JP2006025011A - 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード - Google Patents

光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード Download PDF

Info

Publication number
JP2006025011A
JP2006025011A JP2004199345A JP2004199345A JP2006025011A JP 2006025011 A JP2006025011 A JP 2006025011A JP 2004199345 A JP2004199345 A JP 2004199345A JP 2004199345 A JP2004199345 A JP 2004199345A JP 2006025011 A JP2006025011 A JP 2006025011A
Authority
JP
Japan
Prior art keywords
wavelength
light
dispersion compensator
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004199345A
Other languages
English (en)
Inventor
Motoyoshi Sekiya
元義 関屋
Yuichi Kawabata
雄一 川幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004199345A priority Critical patent/JP2006025011A/ja
Priority to US10/986,907 priority patent/US20060007427A1/en
Publication of JP2006025011A publication Critical patent/JP2006025011A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】 光源及び分散補償器の双方についてそれぞれ独立に波長安定化を行なうことなく、光源の出力波長の波長安定化のみで、光源の出力波長に分散補償器の通過特性を追従させて高安定に一致させることができるようにする。
【解決手段】 ある波長の光を送信する光源11と、この光源11から送信された光の分散を補償する通過特性可変型の分散補償器2と、この分散補償器2を通過した光の強度変化量が最小となるよう、分散補償器2の通過特性を制御する制御手段4,15〜17とをそなえるように構成する。
【選択図】 図1

Description

本発明は、光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノードに関する。
光伝送システムにおいて伝送路の波長分散が大きい場合に分散補償を行なう必要がある。分散補償器としてはファイバタイプ(いわゆるDCM)が一般的であるが、近年、VIPA(Virtually Imaged Phased Array)、エタロン、ファイバブラッググレーティング(FBG)、導波路共振型などファイバ型ではない分散補償器が実現されてきている。
この中で、特に、VIPAやエタロンフィルタはシンプルでコンパクトな構成で分散補償を行なえ、かつ、分散補償量も可変にすることが可能なことから非常に有望な分散補償デバイスであるが、その一方で、共振を利用する構造であるため、分散補償が可能な通過帯域が周期的になるとともに各波長における通過帯域幅が制限される(狭帯域になる)という特質がある。例えば、VIPAの通過帯域特性の一例を模式的に示すと図21に示すようになるが、この図21の上段に示すように、50,100あるいは200GHz(ギガヘルツ)といった極めて狭い間隔で周期的に通過帯域特性(以下、単に「通過特性」ともいう)のピーク(中心波長)が現れる。なお、図21の下段は、波長に対する群遅延特性を示しており、前記ピークからずれるに従い群遅延が0からずれる様子を示している。
そのため、非WDM(Wavelength Division Multiplexing)システムでは、VIPAやエタロンフィルタのような、分散補償可能な通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な波長分散補償器〔以下、周期的(もしくは周期型)分散補償器と称する〕を用いずに、通過帯域が広帯域の分散補償器(DCM)を用いるのが普通である。
一方、WDM伝送システムに周期的分散補償器を用いる場合には、分散補償可能な通過帯域が上述のごとく狭帯域かつ周期的であるため、光源(光送信機)の送信波長をITU(International Telecommunication Union)規格のグリッド波長(以下、ITUグリッド波長という)λItuに高精度に安定化させるとともに、周期的分散補償器の透過波長(通過帯域特性)も当該ITUグリッド波長λItuに安定化させる必要がある。そのため、例えば図20に示すように、光送信機100には、半導体レーザ等の光源(LD)1010と波長変動検出回路1011とを内蔵するLDモジュール101及びLD電流制御回路102のほかに、波長安定化(波長ロック)のために、波長検出回路103及びLD温度制御回路104などを装備し、上記波長変動検出回路1011による波長変動情報を波長検出回路103で受けることにより波長変動(誤差)を検出し、当該検出誤差が最小となるようにLD温度制御回路104により光源101を温度制御する(例えば、光源1010に備えられたペルチェ素子を制御する)ことで、光送信機100の送信波長を対応するITUグリッド波長に安定的に一致させることを実現している。その一方で、周期的分散補償器200の通過特性も温度安定化等によりITUグリッド波長に安定化させる。
このようにして、光送信機100の送信波長及び周期的分散補償器200の通過帯域特性の双方をITUグリッド波長に十分一致させ安定化させることで、安定した分散補償特性を得ることが可能となる。なお、この図20において、105は光源101からの光を送信信号(データ)により変調する外部変調器(例えば、LN変調器等)を示すが、いわゆる直接変調方式の場合には不要になる。また、太実線矢印は電気信号ライン、細実線矢印は光信号ラインを示している。
なお、波長安定化に関する従来技術として他に、例えば下記特許文献1〜3により提案されている技術がある。
ここで、特許文献1の技術は、チューナブルレーザを予備用として用いる場合に、そのチューナブルレーザにより出力されうる複数波長のいずれをも安定化することが可能で、引込範囲も広くすることが可能なマルチ波長安定化装置を提供するものである。そのため、特許文献1のマルチ波長安定化装置は、入射光をWDM方式におけるチャンネルの波長間隔の2倍に相当する周期で干渉させるとともにその干渉光を半周期ずらして2つのポートから出力する干渉計と、前記各ポートからの出力光強度をそれぞれ検出する第1及び第2の検出手段と、所定波長に固定されるチャンネルが偶数か奇数かを判断するとともに、その判断結果と上記各検出手段の出力とに基づいてレーザ光源の出力波長が所定波長になるように制御する制御手段とをそなえて構成される。
そして、本マルチ波長安定化装置では、所定波長のチャンネルが偶数チャンネルか奇数チャンネルかを判断して、第2の検出手段の出力(PDo2)で割った第1の検出手段の出力(PDo1)の検出値(PDo1/PDo2)が目標値となるような制御信号をレーザ光源に与えることにより、レーザ光源の出力波長を所定波長に固定することが可能となる。また、偶数チャンネル同士及び奇数チャンネル同士の間では、それぞれ、PDo1/PDo2の同じ値がチャンネル波長間隔の2倍の周期で現れるため、各チャンネルの引込範囲は所定波長を中心としてチャンネル波長間隔の2倍にすることができる。
また、特許文献2の技術は、光ファイバグレーティング(FBG)を分散補償に用いた光伝送装置に関するもので、狭帯域の分散補償用FBGを送信機内に配置するとともに、中心波長が使用中心温度において前記送信側FBGの中心波長と合致するように予め設定された分散補償用FBGを受信機内に配置している。そして、送信側では、波長安定化回路により送信側FBGの中心波長に送信光源の波長を安定化し、同時に分散補償を行ない、受信側では、受信側FBGで分散補償を行なうことにより、自己位相変調効果(SPM)による劣化を抑圧する。また、上記送信側FBGの波長帯域幅を受信側FBGの波長帯域幅よりも狭く設定しておくことにより、送受独立に温度変化があっても送信波長が受信側FBGの反射帯域内に収めることができ、受信側FBGに要求される波長帯域幅を低減することも可能となる。
さらに、特許文献3の技術は、フィルタと検出器の役割を同時に果たすことのできるQCSE光検出を使用することで、簡単な構成で波長安定化を可能とする方法及びシステムに関するもので、異なるバイアス電圧の供給を受けて動作する第1及び第2のQCSE光検出器により1つの光源からの出射光の光電流をそれぞれ検出し、それらの検出光電流が一致するように光源を制御することで、光源の出力波長を所定波長に安定化させることができるようになっている。
特開2000−323784号公報 国際公開第WO97/34379号再公表特許 特開2003−218461号公報
しかしながら、上述したように、周期的分散補償器は波長に対する通過帯域が制限される(狭帯域である)ため、光源と分散補償器の波長を高精度に合わせる必要があり、そのための手法として、分散補償器(VIPAやエタロンフィルタ)については温度安定化させる等の工夫をするとともに、光源については波長ロック機能を内蔵させて安定化させるといった工夫が必要になる。その結果、光源及び分散補償器の双方の構成が複雑になり高コスト化してしまうという課題がある。
また、非WDMの長距離伝送システムにおいては、ITUグリッド波長に安定化不要な光源を用いるため、周期的な通過帯域特性をもつ分散補償器は通常適用できないという課題もある。
さらに、WDM伝送システムにおいても、光源側と分散補償器側の両方で安定化させるのは前述のように非効率であるし、システム中に多数の分散補償器を用いる場合には、より高精度な波長安定性が求められることになる。また、WDMの長距離伝送システムにおいて、当該システムを構成する複数の光中継ノードに周期的波長分散補償器を用いる場合には、全ノードの分散補償器の波長安定化と送信光源の波長安定化とをすべてについて個々に行なう必要があるが、これは、システム全体として高コストになるため好ましくない。
また、上記特許文献1及び3の技術は、いずれも、送信側単独での波長安定化技術であるため、送信波長と分散補償器の通過帯域特性との関係については一切考慮していない。これに対し、上記特許文献2の技術では、上述したごとく送信波長を送信機内に設けた分散補償機能を有する送信側狭帯域FBGの中心波長に安定化させるので、光源及び分散補償器の双方の構成が複雑化することはないが、光源の出力波長を制御するため、種々の問題が生じる。
即ち、光源の出力波長を制御するには、ペルチェ素子等を用いて温度制御するのが通常であるが、消費電力が増大するばかりか、出力波長の可変幅によっては光源に大きな負荷がかかってしまい、光源の寿命低下や異常発生の要因ともなり得る。また、中心発光波長を変更すると予期せぬ出力パワー変動が生じて、システム全体に悪影響を及ぼすおそれもある。さらに、WDM伝送システムの場合は、既述のように光源の出力波長をITUグリッド波長に安定化するのが通常であるため、上記特許文献2のように光源の出力中心発光波長を変化させる技術は適用できない。
本発明は、以上のような課題に鑑み創案されたもので、光源の出力波長を制御することなく、光源の出力波長に分散補償器の通過特性のピークに一致させることができるようにして、光源及び分散補償器の双方についてそれぞれ独立に波長安定化を行なうことなく、光源の出力波長の波長安定化のみで、光源の出力波長に分散補償器の通過特性を追従させて高安定に一致させることができるようにすることを目的とする。
上記の目的を達成するために、本発明の光伝送装置(請求項1)は、ある波長の光を出力する光送信部と、前記光送信部を制御して出力光の波長に変化を与える波長偏差印加部と、前記光送信部の出力光を入力し、入力光の波長に応じてその透過率が変化する透過波長特性を有する光デバイスと、前記光デバイスからの出力光の強度をモニタするモニタ部と、前記波長偏差印加部を制御し、前記光送信部の出力光波長の変化に応じた前記光デバイスの出力光の強度変化量が最小となるように、前記光デバイスの透過波長特性を制御する制御手段とを有することを特徴としている。
また、本発明の光伝送装置(請求項2)は、ある波長の光を出力する光源と、該光源から送信された光の波長分散を補償し、通過波長特性が制御可能な分散補償器と、該分散補償器を通過する波長の変化に対する光の強度変化量が最小となるよう、該分散補償器の通過特性を制御する制御手段とをそなえたことを特徴としている。
ここで、該制御手段は、該光源の送信光に波長偏差を与える波長偏差印加部と、該分散補償器を通過した光の強度をモニタするモニタ部と、該波長偏差印加部が与える上記波長偏差の変化量と該モニタ部でモニタした光の強度変化量との比及びその符号を検出する検出部と、該検出部で検出された比及び符号に基づいて該強度変化量が最小となるように該分散補償器の通過特性を制御する分散補償器通過特性制御部とをそなえて構成することができる(請求項3)。
また、該分散補償器は、光反射率が1よりも小さい光入射面と、該光入射面を透過する光を反射しその光反射率が1よりも小さい光反射面とを有するエタロンフィルタにより構成してもよく(請求項4)、反射率が1よりも小さいエタロンフィルタを複数重ねて構成してもよい(請求項5)。
さらに、本発明の光伝送システムの制御方法(請求項6)は、ある波長の光を送信する光源と、該光源からの光を伝送する光伝送路と、該光伝送路に介装されて伝送光の分散を補償する通過特性可変型の分散補償器を具備する複数の光中継ノードとを有する光伝送システムにおいて、該光源の波長をシフトさせて、その波長シフト情報を各光中継ノードに転送し、上記各光中継ノードでは、自ノードの該分散補償器を通過した光と上記転送されてきた波長シフト情報とに基づいて、該分散補償器を通過した光の強度変化量が最小となるよう、該分散補償器の通過特性を制御することを特徴としている。
また、本発明の光伝送システムの制御方法(請求項7)は、異なる波長の光を送信する複数の光源と、前記各光源からの光を波長多重光として伝送する光伝送路と、通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性をもち当該通過特性が可変の周期的分散補償器を具備する複数の光中継ノードとを有する波長多重光伝送システムにおいて、基準波長となるいずれかの上記光源の波長をシフトさせて、その波長シフト情報を各光中継ノードに転送し、上記各光中継ノードにおいて、自ノードの該分散補償器の該基準波長についての出力光と上記転送されてきた該基準波長についての波長シフト情報とに基づいて、該分散補償器を通過した該基準波長の光の強度変化量が最小となるよう、該分散補償器の通過特性を制御した後、該分散補償器を通過した該基準波長以外の波長の光の強度変化量が最小となるよう、基準波長以外の該光源の送信波長を制御することを特徴としている。
さらに、本発明の波長制御機能付きの光中継ノード(請求項8)は、異なる波長の光を送信する複数の光源と、前記各光源からの光を波長多重光として伝送する光伝送路と、該光伝送路に介装された複数の光中継ノードとを有する波長多重光伝送システムにおける該光中継ノードであって、通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性をもち当該通過特性が可変の周期的分散補償器と、基準波長となるいずれかの上記光源に与えられた波長シフト情報を受信する波長シフト情報受信手段と、該周期的分散補償器を通過した該基準波長についての出力光と、該波長シフト情報受信部で受信した波長シフト情報とに基づいて、該分散補償器を通過した該基準波長の光の強度変化量が最小となるよう、該分散補償器の通過特性を制御する制御手段とをそなえたことを特徴としている。
上記の本発明によれば、光源及び分散補償器の双方についてそれぞれ独立に波長安定化を行なうことなく、光源の出力波長の波長安定化のみで、光源の出力波長に分散補償器の通過特性を追従させて高安定に一致させることができるので、良好な分散補償特性を得ることができる。特に、光源の中心発光波長は変化させることなく分散補償器の通過特性を変化させるので、消費電力を低減することができるとともに、光源の負荷も軽減することが可能となる。また、光源の中心発光波長の変更による予期せぬ出力パワー変動も防止することができる。そして、WDM伝送システムに本分散補償システムを適用する場合には、光源の出力波長をITUグリッド波長に合わせて設定・安定化しておけば、分散補償器の通過特性をITUグリッド波長に追従させて安定化することが可能となるので、WDM伝送システムへの適用も容易である。
〔A〕第1実施形態の説明
図1は本発明の第1実施形態としての分散補償システム(光伝送装置)の構成を示すブロック図で、この図1に示す分散補償システムは、光送信機1として、半導体レーザダイオード(LD)等の発光素子111を有し、ある波長の光を出力する光送信部として機能する光源(LD)ユニット11,LD電流制御回路12,LD温度制御回路13,外部変調器14,変調部(繰り返し信号発生部)15,位相比較部16及び制御部17等をそなえるとともに、周期的分散補償器2,分散補償量設定部3,受光部4及び光カプラ5をそなえて構成されている。なお、上記の位相比較部16及び制御部17は、光送信機1内に配備してもよいし、光送信機1外(例えば、分散補償器2が設けられた光中継ノード内等)に配備してもよい。
ここで、周期的分散補償器2は、波長に対して周期的な通過特性(波長に対して周期的に透過率のピークが或る間隔で繰り返し現れる特性)を有するもので、そのような通過特性をもつ分散補償器として、例えば、VIPA型やエタロンフィルタ等を用いた反射フィルタ型のものがある。VIPA型の場合は、図21に示したものと同様に、図2(a)に示すように、50/100/200GHz等の間隔で繰り返される群遅延特性(上段)及び通過特性(下段)を有し、エタロン(反射フィルタ)型の場合は、図2(b)に示すように、波長に対して0.8nm(ナノメートル)等の間隔で繰り返される群遅延特性(上段)及び通過特性(下段)を有することになる。
図4にVIPA型、図6にエタロン型の周期的分散補償器の構成例を示す。ここで、VIPA型またはエタロン型の分散補償器は、入力光の波長に応じてその透過率が変化する透過波長特性を有し、その透過波長特性を制御可能な光デバイスとして機能する。
図4に示すように、VIPA型の分散補償器2は、例えば、光源11の出力光(コリメート光)を直線状に集光するライン焦点レンズ21と、膜厚tの薄板の両面に反射膜をコーティングし、ライン焦点レンズ21とは反対側の面の反射膜の反射率を100%よりやや小さな値とし、入射光の波長に応じた出射角の出力光を生ずる角分散素子(VIPA板)22と、VIPA板22の出力光を点状に集光する焦点レンズ23と、光入射側に3次元の曲面形状を有する3次元反射ミラー24とをそなえて構成され、図5に模式的に示すように、VIPA板22への入射光の入射角αを変更可能とすることにより、その周期的な通過特性(透過率のピーク)の中心波長を可変とすることができ、また、3次元反射ミラー24を平行移動(図4の紙面の垂直方向に移動)させて焦点レンズ23からの光の集光位置のミラー曲面を変化させることにより、3次元ミラーに入射する光の波長帯域において反射光の光路長の変化量を変化させることにより、分散補償量を可変とすることができるようになっている。
なお、透過率のピークの周期は上記膜厚tによって決定される。また、図4において、符号20aは光サーキュレータを示し、ポートaからの光をポートb、すなわちVIPA板22へ導き、ポートbからの光、すなわちVIPA板22からの反射光をポートcへ導く役割を果たす。さらに、かかるVIPA型の分散補償器2による分散補償(動作)原理については公知であるので、その詳細な説明については省略する。
一方、図6に示すように、エタロン型の周期的分散補償器2は、例えば、ライン集光レンズ25と膜厚tの薄板の両面に反射膜R1,R2が形成されたエタロンフィルタ(反射型共振器)26とを用いて構成することができる。ここで、反射膜R2の反射率を1(全反射)にすると、全波長の光が全反射されるため、図2(b)に示すような周期的な通過特性を得ることができない。即ち、この場合の通過特性は理想的にはフラットになる。その一方で、位相特性は波長によって位相変化量が異なるため、周期的な群遅延特性をもつことになる。なお、その周期は、エタロンフィルタ26の膜厚tにより決定される。
しかし、このように通過特性がフラットになってしまうと、透過率のピークが存在しない(つまり、通過特性に傾斜部分が存在しない)ため、後述するようにして光源ユニット11(発光素子111)の波長を透過率のピークに合わせるという制御が不可能になる。
そこで、本実施形態では、反射膜R2の反射率をあえて1よりも小さく(略1)して一部の光が漏れるようにしておく。これにより、膜厚tに応じて内部での多重反射の過程で漏れる光の波長と漏れない光の波長が生じるため、図2(b)に示すような波長に対して周期的な通過特性を有する周期的分散補償器2を実現することができる。
あるいは、例えば図7に示すように、反射率が1よりも小さい2以上のエタロンフィルタ26−1,26−2を組み合わせて構成することによっても、周期的な通過特性を有する周期的分散補償器2を実現することができる。なお、この図7では、エタロンフィルタ26−1の入射側の反射膜R1の反射率を0よりも僅かに大きい略0とし、エタロンフィルタ26−1及び26−2の境界に位置する反射膜R2の反射率を1よりも小さくし、反射膜R2の反対面のエタロンフィルタ26−2の反射膜R3の反射率を1(全反射)としている。
ここで、かかるエタロン型の周期的分散補償器2の波長設定は、例えば図8に模式的に示すように、エタロンフィルタ26(26−1,26−2)への光の入射角を可変にしたり、エタロンフィルタ26(26−1,26−2)の温度を可変として膜厚tを可変とすることで反射膜R2(R3)の位置を可変としたりすることによって行なうことができる。
また、エタロン型の場合は、例えば図9に示すように、図6に示す構成を有する分散補償器2(ライン焦点レンズ25及びエタロンフィルタ26)(あるいは、図7に示す構成を有する分散補償器2でもよい)を、光サーキュレータ20aを介して複数タンデムに接続することで、周期的通過特性の広帯域化を図ることも可能である。ただし、この場合、反射率が1よりも小さい反射膜R2は全体に少なくとも1つ存在すればよい。
次に、図1において、分散補償量設定部3は、当該周期的分散補償器2の分散補償量を設定するものであり、光送信機1において、光源ユニット11は、発光素子111を駆動することにより所定波長(ITUグリッド波長)の光を出力するものであり、LD電流制御回路12は、この光源ユニット11(発光素子111)(以下、単に「光源11」と略記する)のための駆動電流を供給・制御するものであり、LD温度制御回路13は、ペルチェ素子等により構成され、光源11の温度を一定に保って温度変動による波長ずれを防止するためのものである。外部変調器14は、光源11の出力光を送信すべき主信号(データ)により変調するもので、例えばLN変調器等を適用できる。
また、変調部(波長偏差印加部)15は、LD温度制御回路13に低周波の繰り返し信号(例えば、低周波の正弦波信号)を与えて当該LD温度制御回路13による温度制御を制御することにより、光源11の出力波長(送信波長)に変化を与える、即ち、低周波の波長偏差(微小な変調)を加えるものである。このように光源11の出力波長に低周波の波長偏差を加えると、周期的分散補償器2の通過損失(透過率)が変わり、波長偏差は強度変調(強度変化)に変換される。
例えば、VIPAを用いた場合を例にすると、光源11の出力波長が周期的分散補償器2(VIPA)の周期的な通過特性のピーク値(中心波長)に一致又は略一致している場合〔図3(a)中の符号A参照〕は、図3(b)中に実線Aで示すように、周期的分散補償器2の出力光は微小な強度変調が加わった強度変調光となる。これに対し、図3(a)中に符号Bで示すように、光源11の出力波長が上記通過特性の中心波長よりも長波長側にずれている場合は、図3(b)中に実線Bで示すように、周期的分散補償器2の出力光は光源11の出力光と同相の強度変調光となり、逆に、図3(a)中に符号Cで示すように、光源11の出力波長が中心波長よりも短波長側にずれている場合は、図3(b)中に点線Cで示すように、周期的分散補償器2の出力光は光源11の出力光と逆相の強度変調光となる。
したがって、周期的分散補償器(以下、単に「分散補償器」ともいう)2を通過した光の位相と通過前の光強度位相とを比較することにより、光源11の出力波長が分散補償器2の通過特性の中心波長に一致又は略一致しているか、当該中心波長に対して長波長側及び短波長側のいずれにずれているかを検出することが可能となる。
そこで、本実施形態では、分散補償器2の出力光の一部を光カプラ5により分岐して受光(モニタ)する受光部(モニタ部)4および変調部15により光源11の出力光に変調を与えている信号の位相と受光部4によるモニタ光の位相とを比較する位相比較部16を設けて、分散補償器2の出力光が光源の出力光と同相及び逆相の強度変調光のいずれになっているかを検出できるようにしている。ただし、位相比較部16での分散補償器2の出力光との位相比較対象は、分散補償器2を通過する以前の光源11の出力光でもよい。つまり、位相比較部16は、変調部15が与える上記波長偏差の変化量と受光部4でモニタした光の強度変化量との比及びその符号(同相/逆相)を検出する検出部としての機能を果たしている。
そして、制御部(分散補償器通過特性制御部)17は、この位相比較部16による検出結果(上記の比及び符号)に基づいて周期的分散補償器2の通過特性を適応的に制御するもので、例えば、分散補償器2がVIPA型の場合、制御部17は、位相比較部16での検出結果が「同相」であれば、図5により前述したように、VIPA板22への光の入射角αが大きくなるよう制御して分散補償器2の通過特性(透過率のピーク)を長波長側へシフトさせる一方、当該検出結果が「逆相」であれば、逆に、上記入射角αが小さくなるように制御して当該通過特性を短波長側へシフトさせることにより、分散補償器2を通過する波長の変化に対する光の強度変化量が最小〔図3(b)の符号Aで示す状態〕、即ち、分散補償器2の通過特性の中心波長を光源11の出力波長に合わせるように動作する。
一方、エタロン型の分散補償器2を用いる場合、制御部17は、位相比較部16での検出結果に応じて、図8により前述したように、エタロンフィルタ26(26−1,26−2)への光の入射角を制御するか、エタロンフィルタ26(26−1,26−2)の温度制御して膜厚tを制御することによって、分散補償器2の通過特性(透過率のピーク)をシフトさせて、VIPA型の場合と同様に、分散補償器2の通過特性の中心波長を光源11の出力波長に合わせるように動作する。
即ち、位相比較部16での検出結果が「同相」であれば、制御部17は、エタロンフィルタ26(26−1,26−2)への光の入射角が大きくなるように制御するか、エタロンフィルタ26(26−1,26−2)の温度を上昇制御して膜厚tを大きくすることによって、分散補償器2の通過特性(透過率のピーク)を長波長側へシフトさせる一方、当該検出結果が「逆相」であれば、逆に、上記入射角が小さくなるように制御するか、エタロンフィルタ26(26−1,26−2)の温度を下降制御して膜厚tを小さくすることによって、分散補償器2の通過特性を短波長側へシフトさせて、分散補償器2の通過特性の中心波長を光源11の出力波長に合わせる。
このようにして、光源11の出力波長に一致するように分散補償器2の通過特性の中心波長を追従させることができるので、光源11の出力波長と分散補償器2の通過特性とを高安定に一致させることができ、良好な分散補償特性を得ることができる。その結果、本例でも、WDM伝送システムに本分散補償システムを適用する場合には、光源11の出力波長をITUグリッド波長に合わせて設定・安定化しさえしておけば、分散補償器2の通過特性をITUグリッド波長に安定化することが可能となる。
なお、図1に示す分散補償システムは、例えば図10に示すように構成することもできる。即ち、図1に示すシステムでは、外部変調器14を用いて光源11の出力光を主信号により変調しているが、図10に示すように、光源11(発光素子111)を主信号により直接変調するようにしてもよい。この場合も、外部変調器14を用いる構成と同様に、制御部17が、位相比較部16での位相比較結果に基づいて、分散補償器2の通過特性の中心波長を光源11の出力波長に追従制御させて安定化させることが可能となる。
つまり、上記の受光部4,変調部15,位相比較部16及び制御部17は、光源11の出力波長に合わせて分散補償器2の通過特性を適応的に調整して分散補償器2の通過特性のピーク近傍に光源11の出力波長を安定化(ロック)させる波長ロック機構(制御手段)として機能し、より具体的には、波長偏差印加部としてのLD温度制御回路13を制御し、光源11の出力光波長の変化に応じた分散補償器2の出力光の強度変化量が予め定められたしきい値以下となるように、分散補償器2の透過波長特性を制御するようになっているのである。
なお、本実施例の説明では、分散補償器として周期的特性を有するものを例としたが、これに限らず、通過特性が中心波長付近の帯域で変化する特徴を備え、透過帯域の中心波長を制御できるものであれば本実施形態に示す方法によって光源の出力波長に応じて透過帯域の中心波長に制御できることは明白である。
上述のごとく構成された本実施形態の分散補償システムでは、変調部15により光源11の出力光に微小な変調(波長偏差)を加えておき、その出力光の分散補償器2の通過前後の位相を比較することにより光源11の出力波長が分散補償器2の通過特性の中心波長からどれ位ずれているかを位相比較部16にて検出し、そのずれがなくなるように制御部17によって分散補償器2の通過特性が適応制御されて安定化される。
したがって、光源11及び分散補償器2の双方についてそれぞれ独立に波長安定化を行なう必要がなく、光源11の出力波長の波長安定化のみで、光源11の出力波長に分散補償器2の通過特性を追従させて高安定に一致させることができるので、良好な分散補償特性を得ることができる。特に、本例の場合は、光源11の中心発光波長は変更せずに分散補償器2の通過特性を機械的な制御で変化させるので、消費電力を低減することができるとともに、光源11の負荷も軽減することが可能となる。また、光源11の中心発光波長の変更による予期せぬ出力パワー変動も防止することができる。
そして、WDM伝送システムに本分散補償システムを適用する場合には、光源11の出力波長をITUグリッド波長に合わせて設定・安定化しておけば、分散補償器2の通過特性をITUグリッド波長に追従させて安定化することが可能となるので、WDM伝送システムへの適用も容易である。
(A1)変形例の説明
図11は上述した分散補償システムの変形例を示すブロック図で、この図11に示す分散補償システムは、図1により上述したシステムに比して、制御部17が、位相比較部16による位相比較結果に基づいて、分散補償器2ではなく、光源11の出力波長を制御するように構成されている点が異なる。
即ち、本変形例の制御部17は、移動比較部16による位相比較結果が「同相」であれば、LD温度制御回路13の温度を低下させて光源11の出力波長を短波長側へシフトさせる一方、当該検出結果が「逆相」であれば、逆に、LD温度制御回路13の温度を上昇させて光源11の出力波長を長波長側へシフトさせることにより、光源11の出力波長を分散補償器2の通過特性の中心波長に合わせるように動作する。
つまり、本変形例の上記の受光部4,LD温度制御回路13,変調部15,位相比較部16及び制御部17は、分散補償器2の通過特性に光源11の出力波長を追従させて分散補償器2の通過特性のピーク近傍に光源11の出力波長を安定化(ロック)させる波長ロック機構として機能する。
したがって、この場合も、光源11及び分散補償器2の双方についてそれぞれ独立に波長安定化を行なう必要がなく、分散補償器2の通過特性の安定化のみで、光源11の出力波長と分散補償器2の通過特性とを高安定に一致させることができるので、良好な分散補償特性を得ることができる。そして、WDM伝送システムに本分散補償システムを適用する場合には、分散補償器2の通過特性をITUグリッド波長に合わせて設定・安定化しておけば、光源11の出力波長をITUグリッド波長に安定化することが可能となる。
なお、上述したようにVIPA型の分散補償器2においては、VIPA板22の例えば光の入射角αを変える、物理光学長を変える、すなわちVIPA板22の膜厚tを変える、(VIPA板22を構成するミラーで挟まれたエアギャップが存在する場合にはギャップ長を変える)またはVIPA板22を構成するミラーの間に誘電体がある場合には、その屈折率を変えるなどにより、その周期的通過特性のピーク(中心波長)を可変とすることができる。また、エタロン型の分散補償器2においては、エタロンフィルタ26(26−1,26−2)への光の入射角若しくは膜厚tを変えることで、その周期的通過特性の中心波長を可変にできる。しかしながら、本変形例では光源11の出力波長を制御するだけでよいので、分散補償器2の周期的通過特性を必ずしも可変にできるようにしておく必要はない。
〔B〕第2実施形態の説明
図12は本発明の第2実施形態に係るWDM伝送システムの構成を示すブロック図で、この図12に示すWDM伝送システムは、異なる波長の光をそれぞれ送信する複数の光送信機1及びこれらの光送信機1の各出力光を波長多重してWDM光として光伝送路へ出力するWDMカプラ5′をそなえた送信側端局ノード10と、光伝送路からのWDM光を波長毎に分波するWDMカプラ6及びこのWDMカプラ6で分波された各波長の信号光を受信する複数の光受信機7をそなえた受信側端局ノード30と、これらの端局ノード10,30間でWDM光を光のまま伝送すべき距離(3Rスパンと呼ばれる)に応じた台数だけ上記伝送路に介装される光中継ノード(OADMノード)20−1〜20〜N(Nは1以上の整数)とをそなえて構成されている。
また、各光中継ノード20−i(i=1〜N)には、それぞれ、EDFA(Erbium Doped Fiber Amplifier)等の光増幅器8と既述のVIPA型やエタロン型の周期型分散補償器(DC:Dispersion Compensator)2とが設けられており、これにより、上記端局ノード10,30間でWDM光が一括増幅及び分散補償されながら伝送されるようになっている。
そして、送信側端局ノード10において、各光送信機1のうち、各光中継ノード20−iにおける分散補償器2の通過特性の中心波長を第1実施形態にて前述したごとく制御する上で基準となる波長の光を送信するいずれかの光送信機(基準波長光送信機)20−iは、例えば図13に示すように、既述のものと同一若しくは同様の光源11(発光素子111),LD電流制御回路12,LD温度制御回路13及び外部変調器14をそなえるほか、波長オフセット設定部18及び光監視チャネル(OSC:Optical Service Channel)送信部19aをそなえて構成されている。
ここで、波長オフセット設定部18は、所要の波長オフセット(シフト)量(初期値は0)をLD温度制御回路13に与えることにより、光源11のLD温度を変化させ、光源11の出力光に波長オフセット量Δλm(mは0以上の整数で、後述するように波長オフセットを与える毎に1ずつインクリメントされる変数である)を加えるためのものであり、OSC送信部19aは、この波長オフセット部18による波長オフセット量Δλmを波長オフセット情報としてOSCにより下流側の各光中継ノード20−iに通知する機能を提供するものである。
一方、各光中継ノード20−iは、それぞれ、例えば図14に示すように、既述のものと同一若しくは同様の分散補償器2,分散補償量設定部3,受光部4,光カプラ5,制御部17をそなえるほか、既述の位相比較部16として機能する除算回路及び波長可変フィルタ9をそなえて構成されている。
ここで、波長可変フィルタ9は、分散補償器2の出力光(WDM光)から基準波長の光のみをモニタ光として透過させるもので、当該モニタ光は受光部4を通じて除算回路16に入力されるようになっている。また、OSC受信部(波長シフト情報受信手段)19bは、OSCにより通知されてくる前記波長オフセット情報を受信して除算回路16に入力するものである。
そして、除算回路16は、受光部4からの基準波長のモニタ光とOSC受信部19bで受信された波長オフセット情報(波長オフセット量Δλm)とに基づいて基準波長と当該基準波長に対応する分散補償器2の通過特性の中心波長とのずれを検出するもので、この検出結果に基づいて制御部17が分散補償器2の当該中心波長を上記ずれがなくなるように制御することになる。
なお、各光中継ノード20−iには、例えば図17に示すように、受光部4で得られる分散補償器2の基準波長以外の波長の出力光(波長可変フィルタ9で選択される)の強度情報をOSCにより上流側の各光中継ノード20−i及び送信側端局ノード10へ通知するOSC送信部19cもそなえられている。
次に、基準波長以外の波長の光を送信する光送信機(非基準波長光送信機)1(以下、説明の便宜上、符号1′を付す)は、例えば図16に示すように、既述のものと同一若しくは同様の光源11(発光素子111),LD電流制御回路12,LD温度制御回路13,外部変調器14をそなえるほか、既述の位相比較部16と同等の機能を有する除算回路16a,既述の制御部17と同等の機能を有する制御部17a及びOSC受信部19dをそなえて構成されるとともに、LD電流温度制御回路13及び除算回路16aに前記波長オフセット量Δλmが設定可能なように構成されている。
ここで、OSC受信部19dは、下流側の光中継ノード20−iのOSC送信部19cによりOSC経由で転送されてくる基準波長についての強度情報を受信して除算回路16aに入力するものであり、除算回路16aは、当該強度情報と上記波長オフセット量Δλmとに基づいて光源11の出力波長とこれに対応する分散補償器2の通過特性の中心波長とのずれを検出するものである。
そして、制御部17aは、この除算回路16aで検出された波長ずれがなくなるようにLD温度制御回路13により光源11の温度を制御することによって光源11の出力波長を分散補償器2の上記中心波長に追従させるものである。
以上のような構成により、本実施形態のWDM伝送システムでは、基準波長光送信機1の光源11の波長をあえてシフト(オフセット)させて、その情報をOSC経由で各光中継ノード20−iに転送し、各光中継ノード20−iにおいては、周期的分散補償器2を通過したあとの基準波長の光パワーをモニタして、波長オフセット量と強度変化量の比と大きさを計算し、周期的分散補償器2の基準波長に対する中心波長設定を計算した比が小さくなるように調整することにより、周期的分散補償器2の基準波長についての中心波長を基準波長光送信機1の送信波長の中心に設定することが可能となる。また、基準波長についての上記調整後に、他の非基準波長光送信機1′の各光源11の送信波長を分散補償器2の通過特性の中心波長にそれぞれ合わせるように設定することが可能となる。
以下、その詳細な手順について、図18及び図19を参照しながら説明する。
まず、WDM伝送システムにおいて各光中継ノード20−iの分散補償器2の中心波長を基準波長光送信機1の出力波長(基準波長)に合わせる動作(図18参照)について説明する。なお、以下において、変数kは、図12中に示すように、波長調整対象の(周期的分散補償器2を有する)ノード20−iが下流側へ移行する毎に1ずつインクリメントされる設定カウンタ値を表し、初期値は0である。
図18に示すように、初期設定ステップS1として、基準波長光送信機1の光源11のLD温度を、LD温度制御回路13により初期値にセットし〔このとき波長オフセット量Δλm(m=0)は0〕(ステップS1−1)、波長オフセット量Δλmが0であることを例えばOSC送信部19aによりOSC経由で上流側から下流側の各光中継ノード20−iに転送する(ステップS1−2)。
光中継ノード20−1では、波長調整ステップS2として、まず、周期的分散補償器2を通過した光の一部を光カプラ5で分岐し、基準波長成分のみを波長可変光フィルタ9により抽出し(ステップS2−1)、抽出した基準波長成分の強度を受光部4にてモニタする(ステップS2−2)。このとき、主信号変調成分については平均化する。
そして、k=0で、かつ、初期状態m=0であれば、光中継ノード20−1は、モニタした基準波長の強度をI0,0として記録する(つまり、最初のノードのパワーの初期値を記録する)(ステップS2−3)。なお、k=0で、かつ、m≠0(つまり、波長オフセットが1回以上与えられている状態)であれば、受光部4でモニタした基準波長の強度をIm,0として記録する(波長シフトされた場合の最初のノードの値を記録する)(ステップS2−4)。
その後、k=0であれば、本ブロック(波長調整ステップS2)を抜けて(ステップS2−5)、mを1増加(m←m+1)するとともに(ステップS3)、kを1増加して(ステップS4)、基準波長光送信機1において、波長オフセット設定部18により、波長オフセットステップS5を実行する。即ち、光源11のLD温度を変化させて、基準波長を現状値からΔλmだけオフセットを与え(ステップS5−1)、その波長オフセット量ΔλmをOSC送信部19aによりOSC経由で上流側から各光中継ノード20−iに転送する(ステップS5−2)。
次に、再度、波長調整ステップS2を実行するが、今、k=1であるから、最初の光中継ノード20−1では、波長オフセットによる基準波長の光強度の変化量ΔIを下記式(1)により求める(ステップS2−6)。ただし、下記式(1)において、L=1〜N−1である。
ΔI=Im,N−Σ(Im,L−Im-1,L)−Im-1,N …(1) ここでN=1
そして、OSCにより転送されてきた波長オフセット量Δλmを入手し(ステップS2−7)、初期状態でなければ(つまり、m≠0)、1回前からの波長オフセット量の変化量Δλm−Δλm-1を求め(ステップS2−8)、また、k=Nであれば除算回路16により、強度変化量と波長オフセット量の変化量の比Rm=ΔI/(Δλm−Δλm-1)を求める(ステップS2−9)。
その結果、Rm>0(同相)であれば、制御部17が、周期的分散補償器2の中心波長を長波長側にシフトさせ、逆に、Rm<0(逆相)であれば、当該中心波長を短波長側にシフトさせる(ステップS2−10)。これにより、光中継ノード20−1の分散補償器2の通過特性の中心波長(ピーク)を基準波長光送信機1の光源11の波長に一致させることが可能となる。
以降、他の光中継ノード20−2〜20−nについても、m,kを1ずつインクリメントして(ステップS3,S4)、上記の波長オフセットステップS5及び波長調整ステップS2を実行することにより、上流側から、順次、各分散補償器の中心波長を光源11の波長に一致させることができる。(k=Nとして(1)式で計算を行なう)
次に、基準波長以外の波長(チャンネル)についての光送信機(非基準波長光送信機)1′の送信波長を上述のごとく基準波長に一致させた各分散補償器2の中心波長に一致させる動作(図19参照)について説明する。
図19に示すように、各非基準波長光送信機1′は、それぞれ、初期設定ステップS6として、光源11のLD温度を、LD温度制御回路13により初期値にセットし〔このとき波長オフセット量Δλm(m=0)は0〕(ステップS6−1)、波長オフセット量Δλmが0であることを例えばOSC送信部19aによりOSC経由で上流側から下流側の各光中継ノード20−iに転送する(ステップS6−2)。
光中継ノード20−1では、波長調整ステップS7として、まず、周期的分散補償器2を通過した光の一部を光カプラ5で分岐し、基準波長以外の調整対象の波長成分のみを波長可変光フィルタ9により抽出し(ステップS7−1)、抽出した基準波長成分の強度を受光部4にてモニタする(ステップS7−2)。このとき、主信号変調成分については平均化する。
そして、k=0で、かつ、初期状態m=0であれば、光中継ノード20−1は、モニタした基準波長の強度をI0,0として記録する(つまり、最初のノードのパワーの初期値を記録する)(ステップS7−3)。なお、k=0で、かつ、m≠0(つまり、波長オフセットが1回以上与えられている状態)であれば、受光部4でモニタした基準波長の強度をIm,0として記録する(波長シフトされた場合の最初のノードの値を記録する)(ステップS7−4)。
その後、k=0であれば、本ブロック(波長調整ステップS7)を抜けて(ステップS7−5)、mを1増加(m←m+1)するとともに(ステップS8)、kを1増加して(ステップS9)、非基準波長光送信機1′において、波長オフセット設定部18により、波長オフセットステップS10を実行する。即ち、光源11のLD温度を変化させて、送信波長を現状値からΔλmだけオフセットを与え(ステップS10−1)、その波長オフセット量ΔλmをOSC送信部19aによりOSC経由で上流側から各光中継ノード20−iに転送する(ステップS10−2)。
次に、再度、波長調整ステップS7を実行するが、今、k≠0であるから、k番目の光中継ノード20−kでは、波長オフセットによる基準波長の光強度の変化量ΔIを下記式(2)により求める(ステップS7−6)。ただし、下記式(2)において、L=1〜N−1である。
ΔI=Im,N−Σ(Im,L−Im-1,L)−Im-1,N …(2)
そして、光中継ノード20−1は、OSC送信部19cによりOSC経由で上記変化量ΔIの情報を非基準波長光送信機1′に通知する(ステップS7−7)。
非基準波長光送信機1′では、初期状態(m=0)でなければ、1回前からの波長オフセット量の変化量Δλm−Δλm-1を求め(ステップS7−8)、k=Nであれば、除算回路16a(図16参照)により、強度変化量と波長オフセット量の変化量の比Rm=ΔI/(Δλm−Δλm-1)を求める(ステップS7−9)。
その結果、Rm>0(同相)であれば、制御部17aが、LD温度制御回路13によりLD温度を制御して、光源11の送信波長を短波長側にシフトさせ、逆に、Rm<0(逆相)であれば、光源11の送信波長を長波長側にシフトさせる(ステップS7−10)。これにより、非基準波長光送信機1′の光源11の送信波長を光中継ノード20−1の分散補償器2の通過特性の中心波長(ピーク)に一致させることが可能となる。
以降、m,kを1ずつインクリメントして(ステップS8,S9)、上記の波長オフセットステップS10及び波長調整ステップS7を実行することにより、各非基準波長光送信機1′の光源11の送信波長(基準波長以外のチャンネル)を各ノード20−kの分散補償器2の通過特性のピークに一致させることができる(図15参照)。
以上のように、本第2実施形態によれば、WDM伝送システム中に複数の周期的分散補償器2をもつシステムにおいて、光源11の波長をあえてシフトさせて、その情報を各光中継ノード20−kに転送し、各光中継ノード20−kにおいては、そのノード20−k内の周期的分散補償器2を通過したあとのパワーをモニタし、波長シフト量と強度変化量の比と大きさを計算し、周期的分散補償器2の波長設定を、求めた強度変化量の比が小さくなるように調整することにより、光源11の送信波長の中心に、各光中継ノード20−kにおける分散補償器2の通過特性のピークを合わせることができる。
したがって、WDMの長距離伝送システムのように、システム中に多数の分散補償器2を用いるような場合であっても、各ノード20−k個別に分散補償器2の中心波長の調整を行なう必要がなく、システム全体としてのコストを低減することができる。特に、本例の場合は、上流側のノード20−kから順番に分散補償器2の中心波長の調整を行なってゆくので、より高精度な波長設定を実現することができる。
また、上記プロセスは、まず基準となる波長に対して行なって、分散補償器2の中心波長を合わせた上で、その分散補償器2の通過特性に合わせるように他のチャンネルの光源11の送信波長を調整するので、各チャンネルの光源11の送信波長と各分散補償器2の通過特性のピークとをITUグリッド波長に高精度に一致させることができ、WDMの長距離伝送システムにおいても良好な分散補償特性を実現することができる。
なお、本発明は、上述した各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変形して実施できることはいうまでもない。
〔C〕付記
(付記1)
ある波長の光を出力する光送信部と、
前記光送信部を制御して出力光の波長に変化を与える波長偏差印加部と、
前記光送信部の出力光を入力し、入力光の波長に応じてその透過率が変化する透過波長特性を有する光デバイスと、
前記光デバイスからの出力光の強度をモニタするモニタ部と、
前記波長偏差印加部を制御し、前記光送信部の出力光波長の変化に応じた前記光デバイスの出力光の強度変化量が最小となるように、前記光デバイスの透過波長特性を制御する制御手段と、
を有することを特徴とする、光伝送装置。
(付記2)
ある波長の光を出力する光送信部と、
前記光送信部を制御して出力光の波長に変化を与える波長偏差印加部と、
前記光送信部の出力光を入力し、入力光の波長に応じてその透過率が変化する透過波長特性を有する光デバイスと、
前記光デバイスからの出力光の強度をモニタするモニタ部と、
前記波長偏差印加部を制御し、前記光送信部の出力光波長の変化に応じた前記光デバイスの出力光の強度変化量が予め定められたしきい値以下となるように、前記光デバイスの透過波長特性を制御する制御手段と、
を有することを特徴とする、光伝送装置。
(付記3)
ある波長の光を出力する光源と、
該光源から送信された光の波長分散を補償し、通過波長特性が制御可能な分散補償器と、
該分散補償器を通過する波長の変化に対する光の強度変化量が最小となるよう、該分散補償器の通過特性を制御する制御手段とをそなえたことを特徴とする、光伝送装置。
(付記4)
該制御手段が、
該光源の送信光に波長偏差を与える波長偏差印加部と、
該分散補償器を通過した光の強度をモニタするモニタ部と、
該波長偏差印加部が与える上記波長偏差の変化量と該モニタ部でモニタした光の強度変化量との比及びその符号を検出する検出部と、
該検出部で検出された比及び符号に基づいて該強度変化量が最小となるように該分散補償器の通過特性を制御する分散補償器通過特性制御部とをそなえて構成されたことを特徴とする、付記3記載の光伝送装置。
(付記5)
該制御手段が、
該光源の送信光に波長偏差を与える波長偏差印加部と、
該分散補償器を通過した光の強度をモニタするモニタ部と、
該波長偏差印加部が与える上記波長偏差の変化量と該モニタ部でモニタした光の強度変化量との比及びその符号を検出する検出部と、
該検出部で検出された比及び符号に基づいて該強度変化量が予め定められたしきい値以下となるように該分散補償器の通過特性を制御する分散補償器通過特性制御部とをそなえて構成されたことを特徴とする、付記3記載の光伝送装置。
(付記6)
該分散補償器が、通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性を有する周期的分散補償器であることを特徴とする、付記3又は4に記載の光伝送装置。
(付記7)
該周期的分散補償器が、VIPA(Virtually Imaged Phased Array)型の分散補償器であることを特徴とする、付記6記載の光伝送装置。
(付記8)
該周期的分散補償器が、エタロンフィルタを用いたエタロン型の分散補償器であることを特徴とする、付記6記載の光伝送装置。
(付記9)
該エタロン型の分散補償器が、
光反射率が1よりも小さい光入射面と、該光入射面を透過する光を反射しその光反射率が1よりも小さい光反射面とを有するエタロンフィルタにより構成されたことを特徴とする、付記8記載の光伝送装置。
(付記10)
該エタロン型の分散補償器が、
反射率が1よりも小さいエタロンフィルタを複数重ねて構成されたことを特徴とする、付記8記載の光伝送装置。
(付記11)
該光源が、直接変調方式により送信波長の光を主信号で変調する直接変調型の光源であり、
該波長偏差印加部が該主信号とともに該波長偏差を該光源に対して与えるように構成されたことを特徴とする、付記4〜10のいずれか1項に記載の光伝送装置。
(付記12)
ある波長の光を送信する光源と、該光源からの光を伝送する光伝送路と、該光伝送路に介装されて伝送光の分散を補償する通過特性可変型の分散補償器を具備する複数の光中継ノードとを有する光伝送システムにおいて、
該光源の波長をシフトさせて、その波長シフト情報を各光中継ノードに転送し、
上記各光中継ノードでは、自ノードの該分散補償器を通過した光と上記転送されてきた波長シフト情報とに基づいて、該分散補償器を通過した光の強度変化量が最小となるよう、該分散補償器の通過特性を制御することを特徴とする、光伝送システムの制御方法。
(付記13)
異なる波長の光を送信する複数の光源と、前記各光源からの光を波長多重光として伝送する光伝送路と、通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性をもち当該通過特性が可変の周期的分散補償器を具備する複数の光中継ノードとを有する波長多重光伝送システムにおいて、
基準波長となるいずれかの上記光源の波長をシフトさせて、その波長シフト情報を各光中継ノードに転送し、
上記各光中継ノードにおいて、自ノードの該分散補償器の該基準波長についての出力光と上記転送されてきた該基準波長についての波長シフト情報とに基づいて、該分散補償器を通過した該基準波長の光の強度変化量が最小となるよう、該分散補償器の通過特性を制御した後、
該分散補償器を通過した該基準波長以外の波長の光の強度変化量が最小となるよう、基準波長以外の該光源の送信波長を制御することを特徴とする、光伝送システムの制御方法。
(付記14)
異なる波長の光を送信する複数の光源と、前記各光源からの光を波長多重光として伝送する光伝送路と、該光伝送路に介装された複数の光中継ノードとを有する波長多重光伝送システムにおける該光中継ノードであって、
通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性をもち当該通過特性が可変の周期的分散補償器と、
基準波長となるいずれかの上記光源に与えられた波長シフト情報を受信する波長シフト情報受信手段と、
該周期的分散補償器を通過した該基準波長についての出力光と、該波長シフト情報受信部で受信した波長シフト情報とに基づいて、該分散補償器を通過した該基準波長の光の強度変化量が最小となるよう、該分散補償器の通過特性を制御する制御手段とをそなえたことを特徴とする、波長制御機能付きの光中継ノード。
以上のように、本発明によれば、光源及び分散補償器の双方についてそれぞれ独立に波長安定化を行なうことなく、光源の出力波長の波長安定化のみで、光源の出力波長に分散補償器の通過特性を追従させて高安定に一致させることができるので、良好な分散補償特性を得ることができ、光通信技術分野において極めて有用と考えられる。
本発明の第1実施形態としての分散補償システム(光伝送装置)の構成を示すブロック図である。 図1に示す周期的分散補償器の波長に対する群遅延特性及び通過特性の一例を示す図で、(a)はVIPA型の分散補償器の群遅延特性及び通過特性、(b)はエタロン型の群遅延特性及び通過特性の一例をそれぞれ示す図である。 (a),(b)はいずれも図1に示す分散補償システムの動作原理を説明するための図である。 図1に示す周期的分散補償器がVIPA型である場合の構成例を示すブロック図である。 図4に示すVIPA型の分散補償器の波長設定変更手法を説明するための図である。 図1に示す周期的分散補償器がエタロン型である場合の構成例を示すブロック図である。 図1に示す周期的分散補償器がエタロン型である場合の他の構成例を示すブロック図である。 図6に示すエタロン型の分散補償器の波長設定変更手法を説明するための図である。 図6に示すエタロン型の分散補償器を複数タンデム接続して広帯域化を図った構成を示すブロック図である。 図1に示す分散補償システムの変形例を示すブロック図である。 図1に示す分散補償システムの変形例を示すブロック図である。 本発明の本発明の第2実施形態に係るWDM伝送システムの構成を示すブロック図である。 図12に示す基準波長光送信機の要部構成を示すブロック図である。 図12に示す光中継ノードの要部構成を示すブロック図である。 図12に示すWDM伝送システムにおいて各分散補償器の中心波長に非基準波長光送信機の送信波長を合わせる方法を説明するための図である。 図15に示す非基準波長光送信機の要部構成を示すブロック図である。 図15に示す光中継ノードの要部構成を示すブロック図である。 図12に示すWDM伝送システムにおいて各分散補償器の中心波長を基準波長光送信機の送信波長に合わせる方法を説明するためのフローチャートである。 図12に示すWDM伝送システムにおいて各分散補償器の中心波長に非基準波長光送信機の送信波長を合わせる方法を説明するためのフローチャートである。 従来の波長安定化技術を説明するためのブロック図である。 従来のVIPAの波長に対する通過帯域特性及び群遅延特性の一例を模式的に示す図である。
符号の説明
1 光送信機(基準波長光送信機)
1′ 非基準波長光送信機
2 分散補償器
3 分散補償量設定部
4 受光部(モニタ部)
5 光カプラ
5′,6 WDMカプラ
7 光受信機
8 光増幅器
9 波長可変フィルタ
10,30 端局ノード
20−1〜20−N 光中継ノード
11 光源ユニット(光送信部)
111 発光素子(LD)
12 LD電流制御回路
13 LD温度制御回路
14 外部変調器
15 変調部(繰り返し信号発生部;波長偏差印加部)
16,16a 位相比較部(除算回路)
17,17a 制御部(分散補償器通過特性制御部)
18 波長オフセット設定部
19a,19c 光監視チャネル(OSC)送信部
19b,19d 光監視チャネル(OSC)受信部
20a 光サーキュレータ
21 ライン焦点レンズ
22 波長分散素子(VIPA板)
23 焦点レンズ
24 3次元反射ミラー
25 ライン集光レンズ
26,26−1,26−2 エタロンフィルタ(反射型共振器)

Claims (8)

  1. ある波長の光を出力する光送信部と、
    前記光送信部を制御して出力光の波長に変化を与える波長偏差印加部と、
    前記光送信部の出力光を入力し、入力光の波長に応じてその透過率が変化する透過波長特性を有する光デバイスと、
    前記光デバイスからの出力光の強度をモニタするモニタ部と、
    前記波長偏差印加部を制御し、前記光送信部の出力光波長の変化に応じた前記光デバイスの出力光の強度変化量が最小となるように、前記光デバイスの透過波長特性を制御する制御手段と、
    を有することを特徴とする、光伝送装置。
  2. ある波長の光を出力する光源と、
    該光源から送信された光の波長分散を補償し、通過波長特性が制御可能な分散補償器と、
    該分散補償器を通過する波長の変化に対する光の強度変化量が最小となるよう、該分散補償器の通過特性を制御する制御手段とをそなえたことを特徴とする、光伝送装置。
  3. 該制御手段が、
    該光源の送信光に波長偏差を与える波長偏差印加部と、
    該分散補償器を通過した光の強度をモニタするモニタ部と、
    該波長偏差印加部が与える上記波長偏差の変化量と該モニタ部でモニタした光の強度変化量との比及びその符号を検出する検出部と、
    該検出部で検出された比及び符号に基づいて該強度変化量が最小となるように該分散補償器の通過特性を制御する分散補償器通過特性制御部とをそなえて構成されたことを特徴とする、請求項2記載の光伝送装置。
  4. 該分散補償器が、
    光反射率が1よりも小さい光入射面と、該光入射面を透過する光を反射しその光反射率が1よりも小さい光反射面とを有するエタロンフィルタにより構成されたことを特徴とする、請求項2記載の光伝送装置。
  5. 該分散補償器が、
    反射率が1よりも小さいエタロンフィルタを複数重ねて構成されたことを特徴とする、請求項2記載の光伝送装置。
  6. ある波長の光を送信する光源と、該光源からの光を伝送する光伝送路と、該光伝送路に介装されて伝送光の分散を補償する通過特性可変型の分散補償器を具備する複数の光中継ノードとを有する光伝送システムにおいて、
    該光源の波長をシフトさせて、その波長シフト情報を各光中継ノードに転送し、
    上記各光中継ノードでは、自ノードの該分散補償器を通過した光と上記転送されてきた波長シフト情報とに基づいて、該分散補償器を通過した光の強度変化量が最小となるよう、該分散補償器の通過特性を制御することを特徴とする、光伝送システムの制御方法。
  7. 異なる波長の光を送信する複数の光源と、前記各光源からの光を波長多重光として伝送する光伝送路と、通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性をもち当該通過特性が可変の周期的分散補償器を具備する複数の光中継ノードとを有する波長多重光伝送システムにおいて、
    基準波長となるいずれかの上記光源の波長をシフトさせて、その波長シフト情報を各光中継ノードに転送し、
    上記各光中継ノードにおいて、自ノードの該分散補償器の該基準波長についての出力光と上記転送されてきた該基準波長についての波長シフト情報とに基づいて、該分散補償器を通過した該基準波長の光の強度変化量が最小となるよう、該分散補償器の通過特性を制御した後、
    該分散補償器を通過した該基準波長以外の波長の光の強度変化量が最小となるよう、基準波長以外の該光源の送信波長を制御することを特徴とする、光伝送システムの制御方法。
  8. 異なる波長の光を送信する複数の光源と、前記各光源からの光を波長多重光として伝送する光伝送路と、該光伝送路に介装された複数の光中継ノードとを有する波長多重光伝送システムにおける該光中継ノードであって、
    通過帯域が狭帯域で透過率のピークが所定間隔で繰り返し現れる周期的な通過特性をもち当該通過特性が可変の周期的分散補償器と、
    基準波長となるいずれかの上記光源に与えられた波長シフト情報を受信する波長シフト情報受信手段と、
    該周期的分散補償器を通過した該基準波長についての出力光と、該波長シフト情報受信部で受信した波長シフト情報とに基づいて、該分散補償器を通過した該基準波長の光の強度変化量が最小となるよう、該分散補償器の通過特性を制御する制御手段とをそなえたことを特徴とする、波長制御機能付きの光中継ノード。
JP2004199345A 2004-07-06 2004-07-06 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード Ceased JP2006025011A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004199345A JP2006025011A (ja) 2004-07-06 2004-07-06 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード
US10/986,907 US20060007427A1 (en) 2004-07-06 2004-11-15 Optical transmission apparatus, method for controlling optical transmission system, and optical relay node equipped with wavelength control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199345A JP2006025011A (ja) 2004-07-06 2004-07-06 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード

Publications (1)

Publication Number Publication Date
JP2006025011A true JP2006025011A (ja) 2006-01-26

Family

ID=35540979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199345A Ceased JP2006025011A (ja) 2004-07-06 2004-07-06 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード

Country Status (2)

Country Link
US (1) US20060007427A1 (ja)
JP (1) JP2006025011A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004525A (ja) * 2007-06-21 2009-01-08 Fujitsu Ltd 光源モジュール
WO2016056281A1 (ja) * 2014-10-10 2016-04-14 ソニー株式会社 共振器、分散補償光学装置、半導体レーザ装置組立体、及び、共振器へ入射する光の入射調整方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440170B2 (en) * 2006-06-23 2008-10-21 Lucent Technologies Inc. Method and apparatus for monitoring optical signal-to-noise ratio
JP2016529032A (ja) 2013-09-26 2016-09-23 ジャイラス エーシーエムアイ インク 内視鏡シースアーム
JP6458550B2 (ja) * 2015-02-25 2019-01-30 富士通株式会社 無線通信装置、無線通信ネットワークシステム、無線通信方法、及び、無線通信プログラム
JP2021111678A (ja) * 2020-01-09 2021-08-02 富士通株式会社 レーザ波長制御装置及びレーザ波長制御方法
CN117639947A (zh) * 2022-08-12 2024-03-01 武汉光迅科技股份有限公司 波的修正方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321805A (ja) * 1994-08-02 1996-12-03 Fujitsu Ltd 光伝送システム、光多重伝送システム及びその周辺技術
JP2000236299A (ja) * 1998-12-18 2000-08-29 Fujitsu Ltd 光送信機及び光伝送システム
US20030072528A1 (en) * 2001-10-12 2003-04-17 International Business Machines Corporation Tunable fiber bragg gratings and wavelength-locked loops for dispersion compensation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649556B2 (ja) * 1997-08-20 2005-05-18 富士通株式会社 波長分散制御のための方法と装置及び分散量検出方法
US6330383B1 (en) * 1998-02-20 2001-12-11 University Of Southern California Disperson compensation by using tunable nonlinearly-chirped gratings
DE69929640T2 (de) * 1998-03-30 2006-12-07 Fujitsu Ltd. Verfahren zur Einstellung der Signalwellenlänge in einem optischen Übertragungssystem
US6222861B1 (en) * 1998-09-03 2001-04-24 Photonic Solutions, Inc. Method and apparatus for controlling the wavelength of a laser
US6580734B1 (en) * 1999-07-07 2003-06-17 Cyoptics Ltd. Laser wavelength stabilization
US6519065B1 (en) * 1999-11-05 2003-02-11 Jds Fitel Inc. Chromatic dispersion compensation device
US20030043862A1 (en) * 2001-08-31 2003-03-06 International Business Machines Corporation Dispersion compensation using optical wavelength locking for optical fiber links that transmit optical signals generated by short wavelength transmitters
US6889011B1 (en) * 2001-11-02 2005-05-03 Mci, Inc. Integrated adaptive chromatic dispersion/polarization mode dispersion compensation system
US20030133650A1 (en) * 2002-01-16 2003-07-17 Farhad Hakimi System and method of transmitting optical signals using IIR and FIR filtration
KR100444912B1 (ko) * 2002-01-21 2004-08-21 광주과학기술원 Wdm 광통신 시스템에서 광채널의 파장/광출력 안정화방법 및 그 시스템
US6965738B2 (en) * 2002-04-16 2005-11-15 Eiselt Michael H Chromatic dispersion compensation system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321805A (ja) * 1994-08-02 1996-12-03 Fujitsu Ltd 光伝送システム、光多重伝送システム及びその周辺技術
JP2000236299A (ja) * 1998-12-18 2000-08-29 Fujitsu Ltd 光送信機及び光伝送システム
US20030072528A1 (en) * 2001-10-12 2003-04-17 International Business Machines Corporation Tunable fiber bragg gratings and wavelength-locked loops for dispersion compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004525A (ja) * 2007-06-21 2009-01-08 Fujitsu Ltd 光源モジュール
WO2016056281A1 (ja) * 2014-10-10 2016-04-14 ソニー株式会社 共振器、分散補償光学装置、半導体レーザ装置組立体、及び、共振器へ入射する光の入射調整方法

Also Published As

Publication number Publication date
US20060007427A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US5696859A (en) Optical-filter array, optical transmitter and optical transmission system
US9436022B2 (en) Modulated light source
US9793684B2 (en) Laser apparatus
US9397477B2 (en) External-cavity tunable laser with flexible wavelength grid tuning function
US7991024B2 (en) External cavity wavelength tunable laser device and optical output module
US20020063935A1 (en) Optical transmission systems including upconverter apparatuses and methods
US20110013654A1 (en) Wavelength variable laser device, and method and program for controlling the same
US8420993B2 (en) Optical signal generator and method for adjusting the same having a reflecting mirror to define another cavity different from the cavity of a single mode laser
CA2540600A1 (en) Phase-control in an external-cavity tuneable laser
US6701222B1 (en) Transmission systems and components utilizing thermo-stabilization and method of use therein
KR20040000444A (ko) 파장 로크 루프 서보 제어 회로 및 전자기 신호의 중심파장과 파장 선택 디바이스의 중심 파장의 상호 정렬 방법
US7366422B2 (en) Dispersion compensating device and optical transmission system
CN1738222A (zh) 波长跟踪色散补偿器
US9900107B1 (en) Coherent receiver, method, and system for coherent light source frequency offset estimation and compensation
WO2005027286A1 (en) Seeking and tracking control for locking to transmision peak for a tunable laser
JP4596181B2 (ja) 外部共振器型波長可変半導体レーザ
US10447010B2 (en) Method and apparatus for controlling external cavity laser
Lee et al. Athermal colourless C-band optical transmitter for passive optical networks
WO2015001421A2 (en) Wavelength tunable transmitter for twdm-pon and onu
US6816517B2 (en) Micro-electromechanical devices for wavelength tunable lasers
US20030002141A1 (en) Semiconductor optical amplifiers using wavelength locked loop tuning and equalization
JP2006025011A (ja) 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード
US9882349B1 (en) Externally referenced wavelength-locking technique for hybrid lasers
EP3185443B1 (en) A wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion
KR101781411B1 (ko) 파장 가변 광원 구현 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20101026