom plate forming the machine room have large irregularities and complicated shapes. Since it is necessary to bend or deform along the curved surface, mechanical damage to the panel is large, causing leakage.

また、真空パネルの製造過程においては、真空引き後の後加工や冷蔵庫本体への組み込みのための搬送で擦れや当接などの外的ダメージを受けることが多く、ガスバリア容器(53)にクラックが発生した際には、傷がガスバリア容器の内外層を貫通してリークし、冷蔵庫としての断熱性能が極端に劣化する不具合があり、パネルの破損によるリークを防ぐために、配設面の形状に合わせてパネルを小分割して用いると、小形化したパネル端面からのヒートブリッジによる熱リークの影響が大きくなり、冷蔵庫全体としての断熱効果が目減りしてしまう問題があった。   In the process of manufacturing a vacuum panel, external damage such as rubbing and contact is often caused by post-evacuation post-processing and transportation for incorporation into the refrigerator body, and the gas barrier container (53) is cracked. When this occurs, there is a problem that the scratch leaks through the inner and outer layers of the gas barrier container and the heat insulation performance of the refrigerator is extremely deteriorated. When the panel is divided into small parts, the influence of heat leakage due to the heat bridge from the downsized panel end face becomes large, and there is a problem that the heat insulation effect as the whole refrigerator is reduced.

本発明は上記点を考慮してなされたものであり、真空断熱パネルの製造過程における外方からの擦れや当たりによる衝撃でフィルム表面が傷つき、バリア容器の耐久性能が大きく劣化することを防止して、破損しにくく経時安定性に優れた真空断熱パネル、およびこの真空断熱パネルを用いた冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above points, and prevents the film surface from being damaged due to external rubbing or impact from the impact in the manufacturing process of a vacuum thermal insulation panel, thereby preventing the durability performance of the barrier container from greatly deteriorating. An object of the present invention is to provide a vacuum heat insulation panel that is not easily damaged and has excellent temporal stability, and a refrigerator that uses this vacuum heat insulation panel.

上記課題を解決するために、本発明の真空断熱パネルは、コア材をガスバリア容器内に収納し、内部を真空排気してパネル体とするとともに、ガスバリア容器をアルミ蒸着フィルム、あるいはアルミ箔などをラミネートした樹脂フィルムで形成し、このガスバリア容器の外装材の表面に外力に対するバリア樹脂層を設けたことを特徴とするものであり、また前記真空断熱パネルを断熱壁中の外箱あるいは内箱面に貼り付け、残余の空間にポリウレタンフォームを発泡充填して前記真空断熱パネルを埋設した冷蔵庫を特徴とするものである。   In order to solve the above-mentioned problems, the vacuum heat insulation panel of the present invention contains a core material in a gas barrier container, evacuates the inside to form a panel body, and the gas barrier container is made of an aluminum vapor deposition film or aluminum foil. It is formed of a laminated resin film, and is characterized in that a barrier resin layer against external force is provided on the surface of the exterior material of the gas barrier container, and the vacuum heat insulating panel is an outer box or inner box surface in a heat insulating wall The refrigerator is characterized in that the vacuum insulation panel is embedded by foaming and filling polyurethane foam in the remaining space.

本発明の構成によれば、真空断熱パネルの製造過程や冷蔵庫本体への組み込み時に、擦れや当接などの外的ダメージを受けてガスバリア容器にクラックが発生した際にも、塗布された樹脂層によって破損しにくく、傷がガスバリア容器の内外層を貫通することを防止でき、リークによる極端な性能劣化を防いで耐久性を向上し、真空断熱パネル製造工程における不良率を大幅に改善して、製造コストを低減できる。   According to the configuration of the present invention, the resin layer applied even when a crack is generated in the gas barrier container due to external damage such as rubbing or contact during the manufacturing process of the vacuum heat insulating panel or incorporation into the refrigerator main body. It is hard to break by, can prevent scratches from penetrating the inner and outer layers of the gas barrier container, prevent extreme performance deterioration due to leakage, improve durability, greatly improve the defective rate in the vacuum insulation panel manufacturing process, Manufacturing cost can be reduced.

さらに、冷蔵庫としての生産性向上とともに断熱性能と経時安定性を長期に亙って保持し、信頼性を高めることができる。   Furthermore, it is possible to improve reliability as a refrigerator and maintain heat insulation performance and stability over time for a long period of time, thereby improving reliability.

以下、図面に基づき本発明の1実施形態について説明する。図3は本発明に係る冷蔵庫の概略断面図であり、本体の外形を形成する薄鋼板からなる外箱(9)と貯蔵室を形成する内箱(10)との間に断熱空間を設けて冷蔵庫本体(8)を構成している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic cross-sectional view of the refrigerator according to the present invention, in which a heat insulating space is provided between an outer box (9) made of a thin steel plate forming the outer shape of the main body and an inner box (10) forming a storage chamber. The refrigerator main body (8) is comprised.

前記断熱空間を形成する外箱(9)の両側面、背面および天井面の内面には、断熱体として詳細を後述する真空断熱パネル(1)を貼り付けており、残余の内箱(10)との間隙には、ポリウレタンフォームからなる発泡断熱材(11)の原液を注入し、発泡充填して前記内外箱(9)(10)と真空断熱パネル(1)とを一体に接着固化することで剛性のある断熱キャビネットを形成している。   A vacuum heat insulation panel (1), which will be described in detail later, is pasted on both side surfaces, the back surface and the inner surface of the ceiling surface of the outer box (9) forming the heat insulation space, and the remaining inner box (10) A stock solution of foam insulation material (11) made of polyurethane foam is injected into the gap between the inner and outer boxes (9), (10) and the vacuum insulation panel (1) to be bonded and solidified integrally. And form a rigid heat insulation cabinet.

前記真空断熱パネル(1)は、図1およびパネルの真空引き装置(4)を示す図2に示すように、細いガラス繊維の綿状物であるグラスウールをコア材(2)とし、これをマット状に形成するとともに、このコア材(2)を、詳細を後述するガスバリア容器(3)に挿入したものであり、コア材の挿入後に、容器(3)をベース(5a)上に配置した真空チャンバー(5)内に設けたステージ(5b)上に設置し、真空ポンプ(5c)によって0.03〜30Pa程度で真空排気した後、容器の開口を20〜50mmの綴じ代を設けて閉塞し、綴じ代の10mm幅に亙ってヒートシール(6)することで、容器(3)内部を真空減圧状態に保持したパネル状に形成する。   As shown in FIG. 1 and FIG. 2 showing the panel vacuuming device (4), the vacuum heat insulating panel (1) is made of glass wool, which is a cotton-like material of thin glass fibers, as a core material (2). The core material (2) is inserted into a gas barrier container (3), the details of which will be described later, and the container (3) is placed on the base (5a) after the core material is inserted. Installed on the stage (5b) provided in the chamber (5) and evacuated to about 0.03-30 Pa by the vacuum pump (5c), and then closed the opening of the container with a binding margin of 20-50 mm. Then, by heat-sealing (6) over the 10 mm width of the binding margin, the inside of the container (3) is formed into a panel shape maintained in a vacuum and reduced pressure state.

その後真空チャンバー(5)内を大気圧に開放することによる気圧差によってコア材(2)はさらに2分の1程度に圧縮され、最終的に厚みを10〜12mmにした真空断熱パネル(1)が形成されるものであり、真空断熱パネル(1)は、ヒンジ部(5d)を支軸としてチャンバー外套(5e)を上方の矢印方向に回動させ、同様に上下するヒートシールバー(5f)の開放させた開口から摺動して取り出される。   Thereafter, the core material (2) is further compressed to about one half by the pressure difference caused by opening the vacuum chamber (5) to atmospheric pressure, and finally the vacuum heat insulating panel (1) having a thickness of 10 to 12 mm. The vacuum heat insulation panel (1) has a heat seal bar (5f) that moves up and down in the same manner by rotating the chamber mantle (5e) in the upward arrow direction with the hinge (5d) as a support shaft. It is slid out from the opened opening.

グラスウールのコア材(2)は、繊維径については、一般に真空断熱パネルとしての断熱性能が良好とされる10μm以下のものを選択するが、本実施例では2〜6μm径のものを採用し、繊維長については、50mm以上の長い繊維体も混入したが、10mm程度の短繊維を主体としてさらにニードリング加工を施している。   The core material (2) of glass wool is selected to have a fiber diameter of 10 μm or less, which is generally considered to have good heat insulation performance as a vacuum heat insulation panel, but in this example, a fiber having a diameter of 2 to 6 μm is adopted. As for the fiber length, a long fiber body of 50 mm or more was also mixed, but a needling process was performed mainly using a short fiber of about 10 mm.

そして、前記繊維径と繊維長により、グラスウール繊維のランダム配向は維持され、ニードリング加工により繊維が厚み方向で絡まり合うことで、厚み方向の熱伝導率が低くなって断熱効果が大きくなり、原綿状態で50mmの厚みのものが10〜20mm程度の厚みに圧縮されて表面も平滑になり、さらにマットとして弾力や粘りのある、いわゆる腰の強いマット状コア材(2)を得ることができる。   And the random orientation of the glass wool fiber is maintained by the fiber diameter and the fiber length, and the fibers are entangled in the thickness direction by needling processing, so that the thermal conductivity in the thickness direction is lowered and the heat insulation effect is increased, and the raw cotton In the state, a 50 mm thick material is compressed to a thickness of about 10 to 20 mm, the surface becomes smooth, and a so-called firm core material (2) having elasticity and stickiness can be obtained.

上記のように形成したマット状コア材(2)は、所定の大きさに切断され、あるいは最終的に必要な厚みになるよう適宜マットを重ねた上で、前記ガスバリア容器(3)に挿入されるものである。   The mat-shaped core material (2) formed as described above is inserted into the gas barrier container (3) after being cut into a predetermined size or appropriately overlaid with a mat so as to finally have a required thickness. Is.

次に、マット状コア材(2)を収納するガスバリア容器(3)について説明する。図4に示すように、ガスバリア容器(3)は、例えば、25μm厚のナイロン樹脂(3a)と12μm厚のPET(ポリエチレン‐テレフタラート)樹脂上にアルミニウムを蒸着させたもの、あるいはアルミ箔をラミネートした樹脂フィルム(3b)からなり、外箱(9)の内面側に貼り付けるように、所定の幅や長さ、厚み寸法からなる平板の袋状に形成されており、長さ方向の少なくとも一端を開口させて前記マット状コア材(2)を挿入し収納するようにしている。   Next, the gas barrier container (3) that houses the mat-shaped core material (2) will be described. As shown in FIG. 4, the gas barrier container (3) is, for example, a 25 μm thick nylon resin (3a) and a 12 μm thick PET (polyethylene-terephthalate) resin deposited with aluminum, or an aluminum foil laminated. It is made of a resin film (3b) and is formed in a flat bag shape having a predetermined width, length, and thickness so as to be attached to the inner surface of the outer box (9). At least one end in the length direction is The mat-shaped core material (2) is inserted and stored so as to be opened.

バリア容器(3)の開口は真空排気後閉塞され、ヒートシール(6)することで真空断熱パネル(1)が形成されるが、前記ヒートシール部は、ガスバリア容器(3)の開口の閉塞部を重ね合わせた状態でヒートシールし、さらにパネル(1)の端面側に折り畳んで固定するようにしてもよい。   The opening of the barrier container (3) is closed after evacuation and heat-sealed (6) to form the vacuum heat insulating panel (1). The heat-sealed part is a closed part of the opening of the gas barrier container (3). May be heat-sealed in a state of being overlapped, and further folded and fixed to the end face side of the panel (1).

しかして、本発明では、パネル形成後の製造過程における前記真空断熱パネル(1)のガスバリア容器(3)の擦れや当接などの外的ダメージを受けやすい部分、例えば、平板状の容器(3)のコーナー部にEVOH(エチレンビニルアルコール共重合体)と無機系材料とを混成させたコート剤をスプレーなどの方法で所定の厚み、例えば50μm厚に塗布してバリア樹脂層(7)を形成している。   Thus, in the present invention, a portion of the vacuum heat insulating panel (1) that is susceptible to external damage such as rubbing or contact of the gas barrier container (3) in the manufacturing process after panel formation, for example, a flat container (3 The barrier resin layer (7) is formed by applying a coating agent in which EVOH (ethylene vinyl alcohol copolymer) and an inorganic material are mixed to a predetermined thickness, for example, 50 μm, by a method such as spraying. is doing.

このバリア樹脂層(7)は、少なくとも前記コーナー部に塗布させる必要があるが、後工程の形態により、コーナー部のみでなく前記ヒートシール(6)部分や前述の折り畳み加工部、および容器の稜線などの比較的リークし易い部分も含んで塗布するようにしてもよく、さらには浸漬コーティングなどによりガスバリア容器(3)の全外表面に塗布するようにしてもよい。   This barrier resin layer (7) needs to be applied to at least the corner portion, but depending on the form of the post-process, not only the corner portion but also the heat seal (6) portion, the above-described folding processing portion, and the ridge line of the container It may be applied so as to include a portion that is relatively easily leaked, or may be applied to the entire outer surface of the gas barrier container (3) by dip coating or the like.

また、バリア樹脂層(7)は、前記のように、ヒートシール後に形成するだけでなく、真空引き前の段階であらかじめ塗布するようにしてもよい。   Further, as described above, the barrier resin layer (7) is not only formed after heat sealing, but may be applied in advance at a stage before evacuation.

塗布材料としての前記EVOHは、PVA(ポリビニルアルコール)に比べてガスバリア性が良好であり、この溶剤をバリア樹脂として使用することは好適であるが、このEVOHに天然モンモリナイトや天然あるいは合成マイカ、合成ヘクトライト、合成サポナイトなどの無機質の材料を溶かしてハイブリッド塗料にしたものは、ガスバリア性や製造性に優れているとともに、EVOHの難点である高湿度時の耐久性能を向上させることができバリア樹脂としてさらに有効である。   The EVOH as a coating material has better gas barrier properties than PVA (polyvinyl alcohol), and it is preferable to use this solvent as a barrier resin. However, natural montmorillonite, natural or synthetic mica, synthetic A hybrid paint made by dissolving inorganic materials such as hectorite and synthetic saponite is superior in gas barrier properties and manufacturability, and can improve durability performance at high humidity, which is a drawback of EVOH. Is even more effective.

なお、バリア樹脂材料としては、前記EVOHと無機系材料との混成体に限らず、EVOHを溶剤で溶かしたもの、ウレタン系の塗料やウレタン系エマルジョン塗料、あるいはアクリル系の一般的塗料などでもよい。   The barrier resin material is not limited to the hybrid of EVOH and inorganic material, but may be EVOH dissolved in a solvent, urethane paint, urethane emulsion paint, or acrylic general paint. .

例えば、ウレタン系エマルジョン塗料は、無溶剤であり、エアブローで乾燥できるなど取り扱いが非常に容易であって、製造性が良好な特性を有しており、完成した樹脂層はゴム状であって、対衝撃性、摩耗性に優れているものであり、それぞれ要求される特性や柔軟性、製造ラインの特性や耐久性に応じて選択することができる。また、一般的なウレタン系やアクリル系塗料は、入手が容易であるが、溶剤入りのものはやや製造性に劣る。   For example, the urethane-based emulsion paint is solvent-free, can be dried by air blow, is very easy to handle, has good manufacturability, and the finished resin layer is rubbery, It is excellent in impact resistance and wear resistance, and can be selected according to required characteristics and flexibility, production line characteristics and durability, respectively. Also, general urethane-based and acrylic paints are easily available, but those containing a solvent are slightly inferior in manufacturability.

以上のようにして製造された真空断熱パネル(1)は、冷蔵庫の組立製造ラインに運搬され、図3に示すように、冷蔵庫本体(1)の外箱(9)の両側壁内面や天井面、さらには必要に応じて背面等の所定位置に、ホットメルト接着剤や両面テープで貼り付けるものである。   The vacuum heat insulation panel (1) manufactured as described above is transported to the assembly production line of the refrigerator, and as shown in FIG. 3, the inner surfaces and ceiling surfaces of both side walls of the outer box (9) of the refrigerator body (1). Furthermore, it is affixed to a predetermined position such as the back surface with a hot melt adhesive or a double-sided tape as required.

しかしながら、パネル搬送時や冷蔵庫本体(8)への組み込み時に、真空断熱パネルが、万一工程設備物などと接触して擦れたり、突出部への当接により外力を受けても、前記ガスバリア容器(3)の外表面に設けたバリア樹脂層(7)の存在により、外力による破損などのダメージを軽減することができるばかりでなく、クラックが発生しても層内外が貫通することはなく、外部空気のパネル内への侵入を阻止することができる。   However, even when the panel is transported or assembled into the refrigerator main body (8), the gas barrier container is not affected even if the vacuum insulation panel is rubbed in contact with process equipment or the like, or receives external force due to contact with the protruding portion. Due to the presence of the barrier resin layer (7) provided on the outer surface of (3), not only can damage such as breakage due to external force be reduced, but the inside and outside of the layer will not penetrate even if cracks occur. It is possible to prevent external air from entering the panel.

そして、取り付け後の真空断熱パネル(1)と内箱(10)との空間には、現場発泡方式によりポリウレタンフォーム断熱材(11)の原液を注入発泡し、充填固化することで真空断熱パネル(1)と内箱(10)、外箱(9)とを一体化するものであり、ポリウレタンフォーム中への埋設によって外力からはさらに保護されることから、冷蔵庫としての良好な断熱性能と経時安定性を長期に亙って保持し、耐久性を向上して信頼性を高めるとともに、貯蔵室内の冷却効率を向上させて消費電力の低減に貢献できることができる効果を奏するものである。   And, the vacuum insulation panel (1) and the inner box (10) after installation are infused and foamed with a stock solution of polyurethane foam insulation (11) by in-situ foaming method, and solidified by filling and solidifying the vacuum insulation panel ( 1) Integrated with the inner box (10) and outer box (9), and is further protected from external forces by embedding in polyurethane foam, providing good heat insulation performance and stability over time as a refrigerator In addition to improving the durability and improving the reliability, the cooling efficiency in the storage chamber can be improved and the power consumption can be reduced.

なお、冷蔵庫は家庭用に限定されるものではなく、業務用やショーケース、自動販売機等の断熱キャビネット構成に対しても同様に適用できるものである。   The refrigerator is not limited to household use, and can be similarly applied to a heat insulation cabinet configuration such as a business use, a showcase, and a vending machine.

本発明は、良好な断熱性能を有し耐久性の高い真空断熱パネル、およびこの真空断熱パネルを用いた消費電力量が少ない冷蔵庫に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a vacuum heat insulation panel having good heat insulation performance and high durability, and a refrigerator with low power consumption using this vacuum heat insulation panel.

本発明の1実施形態を示す真空断熱パネルの断面詳細図である。It is a section detail drawing of a vacuum heat insulation panel which shows one embodiment of the present invention. 図1の真空断熱パネルの真空引き装置を示す概略図である。It is the schematic which shows the evacuation apparatus of the vacuum heat insulation panel of FIG. 図1の真空断熱パネルを貼り付けた冷蔵庫の概略断面図である。It is a schematic sectional drawing of the refrigerator which affixed the vacuum heat insulation panel of FIG. 図1の真空断熱パネルのガスバリア容器の詳細を示す部分断面図である。It is a fragmentary sectional view which shows the detail of the gas barrier container of the vacuum heat insulation panel of FIG. 真空断熱パネルの基本構造を示す断面図である。It is sectional drawing which shows the basic structure of a vacuum heat insulation panel. コア材による真空度と熱伝導率との差を示す比較グラフである。It is a comparative graph which shows the difference of the vacuum degree by a core material, and thermal conductivity.

符号の説明Explanation of symbols

1 真空断熱パネル 2 マット状コア材 3 ガスバリア容器
4 真空引き装置 5 真空チャンバー 6 ヒートシール
7 バリア樹脂層 8 冷蔵庫本体 9 外箱
10 内箱 11 ウレタンフォーム
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulation panel 2 Mat-shaped core material 3 Gas barrier container 4 Vacuum drawing device 5 Vacuum chamber 6 Heat seal 7 Barrier resin layer 8 Refrigerator main body 9 Outer box
10 Inner box 11 Urethane foam

Claims (5)

コア材をガスバリア容器内に収納し、内部を真空排気してパネル体とした真空断熱パネルにおいて、ガスバリア容器をアルミ蒸着フィルム、あるいはアルミ箔などをラミネートした樹脂フィルムで形成し、このガスバリア容器の外装材の表面に外力に対するバリア樹脂層を設けたことを特徴とする真空断熱パネル。   In a vacuum insulation panel in which the core material is housed in a gas barrier container and the inside is evacuated to form a panel body, the gas barrier container is formed of a resin film laminated with an aluminum vapor deposited film or aluminum foil, and the exterior of the gas barrier container A vacuum heat insulation panel characterized in that a barrier resin layer against external force is provided on the surface of a material. バリア樹脂を、エチレンビニルアルコール共重合体と無機系材料を混成させてなるコート剤で形成したことを特徴とする請求項1記載の真空断熱パネル。   2. The vacuum heat insulating panel according to claim 1, wherein the barrier resin is formed of a coating agent obtained by mixing an ethylene vinyl alcohol copolymer and an inorganic material. ガスバリア容器の隅角部をバリア樹脂で被覆したことを特徴とする請求項1記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 1, wherein the corner portion of the gas barrier container is covered with a barrier resin. ガスバリア容器の開口部端縁の折り畳み部をバリア樹脂で被覆したことを特徴とする請求項1記載の真空断熱パネル。   2. The vacuum heat insulating panel according to claim 1, wherein the folded portion of the edge of the opening of the gas barrier container is covered with a barrier resin. 請求項1乃至4のいずれかに記載の真空断熱パネルを断熱壁中の外箱あるいは内箱面に貼り付け、残余の空間にポリウレタンフォームを発泡充填して前記真空断熱パネルを埋設したことを特徴とする冷蔵庫。
The vacuum heat insulation panel according to any one of claims 1 to 4 is attached to an outer box or an inner box surface of a heat insulation wall, and polyurethane foam is filled in the remaining space by embedding the vacuum heat insulation panel. Refrigerator.
JP2004209180A 2004-07-15 2004-07-15 Vacuum heat insulating panel, and refrigerator using the same Pending JP2006029448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209180A JP2006029448A (en) 2004-07-15 2004-07-15 Vacuum heat insulating panel, and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209180A JP2006029448A (en) 2004-07-15 2004-07-15 Vacuum heat insulating panel, and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2006029448A true JP2006029448A (en) 2006-02-02

Family

ID=35896048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209180A Pending JP2006029448A (en) 2004-07-15 2004-07-15 Vacuum heat insulating panel, and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2006029448A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084647A1 (en) * 2011-12-06 2013-06-13 株式会社 東芝 Insulated cabinet
KR101407487B1 (en) 2012-05-31 2014-06-20 (주)동성화인텍 Vacuum insulation panels and the manufacturing metod of it
EP3078926A1 (en) * 2015-04-06 2016-10-12 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including the same
JP2017003119A (en) * 2016-07-14 2017-01-05 東芝ホームテクノ株式会社 Heat insulation body
JP2018053920A (en) * 2016-09-26 2018-04-05 東芝ライフスタイル株式会社 Vacuum heat insulation material and refrigerator
CN111102793A (en) * 2019-12-19 2020-05-05 福建赛特冷链科技有限公司 Plate of heat-insulating container and heat-insulating container
CN112743916A (en) * 2020-12-25 2021-05-04 福建赛特冷链科技有限公司 3D vacuum insulation panel and heat preservation container with openings for vacuumizing and sealing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119967A (en) * 2011-12-06 2013-06-17 Toshiba Corp Heat insulation cabinet
CN103975210A (en) * 2011-12-06 2014-08-06 株式会社东芝 Insulated cabinet
EP2789951A4 (en) * 2011-12-06 2015-08-12 Toshiba Inc Kk Insulated cabinet
TWI558966B (en) * 2011-12-06 2016-11-21 東芝生活電器股份有限公司 Insulating cabinet
WO2013084647A1 (en) * 2011-12-06 2013-06-13 株式会社 東芝 Insulated cabinet
KR101407487B1 (en) 2012-05-31 2014-06-20 (주)동성화인텍 Vacuum insulation panels and the manufacturing metod of it
KR20210088498A (en) * 2015-04-06 2021-07-14 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
EP3078926A1 (en) * 2015-04-06 2016-10-12 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including the same
CN106052238A (en) * 2015-04-06 2016-10-26 三星电子株式会社 Vacuum insulation panel and refrigerator including same
KR102337981B1 (en) * 2015-04-06 2021-12-13 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
US10065389B2 (en) 2015-04-06 2018-09-04 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including the same
CN106052238B (en) * 2015-04-06 2019-11-26 三星电子株式会社 Vacuum insulation panel and refrigerator including the vacuum insulation panel
JP2017003119A (en) * 2016-07-14 2017-01-05 東芝ホームテクノ株式会社 Heat insulation body
JP2018053920A (en) * 2016-09-26 2018-04-05 東芝ライフスタイル株式会社 Vacuum heat insulation material and refrigerator
CN111102793A (en) * 2019-12-19 2020-05-05 福建赛特冷链科技有限公司 Plate of heat-insulating container and heat-insulating container
CN112743916A (en) * 2020-12-25 2021-05-04 福建赛特冷链科技有限公司 3D vacuum insulation panel and heat preservation container with openings for vacuumizing and sealing

Similar Documents

Publication Publication Date Title
EP2602395B1 (en) Vacuum thermal insulation panel
US7278279B2 (en) Refrigerator
JP2005147591A (en) Refrigerator
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
JP5624305B2 (en) Insulated container
JP2005300005A (en) Refrigerator
KR20030007544A (en) Heat insulation box, and vacuum heat insulation material used therefor
WO2006009063A1 (en) Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
JP3482408B2 (en) Vacuum insulation and refrigerators using vacuum insulation
JP2007113748A (en) Method of manufacturing heat insulating wall, heat insulating unit, and heat insulating material
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100691917B1 (en) Refrigerator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP5865581B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP2006029448A (en) Vacuum heat insulating panel, and refrigerator using the same
JP2005299972A (en) Refrigerator
JP2006029686A (en) Vacuum thermal insulation panel and refrigerator using vacuum thermal insulation panel
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2005069448A (en) Vacuum thermal insulation panel, its manufacturing method, and refrigerator using it
JP2011149624A (en) Refrigerator
JP3488229B2 (en) Insulated box and refrigerator
JP6486079B2 (en) Method for maintaining heat insulation performance of vacuum insulation panel and method for maintaining heat insulation performance of refrigerator
KR101714569B1 (en) Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
JP2006342852A (en) Vacuum thermal insulating material and refrigerator using it