JP2006023092A - Analyzing method and analyzer - Google Patents

Analyzing method and analyzer Download PDF

Info

Publication number
JP2006023092A
JP2006023092A JP2004199053A JP2004199053A JP2006023092A JP 2006023092 A JP2006023092 A JP 2006023092A JP 2004199053 A JP2004199053 A JP 2004199053A JP 2004199053 A JP2004199053 A JP 2004199053A JP 2006023092 A JP2006023092 A JP 2006023092A
Authority
JP
Japan
Prior art keywords
fluorescence
analysis
analysis object
laser beam
analyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004199053A
Other languages
Japanese (ja)
Inventor
Yoshio Tanaka
祥夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2004199053A priority Critical patent/JP2006023092A/en
Publication of JP2006023092A publication Critical patent/JP2006023092A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer 11 capable of analyzing the three-dimensional distribution of an element including the depth direction from the surface of an object 12 to be analyzed. <P>SOLUTION: The same position of the object 12 to be analyzed is multiply irradiated with a laser beam L and a change in the fluorescence intensity of the element to be determinated is monitored from the fluorescence F emitted by irradiating the object 12 to be analyzed with the laser beam L. If the fluorescence intensity suddenly lowers by a reduction in the number of shots of the laser beam L, it is sensed that the element to be analyzed adheres to the surface of the object 12 to be analyzed. If the fluorescence intensity is not lowered even if the number of shots of the laser beam L is increased, it is sensed that the element to be analyzed is present up to the deep part in the object 12 to be analyzed. The three-dimensional distribution of the element including the depth direction from the surface of the object 12 to be analyzed can be analyzed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分析対象物にレーザ光を照射して発生するプラズマからの蛍光を集光し、この蛍光から分析対象物中に含まれる元素を定量する分析方法およびその装置に関する。   The present invention relates to an analysis method and apparatus for condensing fluorescence from plasma generated by irradiating an analysis object with laser light, and quantifying elements contained in the analysis object from the fluorescence.

従来、分析対象物にレーザ光を集光照射して発生するプラズマからの蛍光を集光し、この蛍光から分析対象物中に含まれる元素に由来する蛍光のスペクトルを分光し、その蛍光の波長および蛍光強度から元素を同定および定量するLIBS(Laser Induced Breakdown Spectroscopy)手法を利用した分析装置が知られている(例えば、特許文献1参照。)。
特開2000−310596号公報(第4−5頁、図1)
Conventionally, the fluorescence from the plasma generated by condensing and irradiating laser light to the analysis object is condensed, and the spectrum of the fluorescence derived from the elements contained in the analysis object is dispersed from this fluorescence, and the wavelength of the fluorescence In addition, an analyzer using a LIBS (Laser Induced Breakdown Spectroscopy) technique for identifying and quantifying elements from fluorescence intensity is known (see, for example, Patent Document 1).
JP 2000-310596 A (page 4-5, FIG. 1)

しかしながら、従来の分析装置では、分析対象物の表面における二次元的な元素の分布は分析できるが、分析対象物の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができなかった。   However, conventional analyzers can analyze the two-dimensional element distribution on the surface of the analyte, but analyze the three-dimensional element distribution including the depth direction from the surface of the analyte. I could not.

本発明は、このような点に鑑みなされたもので、分析対象物の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができる分析方法およびその装置を提供することを目的とする。   The present invention has been made in view of these points, and provides an analysis method and apparatus capable of analyzing a three-dimensional element distribution including the depth direction from the surface of an analysis object. With the goal.

本発明の分析方法は、分析対象物の同一位置にレーザ光を多重に照射し、レーザ光の照射で発生する蛍光を集光し、集光した蛍光から元素を定量するものである。   The analysis method of the present invention is to irradiate laser light multiple times at the same position of an object to be analyzed, condense the fluorescence generated by the laser light irradiation, and quantify the element from the collected fluorescence.

また、本発明の分析装置は、分析対象物の同一位置にレーザ光を多重に照射するレーザ光照射手段と、前記分析対象物にレーザ光を照射して発生する蛍光を集光する蛍光集光手段と、この蛍光集光手段で集光した蛍光から元素を定量する分析手段とを具備しているものである。   Further, the analysis apparatus of the present invention includes a laser beam irradiation means for irradiating a laser beam to the same position of the analysis object in multiple, and a fluorescence condensing unit for collecting fluorescence generated by irradiating the analysis object with the laser beam. And an analysis means for quantifying the element from the fluorescence condensed by the fluorescence condensing means.

そして、分析対象物の同一位置にレーザ光を多重に照射するため、分析対象物にレーザ光を照射して発生する蛍光から定量される元素の蛍光強度の変化を監視することにより、分析対象物の表面からの深さ方向の元素分布を判別することが可能となり、分析対象物の表面からの深さ方向を含んだ三次元的な元素の分布を分析可能とする。   Then, in order to irradiate multiple laser beams to the same position of the analysis object, by monitoring the change in the fluorescence intensity of the element quantified from the fluorescence generated by irradiating the analysis object with the laser beam, the analysis object The element distribution in the depth direction from the surface of the object can be discriminated, and the three-dimensional element distribution including the depth direction from the surface of the analysis object can be analyzed.

本発明によれば、分析対象物の同一位置にレーザ光を多重に照射するため、分析対象物にレーザ光を照射して発生する蛍光から定量される元素の蛍光強度の変化を監視することにより、分析対象物の表面からの深さ方向の元素分布を判別することが可能となり、分析対象物の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができる。   According to the present invention, since multiple laser beams are irradiated to the same position of the analysis object, by monitoring the change in the fluorescence intensity of the element quantified from the fluorescence generated by irradiating the analysis object with the laser beam. The element distribution in the depth direction from the surface of the analysis object can be discriminated, and the three-dimensional element distribution including the depth direction from the surface of the analysis object can be analyzed.

以下、本発明の一実施の形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に、LIBS(Laser Induced Breakdown Spectroscopy)手法を利用した分析装置11を示し、この分析装置11は、分析対象物12を保持する保持機構13、レーザ光(パルスレーザ光)Lを発生するレーザ装置14、このレーザ装置14で発生したレーザ光Lを分析対象物12に照射するレーザ光照射手段15、分析対象物12にレーザ光Lを照射することで発生するプラズマPからの蛍光Fを集光する蛍光集光手段16、この蛍光集光手段16で集光した蛍光Fから特定元素の波長を分光して検出する蛍光検出手段17、この蛍光検出手段17で検出された蛍光Fに基づいて所定の処理をする処理装置18を備えている。   FIG. 1 shows an analysis apparatus 11 using a LIBS (Laser Induced Breakdown Spectroscopy) technique. Apparatus 14, laser light irradiation means 15 for irradiating the analysis object 12 with laser light L generated by the laser apparatus 14, and collecting fluorescence F from plasma P generated by irradiating the analysis object 12 with laser light L Based on the fluorescence F detected by the fluorescence detection means 17, the fluorescence detection means 17 for spectroscopically detecting the wavelength of the specific element from the fluorescence F collected by the fluorescence collection means 16, and the fluorescence F detected by the fluorescence detection means 17. A processing device 18 for performing predetermined processing is provided.

レーザ装置14は、レーザ光Lを発振するレーザ発振器21、このレーザ発振器21に電源を供給するレーザ電源22、レーザ発振器21を冷却するレーザ冷却器23、レーザ発振器21を制御する発振制御装置24などを備えたYAGレーザ装置が用いられる。レーザ発振器21からは、例えばパルス幅が5nsec程度、ピークパワーが14〜20MW、伝送エネルギーが70〜100mJ(ピークパワー密度で2GW/cm程度)のレーザ光Lを出力する。 The laser device 14 includes a laser oscillator 21 that oscillates the laser light L, a laser power source 22 that supplies power to the laser oscillator 21, a laser cooler 23 that cools the laser oscillator 21, an oscillation control device 24 that controls the laser oscillator 21, and the like Is used. The laser oscillator 21 outputs laser light L having a pulse width of about 5 nsec, a peak power of 14 to 20 MW, and a transmission energy of 70 to 100 mJ (peak power density of about 2 GW / cm 2 ).

レーザ光照射手段15は、レーザ装置14から発振されたレーザ光Lを伝送するミラーや光ファイバなどを有する伝送光学系25、この伝送光学系25で伝送されるレーザ光Lを分析対象物12に集光照射する集光光学系26を備えている。集光光学系26には、例えば所定の焦点距離を有する少なくとも1枚の集光レンズ27、この集光レンズ27の位置調整によってレーザ光Lの照射位置を調整する照射位置調整機構28を有している。   The laser beam irradiation means 15 includes a transmission optical system 25 having a mirror, an optical fiber, etc. for transmitting the laser beam L oscillated from the laser device 14, and the laser beam L transmitted by the transmission optical system 25 to the analysis object 12. A condensing optical system 26 for condensing and irradiating is provided. The condensing optical system 26 includes, for example, at least one condensing lens 27 having a predetermined focal length, and an irradiation position adjusting mechanism 28 that adjusts the irradiation position of the laser light L by adjusting the position of the condensing lens 27. ing.

蛍光集光手段16は、分析対象物12にレーザ光Lを照射することで発生するプラズマPからの蛍光Fを集光する少なくとも1枚の凸レンズを有する集光光学系29、この集光光学系29で集光された蛍光Fを伝送するミラーや光ファイバなどを有する伝送光学系30を備えている。   The fluorescence condensing means 16 includes a condensing optical system 29 having at least one convex lens that condenses the fluorescence F from the plasma P generated by irradiating the analysis object 12 with the laser light L, and this condensing optical system. A transmission optical system 30 having a mirror, an optical fiber, and the like for transmitting the fluorescence F condensed at 29 is provided.

蛍光検出手段17は、蛍光Fの特定元素の波長を分光する例えばグレーティングや波長フィルタなどの波長分散素子を有する分光光学系31、この分光光学系31を透過した蛍光Fを電気信号に変換する光電変換素子32を備えている。   The fluorescence detection means 17 is a spectroscopic optical system 31 having a wavelength dispersion element such as a grating or a wavelength filter that separates the wavelength of a specific element of the fluorescence F, and a photoelectric that converts the fluorescence F transmitted through the spectroscopic optical system 31 into an electric signal. A conversion element 32 is provided.

処理装置18は、蛍光検出手段17からの出力信号を入力して処理する元素同定プログラムおよび元素定量プログラムなどを有し、蛍光検出手段17で検出された蛍光Fから元素を同定および定量する分析手段33の機能、分析対象物12の同一位置にレーザ光Lを多重に照射したときの分析手段33で定量される元素の蛍光強度の変化を監視し、分析対象物12の表面からの深さ方向の元素分布を判別する分布判別手段34の機能を有している。分析手段33は、同条件で予め測定した指標元素データと比較することで分析対象元素を同定および定量する。   The processing device 18 has an element identification program and an element quantification program for receiving and processing an output signal from the fluorescence detection means 17, and an analysis means for identifying and quantifying the element from the fluorescence F detected by the fluorescence detection means 17. 33, monitoring the change in the fluorescence intensity of the element quantified by the analysis means 33 when the laser beam L is irradiated in multiple times on the same position of the analysis object 12, and the depth direction from the surface of the analysis object 12 The function of the distribution discriminating means 34 for discriminating the element distribution of the above is provided. The analysis means 33 identifies and quantifies the analysis target element by comparing with the index element data measured in advance under the same conditions.

次に、分析装置11による分析動作について説明する。   Next, the analysis operation by the analyzer 11 will be described.

レーザ装置14から発振したレーザ光Lを、レーザ光照射手段15の伝送光学系25および集光光学系26を通じて大気または希ガス雰囲気中の分析対象物12に集光照射する。   The laser beam L oscillated from the laser device 14 is condensed and irradiated to the analysis object 12 in the atmosphere or rare gas atmosphere through the transmission optical system 25 and the condensing optical system 26 of the laser beam irradiation means 15.

分析対象物12にレーザ光Lを集光照射することにより、分析対象物12の表面がプラズマ化し、このプラズマPから各元素に特有の波長の蛍光Fが発生する。   By condensing and irradiating the analysis object 12 with the laser beam L, the surface of the analysis object 12 is turned into plasma, and fluorescence P having a wavelength specific to each element is generated from the plasma P.

プラズマPからの蛍光Fを蛍光集光手段16の集光光学系29で集光して伝送光学系30を通じて蛍光検出手段17に伝送し、蛍光検出手段17の分光光学系31で蛍光Fのうちの特定元素の波長を分光して光電変換素子32で電気信号に変換し、この電気信号を処理装置18に伝送する。   The fluorescence F from the plasma P is condensed by the condensing optical system 29 of the fluorescence condensing means 16 and transmitted to the fluorescence detecting means 17 through the transmission optical system 30, and among the fluorescence F by the spectroscopic optical system 31 of the fluorescence detecting means 17. The wavelength of the specific element is dispersed and converted into an electric signal by the photoelectric conversion element 32, and the electric signal is transmitted to the processing device 18.

処理装置18は、分析手段26の機能により検出された蛍光Fから元素を同定および定量する。   The processing device 18 identifies and quantifies the element from the fluorescence F detected by the function of the analysis means 26.

また、レーザ光照射手段15からレーザ光Lを分析対象物12に照射するときには、レーザ光Lを分析対象物12の同一位置に重畳して多重に照射する。そして、分析対象物12にレーザ光Lを多重に照射して発生する蛍光Fから定量される元素の蛍光強度の変化を監視することにより、分析対象物12の表面からの深さ方向の元素分布を判別することが可能となり、分析対象物12の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができる。   When the laser beam L is irradiated from the laser beam irradiation means 15 onto the analysis object 12, the laser beam L is superimposed on the same position of the analysis object 12 and irradiated in multiple. The element distribution in the depth direction from the surface of the analysis object 12 is monitored by monitoring the change in the fluorescence intensity of the element quantified from the fluorescence F generated by irradiating the analysis object 12 with multiple laser beams L. Can be discriminated, and the three-dimensional distribution of elements including the depth direction from the surface of the analysis object 12 can be analyzed.

図2に示すように、分析対象元素Xが分析対象物12の表面に薄く付着している場合には、レーザ光Lを多重に照射し、アブレーション効果によって分析対象物12の表面から深さ方向への掘り進んでいくと、図4のAに示すように、分析対象元素Xの蛍光強度はレーザ光Lの比較的少ないショット数で急激に低下し、レーザ光Lが分析対象物12の表面の分析対象元素Xの膜を突き破った段階で分析対象元素Xの蛍光強度は0または0近くまで無くなってしまう。   As shown in FIG. 2, when the analysis target element X is thinly attached to the surface of the analysis target 12, multiple laser beams L are irradiated, and the depth direction from the surface of the analysis target 12 is obtained by the ablation effect. As shown in FIG. 4A, the fluorescence intensity of the analysis target element X rapidly decreases with a relatively small number of shots of the laser beam L, and the laser beam L is reflected on the surface of the analysis target 12 as shown in FIG. The fluorescence intensity of the analysis target element X disappears to 0 or close to 0 at the stage of breaking through the film of the analysis target element X.

一方、図3に示すように、分析対象元素Xが分析対象物12の表面から内部深くまで均一に存在する場合には、レーザ光Lを多重に照射し、アブレーション効果によって分析対象物12の表面から深さ方向に掘り進んでいっても、分析対象元素Xが分析対象物12の表面から内部深くまで均一に存在することから、図4のBに示すように、分析対象元素Xの蛍光強度はレーザ光Lのショット数が重ねても0にはならず一定値で収束しやすい。   On the other hand, as shown in FIG. 3, when the analysis target element X exists uniformly from the surface of the analysis object 12 to the inside deeply, the surface of the analysis object 12 is irradiated by multiple ablation effects by the ablation effect. As shown in FIG. 4B, the fluorescence intensity of the analysis target element X is uniform because the analysis target element X is uniformly present from the surface of the analysis target 12 to the deep inside. Does not become 0 even when the number of shots of the laser beam L overlaps, and tends to converge at a constant value.

したがって、分析対象物12にレーザ光Lを多重に照射して発生する蛍光Fから定量される元素の蛍光強度の変化を監視することにより、分析対象物12の表面からの深さ方向の元素分布を判別することが可能となり、分析対象物12の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができる。   Therefore, the element distribution in the depth direction from the surface of the analysis object 12 is monitored by monitoring the change in the fluorescence intensity of the element quantified from the fluorescence F generated by irradiating the analysis object 12 with multiple laser beams L. Can be discriminated, and the three-dimensional distribution of elements including the depth direction from the surface of the analysis object 12 can be analyzed.

次に、分析装置11を、リチウムイオン電池の電解液の漏洩を検査する漏洩検知装置に用いた場合の分析方法について説明する。   Next, an analysis method when the analysis device 11 is used in a leakage detection device for inspecting leakage of the electrolyte solution of the lithium ion battery will be described.

リチウムイオン電池は、容器本体と蓋体とを溶接して構成される金属製の容器内にリチウムイオンを含む電解液を収容した構造をとっており、容器の溶接不具合などによってその溶接部分から電解液の漏洩が発生することがある。   A lithium ion battery has a structure in which an electrolytic solution containing lithium ions is contained in a metal container formed by welding a container body and a lid. Liquid leakage may occur.

LIBS手法を利用することにより容器内からの電解液の漏洩の有無を検査することが可能となるが、製造工程においては雰囲気に存在するリチウムが容器の表面に付着することがあり、容器内からの漏洩によるリチウムか、容器の表面に付着しただけのリチウムかを区別することが困難であった。   By using the LIBS method, it is possible to inspect the presence or absence of electrolyte leakage from the container, but in the manufacturing process, lithium present in the atmosphere may adhere to the surface of the container. It was difficult to distinguish between lithium due to leakage of lithium and lithium only attached to the surface of the container.

そこで、分析装置11を漏洩検知装置に用いた場合、容器の溶接部分にレーザ光Lを重畳して多重に照射し、発生する蛍光Fから定量される元素の蛍光強度の変化を監視することにより、容器の溶接部分の表面からの深さ方向の元素分布を判別することが可能となり、容器の溶接部分の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができ、容器の表面に付着しただけのリチウムと容器内から漏れ出ているリチウムとの区別が可能となる。   Therefore, when the analysis device 11 is used as a leak detection device, the laser beam L is superimposed on the welded portion of the container and multiple irradiation is performed, and the change in the fluorescence intensity of the element quantified from the generated fluorescence F is monitored. It is possible to discriminate the element distribution in the depth direction from the surface of the welded part of the container and analyze the three-dimensional element distribution including the depth direction from the surface of the welded part of the container. Therefore, it is possible to distinguish between lithium that has just adhered to the surface of the container and lithium that has leaked from the container.

すなわち、図5のC1およびC2に示すように、レーザ光Lを多重に照射し、アブレーション効果によって容器の溶接部分の表面から深さ方向への掘り進んでいくと、リチウムの蛍光強度がレーザ光Lの比較的少ないショット数で急激に低下し、リチウムの蛍光強度は0または0近くまで無くなってしまう場合には、リチウムが容器の表面に付着していただけであったことが判別できる。   That is, as shown by C1 and C2 in FIG. 5, when the laser beam L is irradiated multiple times, and the digging proceeds in the depth direction from the surface of the welded portion of the container due to the ablation effect, the fluorescence intensity of lithium becomes the laser beam. When the number of shots of L decreases rapidly and the fluorescence intensity of lithium disappears to 0 or close to 0, it can be determined that lithium has only adhered to the surface of the container.

一方、図5のC3に示すように、レーザ光Lを多重に照射し、アブレーション効果によって容器の溶接部分の表面から深さ方向に掘り進んでいっても、リチウムの蛍光強度がレーザ光Lのショット数を重ねても低下しない場合には、リチウムが容器内から漏洩していることが判別できる。   On the other hand, as shown by C3 in FIG. 5, even when the laser beam L is irradiated in multiple layers and digging in the depth direction from the surface of the welded portion of the container due to the ablation effect, the fluorescence intensity of lithium is If the number of shots does not decrease even when the number of shots is increased, it can be determined that lithium has leaked from the container.

したがって、容器の溶接部分にレーザ光Lを重畳して多重に照射し、発生する蛍光Fから定量される元素の蛍光強度の変化を監視することにより、容器の溶接部分の表面からの深さ方向の元素分布を判別することが可能となり、容器の溶接部分の表面からの深さ方向を含んだ三次元的な元素の分布を分析することができ、容器の表面に付着しただけのリチウムと容器内から漏れ出ているリチウムとの区別ができる。   Therefore, the laser beam L is superimposed on the welded portion of the container and multiple irradiations are performed, and the change in the fluorescence intensity of the element quantified from the generated fluorescence F is monitored, thereby the depth direction from the surface of the welded portion of the container. It is possible to discriminate the element distribution of the three-dimensional elements, including the depth direction from the surface of the welded part of the container, and to analyze the three-dimensional element distribution, including the lithium that has only adhered to the container surface. It can be distinguished from lithium leaking from the inside.

容器の表面に付着しただけのリチウムの場合の蛍光強度と容器内から漏れ出ているリチウムの場合の蛍光強度とを判別するためには、少なくとも5回以上のレーザ光Lのショット数が必要であり、好ましくは10回以上のレーザ光Lのショット数であれば確実に判別できる。   In order to discriminate between the fluorescence intensity in the case of lithium that has just adhered to the surface of the container and the fluorescence intensity in the case of lithium that has leaked from the container, at least five shots of the laser beam L are required. Yes, preferably if the number of shots of the laser beam L is 10 times or more, it can be reliably determined.

なお、分析装置11は、リチウムイオン電池からの電解液の漏洩有無を検知する漏洩検知装置に限らず、その他の分析対象物について分析対象物中に含まれる元素を定量する場合にも適用できる。   Note that the analyzer 11 is not limited to the leak detector that detects whether or not the electrolyte solution leaks from the lithium ion battery, and can also be applied to the case of quantifying the elements contained in the analyte with respect to other analytes.

本発明の一実施の形態を示す分析装置の構成図である。It is a block diagram of the analyzer which shows one embodiment of this invention. 同上分析装置の検査対象元素が表面に付着している場合の説明図である。It is explanatory drawing in case the inspection object element of an analyzer same as the above has adhered to the surface. 同上分析装置の検査対象元素が内部にも存在している場合の説明図である。It is explanatory drawing in case an inspection object element of an analyzer same as the above exists also inside. 同上分析装置のレーザ光のショット数と蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the number of shots of the laser beam and fluorescence intensity of an analyzer same as the above. 同上分析装置をリチウムイオン電池における電解液の漏洩検査に使用した場合のレーザ光のショット数と蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the shot number of a laser beam, and fluorescence intensity at the time of using an analyzer same as the above for the leak test of the electrolyte solution in a lithium ion battery.

符号の説明Explanation of symbols

11 分析装置
12 分析対象物
15 レーザ光照射手段
16 蛍光集光手段
33 分析手段
34 分布判別手段
F 蛍光
L レーザ光
11 Analyzer
12 Analyte
15 Laser beam irradiation means
16 Fluorescent light collecting means
33 Analytical tools
34 Distribution discrimination means F Fluorescence L Laser light

Claims (5)

分析対象物の同一位置にレーザ光を多重に照射し、
レーザ光の照射で発生する蛍光を集光し、
集光した蛍光から元素を定量する
ことを特徴とする分析方法。
Irradiate multiple laser beams to the same position of the analysis object,
Condensing fluorescence generated by laser light irradiation,
An analytical method characterized by quantifying elements from the collected fluorescence.
分析対象物の同一位置にレーザ光を多重に照射して定量する元素の蛍光強度の変化を監視し、分析対象物の表面からの深さ方向の元素分布を判別する
ことを特徴とする請求項1記載の分析方法。
The element distribution in the depth direction from the surface of the analysis object is discriminated by monitoring the change in the fluorescence intensity of the element to be quantified by irradiating the same position of the analysis object with multiple laser beams. The analysis method according to 1.
分析対象物の同一位置にレーザ光を多重に照射するレーザ光照射手段と、
前記分析対象物にレーザ光を照射して発生する蛍光を集光する蛍光集光手段と、
この蛍光集光手段で集光した蛍光から元素を定量する分析手段と
を具備していることを特徴とする分析装置。
A laser beam irradiation means for irradiating multiple laser beams to the same position of the analysis object;
Fluorescence collecting means for collecting fluorescence generated by irradiating the analysis object with laser light;
And an analyzing means for quantifying an element from the fluorescence condensed by the fluorescence condensing means.
分析対象物の同一位置にレーザ光を多重に照射したときの分析手段で定量される元素の蛍光強度の変化を監視し、分析対象物の表面からの深さ方向の元素分布を判別する分布判別手段を具備している
ことを特徴とする請求項3記載の分析装置。
Distribution discrimination that monitors the change in the fluorescence intensity of the element quantified by the analysis means when multiple laser beams are applied to the same position of the analysis object, and determines the element distribution in the depth direction from the surface of the analysis object The analyzer according to claim 3, further comprising: means.
分析対象物はリチウムイオン電池であり、このリチウムイオン電池からの電解液の漏洩を検査する
ことを特徴とする請求項3または4記載の分析装置。
The analytical object according to claim 3 or 4, wherein the analysis object is a lithium ion battery, and leakage of the electrolyte from the lithium ion battery is inspected.
JP2004199053A 2004-07-06 2004-07-06 Analyzing method and analyzer Pending JP2006023092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199053A JP2006023092A (en) 2004-07-06 2004-07-06 Analyzing method and analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199053A JP2006023092A (en) 2004-07-06 2004-07-06 Analyzing method and analyzer

Publications (1)

Publication Number Publication Date
JP2006023092A true JP2006023092A (en) 2006-01-26

Family

ID=35796475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199053A Pending JP2006023092A (en) 2004-07-06 2004-07-06 Analyzing method and analyzer

Country Status (1)

Country Link
JP (1) JP2006023092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268067A (en) * 2007-04-23 2008-11-06 Techno System Kk Measuring device
JP2013541702A (en) * 2010-09-06 2013-11-14 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ High resolution mapping and analysis equipment for solid elements
JP2016048212A (en) * 2014-08-28 2016-04-07 日立Geニュークリア・エナジー株式会社 Thickness measuring device for specific element and thickness measuring method for specific element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046738A (en) * 1998-07-28 2000-02-18 Nippon Steel Corp Judgment method for cause of abnormality on surface of nonmetal material
JP2000310596A (en) * 1999-04-27 2000-11-07 Toshiba Corp Element analyzer
JP2001297799A (en) * 2000-04-12 2001-10-26 Toshiba Fa Syst Eng Corp Electrolyte leakage testing device and testing method
JP2002296183A (en) * 2001-03-30 2002-10-09 Kajima Corp Method and device for inspecting concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046738A (en) * 1998-07-28 2000-02-18 Nippon Steel Corp Judgment method for cause of abnormality on surface of nonmetal material
JP2000310596A (en) * 1999-04-27 2000-11-07 Toshiba Corp Element analyzer
JP2001297799A (en) * 2000-04-12 2001-10-26 Toshiba Fa Syst Eng Corp Electrolyte leakage testing device and testing method
JP2002296183A (en) * 2001-03-30 2002-10-09 Kajima Corp Method and device for inspecting concrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268067A (en) * 2007-04-23 2008-11-06 Techno System Kk Measuring device
JP4634413B2 (en) * 2007-04-23 2011-02-16 テクノシステム株式会社 measuring device
JP2013541702A (en) * 2010-09-06 2013-11-14 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ High resolution mapping and analysis equipment for solid elements
JP2016048212A (en) * 2014-08-28 2016-04-07 日立Geニュークリア・エナジー株式会社 Thickness measuring device for specific element and thickness measuring method for specific element

Similar Documents

Publication Publication Date Title
US5757484A (en) Standoff laser induced-breakdown spectroscopy penetrometer system
JP5706955B2 (en) Quantitative analysis method of target element in sample using laser plasma spectrum
JP6022210B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
KR101084766B1 (en) Method for analyzing of heavy metals
KR101026236B1 (en) A reactor coolant leakage detection system and the method for the same by using the laser induced plasma spectra
CN110849815B (en) Method and system for predicting laser damage performance of surface of optical element
JP4599559B2 (en) Plastic surface diagnostic method and plastic surface diagnostic device
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
CN106338499A (en) Element laser detection and analysis instrument and mineral element analysis method
JP2006023092A (en) Analyzing method and analyzer
JP4176024B2 (en) Lithium leak detection device and lithium leak detection method
CN110927170B (en) Defect determination method, device and system
JP2009288067A (en) Analyzing method and analyzer
JP2008256440A (en) Analyzer
JP2006528782A (en) Chemical substance and biological substance detection apparatus and method
EP3745116A1 (en) Raman spectroscopic detection device and method for monitoring detection security thereof
JP4346464B2 (en) Leak detection device
JP2005164431A (en) Method and apparatus for identifying plastics
KR20030080533A (en) Real-time system and method for measuring oil pollution in soil using ultraviolet ray
JP2006275794A5 (en)
JP2005221373A (en) Element analyzer
JP2006275621A (en) Analyzer
KR101406993B1 (en) Apparatus for componential analysis using laser
JP2009139149A (en) Harmful substance pollution monitoring device and harmful substance pollution monitoring method
JP2004527767A (en) Optical detection of chemical species in enriched media

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100407