JP2006029278A - Combined type temperature control circuit of heat radiation fan - Google Patents

Combined type temperature control circuit of heat radiation fan Download PDF

Info

Publication number
JP2006029278A
JP2006029278A JP2004212486A JP2004212486A JP2006029278A JP 2006029278 A JP2006029278 A JP 2006029278A JP 2004212486 A JP2004212486 A JP 2004212486A JP 2004212486 A JP2004212486 A JP 2004212486A JP 2006029278 A JP2006029278 A JP 2006029278A
Authority
JP
Japan
Prior art keywords
resistor
sensor element
temperature sensor
temperature
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004212486A
Other languages
Japanese (ja)
Other versions
JP4428519B2 (en
Inventor
Gobun Rin
合文 林
Meichi Rin
盟智 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiko Kagi Kofun Yugenkoshi
Original Assignee
Kiko Kagi Kofun Yugenkoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiko Kagi Kofun Yugenkoshi filed Critical Kiko Kagi Kofun Yugenkoshi
Priority to JP2004212486A priority Critical patent/JP4428519B2/en
Publication of JP2006029278A publication Critical patent/JP2006029278A/en
Application granted granted Critical
Publication of JP4428519B2 publication Critical patent/JP4428519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined type temperature control circuit of a heat radiation fan for increasing a change range of rotating speed of the fan by increasing a voltage fluctuation rate caused by a change of temperature. <P>SOLUTION: The combined type temperature control circuit of the heat radiation fan is provided with a first resistor array 21 constituted so as to connect a resistor and a temperature sensor element in series; and a second resistor array 22 constituted so as to connect a resistor and a temperature sensor element in series, and thereafter connected to the temperature sensor element of the first resistor array 21 in parallel. The temperature sensor element of the first resistor array 21 is connected to the second resistor array 22 in parallel, and thereafter connected to the resistor of the first resistor array 21 in series. The voltage fluctuation rate caused by temperature change is increased, and the change range of the rotating speed of the fan is increased by the same temperature change. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は放熱ファンの複合式温度制御回路に関し、特に、二つ或いは二つ以上の抵抗列の組合せを利用し、該抵抗列を抵抗と温度センサ要素との組合せにより構成した後に、該温度センサ要素ともう一つの抵抗列とを並列に接続して複合式温度制御回路を形成する。   The present invention relates to a combined temperature control circuit for a heat dissipating fan, and in particular, uses a combination of two or more resistor strings, and after the resistor string is configured by a combination of a resistor and a temperature sensor element, the temperature sensor An element and another resistor string are connected in parallel to form a composite temperature control circuit.

図1に示すように、一般公知の放熱ファンの温度制御回路は、サーミスタ112および抵抗器111を直列に接続してから定電圧Vccを印加すると、サーミスタ112により温度が変化するに従って抵抗値も変化し、その出力電圧Voutは温度変化に伴って変化し、この抵抗器111とサーミスタ112が分圧された後の出力電圧Voutの大きさとサーミスタ112の特性は関連し、異なる温度変化により分圧された後の出力電圧Voutの変化傾斜率は固定値にされる。 As shown in FIG. 1, when a constant voltage Vcc is applied after a thermistor 112 and a resistor 111 are connected in series, a generally known heat dissipation fan temperature control circuit changes its resistance value as the temperature changes by the thermistor 112. The output voltage Vout changes with a change in temperature. The magnitude of the output voltage Vout after the resistor 111 and the thermistor 112 are divided is related to the characteristics of the thermistor 112, and is divided by different temperature changes. After that, the change slope rate of the output voltage Vout is set to a fixed value.

図2に示すように、サーミスタ112は二つが並列に接続された後、抵抗器111と直列に接続して分圧された出力電圧Voutはサーミスタ112の抵抗値に伴って変化するが、そのサーミスタ112を並列に接続した後の抵抗値は、上述した第1実施例による、並列に接続された後の抵抗値であるサーミスタ112の一つの抵抗値に代替されてもよい。 As shown in FIG. 2, after two thermistors 112 are connected in parallel, the output voltage Vout divided by connecting in series with the resistor 111 varies with the resistance value of the thermistor 112. The resistance value after 112 is connected in parallel may be replaced with one resistance value of the thermistor 112 which is the resistance value after being connected in parallel according to the first embodiment described above.

図3に示すように、サーミスタ112は二つが直列に接続されてから、抵抗器111と直列に接続して分圧された出力電圧Voutはサーミスタ112の抵抗値に伴って変化するが、そのサーミスタ112を並列に接続した後の抵抗値は、上述した第1実施例による、直列に接続された後の抵抗値であるサーミスタ112の一つの抵抗値に代替されてもよい。 As shown in FIG. 3, after two thermistors 112 are connected in series, the output voltage Vout divided by connecting in series with the resistor 111 changes with the resistance value of the thermistor 112. The resistance value after 112 is connected in parallel may be replaced with one resistance value of the thermistor 112 which is the resistance value after being connected in series according to the first embodiment described above.

図1から図4に示すのはT1からT2へ温度が変化する分圧回路が得る出力電圧Voutであり、数個のサーミスタ112が並列或いは直列にされても、その後には抵抗器111が直列に接続されなければならず、その出力電圧Voutの変化斜線b、cと、一つのサーミスタ112が直列に接続された抵抗値111の出力電圧Voutの変化斜線aとの変化は特定値であり、その特性と並列或いは直列にされた後のサーミスタ112の特性には関連性があり、直列或いは並列に組合せた後の変化傾斜率は固定値であるため出力電圧Voutの変化範囲を増大させることができず、また同じ温度変化においてファンの回転変化を増大させることができないため、ユーザの要求を満足させることはできなかった。 1 to 4 show an output voltage Vout obtained by a voltage dividing circuit whose temperature changes from T1 to T2. Even if several thermistors 112 are connected in parallel or in series, a resistor 111 is connected in series thereafter. The change between the change oblique lines b and c of the output voltage Vout and the change oblique line a of the output voltage Vout of the resistance value 111 in which one thermistor 112 is connected in series is a specific value. The characteristics of the thermistor 112 after being connected in parallel or in series are related to each other, and the change rate after the combination in series or parallel is a fixed value, so that the change range of the output voltage Vout can be increased. In addition, the change in the rotation of the fan cannot be increased at the same temperature change, so that the user's request cannot be satisfied.

本発明の主な目的は、二つ或いは二つ以上の抵抗列の組合せを利用し、該抵抗列が抵抗と温度センサ要素とを組合せた後に、該温度センサ要素ともう一つの抵抗列とを並列に接続し、温度変化により発生する電圧変動率を増大させてファンの回転速度の変化範囲を増大させる複合式温度制御回路を提供することにある。 The main object of the present invention is to use a combination of two or more resistance strings, and after the resistance string combines the resistance and the temperature sensor element, the temperature sensor element and the other resistance string are combined. It is an object of the present invention to provide a composite temperature control circuit that is connected in parallel and increases the variation range of the rotation speed of the fan by increasing the voltage fluctuation rate generated by the temperature change.

本発明の放熱ファンの複合式温度制御回路は、抵抗器および温度センサ要素を直列に接続して構成する第1の抵抗列と、抵抗器および温度センサ要素を直列に接続して構成してから、第1の抵抗列の温度センサ要素と並列に接続する第2の抵抗列とを備える。第1の抵抗列の温度センサ要素により第2の抵抗列と並列に接続してから、第1の抵抗列の抵抗器と直列させ、温度変化により発生する電圧変動率を増加させて、同じ温度変化においてファンの回転速度の変化範囲を増大させる。 The combined temperature control circuit for the heat dissipating fan of the present invention comprises a first resistor string configured by connecting a resistor and a temperature sensor element in series, and a resistor and a temperature sensor element connected in series. And a second resistor string connected in parallel with the temperature sensor element of the first resistor string. The temperature sensor element of the first resistor string is connected in parallel with the second resistor string, and then is connected in series with the resistor of the first resistor string to increase the voltage fluctuation rate caused by the temperature change, so that the same temperature. In the change, the change range of the rotation speed of the fan is increased.

上述したように、本発明は放熱ファンの複合式温度制御回路を提供し、温度変化により発生する電圧変動率を増大させてファンの回転速度の変化範囲を増大させる。 As described above, the present invention provides a combined temperature control circuit for a heat dissipating fan, and increases the variation rate of the fan rotation speed by increasing the voltage fluctuation rate generated by the temperature change.

図5は本発明の好適な第1実施例を示し、図が示すように第1の抵抗列21は第1の抵抗器211および第1の温度センサ要素212を直列に接続して構成され、第2の抵抗列22は第2の抵抗器221および第2の温度センサ要素222を直列に接続してから、第2の抵抗列22および第1の抵抗列21の第1の温度センサ要素212を並列に接続するが、ここで第1および第2の温度センサ要素212、222はサーミスタである。 FIG. 5 shows a first preferred embodiment of the present invention. As shown in the figure, the first resistor string 21 is formed by connecting a first resistor 211 and a first temperature sensor element 212 in series. The second resistor string 22 connects the second resistor 221 and the second temperature sensor element 222 in series, and then the first resistor element 212 of the second resistor string 22 and the first resistor string 21. Are connected in parallel, where the first and second temperature sensor elements 212, 222 are thermistors.

第1の抵抗列21に定電圧Vccを印加した後、第1の抵抗器211により電圧降下V1を形成して第2の抵抗列22へ提供し、第1および第2の温度センサ要素212、222が異なる温度下で抵抗値が変化するという特性を利用して、電圧降下V1は第2の抵抗器221および第2の温度センサ要素222を通して分圧され、出力電圧Voutを形成してファンの回転速度を制御する。 After applying the constant voltage Vcc to the first resistor string 21, a voltage drop V1 is formed by the first resistor 211 and provided to the second resistor string 22, and the first and second temperature sensor elements 212, The voltage drop V1 is divided through the second resistor 221 and the second temperature sensor element 222 using the characteristic that the resistance value of 222 changes under different temperatures, and forms an output voltage Vout to form a fan voltage. Control the rotation speed.

図6に示すように、温度がT1からT2へ変化するとき、上述の回路により得られた電圧出力を利用して、その出力電圧Voutの温度に対する変化傾斜率は、公知のV1からV2がV1からV3へ偏移し、その傾斜率の変化は公知のA点からB点の斜線ABからA点からC点の斜線ACへ偏移し、その傾斜率の増加は増加温度の変化により発生した電圧変動率を示し、さらにはファンを同様の温度変化においてファン回転速度の変化範囲を増大させる。 As shown in FIG. 6, when the temperature changes from T1 to T2, using the voltage output obtained by the above-described circuit, the change rate of the output voltage Vout with respect to temperature is such that the known V1 to V2 are V1. The change in slope rate shifts from the known oblique line AB from point A to the oblique line AC from point A to point C, and the increase in the slope rate is caused by a change in the increased temperature. It indicates the voltage fluctuation rate, and further increases the fan rotation speed change range at the same temperature change.

図7は本発明の好適な第2実施例を示し、その操作原理は好適な第1実施例と同様であるが、異なる点は次の通りである。第2の抵抗列22の第2の温度センサ要素222を第3の抵抗列23の第3の抵抗器231および第3の温度センサ要素232に並列に接続し、第1、第2および第3の温度センサ要素212、222、232はサーミスタであり、第1の抵抗列21に定電圧Vccを印加した後、第1の抵抗器211を通して電圧降下V1を形成して第2の抵抗列22へ提供し、電圧降下V1は第2の抵抗器221および第2の温度センサ要素222を通して第2の参考電圧V2を形成し、第2の参考電圧V2が第3の抵抗列23の第3の抵抗器231および第3の温度センサ要素232により分圧されて出力電圧Voutを形成し、ファンの回転速度を制御する。 FIG. 7 shows a second preferred embodiment of the present invention, the operating principle of which is the same as that of the preferred first embodiment, with the following differences. The second temperature sensor element 222 of the second resistor string 22 is connected in parallel to the third resistor 231 and the third temperature sensor element 232 of the third resistor string 23, and the first, second and third The temperature sensor elements 212, 222, and 232 are thermistors, and after applying a constant voltage Vcc to the first resistor string 21, a voltage drop V 1 is formed through the first resistor 211 to the second resistor string 22. And a voltage drop V1 forms a second reference voltage V2 through the second resistor 221 and the second temperature sensor element 222, the second reference voltage V2 being the third resistance of the third resistor string 23. The output voltage Vout is divided by the voltage generator 231 and the third temperature sensor element 232 to control the rotational speed of the fan.

図8に示すように、温度がT1からT2へ変化するとき、上述の回路により得られた電圧出力を利用し、その出力電圧Voutの温度に対する変化傾斜率は、元のV1からV3をV1からV4へ偏移させ、その変化傾斜率はA点からC点の斜線ACからA点からD点の斜線ADへ偏移させ、その傾斜率の増加は増加温度の変化が発生させた電圧変動率を示し、さらにはファンを同様の温度変化においてファン回転速度の変化範囲を増大させる。 As shown in FIG. 8, when the temperature changes from T1 to T2, the voltage output obtained by the above-described circuit is used, and the change rate of the output voltage Vout with respect to the temperature is changed from the original V1 to V3 from V1. V4 is shifted, and the change slope rate is shifted from the oblique line AC from the point A to the point C to the oblique line AD from the point A to the point D. The increase in the slope rate is the voltage fluctuation rate caused by the change in the increased temperature. Furthermore, the fan is increased in the range of change of the fan rotation speed at the same temperature change.

図9および図10に示すのは、前述した二つの好適な実施例により得られる本発明の少なくとも二つ以上の第1の抵抗列21の第1の温度センサ要素212は第2の抵抗列22と並列に接続した後、第2の抵抗列22の第2の温度センサ要素222を第3の抵抗列23に並列に接続させ、さらに第3の抵抗列23の第3の温度センサ要素232は第4の抵抗列24の第4の抵抗器241および第4の温度センサ要素242と並列に接続し、出力電圧Voutの変化が、V1からV4をV1からV5へ偏移させ、その変化傾斜率はA点からD点の斜線ADをA点からE点の斜線AEへ偏移させる。これから類推できるように本発明は複数の抵抗列をこの方式により直並列に接続し、出力電圧Voutを温度変化の傾斜率に対して増大させ、その温度変化により発生する電圧変動率も増大させると同時に同じ温度変化の下で、ファン回転速度の変化範囲を増大させる。 FIG. 9 and FIG. 10 show that the first temperature sensor element 212 of at least two or more first resistor strings 21 of the present invention obtained by the two preferred embodiments described above is the second resistor string 22. Are connected in parallel, the second temperature sensor element 222 of the second resistor string 22 is connected in parallel to the third resistor string 23, and the third temperature sensor element 232 of the third resistor string 23 is Connected in parallel with the fourth resistor 241 and the fourth temperature sensor element 242 of the fourth resistor string 24, the change of the output voltage Vout shifts V1 to V4 from V1 to V5, and the change slope rate Shifts the diagonal line AD from point A to point D to the diagonal line AE from point A to point E. As can be inferred from this, in the present invention, when a plurality of resistor strings are connected in series and parallel by this method, the output voltage Vout is increased with respect to the gradient of the temperature change, and the voltage fluctuation rate generated by the temperature change is also increased. At the same time, the change range of the fan rotation speed is increased under the same temperature change.

上で述べたものは、単なる本発明の好適な実施例であり、本発明の上述した方法、形状、構造および装置を変化させたものも、全て本発明の特許請求範囲に含まれるべきである。 What has been described above are merely preferred embodiments of the present invention, and all modifications of the above-described methods, shapes, structures and apparatus of the present invention should be included in the claims of the present invention. .

第1の従来技術による放熱ファンの温度制御回路を示す回路図である。It is a circuit diagram which shows the temperature control circuit of the thermal radiation fan by 1st prior art. 第2の従来技術による放熱ファンの温度制御回路を示す回路図である。It is a circuit diagram which shows the temperature control circuit of the thermal radiation fan by a 2nd prior art. 第3の従来技術による放熱ファンの温度制御回路を示す回路図である。It is a circuit diagram which shows the temperature control circuit of the thermal radiation fan by 3rd prior art. 第1から第3の従来技術による放熱ファンの温度制御回路の温度変化および出力電圧の斜線を示す図である。It is a figure which shows the temperature change of the temperature control circuit of the thermal radiation fan by the 1st-3rd prior art, and the oblique line of an output voltage. 本発明の好適な第1実施例を示す回路図である。1 is a circuit diagram showing a first preferred embodiment of the present invention. 本発明の好適な第1実施例と第1の従来技術による温度変化および出力電圧の斜線を示す図である。It is a figure which shows the diagonal line of the temperature change and output voltage by 1st Example of this invention and 1st prior art. 本発明の好適な第2実施例を示す回路図である。FIG. 6 is a circuit diagram showing a second preferred embodiment of the present invention. 本発明の好適な第1、第2実施例と第1の従来技術による温度変化および出力電圧の斜線を示す図である。It is a figure which shows the 1st, 2nd Example of this invention and the diagonal line of the temperature change and output voltage by 1st prior art. 本発明の好適な第3実施例を示す回路図である。FIG. 6 is a circuit diagram showing a third preferred embodiment of the present invention. 本発明の好適な第1、第2および第3実施例と第1の従来技術による温度変化および出力電圧の斜線を示す図である。It is a figure which shows the 1st, 2nd and 3rd Example of this invention and the oblique line of the temperature change and output voltage by 1st prior art.

符号の説明Explanation of symbols

21 第1の抵抗列、211 第1の抵抗器、212 第1の温度センサ要素、22 第2の抵抗列、221 第2の抵抗器、222 第2の温度センサ要素、23 第3の抵抗列、231 抵抗器、232 第3の温度センサ要素、24 第4の抵抗列、241 第4の抵抗器、242 第4の温度センサ要素、Vcc 定電圧、Vout 出力電圧、V1 電圧降下、V2 第2の参考電圧、V3 第3の参考電圧、a 斜線、b 斜線、c 斜線、AB 斜線、AC 斜線、AD 斜線、AE 斜線

21 1st resistor string, 211 1st resistor, 212 1st temperature sensor element, 22 2nd resistor string, 221 2nd resistor, 222 2nd temperature sensor element, 23 3rd resistor string 231 resistor, 232 third temperature sensor element, 24 fourth resistor string, 241 fourth resistor, 242 fourth temperature sensor element, Vcc constant voltage, Vout output voltage, V1 voltage drop, V2 second Reference voltage, V3 Third reference voltage, a diagonal line, b diagonal line, c diagonal line, AB diagonal line, AC diagonal line, AD diagonal line, AE diagonal line

Claims (11)

抵抗器および温度センサ要素を直列に接続して構成する第1の抵抗列と、
抵抗器および温度センサ要素を直列に接続して構成してから、前記第1の抵抗列の前記温度センサ要素と並列に接続する第2の抵抗列と、を備えた放熱ファンの複合式温度制御回路であって、
前記第1の抵抗列の温度センサ要素により前記第2の抵抗列と並列に接続してから、前記第1の抵抗列の抵抗器と直列させ、温度変化により発生する電圧変動率を増加させて、同じ温度変化においてファンの回転速度の変化範囲を増大させることを特徴とする放熱ファンの複合式温度制御回路。
A first resistor string comprising a resistor and a temperature sensor element connected in series;
A combined temperature control of a heat dissipation fan comprising: a resistor and a temperature sensor element connected in series; and a second resistor string connected in parallel with the temperature sensor element of the first resistor string. A circuit,
After connecting in parallel with the second resistor string by the temperature sensor element of the first resistor string, it is connected in series with the resistor of the first resistor string to increase the voltage fluctuation rate generated by the temperature change. A combined temperature control circuit for a heat dissipating fan, characterized in that the change range of the rotation speed of the fan is increased under the same temperature change.
前記温度センサ要素はサーミスタであることを特徴とする請求項1記載の放熱ファンの複合式温度制御回路。 2. A combined temperature control circuit for a heat radiating fan according to claim 1, wherein the temperature sensor element is a thermistor. 前記温度センサ要素の抵抗値は温度に合わせて変化することを特徴とする請求項1記載の放熱ファンの複合式温度制御回路。 2. The combined temperature control circuit for a heat radiating fan according to claim 1, wherein the resistance value of the temperature sensor element changes in accordance with the temperature. 前記第1の抵抗列は定電圧を印加してその動作を駆動することを特徴とする請求項1記載の放熱ファンの複合式温度制御回路。 2. The combined temperature control circuit for a heat radiating fan according to claim 1, wherein the first resistor train drives its operation by applying a constant voltage. 抵抗器および温度センサ要素を直列に接続して構成する第1の抵抗列と、
抵抗器および温度センサ要素を直列に接続して構成してから、前記第1の抵抗列の前記温度センサ要素と並列に接続する第2の抵抗列と、
抵抗器および温度センサ要素を直列に接続して構成してから、前記第2の抵抗列の前記温度センサ要素と並列に接続する第3の抵抗列と、を備えた放熱ファンの複合式温度制御回路であって、
前記第1の抵抗列、前記第2の抵抗列および前記第3の抵抗列を直並列に接続し、温度変化により発生する電圧変動率を増加させて、同じ温度変化においてファンの回転速度の変化範囲を増大させることを特徴とする放熱ファンの複合式温度制御回路。
A first resistor string comprising a resistor and a temperature sensor element connected in series;
A resistor and a temperature sensor element connected in series and then a second resistor string connected in parallel with the temperature sensor element of the first resistor string;
A combined temperature control of a heat dissipating fan comprising: a resistor and a temperature sensor element connected in series; and a third resistor string connected in parallel with the temperature sensor element of the second resistor string. A circuit,
The first resistor string, the second resistor string, and the third resistor string are connected in series and parallel to increase the voltage fluctuation rate generated by the temperature change, and the change in the rotation speed of the fan in the same temperature change. A combined temperature control circuit for a heat dissipating fan characterized by increasing the range.
前記温度センサ要素はサーミスタであることを特徴とする請求項5記載の放熱ファンの複合式温度制御回路。 6. The combined temperature control circuit for a heat radiating fan according to claim 5, wherein the temperature sensor element is a thermistor. 前記温度センサ要素の抵抗値は温度に合わせて変化することを特徴とする請求項5記載の放熱ファンの複合式温度制御回路。 6. The combined temperature control circuit for a heat radiating fan according to claim 5, wherein the resistance value of the temperature sensor element changes in accordance with the temperature. 前記第1の抵抗列は定電圧を印加してその動作を駆動することを特徴とする請求項5記載の放熱ファンの複合式温度制御回路。 6. The combined temperature control circuit for a heat radiating fan according to claim 5, wherein the first resistor train is driven by applying a constant voltage. 少なくとも二つ以上の抵抗列を備え、前記抵抗列は抵抗器および温度センサ要素を直列にして構成され、前記温度センサ要素はもう一つの抵抗列に並列に接続され、少なくとも二つ以上の抵抗列を直並列にすることにより温度変化により発生する電圧変動率を増加することにより、同じ温度変化においてファンの回転速度の変化範囲を増大させることを特徴とする放熱ファンの複合式温度制御回路。 At least two or more resistor strings are provided, and the resistor string is configured by connecting a resistor and a temperature sensor element in series, and the temperature sensor element is connected in parallel to another resistor string, and at least two or more resistor strings are provided. A combined temperature control circuit for a heat dissipating fan, wherein the variation range of the rotation speed of the fan is increased in the same temperature change by increasing the voltage fluctuation rate generated by the temperature change by making the two in series and parallel. 前記温度センサ要素はサーミスタであることを特徴とする請求項9記載の放熱ファンの複合式温度制御回路。 10. The combined temperature control circuit for a heat radiating fan according to claim 9, wherein the temperature sensor element is a thermistor. 前記温度センサ要素の抵抗値は温度に合わせて変化することを特徴とする請求項9記載の放熱ファンの複合式温度制御回路。 The combined temperature control circuit for a heat radiating fan according to claim 9, wherein the resistance value of the temperature sensor element changes according to the temperature.
JP2004212486A 2004-07-21 2004-07-21 Combined temperature control circuit for heat dissipation fan Expired - Fee Related JP4428519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212486A JP4428519B2 (en) 2004-07-21 2004-07-21 Combined temperature control circuit for heat dissipation fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212486A JP4428519B2 (en) 2004-07-21 2004-07-21 Combined temperature control circuit for heat dissipation fan

Publications (2)

Publication Number Publication Date
JP2006029278A true JP2006029278A (en) 2006-02-02
JP4428519B2 JP4428519B2 (en) 2010-03-10

Family

ID=35895923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212486A Expired - Fee Related JP4428519B2 (en) 2004-07-21 2004-07-21 Combined temperature control circuit for heat dissipation fan

Country Status (1)

Country Link
JP (1) JP4428519B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251978A (en) * 2010-05-20 2011-11-23 英业达科技有限公司 Fan control method
KR101384709B1 (en) * 2012-11-09 2014-04-14 엘에스엠트론 주식회사 Monitoring methods using a thermistor and system therefor
CN112639424A (en) * 2018-09-05 2021-04-09 麦迪辛有限公司 Temperature sensor calibration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251978A (en) * 2010-05-20 2011-11-23 英业达科技有限公司 Fan control method
KR101384709B1 (en) * 2012-11-09 2014-04-14 엘에스엠트론 주식회사 Monitoring methods using a thermistor and system therefor
CN112639424A (en) * 2018-09-05 2021-04-09 麦迪辛有限公司 Temperature sensor calibration

Also Published As

Publication number Publication date
JP4428519B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Sharma et al. Heat transfer and friction factor correlation development for double-pass solar air heater having V-shaped ribs as roughness elements
TWI306134B (en) Fan system and control device thereof
Górecki et al. Modelling LED lamps in SPICE with thermal phenomena taken into account
JP2020500458A5 (en)
JP2007181312A (en) Power converter and its control method
WO2004105260A3 (en) Compound galois field engine and galois field divider and square root engine and method
JP2009206122A (en) Semiconductor device
JP4428519B2 (en) Combined temperature control circuit for heat dissipation fan
US20050019162A1 (en) Utilizing an altitude sensor to control fan speed
Taji et al. Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection
TW201239203A (en) System and method for controlling fans
US20050019164A1 (en) Technique for sensing altitude from fan speed
CN205748699U (en) A kind of linear transform circuit for negative tempperature coefficient thermistor
Kiflemariam et al. Numerical simulation and parametric study of heat-driven self-cooling of electronic devices
TWI299249B (en) Fan device
JP2009048505A (en) Circuit operation verification device, circuit operation verification method, method for manufacturing semiconductor integrated circuit, control program, and computer-readable storage medium
Hassan et al. An experimental work on the effect of the eccentric rotation of heat sink on the convective heat transfer
TWI373628B (en) Test apparatus and electronic device
Arsalan et al. Thermal energy harvesting from oil and gas flow
TWI310626B (en)
Zhu et al. A self-packaged two-dimensional thermal wind sensor based on thermopiles for low cost applications
Lee et al. Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path
Kundu et al. Performance and optimum dimensions of flat fins for tube-and-fin heat exchangers: A generalized analysis
US20060055350A1 (en) Complex type temperature control circuit for a cooling fan
US20180368212A1 (en) Transistor Implemented Heat Source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151225

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees