JP2006023346A - Polarization imaging apparatus - Google Patents

Polarization imaging apparatus Download PDF

Info

Publication number
JP2006023346A
JP2006023346A JP2004198995A JP2004198995A JP2006023346A JP 2006023346 A JP2006023346 A JP 2006023346A JP 2004198995 A JP2004198995 A JP 2004198995A JP 2004198995 A JP2004198995 A JP 2004198995A JP 2006023346 A JP2006023346 A JP 2006023346A
Authority
JP
Japan
Prior art keywords
polarizing plate
imaging
polarization
lens system
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004198995A
Other languages
Japanese (ja)
Inventor
Seiji Toyama
精二 遠山
Juro Ishida
十郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
NEC Space Technologies Ltd
Original Assignee
Fujinon Corp
NEC Space Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, NEC Space Technologies Ltd filed Critical Fujinon Corp
Priority to JP2004198995A priority Critical patent/JP2006023346A/en
Publication of JP2006023346A publication Critical patent/JP2006023346A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polarization imaging apparatus for measuring the polarization state of luminous flux from an imaging object, which accurately detects the polarization state of the luminous flux regardless of its incident direction while realizing the restraint of the performance degradation in a polarizing plate caused by radiation and the miniaturization of the polarizing plate. <P>SOLUTION: The polarizing plate 16 through which passes only a prescribed polarized light component is arranged at a position near the rear side of an aperture diaphragm 14 between a lens L<SB>3</SB>and a lens L<SB>4</SB>in an imaging lens system 12. Thus, the influence of the radiation is restrained and the polarizing plate 16 is made compact. Since the difference of a position where the luminous flux made incident on a lens L<SB>1</SB>passes through the polarizing plate 16 is reduced, the polarization state of the luminous flux is accurately detected regardless of the incident direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は主に、人工衛星や飛行機、ヘリコプタ等の飛行体に搭載されて、地表面等の撮像対象からの光束の偏光状態を計測し得るように構成された偏光撮像装置に関する。   The present invention mainly relates to a polarization imaging apparatus that is mounted on a flying body such as an artificial satellite, an airplane, or a helicopter and configured to measure a polarization state of a light beam from an imaging target such as a ground surface.

従来、人工衛星に搭載されて宇宙空間から地表面を撮像する撮像装置として、観測波長帯に対応したラインセンサを、撮像光学系の像面位置において、人工衛星の進行方向に対し略直角に配置することにより、地表面の2次元画像を取得するように構成されたものが知られている(下記特許文献1,2参照)。   Conventionally, as an imaging device that is mounted on an artificial satellite and captures the ground surface from outer space, a line sensor corresponding to the observation wavelength band is arranged at a substantially right angle with respect to the traveling direction of the artificial satellite at the image plane position of the imaging optical system. By doing so, what was comprised so that the two-dimensional image of the ground surface might be acquired is known (refer the following patent documents 1 and 2).

また、撮像素子に入射する光束の光路上に、所定の偏光成分のみを通過させる偏光板を配置しておき、偏光板を透過した光の強度を検出することにより、地表面からの光束の偏光状態を計測するように構成された人工衛星搭載型の偏光撮像装置も知られている。   In addition, a polarizing plate that allows only a predetermined polarization component to pass through is disposed on the optical path of the light beam incident on the image sensor, and the intensity of the light transmitted through the polarizing plate is detected so that the light beam from the ground surface is polarized. A satellite-mounted polarization imaging device configured to measure the state is also known.

特開平6−8897号公報JP-A-6-8897 特開2002−214530号公報JP 2002-214530 A

上述した従来の偏光撮像装置では、撮像レンズ系の後側、すなわち撮像レンズ系を構成する複数のレンズのうち最も像側に配置されたレンズと撮像素子との間に、偏光板が配置されている(以下、このような偏光板の配置方式を「後配置方式」と称する)。一般に偏光板は放射線によって性能が劣化しやすいが、撮像レンズ系内に入射した放射線量はレンズを透過する間に大きく低下することが知られている。したがって、宇宙空間で使用されることを考慮した場合、上記のような後配置方式は、偏光板の性能が放射線により劣化することを防止しやすいという利点がある。   In the conventional polarization imaging device described above, a polarizing plate is disposed between the imaging element and the rear lens of the imaging lens system, that is, the lens arranged closest to the image side among a plurality of lenses constituting the imaging lens system. (Hereinafter, such an arrangement method of polarizing plates is referred to as “rear arrangement method”). In general, the performance of a polarizing plate is likely to deteriorate due to radiation, but it is known that the amount of radiation incident on the imaging lens system greatly decreases while passing through the lens. Therefore, when considering use in outer space, the post-positioning method as described above has an advantage of easily preventing the performance of the polarizing plate from being deteriorated by radiation.

しかし、このような後配置方式には、光束が各レンズを通過する際に少しずつ偏光状態が変化するために、偏光板に入射するときの偏光状態が撮像レンズ系に入射する前と大きく異なってしまい、入射光の偏光状態を正確に計測することが難しいという問題がある。   However, in such a rear arrangement method, since the polarization state changes little by little when the light beam passes through each lens, the polarization state when entering the polarizing plate is greatly different from that before entering the imaging lens system. Therefore, there is a problem that it is difficult to accurately measure the polarization state of incident light.

入射光束の偏光状態が撮像レンズ系内で変化することを防止するためには、撮像レンズ系の前側、すなわち撮像レンズ系を構成する複数のレンズのうち最も物体側に配置されたレンズの物体側に、偏光板を配置する(以下、このような偏光板の配置方式を「前配置方式」と称する)ことが好ましい。しかし、このような前配置方式とした場合には、偏光板の大型化が避けられず、また放射線により偏光板の性能が劣化することを防止しにくいという問題がある。   In order to prevent the polarization state of the incident light beam from changing in the imaging lens system, the front side of the imaging lens system, that is, the object side of the lens arranged closest to the object among the plurality of lenses constituting the imaging lens system It is preferable to dispose a polarizing plate (hereinafter, such a disposing method of polarizing plates is referred to as “pre-arrangement method”). However, in the case of such a pre-arrangement method, there is a problem that an increase in the size of the polarizing plate cannot be avoided, and it is difficult to prevent deterioration of the performance of the polarizing plate due to radiation.

また、広視野角の撮像レンズ系を用いた場合には、種々の方向からの光束が偏光板を介して撮像レンズ系内に取り込まれることになるため、次のような問題も生じる。すなわち、偏光板は、光束の入射角度に応じてわずかながら特性が変化するため、偏光板への入射角度が異なると入射方向によって偏光状態の検出精度が異なってしまうので、偏光状態を正確に計測することが難しくなる。   In addition, when an imaging lens system with a wide viewing angle is used, light beams from various directions are taken into the imaging lens system through the polarizing plate, and the following problem also arises. In other words, the characteristics of the polarizing plate change slightly depending on the incident angle of the light beam. Therefore, if the incident angle to the polarizing plate is different, the detection accuracy of the polarization state differs depending on the incident direction, so the polarization state is accurately measured. It becomes difficult to do.

また、入射方向が互いに異なる複数の光束間では、偏光板を通過する位置(偏光板の使用領域)が互いに異なることになるため、例えば偏光板の一部領域にキズ等が有ることによって、偏光板の特性がその使用領域によって変化しているような場合には、その影響が計測結果に反映されてしまい、正確な計測を行なうことが難しくなるという問題もある。   In addition, between a plurality of light fluxes having different incident directions, the positions that pass through the polarizing plate (use region of the polarizing plate) are different from each other. For example, there is a scratch in a partial region of the polarizing plate. When the characteristics of the plate change depending on the use area, the influence is reflected in the measurement result, and there is a problem that it is difficult to perform accurate measurement.

なお、上述した後配置方式においても、撮像レンズ系への入射角度が互いに異なる複数の光束間では、偏光板を通過する位置が互いに異なることになるため、この問題は後配置方式においても同様に生じるものである。   Even in the post-arrangement method described above, the positions passing through the polarizing plates are different among a plurality of light beams having different incident angles to the imaging lens system. It will occur.

本発明は、このような事情に鑑みてなされたものであり、放射線による偏光板の性能劣化の抑制および偏光板のコンパクト化を図りつつ、撮像対象からの光束の偏光状態を、その入射方向に関わらず高精度に検出することが可能な偏光撮像装置を提供することを目的とする。   The present invention has been made in view of such circumstances. The polarization state of a light beam from an imaging target is set in the incident direction while suppressing deterioration of the performance of the polarizing plate due to radiation and making the polarizing plate compact. It is an object of the present invention to provide a polarization imaging apparatus that can detect with high accuracy regardless.

上記目的を達成するため本発明の偏光撮像装置は、以下のように構成されている。すなわち、本発明に係る偏光撮像装置は、撮像対象からの光束を取り込む撮像レンズ系と、前記光束のうち所定の偏光成分のみの通過を許容する偏光板と、前記撮像レンズ系および前記偏光板を通過した光の強度を検出する撮像素子とを備えた偏光撮像装置において、前記偏光板が、前記撮像レンズ系内の中間部に配置されていることを特徴とするものである。   In order to achieve the above object, the polarization imaging apparatus of the present invention is configured as follows. That is, the polarization imaging apparatus according to the present invention includes an imaging lens system that captures a light beam from an imaging target, a polarizing plate that allows only a predetermined polarization component of the light beam to pass, and the imaging lens system and the polarizing plate. In a polarization imaging apparatus including an imaging device that detects the intensity of light that has passed, the polarizing plate is disposed in an intermediate portion in the imaging lens system.

上記「撮像レンズ系内の中間部」とは、複数のレンズにより構成された撮像レンズ系において、最も物体側に配置されたレンズと、最も像側に配置されたレンズとの間を意味する。   The “intermediate part in the imaging lens system” means between the lens disposed closest to the object side and the lens disposed closest to the image side in the imaging lens system including a plurality of lenses.

本発明において、前記偏光板は、前記撮像レンズ系内に設置された開口絞りの近傍に配置されることが好ましい。   In the present invention, the polarizing plate is preferably disposed in the vicinity of an aperture stop installed in the imaging lens system.

なお、本発明は、飛行体搭載型の偏光撮像装置に適用が限定されるものではなく、また撮像対象も地表面に限定されるものではないが、特に人工衛星等の飛行体に搭載され、撮像対象が地表面とされるように構成されている偏光撮像装置へ適用されることが好ましい。   The present invention is not limited to application to a flying object-mounted polarization imaging device, and the imaging target is not limited to the ground surface, but is mounted on a flying object such as an artificial satellite, It is preferable that the present invention is applied to a polarization imaging apparatus configured so that the imaging target is the ground surface.

本発明に係る偏光撮像装置によれば、撮像レンズ系内の中間部に偏光板が配置されていることにより、偏光板をコンパクトに構成することができるとともに、入射光束が各レンズを通過する際に偏光状態が変化すること、および放射線により偏光板の性能が劣化することを抑制することが可能となる。   According to the polarization imaging device of the present invention, the polarizing plate is arranged in the middle part in the imaging lens system, so that the polarizing plate can be made compact and the incident light beam passes through each lens. It is possible to prevent the polarization state from being changed and the performance of the polarizing plate from being deteriorated by radiation.

また、撮像レンズ系内の中間部に偏光板が配置されていることにより、撮像レンズ系への入射方向が互いに異なる複数の光束間における、偏光板への入射角度の差異、および偏光板を通過する位置の差異を抑えることができるので、撮像レンズ系への入射方向によって偏光状態の検出精度が異なったり、偏光板の使用領域による特性変化の影響が計測結果に反映されたりするということを防止することができる。このため、撮像対象からの光束の偏光状態を、その入射方向に関わらず高精度に検出することが可能となる。   In addition, since the polarizing plate is arranged in the middle of the imaging lens system, the difference in the incident angle to the polarizing plate between a plurality of light beams having different incident directions to the imaging lens system, and passing through the polarizing plate Because the difference in the position of the light can be suppressed, the detection accuracy of the polarization state differs depending on the incident direction to the imaging lens system, and the influence of the characteristic change due to the usage area of the polarizing plate is not reflected in the measurement result. can do. For this reason, it becomes possible to detect the polarization state of the light beam from the imaging target with high accuracy regardless of the incident direction.

以下、本発明の実施形態について、図1を参照しながら説明する。図1は本発明の一実施形態に係る偏光撮像装置の全体構成を概略的に示す図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram schematically showing an overall configuration of a polarization imaging apparatus according to an embodiment of the present invention.

本実施形態に係る偏光撮像装置(以下、「本実施形態装置」と称することがある)は、例えば人工衛星のような、宇宙空間を飛行する図示せぬ飛行体(移動方向は紙面に垂直な方向)に搭載されるものであり、図示せぬ装置筐体内に撮像光学系10,撮像素子20および画像信号処理手段30を備えている。   A polarization imaging apparatus according to the present embodiment (hereinafter sometimes referred to as “the present embodiment apparatus”) is a flying object (not shown) that travels in outer space, such as an artificial satellite (the movement direction is perpendicular to the paper surface). The image pickup optical system 10, the image pickup device 20, and the image signal processing means 30 are provided in an apparatus housing (not shown).

上記撮像光学系10は、7枚のレンズL〜Lからなる広視野角の撮像レンズ系12と、撮像光学系10が像側において略テレセントリックとなるように配置された開口絞り14と、入射光束のうち所定の偏光成分のみを通過させる偏光板16とを備え、図中左方に位置する地表面(図示略)から反射された、視野角内の種々の方向より入射する各光束を、像面位置に配された上記撮像素子20上の各位置に集光させるように構成されている。 The imaging optical system 10 includes a wide viewing angle imaging lens system 12 including seven lenses L 1 to L 7, an aperture stop 14 disposed so that the imaging optical system 10 is substantially telecentric on the image side, A polarizing plate 16 that allows only a predetermined polarization component of the incident light beam to pass therethrough, and reflects each light beam that is reflected from the ground surface (not shown) located on the left side of the figure and that is incident from various directions within the viewing angle. The light is condensed at each position on the image sensor 20 arranged at the image plane position.

上記撮像素子20は、観測波長帯に対応した、ライン状または面状のCCDイメージ・センサ等からなり、撮像面の各位置に入射した光の強度に応じた電気信号を上記画像信号処理手段30に出力するように構成されている。   The image sensor 20 is composed of a linear or planar CCD image sensor or the like corresponding to the observation wavelength band, and the image signal processing means 30 outputs an electrical signal corresponding to the intensity of light incident on each position on the imaging surface. It is configured to output to.

上記画像信号処理手段30は、上記撮像素子20からの出力信号が入力される画像入力インタフェースや、メモリ,CPU,グラフィックスボード等を有するコンピュータ(いずれも図示略)等を備えており、撮像素子20からの出力信号に基づき、地表面の2次元画像を得るとともに地表面からの光束の偏光状態を計測し得るように構成されている。   The image signal processing means 30 includes an image input interface to which an output signal from the image sensor 20 is input, a computer (not shown) having a memory, a CPU, a graphics board, and the like. Based on the output signal from 20, a two-dimensional image of the ground surface is obtained and the polarization state of the light beam from the ground surface can be measured.

本実施形態装置の特徴は、上記偏光板16が上記撮像レンズ系12内の光軸方向中間部、詳しくはレンズLとレンズLとの間において上記開口絞り14の後側(像側)近傍位置に配置されていることにあり、これにより、以下のような作用効果を奏する。 Features of this embodiment apparatus, the optical axis direction intermediate portion of the polarizing plate 16 is the imaging lens system 12, specifically the lens L 3 and the aperture stop 14 behind the between the lens L 4 (image side) By being arranged in the vicinity position, the following effects are obtained.

すなわち、偏光板16が撮像レンズ系12内の光軸方向中間部に配されているため、視野角内の種々の方向より入射する各光束間の、偏光板16への入射角度の差異を小さくすることが可能である。また、撮像レンズ系12内に入射した各光束は、上記開口絞り14を通過した後に上記偏光板16に入射するため、各光束が偏光板16を通過する位置の差異が極めて少ない。このため、偏光板16への入射角度の差異が大きいために、入射角度によって偏光状態の検出精度が異なったり、偏光板16の使用領域による特性変化の影響が計測結果に反映されたりするということを防止し得るとともに、偏光板16をコンパクトに構成することができる。   That is, since the polarizing plate 16 is disposed in the intermediate portion in the optical axis direction in the imaging lens system 12, the difference in the incident angle on the polarizing plate 16 between the light beams incident from various directions within the viewing angle is reduced. Is possible. Further, since each light beam entering the imaging lens system 12 enters the polarizing plate 16 after passing through the aperture stop 14, there is very little difference in the position where each light beam passes through the polarizing plate 16. For this reason, since the difference in the incident angle to the polarizing plate 16 is large, the detection accuracy of the polarization state differs depending on the incident angle, and the influence of the characteristic change depending on the usage region of the polarizing plate 16 is reflected in the measurement result. The polarizing plate 16 can be made compact.

また、偏光板16よりも物体側に、3枚のレンズL〜Lが配置されているので、撮像レンズ系12内に入射した放射線量は、3枚のレンズL〜Lを通過する間に減衰される。このため、偏光板16に入射する放射線量を少なくすることができ、放射線により偏光板16の性能が劣化することを抑制することが可能となる。 In addition, since the three lenses L 1 to L 3 are arranged on the object side of the polarizing plate 16, the radiation dose incident into the imaging lens system 12 passes through the three lenses L 1 to L 3 . Is attenuated during For this reason, the amount of radiation incident on the polarizing plate 16 can be reduced, and the performance of the polarizing plate 16 can be prevented from being deteriorated by radiation.

一方、偏光板16よりも物体側に配置されるレンズL〜Lの枚数は、偏光板16を撮像レンズ系12の後側に配置した場合(後配置方式)に比較して少なくなる。このため、入射光束が偏光板16に入射する前に偏光状態が変化することを抑制することもできる。 On the other hand, the number of lenses L 1 to L 3 arranged on the object side of the polarizing plate 16 is smaller than that when the polarizing plate 16 is arranged on the rear side of the imaging lens system 12 (rear arrangement method). For this reason, it is possible to prevent the polarization state from changing before the incident light beam enters the polarizing plate 16.

これらの点から本実施形態装置によれば、偏光板16をコンパクトに構成することができるとともに、地表面からの光束の偏光状態を、その入射方向に関わらず高精度に検出することが可能である。   From these points, according to the apparatus of the present embodiment, the polarizing plate 16 can be configured in a compact manner, and the polarization state of the light beam from the ground surface can be detected with high accuracy regardless of the incident direction. is there.

なお、上述した実施形態では、偏光板16が固定的に配置されているが、偏光板を自転可能に配置して透過軸の方向を変えたり、ターレット板を用いて、特性が互いに異なる複数の偏光板を円周上に配置し、ターレット板を回転させることにより、光路上に位置する偏光板の特性を切り替えたりするように構成することも可能である。   In the above-described embodiment, the polarizing plate 16 is fixedly arranged. However, the polarizing plate is arranged so as to be able to rotate, and the direction of the transmission axis is changed, or a plurality of turret plates are used to have different characteristics. It is also possible to configure so that the characteristics of the polarizing plate located on the optical path are switched by arranging the polarizing plate on the circumference and rotating the turret plate.

また、複数の撮像光学系を備えるとともに、各撮像光学系に互いに特性が異なる偏光板をそれぞれ配置することにより、同一地点からの光束の偏光状態に関して、より多角的な情報を取得し得るように構成することも可能である。   In addition, by providing a plurality of imaging optical systems and disposing polarizing plates having different characteristics from each other in each imaging optical system, it is possible to obtain more diversified information regarding the polarization state of the light beam from the same point. It is also possible to configure.

また、上述した実施形態装置は、人工衛星搭載型とされているが、本発明は飛行機,飛行船,ヘリコプタ等の種々の飛行体に搭載される偏光撮像装置や、地上を走行する自動車等に搭載される偏光撮像装置、あるいは所定位置に設置される固定式の偏光撮像装置に対しても適用することが可能であり、撮像対象も地表面に限定されるものではない。   In addition, although the above-described embodiment device is an artificial satellite mounting type, the present invention is mounted on a polarization imaging device mounted on various flying objects such as an airplane, an airship, a helicopter, an automobile traveling on the ground, and the like. The present invention can also be applied to a polarized imaging apparatus that is installed or a fixed polarization imaging apparatus that is installed at a predetermined position, and the imaging target is not limited to the ground surface.

また、本発明において偏光板は、観測波長帯に応じて種々のタイプを用いることが可能であり、撮像レンズ系の構成についても上記実施形態で示されたものに限定されるものではない。   In the present invention, various types of polarizing plates can be used according to the observation wavelength band, and the configuration of the imaging lens system is not limited to that shown in the above embodiment.

本発明の一実施形態に係る偏光撮像装置の全体構成図1 is an overall configuration diagram of a polarization imaging apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

10 撮像光学系
12 撮像レンズ系
14 開口絞り
16 偏光板
20 撮像素子
30 画像信号処理手段
〜L (撮像レンズ系を構成する)レンズ
10 imaging optical system 12 imaging lens system 14 aperture stop 16 polarizing plate 20 imaging device 30 image signal processing unit L 1 ~L 7 (constituting the imaging lens system) Lens

Claims (3)

撮像対象からの光束を取り込む撮像レンズ系と、前記光束のうち所定の偏光成分のみの通過を許容する偏光板と、前記撮像レンズ系および前記偏光板を通過した光の強度を検出する撮像素子とを備えた偏光撮像装置において、
前記偏光板が、前記撮像レンズ系内の中間部に配置されていることを特徴とする偏光撮像装置。
An imaging lens system that captures a light beam from an imaging target, a polarizing plate that allows only a predetermined polarization component of the light beam to pass through, an imaging element that detects the intensity of light that has passed through the imaging lens system and the polarizing plate, and In a polarization imaging device comprising:
A polarization imaging apparatus, wherein the polarizing plate is disposed at an intermediate portion in the imaging lens system.
前記偏光板は、前記撮像レンズ系内に設置された開口絞りの近傍に配置されていることを特徴とする請求項1記載の偏光撮像装置。   The polarization imaging apparatus according to claim 1, wherein the polarizing plate is disposed in the vicinity of an aperture stop installed in the imaging lens system. 飛行体に搭載され、前記撮像対象が地表面とされるように構成されていることを特徴とする請求項1または2記載の偏光撮像装置。
The polarization imaging apparatus according to claim 1, wherein the polarization imaging apparatus is mounted on a flying body and configured so that the imaging target is a ground surface.
JP2004198995A 2004-07-06 2004-07-06 Polarization imaging apparatus Withdrawn JP2006023346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198995A JP2006023346A (en) 2004-07-06 2004-07-06 Polarization imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198995A JP2006023346A (en) 2004-07-06 2004-07-06 Polarization imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006023346A true JP2006023346A (en) 2006-01-26

Family

ID=35796676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198995A Withdrawn JP2006023346A (en) 2004-07-06 2004-07-06 Polarization imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006023346A (en)

Similar Documents

Publication Publication Date Title
US9307140B2 (en) Distance detection apparatus, image sensing apparatus, program, recording medium, and distance detection method
US9414045B2 (en) Stereo camera
US10209091B2 (en) Measurement tool, calibration method, calibration apparatus, and computer-readable recording medium
KR20160132963A (en) Optoelectronic modules operable to recognize spurious reflections and to compensate for errors caused by spurious reflections
JP3976021B2 (en) Position measurement system
JP2010249818A (en) Laser beam image contrast enhancement
JPH10221064A (en) Optical distance-measuring device
JP2014240782A (en) Measurement apparatus
JP2011039006A (en) Measurement device
US7924409B2 (en) Rangefinder and range finding method
US10384608B2 (en) Vehicle-mounted stereo camera device and method for correcting the same
JP2016127512A (en) Imaging apparatus
CN104848805A (en) Double-waveband synthetic light beam detection method and apparatus based on single optical wedge
JP5507050B2 (en) 3D sensor
TWI695179B (en) Optical distance measuring sensor
JP2008070629A (en) Light detection device, camera, focus detection device, and optical characteristic measuring device
JP2006023346A (en) Polarization imaging apparatus
JP6202364B2 (en) Stereo camera and moving object
JP2012242134A (en) Shape measurement device and optical filter used for the same
JP2005175256A (en) Light receiving device, and light projecting/receiving device
JP3939028B2 (en) Oblique incidence interferometer
WO2024004166A1 (en) Distance measurement device
JP5217350B2 (en) Eccentricity measuring device
JP2015025771A (en) Inner shape measuring device
WO2021171758A1 (en) Ranging sensor calibration system and ranging sensor calibration method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002