JP2006028379A - Porous resin oil retainer - Google Patents

Porous resin oil retainer Download PDF

Info

Publication number
JP2006028379A
JP2006028379A JP2004211030A JP2004211030A JP2006028379A JP 2006028379 A JP2006028379 A JP 2006028379A JP 2004211030 A JP2004211030 A JP 2004211030A JP 2004211030 A JP2004211030 A JP 2004211030A JP 2006028379 A JP2006028379 A JP 2006028379A
Authority
JP
Japan
Prior art keywords
resin
oil
lubricating oil
porous
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211030A
Other languages
Japanese (ja)
Inventor
Masakazu Hirata
正和 平田
Hideyuki Tsutsui
英之 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004211030A priority Critical patent/JP2006028379A/en
Priority to CN2005800125631A priority patent/CN1946783B/en
Priority to EP05730458.6A priority patent/EP1746125B1/en
Priority to US11/578,167 priority patent/US7910198B2/en
Priority to PCT/JP2005/007216 priority patent/WO2005103128A1/en
Publication of JP2006028379A publication Critical patent/JP2006028379A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous resin oil retainer containing a lubricating oil, having high oil content and excellent use efficiency of the lubricating oil and enabling the proper combination of the resin and the lubricating oil according to the use/specification. <P>SOLUTION: The porous resin oil retainer contains a lubricating oil impregnated in a porous resin having a communicating pore ratio of ≥30%, and ≥60% of the impregnated lubricating oil is usable as the lubricating oil. The porous resin has communicating pores produced by forming a resin compounded with a pore-forming material to obtain a formed article, dissolving the pore-forming material and extracting the pore-forming material from the formed article by using a solvent which does not dissolve the resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、潤滑性を有する多孔質樹脂保油体、または潤滑部に潤滑油を供給することができる多孔質樹脂保油体に関する。   The present invention relates to a porous resin oil retaining body having lubricity or a porous resin oil retaining body capable of supplying lubricating oil to a lubrication part.

樹脂材料の摩擦摩耗特性改良法の一つとして、樹脂に潤滑油を添加した、いわゆる「ガンプラ」が従来より知られている。この方法は樹脂と潤滑油を溶融混練、ペレタイズで成形前原料形状にしたものを射出成形または押出し成形するものであり、射出成形性の低下などを防ぐため、添加できる潤滑油量は最大でも 10 容量%程度である。樹脂と潤滑油とを溶融混練しているため、均一性および保油性が高く、表面への潤滑油の滲み出しは少ない。このため、潤滑油供給体としての機能は十分でなく、また該樹脂材料を滑り軸受などとして用いる場合、荷重(P)とすべり速度(V)を乗じたPV値が高い領域では十分な潤滑特性が得られない。
従来、上記の問題に対処すべく開発された含油樹脂であって、樹脂と潤滑油を予め混合したものを所定の形状に成形するものとして特許文献1〜特許文献5などがある。特許文献1では、超高分子量ポリエチレンとグリースを配合した組成物が開示されている。該組成物は、グリースにより潤滑油の流動を防いでいるため、樹脂中の潤滑油量として 50 容量%以上が可能である。また、表面への潤滑油の滲み出し量はガンプラよりも多い。
特許文献2、特許文献3および特許文献4では、含油樹脂に繊維状油導通材を添加し、特許文献5では、多孔質シリカに潤滑油を保持させたものを合成樹脂と混合し、含油樹脂としたものが開示されている。これらは、いずれも潤滑油を樹脂表面に継続的に供給することを目的になされたものであり、導通材や多孔質シリカの補助により樹脂中の潤滑油量は 20 容量%程度まで高められている。
また、他の方法として特許文献6および特許文献7では焼結成形して所定の形状にした樹脂に潤滑油を含浸する方法が開示されている。最密充填と成形工程での圧縮を考慮すると実質的な空隙率は最大でも 30%であり、この空隙分が含油可能量となる。
As one method for improving the friction and wear characteristics of resin materials, a so-called “gunpla” in which a lubricating oil is added to a resin has been known. This method involves melt-kneading resin and lubricating oil and injection molding or extrusion molding of the raw material shape prior to molding by pelletizing. The maximum amount of lubricating oil that can be added is 10% to prevent deterioration of injection moldability. It is about volume%. Since the resin and the lubricating oil are melt-kneaded, the uniformity and oil retention are high, and the lubricating oil does not ooze out to the surface. For this reason, the function as a lubricating oil supply body is not sufficient, and when the resin material is used as a sliding bearing or the like, sufficient lubrication characteristics are obtained in a region where the PV value obtained by multiplying the load (P) and the sliding speed (V) is high. Cannot be obtained.
Conventionally, there are Patent Document 1 to Patent Document 5 that are oil-impregnated resins that have been developed to cope with the above-described problems and that are formed by mixing a resin and a lubricant in advance into a predetermined shape. Patent Document 1 discloses a composition in which ultrahigh molecular weight polyethylene and grease are blended. Since the composition prevents the lubricating oil from flowing with grease, the amount of lubricating oil in the resin can be 50% by volume or more. Further, the amount of lubricating oil oozing out to the surface is larger than that of Gundam.
In Patent Document 2, Patent Document 3 and Patent Document 4, a fibrous oil conducting material is added to the oil-containing resin, and in Patent Document 5, a material in which lubricating oil is retained in porous silica is mixed with a synthetic resin, Is disclosed. These are all intended to continuously supply lubricating oil to the resin surface, and the amount of lubricating oil in the resin is increased to about 20% by the aid of a conductive material and porous silica. Yes.
As another method, Patent Documents 6 and 7 disclose a method of impregnating a lubricating oil into a resin that has been sintered and molded into a predetermined shape. Considering the close-packing and compression in the molding process, the substantial porosity is 30% at the maximum, and this void content is the oil content.

しかしながら、特許文献1では、十分な油量が確保されるが、予め樹脂と潤滑剤とを混合した練り込みタイプであるため、保油性が高く、添加した潤滑油の利用効率が低い。また、潤滑油の量が多いので機械的強度が低いという問題がある。
特許文献2、特許文献3、特許文献4および特許文献5では、上述のように導通材や多孔質シリカにより樹脂中の潤滑油量は 20 容量%程度まで高められ、また強化材の添加により機械的強度の低下も抑制できるが、軸受の保持器などへ適用し、樹脂中の油分のみで潤滑を行なう場合には、潤滑油量不足、表面への滲み出し速度が遅いなどの問題がある。
また、以上の特許文献1〜特許文献5は樹脂と潤滑剤が予め混練されたものを所定の形状にする方法であるため、樹脂と潤滑剤との組合せに制限があり広範な用途には適用できないという問題がある。
これらに対し、特許文献6および特許文献7は樹脂−潤滑剤の組合せの自由度は上がるが、実際に焼結成形できる樹脂は超高分子量ポリエチレン、ポリイミド樹脂などに限定されてしまう。また、上述のように実質的な空隙率は最大でも 30%であり、軸受の保持器などへ適用し、樹脂中の油分のみで潤滑をしようとする場合には、潤滑油量不足であり、近年の長寿命化の要求には耐えられないという問題がある。
特開平6−41569号公報 特開平11−166541号公報 特開2000−71243号公報 特開2000−71244号公報 特開2002−129183号公報 特開昭61−6429号公報 特開平9−76371号公報
However, in Patent Document 1, a sufficient amount of oil is secured, but since it is a kneading type in which a resin and a lubricant are mixed in advance, the oil retaining property is high and the utilization efficiency of the added lubricating oil is low. Moreover, since there is much quantity of lubricating oil, there exists a problem that mechanical strength is low.
In Patent Document 2, Patent Document 3, Patent Document 4 and Patent Document 5, as described above, the amount of lubricating oil in the resin is increased to about 20% by volume by the conductive material and porous silica, and the mechanical material is added by adding a reinforcing material. Although it is possible to suppress a decrease in mechanical strength, there are problems such as insufficient lubrication amount and slow oozing speed when applied to bearing cages or the like and lubricated only with oil in the resin.
In addition, since the above Patent Documents 1 to 5 are methods for pre-kneading a resin and a lubricant, the combination of the resin and the lubricant is limited and applicable to a wide range of applications. There is a problem that you can not.
On the other hand, Patent Document 6 and Patent Document 7 increase the degree of freedom of the resin-lubricant combination, but the resins that can actually be sintered and molded are limited to ultrahigh molecular weight polyethylene, polyimide resin, and the like. In addition, as described above, the maximum porosity is 30% at the maximum, and when it is applied to bearing cages and lubrication is performed only with the oil in the resin, the amount of lubricating oil is insufficient. There is a problem that it cannot withstand the demand for longer life in recent years.
JP-A-6-41569 Japanese Patent Laid-Open No. 11-166541 JP 2000-71243 A JP 2000-71244 A JP 2002-129183 A Japanese Patent Laid-Open No. 61-6429 JP-A-9-76371

本発明はこのような問題に対処するためになされたもので、潤滑油を含有する多孔質樹脂保油体において、含油量が多く、該潤滑油の使用効率に優れるとともに、用途・仕様に応じた樹脂と潤滑油との組合せが可能な多孔質樹脂保油体の提供を目的とする。   The present invention has been made to cope with such problems, and in a porous resin oil retaining body containing a lubricating oil, the oil content is high, the use efficiency of the lubricating oil is excellent, and depending on the application and specifications. It is an object of the present invention to provide a porous resin oil retaining body capable of combining a resin and a lubricating oil.

本発明の多孔質樹脂保油体は、30 %以上の連通孔率を有する樹脂多孔体に潤滑油が含浸されてなる多孔質樹脂保油体であって、上記含浸された潤滑油全量の 60 %以上が潤滑油として利用できることを特徴とする。
また、上記樹脂多孔体は、気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて上記成形体から上記気孔形成材を抽出して得られる連通孔を有することを特徴とする。
The porous resin oil retaining body of the present invention is a porous resin oil retaining body obtained by impregnating a resin porous body having a communication porosity of 30% or more with a lubricating oil, which is 60% of the total amount of the impregnated lubricating oil. % Or more can be used as a lubricating oil.
The porous resin body is formed by molding a resin containing a pore forming material into a molded body, and then dissolving the pore forming material and using the solvent that does not dissolve the resin from the molded body to the pores. It has the communicating hole obtained by extracting a forming material, It is characterized by the above-mentioned.

潤滑油は、従来のように練り込まれるのではなく、上記連通孔に含浸されてことにより、該潤滑油の流動性が確保され、含浸されている潤滑油全量の 60 %以上が潤滑油として利用可能となる。
なお、潤滑油として利用可能とは、該潤滑油が該多孔質樹脂保油体表面に滲み出し可能であり、各用途および使用条件において摺動面へ潤滑性を付与できることをいう。
Lubricating oil is not kneaded as in the past, but by impregnating the communication holes, the fluidity of the lubricating oil is ensured, and 60% or more of the total amount of impregnated lubricating oil is used as lubricating oil. Be available.
In addition, that it can utilize as lubricating oil means that this lubricating oil can ooze out to the surface of this porous resin oil retaining body, and can provide lubricity to a sliding surface in each use and use conditions.

本発明の多孔質樹脂保油体は、30 %以上の連通孔率を有する樹脂多孔体に潤滑油を含浸してなり、該潤滑油全量の 60 %以上 が潤滑油として利用可能であるので、含油量およびその利用効率に優れ、長期間潤滑性を付与することができる。
また、成形された樹脂多孔体に潤滑油を含浸するので、潤滑油は樹脂成形条件などを考慮することなく用途・仕様に応じて任意に選択できる。
The porous resin oil retaining body of the present invention is obtained by impregnating a resin porous body having a communication porosity of 30% or more with a lubricating oil, and 60% or more of the total amount of the lubricating oil can be used as the lubricating oil. The oil content and its utilization efficiency are excellent, and lubricity can be imparted for a long time.
In addition, since the molded resin porous body is impregnated with the lubricating oil, the lubricating oil can be arbitrarily selected according to the application and specifications without considering the resin molding conditions.

本発明の多孔質樹脂保油体は、30 %以上の連通孔率を有する樹脂多孔体に潤滑油を含浸してなり、上記含浸された潤滑油全量の 60 %以上が該多孔質樹脂保油体表面に滲み出し可能であり、摺動面において潤滑油として利用できる。
本発明の多孔質樹脂保油体は、潤滑油を保持する連通孔が、連通孔率で 30 %以上であることから、含油許容量に優れる。また、保油体表面に連通する連通孔構造を有することにより、含浸されている潤滑油全量の 60 %以上が滲み出し可能であるので、長期間潤滑性を付与することができる。なお、滲み出しの速度は、該多孔質樹脂保油体の用途および使用条件などにより異なる。
以下、連通孔率、および本発明の多孔質樹脂保油体を構成する樹脂、気孔形成材、成形方法、抽出方法について説明する。
The porous resin oil retaining body of the present invention is obtained by impregnating a resin porous body having a communication porosity of 30% or more with a lubricating oil, and 60% or more of the total amount of the impregnated lubricating oil is the porous resin oil retaining body. It can ooze out on the body surface and can be used as a lubricating oil on the sliding surface.
The porous resin oil retaining body of the present invention is excellent in the allowable oil content since the communication holes for retaining the lubricating oil have a communication hole ratio of 30% or more. Further, by having a communication hole structure communicating with the surface of the oil retaining body, 60% or more of the total amount of the lubricating oil impregnated can be oozed out, and thus lubricity can be imparted for a long time. In addition, the speed of oozing varies depending on the use and use conditions of the porous resin oil retaining body.
Hereinafter, the communication porosity, the resin constituting the porous resin oil retaining body of the present invention, the pore forming material, the molding method, and the extraction method will be described.

球体を点接触により最も密に充填する形態として面心立方格子、六方最密充填があり、それらの充填率は、(球の体積÷外接立方体の体積)÷(正三角形の高さ÷底辺)÷(正四面体の高さ÷一辺)で計算され、共に 74 %である。(100−充填率)として定義される気孔率としては 26 %になる。
以上の計算は、同一サイズの球体を考えた場合であるが、複数のサイズの球体を充填した場合は、六方最密充填よりも充填率は大きくなり、気孔率は小さくなる。
また、粉末状の球体樹脂粒子を圧縮成形した後に焼結する場合、点接触はあり得ず、球体樹脂粒子は変形して面接触する。このため、六方最密充填よりも充填率はより大きくなり、気孔率はより小さくなる。このため従来の焼結樹脂成形体の気孔率は 20 %程度が限界となっている。
Face-centered cubic lattice and hexagonal close-packed packing are the most densely packed spheres by point contact, and their filling ratio is (volume of sphere ÷ volume of circumscribed cube) ÷ (height of equilateral triangle ÷ base) ÷ (Height of regular tetrahedron ÷ one side) and both are 74%. The porosity defined as (100-filling factor) is 26%.
The above calculation is a case where spheres of the same size are considered. However, when spheres of a plurality of sizes are filled, the filling rate becomes larger than the hexagonal close-packed filling, and the porosity becomes smaller.
Further, when the powdered spherical resin particles are sintered after compression molding, there is no point contact, and the spherical resin particles are deformed and brought into surface contact. For this reason, a filling rate becomes larger than a hexagonal close-packing, and a porosity becomes smaller. For this reason, the porosity of conventional sintered resin moldings is limited to about 20%.

本発明における連通孔率は、上記の気孔率と略同一定義で、かつ気孔が連続している状態の気孔率をいう。すなわち、相互に連続している気孔の総体積が樹脂成形体に占める割合をいう。
具体的には、連通孔率は数1内の式(1)に示す方法で算出した。

Figure 2006028379
上記、数1において、各符号の意味を以下に示す。
V;加熱圧縮成形法にて成形された洗浄前成形体の体積
ρ;加熱圧縮成形法にて成形された洗浄前成形体の密度
W;加熱圧縮成形法にて成形された洗浄前成形体の重量
1;樹脂粉末の体積
ρ1;樹脂粉末の密度
1;樹脂粉末の重量
2;気孔形成材の体積
ρ2;気孔形成材の密度
2;気孔形成材の重量
3;洗浄後の多孔体の体積
3;洗浄後の多孔体の重量
V’2;洗浄後に多孔体に残存する気孔形成材の体積 The communication porosity in the present invention is the same definition as the above porosity, and refers to the porosity in a state where the pores are continuous. That is, it refers to the ratio of the total volume of pores that are continuous to the resin molded body.
Specifically, the communication porosity was calculated by the method shown in Equation (1) in Equation 1.
Figure 2006028379
In the above Equation 1, the meaning of each symbol is shown below.
V: Volume ρ of the pre-cleaning molded body formed by the heat compression molding method; density W of the pre-cleaning molded body molded by the heat compression molding method; Weight V 1 ; Volume ρ 1 of resin powder; Density W 1 of resin powder; Weight V 2 of resin powder; Volume ρ 2 of pore forming material; Density W 2 of pore forming material; Weight V 3 of pore forming material; Washing The volume W 3 of the porous body after; the weight V ′ 2 of the porous body after cleaning; the volume of the pore forming material remaining in the porous body after cleaning

本発明においては、以下に述べる製造方法により、30 %以上、好ましくは 30 %〜 90 %、より好ましくは 30〜70 %の連通孔率を有する樹脂多孔体が得られる。   In the present invention, a resin porous body having a communication porosity of 30% or more, preferably 30% to 90%, more preferably 30 to 70% is obtained by the production method described below.

本発明に使用できる樹脂多孔体は、気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて成形体から気孔形成材を抽出して得られる。例えば、成形温度X℃の樹脂Aに、このX℃より高い融点Y℃を有する水溶性粉末Bを配合して、X℃で成形して成形体とした後、該成形体より水溶性粉末Bを水で抽出して多孔体が得られる。
なお、樹脂多孔体の製造方法は、これに限られるものでなく、30 %以上の連通孔率となる任意の方法を採用できる。例えば、スピノーダル分解法などポリマーアロイによる二層分離にした樹脂の一方を溶剤で抽出する方法などがある。
The resin porous body that can be used in the present invention is obtained by molding a resin containing a pore-forming material into a molded body, then dissolving the pore-forming material and using a solvent that does not dissolve the resin from the molded body. It is obtained by extracting the forming material. For example, a water-soluble powder B having a melting point Y ° C. higher than X ° C. is blended with a resin A having a molding temperature X ° C., and molded at X ° C. to form a molded body. Is extracted with water to obtain a porous body.
In addition, the manufacturing method of a resin porous body is not restricted to this, The arbitrary methods used as the communicating porosity of 30% or more are employable. For example, there is a method of extracting one of the resins separated into two layers by polymer alloy, such as a spinodal decomposition method, with a solvent.

本発明に使用できる樹脂としては、熱可塑性樹脂、熱硬化性樹脂、エラストマーまたはゴムなどの樹脂粉末やペレットを使用できる。樹脂粉末、ペレットの粒径や形状は、溶融成形する場合には、溶融時に気孔形成材と混練されるので、特に限定されるものではない。ドライブレンドしてそのまま圧縮成形する場合には1 〜 500 μmの平均粒径が好ましい。
熱可塑性樹脂または熱硬化性樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン樹脂、変性ポリエチレン樹脂、水架橋ポリオレフィン樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、ウレタン樹脂、ポリテトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体樹脂、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体樹脂、ポリアセタール樹脂、ポリエチレンテレフタラート樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、脂肪族ポリケトン樹脂、ポリビニルピロリドン樹脂、ポリオキサゾリン樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などを例示できる。また、上記合成樹脂から選ばれた2種以上の材料の混合物、すなわちポリマーアロイなどを例示できる。
As resin which can be used for this invention, resin powder and pellets, such as a thermoplastic resin, a thermosetting resin, an elastomer, or rubber | gum, can be used. The particle size and shape of the resin powder and pellets are not particularly limited when melt molding because they are kneaded with the pore forming material at the time of melting. In the case of dry blending and compression molding as it is, an average particle diameter of 1 to 500 μm is preferable.
Examples of the thermoplastic resin or thermosetting resin include polyethylene resins such as low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene, modified polyethylene resins, water-crosslinked polyolefin resins, polyamide resins, aromatic polyamide resins, polystyrene resins, Polypropylene resin, silicone resin, urethane resin, polytetrafluoroethylene resin, chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, vinylidene fluoride resin , Ethylene / tetrafluoroethylene copolymer resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene ether resin, Recarbonate resin, aliphatic polyketone resin, polyvinylpyrrolidone resin, polyoxazoline resin, polyphenylene sulfide resin, polyethersulfone resin, polyetherimide resin, polyamideimide resin, polyetheretherketone resin, thermoplastic polyimide resin, thermosetting Examples thereof include a functional polyimide resin, an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin. Moreover, the mixture of 2 or more types of materials chosen from the said synthetic resin, ie, a polymer alloy, etc. can be illustrated.

エラストマーまたはゴムとしては、例えば、アクリロニトリルブタジエンゴム、イソプレンゴム、スチレンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム等の加硫ゴム類;ポリウレタンエラストマー、ポリエステルエラストマー、ポリアミドエラストマー、ポリブタジエン系エラストマー、軟質ナイロン系エラストマー等の熱可塑性エラストマー類が例示できる。   Examples of the elastomer or rubber include acrylonitrile butadiene rubber, isoprene rubber, styrene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, acrylic rubber, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, chlorinated Examples thereof include vulcanized rubbers such as polyethylene rubber and epichlorohydrin rubber; and thermoplastic elastomers such as polyurethane elastomer, polyester elastomer, polyamide elastomer, polybutadiene elastomer, and soft nylon elastomer.

気孔形成材としては、樹脂の成形温度よりも高い融点を有し、該樹脂に配合されて成形体とされた後、その樹脂を溶解しない溶媒を用いて成形体から溶解されて抽出できる物質であれば使用できる。
気孔形成材は、無機塩化合物、有機塩化合物、またはこれらの混合物であることが好ましく、特に洗浄抽出工程が容易となる水溶性物質であることが好ましい。また、アルカリ性物質、好ましくは防錆剤として使用できる弱アルカリ性物質が好ましい。弱アルカリ塩としては、有機アルカリ金属塩、有機アルカリ土類金属塩、無機アルカリ金属塩、無機アルカリ土類金属塩などが挙げられる。未抽出分が脱落したときも、比較的軟らかく、転動面やすべり面を損傷し難いことから、有機アルカリ金属塩、有機アルカリ土類金属塩を用いることが好ましい。なお、これらの金属塩は1種または2種以上混合して用いてもよい。また、洗浄用溶媒として安価な水を使用することができ、気孔形成時における廃液処理などが容易となることから水溶性の弱アルカリ塩を使用することが好ましい。
また、成形時における気孔形成材の溶解を防止するため、気孔形成材は使用する樹脂の成形温度よりも高い融点の物質を使用する。
本発明に好適に用いることができる水溶性有機アルカリ金属塩としては、安息香酸ナトリウム(融点 430 ℃)、酢酸ナトリウム(融点 320 ℃)またはセバシン酸ナトリウム(融点 340 ℃)、コハク酸ナトリウム、ステアリン酸ナトリウムなどが挙げられる。融点が高く、多種の樹脂に対応でき、かつ水溶性が高いという理由から、安息香酸ナトリウム、酢酸ナトリウムまたはセバシン酸ナトリウムが特に好ましい。
無機アルカリ金属塩としては、例えば、炭酸カリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウムなどが挙げられる。
The pore-forming material is a substance that has a melting point higher than the molding temperature of the resin and can be extracted by being dissolved from the molded body using a solvent that does not dissolve the resin after being blended with the resin to form a molded body. If you can use it.
The pore-forming material is preferably an inorganic salt compound, an organic salt compound, or a mixture thereof, and particularly preferably a water-soluble substance that facilitates the washing and extraction process. Further, an alkaline substance, preferably a weak alkaline substance that can be used as a rust preventive is preferred. Examples of the weak alkali salt include organic alkali metal salts, organic alkaline earth metal salts, inorganic alkali metal salts, inorganic alkaline earth metal salts, and the like. It is preferable to use an organic alkali metal salt or an organic alkaline earth metal salt because even when the unextracted component falls off, it is relatively soft and hardly damages the rolling surface and the sliding surface. In addition, you may use these metal salts 1 type or in mixture of 2 or more types. In addition, it is preferable to use a water-soluble weak alkali salt because inexpensive water can be used as a cleaning solvent, and waste liquid treatment at the time of pore formation is facilitated.
In order to prevent dissolution of the pore forming material during molding, the pore forming material uses a substance having a melting point higher than the molding temperature of the resin used.
Examples of water-soluble organic alkali metal salts that can be suitably used in the present invention include sodium benzoate (melting point: 430 ° C.), sodium acetate (melting point: 320 ° C.) or sodium sebacate (melting point: 340 ° C.), sodium succinate, and stearic acid. Sodium etc. are mentioned. Sodium benzoate, sodium acetate, or sodium sebacate is particularly preferred because of its high melting point, compatibility with various resins, and high water solubility.
Examples of the inorganic alkali metal salt include potassium carbonate, sodium molybdate, potassium molybdate, and sodium tungstate.

気孔形成材は多孔質樹脂保油体の用途に応じて平均粒径を管理する。
気孔形成材の割合は、樹脂粉末、気孔形成材料および充填材などの他の材料を含めた全量に対して、30 体積%〜 90 体積%、好ましくは 40体積%〜90体積%とする。30体積%以下では多孔体の気孔が連続孔になり難く、90体積%以上では所望の機械的強度が得られない。
また配合時において、気孔形成材の抽出に使用する溶媒に不溶な充填材を配合してもよい。例えば、該溶媒が水である場合には、多孔体の機械的強度を向上させるなどの目的で、ガラス繊維、炭素繊維などを配合してもよい。
The pore-forming material manages the average particle size according to the use of the porous resin oil retaining body.
The ratio of the pore forming material is 30% by volume to 90% by volume, preferably 40% by volume to 90% by volume, with respect to the total amount including other materials such as resin powder, pore forming material and filler. If the volume is 30% by volume or less, the pores of the porous body are hardly formed into continuous pores.
Moreover, you may mix | blend the filler insoluble in the solvent used for extraction of a pore formation material at the time of a mixing | blending. For example, when the solvent is water, glass fiber, carbon fiber, or the like may be blended for the purpose of improving the mechanical strength of the porous body.

樹脂材料と気孔形成材の混合法は特に限定されるものではなくドライブレンド、溶融混練など樹脂の混合に一般に使用する混練法が適用できる。
また、気孔形成材を液体溶媒中に溶解させて透明溶液とした後、この溶液に樹脂粉末を分散混合させて、その後、この溶媒を除去する方法を用いることができる。
分散混合させる方法としては、液中混合できる方法であれば特に限定されるものではなく、ボールミル、超音波分散機、ホモジナイザー、ジューサーミキサー、ヘンシェルミキサーなどが例示できる。また、分散液の分離を抑えるために少量の界面活性剤を添加することも有効である。なお、混合時においては、混合により気孔形成材が完全に溶解するよう溶媒量を確保する。
また、溶媒を除去する方法としては、加熱蒸発、真空蒸発、窒素ガスによるバブリング、透析、凍結乾燥などの方法を用いることができる。手法が容易で、設備が安価であることから加熱蒸発により液体溶媒の除去を行なうことが好ましい。
The mixing method of the resin material and the pore forming material is not particularly limited, and a kneading method generally used for mixing the resin such as dry blending and melt kneading can be applied.
Alternatively, a method may be used in which the pore-forming material is dissolved in a liquid solvent to form a transparent solution, and then resin powder is dispersed and mixed in the solution, and then the solvent is removed.
The method of dispersing and mixing is not particularly limited as long as it can be mixed in a liquid, and examples thereof include a ball mill, an ultrasonic disperser, a homogenizer, a juicer mixer, and a Henschel mixer. It is also effective to add a small amount of a surfactant in order to suppress separation of the dispersion. At the time of mixing, the amount of solvent is secured so that the pore forming material is completely dissolved by mixing.
As a method for removing the solvent, methods such as heat evaporation, vacuum evaporation, bubbling with nitrogen gas, dialysis, and freeze-drying can be used. Since the method is easy and the equipment is inexpensive, it is preferable to remove the liquid solvent by heat evaporation.

樹脂に気孔成形材を配合した混合物の成形に関しては、目的とする多孔質樹脂保油体の形状等に応じて、圧縮成形、射出成形、押し出し成形、ブロー成形、真空成形、トランスファ成形などの任意の成形方法を採用できる。また成形前に作業性を向上させるため、ペレットやプリプレグなどに加工してもよい。   Regarding the molding of a mixture in which a pore molding material is blended with a resin, any of compression molding, injection molding, extrusion molding, blow molding, vacuum molding, transfer molding, etc., depending on the shape of the target porous resin oil retaining body, etc. The molding method can be adopted. Moreover, in order to improve workability | operativity before shaping | molding, you may process into a pellet, a prepreg, etc.

得られた成形体からの気孔形成材の抽出は、上記気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒で成形体を洗浄することにより行なう。
該溶媒としては、例えば、水、および水と相溶しうる溶媒としてアルコール系、エステル系、ケトン系溶媒などを用いることができる。これらの中で、樹脂および気孔形成材の種類によって上記条件に従い適宜選択される。また、これらの溶媒は1種または2種以上を混合し使用してもよい。廃液処理などが容易、安価などの利点から水を用いることが好ましい。
該抽出処理を行なうことにより、気孔形成材が充填されていた部分が溶解され、該溶解部分に気孔が形成された樹脂多孔体が得られる。
Extraction of the pore-forming material from the obtained molded body is performed by washing the molded body with a solvent that dissolves the pore-forming material and does not dissolve the resin.
As the solvent, for example, water and alcohol solvents, ester solvents, ketone solvents, and the like can be used as solvents compatible with water. Among these, it is appropriately selected according to the above conditions depending on the type of resin and pore forming material. These solvents may be used alone or in combination of two or more. It is preferable to use water because of its advantages such as easy waste liquid treatment and low cost.
By performing the extraction treatment, the portion filled with the pore forming material is dissolved, and a porous resin body having pores formed in the dissolved portion is obtained.

本発明の多孔質樹脂保油体は、上記樹脂多孔体に潤滑油を含浸させることで得られる。
含浸する潤滑油としては、例えば、スピンドル油、冷凍機油、タービン油、マシン油、ダイナモ油、パラフィン系鉱油、ナフテン系鉱油等の鉱油、ポリブデン、ポリαオレフィン、アルキルベンゼン、アルキルナフタレン、脂環式化合物等の炭化水素系合成油、または、天然油脂やポリオールエステル油、リン酸エステル、ジエステル油、ポリグリコール油、シリコーン油、ポリフェニルエーテル油、アルキルジフェニルエーテル油、フッ素化油等の非炭化水素系合成油等、一般に使用されている潤滑油であれば特に限定することなく使用できる。
上記潤滑油には、本発明の目的を損なわない範囲で、必要に応じて、極圧剤、酸化防止剤、防錆剤、流動点降下剤、無灰系分散剤、金属系清浄剤、界面活性剤、摩耗調整剤などを配合できる。酸化防止剤としては、フェノ一ル系、アミン系、イオウ系などを単独または、混合して使用できる。
特に保油体から供給される潤滑油は長期にわたり酸化劣化しないことが望まれるので、上記のような酸化防止剤を配合することが好ましい。
含浸方法としては、樹脂多孔体の内部まで含浸できる方法であればよい。潤滑油が満たされた含浸槽に樹脂多孔体を浸漬した後、減圧して含浸する減圧含浸が好ましい。また、高粘度のシリコーン油などを用いる場合、加圧含浸することができる。これらを組み合わせた加圧減圧含浸としてもよい。
The porous resin oil retaining body of the present invention can be obtained by impregnating the above resin porous body with a lubricating oil.
Examples of the lubricating oil to be impregnated include spindle oil, refrigerating machine oil, turbine oil, machine oil, dynamo oil, paraffinic mineral oil, naphthenic mineral oil and other mineral oils, polybutene, polyalphaolefin, alkylbenzene, alkylnaphthalene, and alicyclic compounds. Or other non-hydrocarbon synthetic oils such as natural fats and oils, polyol ester oils, phosphate esters, diester oils, polyglycol oils, silicone oils, polyphenyl ether oils, alkyl diphenyl ether oils, fluorinated oils, etc. Any lubricating oil that is generally used, such as oil, can be used without particular limitation.
In the above lubricating oil, as long as the purpose of the present invention is not impaired, an extreme pressure agent, an antioxidant, a rust inhibitor, a pour point depressant, an ashless dispersant, a metal detergent, an interface Activators, wear modifiers, etc. can be blended. As the antioxidant, phenol, amine, sulfur and the like can be used alone or in combination.
In particular, since it is desired that the lubricating oil supplied from the oil retaining body does not undergo oxidative degradation over a long period of time, it is preferable to incorporate the antioxidant as described above.
The impregnation method may be any method that can impregnate the inside of the porous resin body. The pressure reduction impregnation in which the porous resin is immersed in an impregnation tank filled with a lubricating oil and then impregnated under reduced pressure is preferable. Further, when a high viscosity silicone oil or the like is used, it can be impregnated under pressure. It is good also as a pressure-reduced-pressure impregnation combining these.

実施例1
超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)と安息香酸ナトリウム粉末(和光純薬(株)製試薬)とを体積比 50 : 50 の割合でミキサーにて 5 分間混合して混合粉末を得た。この混合粉末を用いて、直径φ 30 mm ×厚さt 5 mm のディスクを加熱圧縮成形法( 200℃× 30分)にて成形した。この成形体を 80 ℃の温水で超音波洗浄器にて 10 時間洗浄して安息香酸ナトリウム粉末を溶出させた。その後 100 ℃で 8 時間乾燥し連通孔率 48 %の多孔体を得た。この多孔体に合成潤滑油(PAO)(新日鉄化学社製シンフルード801(粘度 46 mm2/s( 40 ℃)))を 60 ℃にて真空含浸して試験用の多孔質樹脂保油体を得た。含油率は全体積に対して 45 %であった。該保油体に対し滲み出し試験を行なった。
Example 1
Ultra high molecular weight polyethylene powder (Miperon XM220 manufactured by Mitsui Chemicals, Inc.) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) are mixed at a volume ratio of 50:50 in a mixer for 5 minutes to obtain a mixed powder Got. Using this mixed powder, a disk having a diameter of 30 mm and a thickness of t 5 mm was molded by a heat compression molding method (200 ° C. × 30 minutes). This molded product was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium benzoate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 48%. This porous body is impregnated with synthetic lubricating oil (PAO) (Shinflud 801 manufactured by Nippon Steel Chemical Co., Ltd. (viscosity: 46 mm 2 / s (40 ° C))) at 60 ° C to prepare a porous resin oil retaining body for testing. Obtained. The oil content was 45% of the total volume. The oil retaining body was subjected to a bleeding test.

実施例2
四フッ化エチレン樹脂粉末(ダイキン工業(株)製M15)と安息香酸ナトリウム粉末(和光純薬(株)製試薬)とを体積比 50 : 50 の割合でミキサーにて 5 分間混合して混合粉末を得た。この混合粉末を用いて、直径φ 30 mm×厚さt 5 mm のディスクを加熱圧縮成形法( 350 ℃× 30 分)にて成形した。この成形体を 80 ℃の温水で超音波洗浄器にて 10 時間洗浄して安息香酸ナトリウム粉末を溶出させた。その後 100 ℃で 8 時間乾燥し連通孔率 48 %の多孔体を得た。この多孔体に合成炭化水素油(三井化学(株)製ルーカントHC−20(粘度 155 mm2/s( 40 ℃)))を 60 ℃にて真空含浸して試験用の多孔質樹脂保油体を得た。含油率は全体積に対して 44 %であった。この試料を用いて含浸油の滲み出し試験を行なった。
Example 2
Mixed powder of ethylene tetrafluoride resin powder (M15 manufactured by Daikin Industries, Ltd.) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) at a volume ratio of 50:50 for 5 minutes using a mixer. Got. Using this mixed powder, a disk having a diameter of 30 mm × thickness t 5 mm was formed by a heat compression molding method (350 ° C. × 30 minutes). This molded product was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium benzoate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 48%. This porous body is impregnated with synthetic hydrocarbon oil (Lucanto HC-20 (viscosity: 155 mm 2 / s (40 ° C.)) manufactured by Mitsui Chemicals, Inc.) at 60 ° C. by vacuum impregnation, and a porous resin oil retaining body for testing. Got. The oil content was 44% of the total volume. Using this sample, a oozing test of the impregnated oil was performed.

実施例3
ポリエーテルエーテルケトン(PEEK)樹脂粉末(ビクトレックス(株)製150PF)と炭素繊維と安息香酸ナトリウム粉末(和光純薬(株)製試薬)とを体積比 50 : 10 : 40 の割合でブラベンダーにて溶融混練した後粉砕して混合粉末を得た。この混合粉末を用いて、直径φ 30 mm×厚さt 5 mm のディスクを加熱圧縮成形法( 360 ℃× 30 分)にて成形した。この成形体を 80 ℃の温水で超音波洗浄器にて 10 時間洗浄して安息香酸ナトリウム粉末を溶出させた。その後 100 ℃で 8 時間乾燥し連通孔率 39 %の多孔体を得た。この多孔体に合成潤滑油(PAO)(新日鉄化学(株)製シンフルード801(粘度 46 mm2/s( 40 ℃)))を 60 ℃にて真空含浸して試験用の多孔質樹脂保油体を得た。含油率は全体積に対して 38 %であった。この試料を用いて含浸油の滲み出し試験を行なった。
Example 3
Polyetheretherketone (PEEK) resin powder (150 PF manufactured by Victrex), carbon fiber and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) in a volume ratio of 50:10:40 The mixture was melt kneaded and then pulverized to obtain a mixed powder. Using this mixed powder, a disk having a diameter of 30 mm × thickness t 5 mm was formed by a heat compression molding method (360 ° C. × 30 minutes). This molded product was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium benzoate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 39%. This porous material is impregnated with synthetic lubricating oil (PAO) (Shinflud 801 manufactured by Nippon Steel Chemical Co., Ltd. (viscosity: 46 mm 2 / s (40 ° C))) at 60 ° C to obtain a porous resin oil for testing. Got the body. The oil content was 38% of the total volume. Using this sample, a oozing test of the impregnated oil was performed.

比較例1
超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)とポリエチレンワックス(精工化学(株)製サンタイトS)と合成潤滑油(PAO)(新日鉄化学(株)製シンフルード801(粘度 46 mm2/s( 40 ℃)))とを体積比 20 : 15 : 65 の割合で混合して型に入れ、フリーシンター法( 160 ℃× 30 分)にて直径φ 30 mm×厚さt 5 mm のディスクを成形した。成形後の含油率は全体積に対して 72 %であった。この試料を用いて含浸油の滲み出し試験を行なった。
Comparative Example 1
Ultra high molecular weight polyethylene powder (Miperon XM220 manufactured by Mitsui Chemicals), polyethylene wax (Suntite S manufactured by Seiko Chemical Co., Ltd.) and synthetic lubricating oil (PAO) (Shinflud 801 manufactured by Nippon Steel Chemical Co., Ltd., viscosity 46 mm 2 / s (40 ° C))) in a volume ratio of 20:15:65 and put into a mold. Diameter of 30 mm x thickness t 5 mm by free sintering method (160 ° C x 30 min) A disk was formed. The oil content after molding was 72% of the total volume. Using this sample, a oozing test of the impregnated oil was performed.

含浸油の滲み出し試験:
実施例1、実施例2、実施例3および比較例1で作製したディスクを定量ろ紙No.5C(φ100mm 、2 枚)で挟み含浸油の定量ろ紙への移行性をディスクの油分減少量として調べた。結果を図1に示す。図1において横軸は経過時間(時間(h))を、縦軸は油分減少量(g)をそれぞれ表わす。
図1に示すように、各実施例では初期含油量の70%以上の滲み出しが可能であった。しかし、比較例1は初期含油量が実施例3の約 2 倍あるにも拘わらず、含浸油の滲み出し量は実施例3の約 20 %であった。各実施例の多孔質樹脂保油体は連通孔を有し、含浸油を有効に利用できることが分かる。
Impregnation oil seepage test:
The disks produced in Example 1, Example 2, Example 3 and Comparative Example 1 were measured with quantitative filter paper No. The amount of impregnated oil transferred to the filter paper was investigated as the amount of oil reduction in the disc, sandwiched between 5C (φ100mm, 2 sheets). The results are shown in FIG. In FIG. 1, the horizontal axis represents elapsed time (time (h)), and the vertical axis represents oil decrease amount (g).
As shown in FIG. 1, in each of the examples, it was possible to exude 70% or more of the initial oil content. However, in Comparative Example 1, although the initial oil content was about twice that of Example 3, the oozing amount of the impregnated oil was about 20% of Example 3. It can be seen that the porous resin oil retaining body of each example has communication holes and can effectively use the impregnated oil.

本発明の多孔質樹脂保油体は耐久性に優れるので、転がり軸受、滑り軸受の保持器など長寿命が要求される用途に好適に用いることができる。   Since the porous resin oil retaining body of the present invention is excellent in durability, it can be suitably used for applications requiring a long life such as a rolling bearing and a sliding bearing cage.

含浸油の滲み出し試験結果を示す図である。It is a figure which shows the oozing-out test result of impregnation oil.

Claims (2)

30 %以上の連通孔率を有する樹脂多孔体に潤滑油が含浸されてなる多孔質樹脂保油体であって、
前記含浸された潤滑油全量の 60 %以上が潤滑油として利用できることを特徴とする多孔質樹脂保油体。
A porous resin oil retaining body obtained by impregnating a resin porous body having a communication porosity of 30% or more with a lubricating oil,
A porous resin oil retaining body, wherein 60% or more of the total amount of the impregnated lubricating oil can be used as a lubricating oil.
前記樹脂多孔体は、気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ前記樹脂を溶解しない溶媒を用いて前記成形体から前記気孔形成材を抽出して得られる連通孔を有することを特徴とする請求項1記載の多孔質樹脂保油体。   The porous resin body is formed by molding a resin in which a pore forming material is blended into a molded body, and then dissolves the pore forming material and uses the solvent that does not dissolve the resin from the molded body to the pore forming material. The porous resin oil retaining body according to claim 1, wherein the porous resin oil retaining body has a communication hole obtained by extracting the water.
JP2004211030A 2004-04-23 2004-07-20 Porous resin oil retainer Pending JP2006028379A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004211030A JP2006028379A (en) 2004-07-20 2004-07-20 Porous resin oil retainer
CN2005800125631A CN1946783B (en) 2004-04-23 2005-04-14 Porous resin article and method for production thereof
EP05730458.6A EP1746125B1 (en) 2004-04-23 2005-04-14 Porous resin article and method for production thereof
US11/578,167 US7910198B2 (en) 2004-04-23 2005-04-14 Resinous porous article and method for production thereof
PCT/JP2005/007216 WO2005103128A1 (en) 2004-04-23 2005-04-14 Porous resin article and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211030A JP2006028379A (en) 2004-07-20 2004-07-20 Porous resin oil retainer

Publications (1)

Publication Number Publication Date
JP2006028379A true JP2006028379A (en) 2006-02-02

Family

ID=35895119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211030A Pending JP2006028379A (en) 2004-04-23 2004-07-20 Porous resin oil retainer

Country Status (1)

Country Link
JP (1) JP2006028379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514996A (en) * 2005-11-04 2009-04-09 ピーピーディー メディテック Porous material and method of making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316794A (en) * 1997-05-15 1998-12-02 Meisei Kagaku Kogyo Kk Mass production of porous molded article of thermoplastic synthetic resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316794A (en) * 1997-05-15 1998-12-02 Meisei Kagaku Kogyo Kk Mass production of porous molded article of thermoplastic synthetic resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514996A (en) * 2005-11-04 2009-04-09 ピーピーディー メディテック Porous material and method of making the same
US8383024B2 (en) 2005-11-04 2013-02-26 Ppd Meditech Porous material and method for fabricating same

Similar Documents

Publication Publication Date Title
US7771125B2 (en) Retainer for rolling bearing, and rolling bearing
US7910198B2 (en) Resinous porous article and method for production thereof
JP4848121B2 (en) Sliding material
WO2005121288A1 (en) Sliding material and sliding bearing
JP4541765B2 (en) Roller bearing cage and rolling bearing
JP2006258158A (en) Lubricant supply construction
JP4536650B2 (en) Rolling bearing
JP5033311B2 (en) Resin oil body and method
JP4155981B2 (en) Resin porous body and method for producing the same
JP4206377B2 (en) Resin oil body and method for producing the same
JP2006077073A (en) Sliding member and resin coating composition
JP2006028379A (en) Porous resin oil retainer
JP2006125482A (en) Seal member and bearing using the same
JP4851695B2 (en) Sliding material
JP2006009834A (en) Sliding bearing
JP4541769B2 (en) Roller bearing cage and rolling bearing
JP4478085B2 (en) Roller bearing cage and rolling bearing
JP2006250262A (en) Sliding bearing for precision sliding-component
JP2006342938A (en) Rolling bearing cage and rolling bearing
JP2007046752A (en) Dynamic pressure type bearing device
JP2006123058A (en) Sliding member for machine tool
JP2006063279A (en) In-liquid sliding material
JP2007024171A (en) Cage for rolling bearing, and rolling bearing
JP2007016862A (en) Rolling bearing cage and rolling bearing
JP2007198561A (en) Rolling bearing for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070330

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118