JP2006022307A - Master batch pellet for thermoplastic resin composition and thermoplastic resin composition - Google Patents

Master batch pellet for thermoplastic resin composition and thermoplastic resin composition Download PDF

Info

Publication number
JP2006022307A
JP2006022307A JP2005082050A JP2005082050A JP2006022307A JP 2006022307 A JP2006022307 A JP 2006022307A JP 2005082050 A JP2005082050 A JP 2005082050A JP 2005082050 A JP2005082050 A JP 2005082050A JP 2006022307 A JP2006022307 A JP 2006022307A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
combustion catalyst
white
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005082050A
Other languages
Japanese (ja)
Other versions
JP4671025B2 (en
Inventor
Toshiki Matsui
敏樹 松井
Yasuhiko Fujii
泰彦 藤井
Tomoko Okita
朋子 沖田
Minoru Osugi
稔 大杉
Nariyasu Jikuhara
成泰 軸原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2005082050A priority Critical patent/JP4671025B2/en
Publication of JP2006022307A publication Critical patent/JP2006022307A/en
Application granted granted Critical
Publication of JP4671025B2 publication Critical patent/JP4671025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition to which excellent combustion promoting effect is imparted, more specifically a thermoplastic resin composition which is promoted in complete combustion upon incineration thereof and effectively inhibited from generating harmful organic substances and master batch pellets for producing the thermoplastic resin composition. <P>SOLUTION: The thermoplastic resin composition is obtained by formulating a white combustion catalyst into 1.0-2.0 wt.% thermoplastic resin. The white combustion catalyst is obtained by carrying 0.001 to 0.10 wt.% metallic Pd colloid particles having ≤10 nm average particle diameter on surface of one or more kinds of inorganic carrier particles having 0.1 to 1.0 μm average particle diameter and selected from a group consisting of aluminum oxide, silicon oxide, calcium carbonate and titanium oxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱可塑性樹脂組成物の着色を抑制できるとともに、優れた燃焼促進効果が付与された熱可塑性樹脂組成物、詳述すれば、焼却時に完全燃焼を促進し、有害な有機化合物の発生を抑制できる熱可塑性樹脂組成物及び該熱可塑性樹脂組成物に用いるマスターバッチペレットに関するものである。   The present invention is a thermoplastic resin composition that can suppress coloring of the thermoplastic resin composition and has an excellent combustion promotion effect, and more specifically, promotes complete combustion during incineration and generates harmful organic compounds. It is related with the masterbatch pellet used for the thermoplastic resin composition which can suppress this, and this thermoplastic resin composition.

近年、生活様式の変化や生活水準、所得水準の向上等により、新しい商品があふれ、豊かな物質文化が形成されたが、それにともない工場や家庭から排出される一般廃棄物および産業廃棄物が多量に発生しており、これらの処理に関する問題は大きな社会問題ともなってきている。   In recent years, due to lifestyle changes, improvement of living standards and income levels, new products have overflowed and a rich material culture has been formed, but with this, a large amount of general and industrial waste discharged from factories and households. The problems related to these treatments have also become major social problems.

とりわけ、合成樹脂はその優れた機械的、物理的性質及び成形性から現代社会においては欠くことのできない材料としてあらゆる分野で膨大な量が使用されており、それに伴ってその廃棄物の総量も年間数百万トン以上にものぼっている。したがって、合成樹脂の廃棄物処理は一般廃棄物及び産業廃棄物に関する問題の中でも特に重要な課題となってきている。また、合成樹脂は人類に与えられた貴重な資源である石油を原材料としたものであることから、一旦使用した後でも再利用あるいはエネルギー源として活用する技術を確立することが強く求められている。   In particular, synthetic resins are used in large quantities in all fields as materials that are indispensable in modern society because of their excellent mechanical, physical properties and moldability. Over millions of tons. Therefore, waste treatment of synthetic resin has become a particularly important issue among the problems related to general waste and industrial waste. In addition, since synthetic resins are made from petroleum, which is a valuable resource given to humankind, there is a strong demand to establish technology that can be reused or used as an energy source even after being used once. .

これらの廃棄物処理のうち、一般廃棄物に関しては、一般にポリエチレン樹脂で代表される熱可塑性樹脂に各種顔料を添加した自治体指定のプラスチック製ごみ袋に詰められたごみを、自治体所有の焼却炉で焼却するという方法が多く採られている。   Of these waste treatments, for general waste, waste packed in plastic garbage bags designated by local governments, in which various pigments are added to thermoplastic resins typically represented by polyethylene resin, is stored in an incinerator owned by the local government. Many methods of incineration are used.

近年における商品の特性向上は、安全性や機能性等の本質的特性を有していることはもちろん、殊に視覚的、心理的な面からの改良と環境面からの改良が強く要求されており、上記買物袋やごみ袋等の品質特性の改良もその傾向が強く、使用に際して優れた透明性と低い彩度とを有していることが強く要求されている。   In recent years, the improvement of product characteristics has essential characteristics such as safety and functionality, as well as improvements in visual and psychological aspects and environmental aspects. In addition, improvement in quality characteristics of the shopping bags and garbage bags has a strong tendency, and it is strongly required to have excellent transparency and low saturation when used.

更に、環境面からプラスチック製の買物袋やごみ袋等は、使用済後に廃棄処分する必要があるが、可燃ごみの焼却処理には以下のような問題があった。即ち、燃焼中に発生するNOxによる大気汚染、焼却後に多量に発生する残灰や燃え残りを処分する埋め立て地等の不足、残灰中の有害成分の埋め立て地での漏洩、あるいは有害なダイオキシンの生成等の問題に加えて、可燃ごみ中に燃焼カロリーの高いプラスチック廃棄物やプラスチック製ごみ袋が多量に含まれている場合には、焼却炉の炉内温度の上昇の原因となって焼却炉が破損する等の問題があった。   Furthermore, from the environmental viewpoint, plastic shopping bags, garbage bags, etc. need to be disposed of after being used, but there are the following problems in the incineration treatment of combustible waste. That is, air pollution due to NOx generated during combustion, shortage of residual ash generated after incineration and landfill to dispose of unburned residue, leakage of harmful components in residual ash in landfill, or harmful dioxin In addition to problems such as generation, if the combustible waste contains a large amount of high-calorie plastic waste or plastic waste bags, the incinerator will increase the temperature in the incinerator. There were problems such as damage.

従来、燃焼効率を付与したプラスチック製の買物袋やごみ袋として、熱可塑性樹脂中に長軸径が0.02〜2.0μmの含水酸化第二鉄粒子又は平均粒子径0.03〜1.0μmの酸化鉄粒子を0.1〜20.0重量%含有させたプラスチック製の買物袋やごみ袋が既に実用化されている。(特許第2824203号、特許第2905693号)   Conventionally, as a plastic shopping bag or garbage bag imparted with combustion efficiency, hydrous ferric oxide particles having a major axis diameter of 0.02 to 2.0 μm or an average particle diameter of 0.03 to 1. Plastic shopping bags and garbage bags containing 0.1 to 20.0% by weight of 0 μm iron oxide particles have already been put into practical use. (Patent No. 2,824,203, Patent No. 2,905,693)

また、無機質担体に白金族元素を0.001〜0.2wt%担持させた微粒子の燃焼促進剤を、該白金族元素の濃度が0.5〜100ppmになるように熱可塑性樹脂に配合した熱可塑性樹脂組成物が開示されている。(特開2002−167516号公報)   Further, a heat in which a particulate combustion accelerator in which 0.001 to 0.2 wt% of a platinum group element is supported on an inorganic carrier is blended with a thermoplastic resin so that the concentration of the platinum group element is 0.5 to 100 ppm. A plastic resin composition is disclosed. (JP 2002-167516 A)

一方、白金族金属は、非常に高価な金属であるが、触媒反応における歴史は非常に古く、とくに白金とパラジウムの触媒作用は種々の反応において広く研究されてきた。白金とパラジウムが炭化水素の水素添加、脱水素の好触媒であることはよく知れている。また、アンモニア酸化に白金や白金−ロジウム合金が使われ(Kuhlmann法)、炭化水素の酸化や含酸素化合物の分解反応に白金やパラジウムが金属の形で使われており、各種燃焼触媒用途にも幅広く利用されている。   On the other hand, platinum group metals are very expensive metals, but the history of catalysis is very old. In particular, the catalytic action of platinum and palladium has been extensively studied in various reactions. It is well known that platinum and palladium are good catalysts for hydrocarbon hydrogenation and dehydrogenation. In addition, platinum and platinum-rhodium alloys are used for ammonia oxidation (Kuhlmann method), and platinum and palladium are used in the form of metals for oxidation of hydrocarbons and decomposition of oxygen-containing compounds. Widely used.

特許第2824203号Patent No. 2824203 特許第2905693号Patent No. 2905693 特開2002−167516号公報JP 2002-167516 A

強度や安全性等の本質的特性を有していることはもちろん、使用後の焼却時に完全燃焼を促進して有害な有機化合物の発生を抑制でき、且つ、所望の色調に着色可能な優れた透明性を有する熱可塑性樹脂組成物は、現在最も要求されているところであるが、上記諸特性を十分満足する熱可塑性樹脂組成物は未だ得られていない。   In addition to having essential characteristics such as strength and safety, it is possible to suppress the generation of harmful organic compounds by promoting complete combustion at the time of incineration after use, and excellent coloration to a desired color tone A thermoplastic resin composition having transparency is currently most demanded, but a thermoplastic resin composition that sufficiently satisfies the above properties has not yet been obtained.

即ち、前出特許文献1及び2記載の技術は、特定の酸化鉄粒子の燃焼促進作用を利用したものであって、焼却処分時に低温、低酸素濃度下であっても熱可塑性樹脂を完全燃焼させることができるという効果を有しているが、酸化鉄特有の赤色,黄色等に着色することは避けられず、このため、酸化鉄の配合量を少なくしても、例えば、野菜や肉等の食料品、衣料品等の包装用途に好まれる無色透明性を得ることは不可能であった。   That is, the technologies described in the above-mentioned Patent Documents 1 and 2 utilize the combustion promoting action of specific iron oxide particles, and completely burn the thermoplastic resin even at low temperatures and low oxygen concentrations during incineration. Although it has the effect of being able to be made, it is inevitable that the iron oxide is colored in red, yellow, etc., so even if the amount of iron oxide is reduced, for example, vegetables and meat It was impossible to obtain the colorless transparency preferred for packaging applications such as foodstuffs and clothing.

また、前出特許文献3記載の熱可塑性樹脂組成物は、白金族元素を担持した白色無機質微粒子を配合しているため、無色透明な色調が得られ、且つその燃焼促進作用を利用して、焼却時の完全燃焼を促進させることができるが、十分な燃焼促進効果を得ることは困難であった。   Moreover, since the thermoplastic resin composition described in Patent Document 3 contains white inorganic fine particles supporting a platinum group element, a colorless and transparent color tone is obtained, and its combustion promoting action is used. Although complete combustion at the time of incineration can be promoted, it has been difficult to obtain a sufficient combustion promotion effect.

そこで、本発明は、安全性等の本質的特性を有していることはもちろん、焼却時に完全燃焼を促進することで有害な有機化合物の発生を抑制でき、且つ所望の色調に着色可能な優れた透明性を有する熱可塑性樹脂組成物及び該熱可塑性樹脂組成物を製造するためのマスターバッチペレットを提供することを目的とする。   Therefore, the present invention not only has essential characteristics such as safety, but also can suppress the generation of harmful organic compounds by promoting complete combustion during incineration, and can be colored to a desired color tone. Another object of the present invention is to provide a thermoplastic resin composition having high transparency and master batch pellets for producing the thermoplastic resin composition.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、熱可塑性樹脂中に白色燃焼触媒を配合した熱可塑性樹脂組成物用マスターバッチペレットであって、前記白色燃焼触媒は平均粒子径が0.1〜1.0μmの酸化アルミニウム、酸化ケイ素、炭酸カルシウム又は酸化チタンの中から選ばれる1種以上の無機担体粒子の表面に、平均粒子径10nm以下の金属Pdコロイド粒子を0.001〜0.10wt%担持させた白色燃焼触媒であり、該白色燃焼触媒を熱可塑性樹脂に2.0〜60wt%配合したことを特徴とする熱可塑性樹脂組成物用マスターバッチペレットである(本発明1)。   That is, the present invention is a master batch pellet for a thermoplastic resin composition in which a white combustion catalyst is blended in a thermoplastic resin, wherein the white combustion catalyst has an average particle diameter of 0.1 to 1.0 μm of aluminum oxide, A white combustion catalyst in which 0.001 to 0.10 wt% of metal Pd colloidal particles having an average particle diameter of 10 nm or less are supported on the surface of one or more inorganic carrier particles selected from silicon oxide, calcium carbonate, or titanium oxide. A master batch pellet for a thermoplastic resin composition, wherein the white combustion catalyst is blended in a thermoplastic resin in an amount of 2.0 to 60 wt% (Invention 1).

また、本発明は、無機担体粒子が酸化アルミニウムである前記熱可塑性樹脂組成物用マスターバッチペレットである(本発明2)。   Moreover, this invention is the said masterbatch pellet for thermoplastic resin compositions whose inorganic support particle | grains are aluminum oxide (this invention 2).

また、本発明は、白色燃焼触媒が、陽イオン性、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子から選ばれる1種以上を含む金属Pdヒドロゾルと無機担体粒子粉末を含む水懸濁液とを接触混合させ、無機担体粒子表面に金属Pdコロイド粒子を電気的に担持させた白色燃焼触媒であることを特徴とする本発明1又は2の熱可塑性樹脂組成物用マスターバッチペレットである(本発明3)。   The present invention also provides a water in which the white combustion catalyst contains a metal Pd hydrosol containing at least one selected from a cationic, anionic or nonionic surfactant or a water-soluble polymer, and an inorganic carrier particle powder. A masterbatch pellet for a thermoplastic resin composition of the present invention 1 or 2, characterized in that it is a white combustion catalyst obtained by contacting and mixing a suspension and electrically supporting metal Pd colloidal particles on the surface of inorganic carrier particles (Invention 3).

また、本発明は、熱可塑性樹脂中に白色燃焼触媒を配合した熱可塑性樹脂組成物であって、前記白色燃焼触媒は平均粒子径が0.1〜1.0μmの酸化アルミニウム、酸化ケイ素、炭酸カルシウム又は酸化チタンの中から選ばれる1種以上の無機担体粒子の表面に、平均粒子径10nm以下の金属Pdコロイド粒子を0.001〜0.10wt%担持させた白色燃焼触媒であり、該白色燃焼触媒を熱可塑性樹脂に0.1〜2.0wt%配合したことを特徴とする熱可塑性樹脂組成物である(本発明4)。   The present invention also relates to a thermoplastic resin composition in which a white combustion catalyst is blended in a thermoplastic resin, wherein the white combustion catalyst has an average particle size of 0.1 to 1.0 μm of aluminum oxide, silicon oxide, carbonic acid. A white combustion catalyst in which 0.001 to 0.10 wt% of metal Pd colloidal particles having an average particle diameter of 10 nm or less is supported on the surface of one or more inorganic carrier particles selected from calcium or titanium oxide, A thermoplastic resin composition characterized by blending a combustion catalyst in a thermoplastic resin in an amount of 0.1 to 2.0 wt% (Invention 4).

また、本発明は、無機担体粒子が酸化アルミニウムである請求項4の熱可塑性樹脂組成物である(本発明5)。   Moreover, this invention is a thermoplastic resin composition of Claim 4 whose inorganic support particle | grains are aluminum oxide (this invention 5).

また、本発明は、白色燃焼触媒が、陽イオン性、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子から選ばれる1種以上を含む金属Pdヒドロゾルと無機担体粒子粉末を含む水懸濁液とを接触混合させ、無機担体粒子表面に金属Pdコロイド粒子を電気的に担持させた白色燃焼触媒であることを特徴とする本発明4又は5の熱可塑性樹脂組成物である(本発明6)。   The present invention also provides a water in which the white combustion catalyst contains a metal Pd hydrosol containing at least one selected from a cationic, anionic or nonionic surfactant or a water-soluble polymer, and an inorganic carrier particle powder. The thermoplastic resin composition of the present invention 4 or 5, wherein the thermoplastic resin composition of the present invention is a white combustion catalyst in which a suspension is contact-mixed and the metal Pd colloidal particles are electrically supported on the surface of the inorganic carrier particles (this book) Invention 6).

本発明に係る熱可塑性樹脂組成物用マスターバッチペレットは、該マスターバッチペレットを用いて作製した熱可塑性樹脂組成物中に白色燃焼触媒を容易に均一に分散させることができるので、熱可塑性樹脂組成物用マスターバッチペレットとして好適である。   The master batch pellet for the thermoplastic resin composition according to the present invention can easily and uniformly disperse the white combustion catalyst in the thermoplastic resin composition produced using the master batch pellet. Suitable as a master batch pellet for goods.

本発明に係る熱可塑性樹脂組成物は、強度や安全性等の本質的特性を有していることはもちろん、使用後の焼却時に完全燃焼を促進して有害な有機化合物の発生を抑制でき、且つ、透明性が高く所望の色調に容易に着色することができるので、野菜や肉等の食料品、衣料品の包装用途等の幅広い用途に好適である。   The thermoplastic resin composition according to the present invention not only has essential properties such as strength and safety, but can promote the complete combustion during incineration after use and suppress the generation of harmful organic compounds, And since it is highly transparent and can be easily colored to a desired color tone, it is suitable for a wide range of uses such as foods such as vegetables and meat, and packaging for clothing.

次に、本発明実施にあたっての諸条件について述べる。   Next, various conditions for carrying out the present invention will be described.

まず、本発明における白色燃焼触媒について述べる。   First, the white combustion catalyst in the present invention will be described.

本発明における白色燃焼触媒は、平均粒子径0.1〜1.0μmの酸化アルミニウム、酸化ケイ素、炭酸カルシウム又は酸化チタンの中から選ばれる1種以上の無機担体粒子の表面に、平均粒子径10nm以下の金属Pdコロイド粒子を0.001〜0.10wt%担持させたものである。   The white combustion catalyst in the present invention has an average particle diameter of 10 nm on the surface of one or more inorganic carrier particles selected from aluminum oxide, silicon oxide, calcium carbonate or titanium oxide having an average particle diameter of 0.1 to 1.0 μm. The following metal Pd colloidal particles are supported on 0.001 to 0.10 wt%.

本発明における無機担体粒子としては、通常に市販されているα型、γ型等の酸化アルミニウム、酸化ケイ素、炭酸カルシウム、またはルチル型、アナターゼ型の酸化チタンの中から選ばれる1種以上を使用することができる。好ましくは、熱可塑性樹脂と加熱混練時に、熱的に安定で樹脂を熱劣化させることのないα型の酸化アルミニウムである。   As the inorganic carrier particles in the present invention, one or more kinds selected from commercially available aluminum oxides such as α-type and γ-type, silicon oxide, calcium carbonate, or rutile-type and anatase-type titanium oxide are used. can do. Preferably, it is α-type aluminum oxide which is thermally stable and does not thermally deteriorate the resin during kneading with a thermoplastic resin.

本発明における無機担体粒子の平均粒子径は0.1〜1.0μmである。平均粒子径が1.0μmを超える場合には、熱可塑性樹脂組成物の透明性が低下するため、好ましくない。平均粒子径が0.1μm未満の場合は、熱可塑性樹脂中に均一分散し難くなるため、好ましくない。好ましくは0.1〜0.8μm、より好ましくは0.3〜0.8μmである。   The average particle diameter of the inorganic carrier particles in the present invention is 0.1 to 1.0 μm. When the average particle diameter exceeds 1.0 μm, the transparency of the thermoplastic resin composition is lowered, which is not preferable. When the average particle diameter is less than 0.1 μm, it is difficult to uniformly disperse in the thermoplastic resin, which is not preferable. Preferably it is 0.1-0.8 micrometer, More preferably, it is 0.3-0.8 micrometer.

本発明における無機担体粒子の表面に担持する金属Pdコロイド粒子の平均粒子径は10nm以下である必要がある。平均粒子径が10nmを超える場合は、触媒成分である金属Pdの比表面積が小さくなり、燃焼促進効果が低下する。好ましくは9nm以下である。平均粒子径の下限値は1nm程度である。   The average particle size of the metal Pd colloidal particles supported on the surface of the inorganic carrier particles in the present invention needs to be 10 nm or less. When the average particle diameter exceeds 10 nm, the specific surface area of the metal Pd, which is a catalyst component, becomes small, and the combustion promoting effect is reduced. Preferably it is 9 nm or less. The lower limit of the average particle diameter is about 1 nm.

金属Pdコロイド粒子の無機担体粒子への担持量は0.001〜0.10wt%である。担持量が0.001wt%未満の場合は、燃焼促進効果が低下するため好ましくない。担持量が0.10wt%を超える場合は、コストが高くなるだけでなく、着色が目立つようになるため、好ましくない。好ましくは0.005〜0.08wt%、より好ましくは0.01〜0.08wt%である。   The amount of the metal Pd colloid particles supported on the inorganic carrier particles is 0.001 to 0.10 wt%. When the loading amount is less than 0.001 wt%, the combustion promoting effect is lowered, which is not preferable. When the loading amount exceeds 0.10 wt%, not only the cost increases, but also coloring becomes conspicuous, which is not preferable. Preferably it is 0.005-0.08 wt%, More preferably, it is 0.01-0.08 wt%.

次に、本発明における白色燃焼触媒の製造法について述べる。   Next, a method for producing a white combustion catalyst in the present invention will be described.

無機担体粒子に金属Pdコロイド粒子を担持させる方法としては、無機担体粒子粉末の水懸濁液に、陽イオン性、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子から選ばれる1種以上を含む金属Pdヒドロゾルを混合して、電荷的に担持した後、濾過、水洗し、乾燥する方法が好ましい。上記方法を用いることによって、無機担体粒子の表面のみに効率的かつ強固に金属Pdコロイド粒子を担持させることができる。   As a method for supporting the metal Pd colloidal particles on the inorganic carrier particles, the aqueous suspension of the inorganic carrier particle powder is selected from a cationic, anionic or nonionic surfactant or a water-soluble polymer 1 A method is preferred in which a metal Pd hydrosol containing more than seeds is mixed and charged and then filtered, washed with water, and dried. By using the above method, the metal Pd colloidal particles can be supported efficiently and firmly only on the surface of the inorganic carrier particles.

なお、無機担体粒子粉末として酸化アルミニウム担体粒子を用いる場合は、水懸濁液中では正電荷を有するので、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子によって負電荷を有したPdコロイド粒子を含むPdヒドロゾルを用いることができる。
また、酸化ケイ素、炭酸カルシウム及び酸化チタン担体粒子の場合は、水懸濁液中では負電荷を有するので、陽イオン性界面活性剤によって正電荷を有したPdコロイド粒子を含むPdヒドロゾルを用いることができる。
When aluminum oxide carrier particles are used as the inorganic carrier particle powder, they have a positive charge in the aqueous suspension, and therefore have a negative charge due to an anionic or nonionic surfactant or a water-soluble polymer. Pd hydrosols containing Pd colloidal particles can be used.
Further, in the case of silicon oxide, calcium carbonate and titanium oxide carrier particles, since they have a negative charge in an aqueous suspension, use a Pd hydrosol containing Pd colloid particles having a positive charge by a cationic surfactant. Can do.

なお、Pdヒドロゾルは、塩化パウジウム、硝酸パラジウム等のPd化合物の水溶液に、界面活性剤または水溶性高分子の存在下にて、水素化ホウ素ナトリウム等の還元剤を添加することによって得ることができる。   The Pd hydrosol can be obtained by adding a reducing agent such as sodium borohydride to an aqueous solution of a Pd compound such as paudium chloride or palladium nitrate in the presence of a surfactant or a water-soluble polymer. .

本発明においては、Pdの触媒作用を促進するために、他の各種触媒成分や助触媒成分を併用して無機担体粒子に担持させることも可能である。   In the present invention, in order to promote the catalytic action of Pd, other various catalyst components and promoter components can be used together and supported on the inorganic carrier particles.

通常、無機担体粒子にPd粒子を担持させる方法としては、含浸法、イオン交換法等が用いられている。この方法では、Pd元素を含有する溶液で処理した後、乾燥および400〜800℃で焼成するため、Pd粒子の内部まで酸化した状態(PdO)となっており、本発明の方法で得られる金属Pdコロイド粒子に比べると燃焼促進効果が小さい。   Usually, an impregnation method, an ion exchange method, or the like is used as a method for supporting Pd particles on inorganic carrier particles. In this method, after treatment with a solution containing the Pd element, it is dried and fired at 400 to 800 ° C., so that the inside of the Pd particles is oxidized (PdO), and the metal obtained by the method of the present invention Compared to Pd colloidal particles, the combustion promoting effect is small.

次に、本発明に係る熱可塑性樹脂組成物用マスターバッチペレットについて述べる。   Next, the master batch pellet for the thermoplastic resin composition according to the present invention will be described.

本発明に係る熱可塑性樹脂組成物用マスターバッチペレットの熱可塑性樹脂としては、通常の押出成形に適するものであれば特に制限なく使用できる、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等のオレフィン系樹脂、ナイロン6、ナイロン66等のポリアミド樹脂又はポリ塩化ビニル樹脂等が好ましく、殊に、低密度ポリエチレン、高密度ポリエチレン、エチレンと(メタ)アクリル酸エステル、酢酸ビニル等の他の重合性単量体との共重合体等のポリエチレン系樹脂が大量に入手でき、安価であるので好適に使用できる。   The thermoplastic resin of the masterbatch pellet for the thermoplastic resin composition according to the present invention can be used without particular limitation as long as it is suitable for ordinary extrusion molding, for example, olefinic resins such as polyethylene resins and polypropylene resins. Polyamide resin such as nylon 6, nylon 66 or polyvinyl chloride resin is preferable, and other polymerizable monomers such as low density polyethylene, high density polyethylene, ethylene and (meth) acrylic acid ester, vinyl acetate, etc. A polyethylene resin such as a copolymer is available in a large amount and is inexpensive and can be suitably used.

本発明に係る熱可塑性樹脂組成物用マスターバッチペレットは、平均長径2〜6mmが好ましく、より好ましくは2〜5mmの範囲である。平均短径は1〜5mmが好ましく、より好ましくは1〜4mmである。平均長径が1mm未満の場合には、ペレット製造時の作業性が悪くなり好ましくない。6mmを越える場合には、希釈用結合材樹脂ペレットなどとの大きさの違いが大きくなり、十分に分散させるのが困難となる。また、その形状は種々のものができ、不定形及び球形等の粒状、円柱形、フレーク状等にできる。
なお、マスターバッチペレット中の熱可塑性樹脂は、目的とする熱可塑性樹脂組成物用の樹脂と同一の樹脂を用いても、また、異なる樹脂を用いてもよいが異なる樹脂を使用する場合には、樹脂同士の相溶性により決まる諸特性を考慮して決めればよい。
The master batch pellet for the thermoplastic resin composition according to the present invention preferably has an average major axis of 2 to 6 mm, more preferably 2 to 5 mm. The average minor axis is preferably 1 to 5 mm, more preferably 1 to 4 mm. When the average major axis is less than 1 mm, the workability at the time of pellet production is deteriorated, which is not preferable. When it exceeds 6 mm, the difference in size from the binder resin pellet for dilution becomes large, and it becomes difficult to sufficiently disperse. Moreover, the shape can be various, and can be indefinite and spherical, cylindrical, flakes, and the like.
In addition, the thermoplastic resin in the master batch pellet may be the same resin as the resin for the desired thermoplastic resin composition, or a different resin may be used. It may be determined in consideration of various characteristics determined by the compatibility between the resins.

マスターバッチペレット中の白色燃焼触媒の含有量は、マスターバッチペレットに対して2.0〜60wt%、好ましくは3.0〜50wt%、より好ましくは4.0〜50wt%である。2.0wt%未満の場合には、混練時の溶融粘度が不足し、白色燃焼触媒の良好な分散混合が困難である。60wt%を越える場合には、熱可塑性樹脂が不足し微細な白色燃焼触媒の良好な分散混合が難しく、また、マスターバッチペレットの添加量のわずかな変化によってフィルム中に配合される微細な白色燃焼触媒粒子の含有量が大きく変化するため所望の含有量に調整するのが困難となり好ましくない。また、機械摩耗が激しく適当でない。   Content of the white combustion catalyst in a masterbatch pellet is 2.0-60 wt% with respect to a masterbatch pellet, Preferably it is 3.0-50 wt%, More preferably, it is 4.0-50 wt%. If it is less than 2.0 wt%, the melt viscosity at the time of kneading is insufficient, and it is difficult to achieve good dispersion mixing of the white combustion catalyst. If it exceeds 60 wt%, the thermoplastic resin is insufficient, making it difficult to disperse fine white combustion catalyst, and the fine white combustion blended into the film due to slight changes in the amount of master batch pellets added. Since the content of the catalyst particles greatly changes, it is difficult to adjust the content to a desired content, which is not preferable. Also, mechanical wear is severe and not suitable.

本発明に係るマスターバッチペレットは、着色剤、紫外線吸収剤、帯電防止剤、フィラー等の各種添加剤を配合することができる。   The master batch pellet according to the present invention may contain various additives such as a colorant, an ultraviolet absorber, an antistatic agent, and a filler.

本発明に係る熱可塑性樹脂組成物用マスターバッチペレットは、熱可塑性樹脂ペレットなどと白色燃焼触媒とを、必要により、リボンブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー等の混合機で混合した後、周知の単軸混練押出機や二軸混練押出機等で混練、成形した後切断するか、又は、上記混合物をバンバリーミキサー、加圧ニーダー等で混練して得られた混練物を粉砕又は成形、切断することにより製造される。   The master batch pellet for the thermoplastic resin composition according to the present invention is obtained by mixing the thermoplastic resin pellet and the white combustion catalyst with a mixer such as a ribbon blender, a Nauter mixer, a Henschel mixer, and a super mixer, if necessary. Kneaded with a well-known single-screw kneading extruder or twin-screw kneading extruder, molded and then cut, or kneaded or molded from the kneaded product obtained by kneading the above mixture with a Banbury mixer, pressure kneader, etc. It is manufactured by cutting.

次に、本発明に係る熱可塑性樹脂組成物について述べる。   Next, the thermoplastic resin composition according to the present invention will be described.

熱可塑性樹脂としては、前記熱可塑性樹脂組成物用マスターバッチペレットに用いる熱可塑性樹脂と同様のものを用いればよく、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等のオレフィン系樹脂、ナイロン6、ナイロン66等のポリアミド樹脂又はポリ塩化ビニル樹脂等が好ましく、殊に、低密度ポリエチレン、高密度ポリエチレン、エチレンと(メタ)アクリル酸エステル、酢酸ビニル等の他の重合性単量体との共重合体等のポリエチレン系樹脂が大量に入手でき、安価であるので好適に使用できる。   As the thermoplastic resin, the same thermoplastic resin as that used for the master batch pellet for the thermoplastic resin composition may be used. For example, olefinic resins such as polyethylene resins and polypropylene resins, nylon 6, nylon 66 Polyamide resin or polyvinyl chloride resin, etc. are preferred, especially low density polyethylene, high density polyethylene, copolymers of ethylene with other polymerizable monomers such as (meth) acrylic acid ester, vinyl acetate, etc. Can be suitably used because they are available in large quantities and are inexpensive.

熱可塑性樹脂組成物中の白色燃焼触媒の配合割合は、熱可塑性樹脂に対して0.1〜2.0wt%である。配合割合が0.1wt%未満の場合は燃焼促進効果が小さく、また、2.0wt%を越える場合は、濃度に見合った燃焼促進効果が期待できないので、必要以上に配合する意味がない。好ましくは0.1〜1.5wt%、より好ましくは0.3〜1.5wt%である。   The blending ratio of the white combustion catalyst in the thermoplastic resin composition is 0.1 to 2.0 wt% with respect to the thermoplastic resin. When the blending ratio is less than 0.1 wt%, the combustion promoting effect is small, and when it exceeds 2.0 wt%, the combustion promoting effect corresponding to the concentration cannot be expected, so it is meaningless to blend more than necessary. Preferably it is 0.1-1.5 wt%, More preferably, it is 0.3-1.5 wt%.

熱可塑性樹脂組成物中の無機担体粒子に担持された金属Pdコロイド粒子の含有量は0.2〜20ppmが好ましい。金属Pdコロイド粒子の含有量が0.2ppm未満の場合は、燃焼促進効果が顕著に低下するため好ましくない。20ppmを超える場合は、コストが高くなるだけでなく、着色が目立つようになるため好ましくない。好ましくは0.3〜15ppm、より好ましくは0.4〜10ppmである。   The content of the metal Pd colloidal particles supported on the inorganic carrier particles in the thermoplastic resin composition is preferably 0.2 to 20 ppm. When the content of the metal Pd colloidal particles is less than 0.2 ppm, the combustion promoting effect is remarkably lowered, which is not preferable. If it exceeds 20 ppm, not only is the cost high, but coloration becomes conspicuous, which is not preferable. Preferably it is 0.3-15 ppm, More preferably, it is 0.4-10 ppm.

熱可塑性樹脂組成物は、着色剤、紫外線吸収剤、帯電防止剤、フィラー等の各種添加剤を配合することができる。熱可塑性樹脂組成物は、押出成形法、射出成形法又は圧縮成形法等の通常の成形法を用いて、フィルム状、板状、棒状、ブロック状、中空状、球状等の任意の形状に成形することができる。また、紡糸することで繊維状の形状とすることも可能である。本発明に係る熱可塑性樹脂組成物の色調は、無色又は白色、乳白色であり、フィルム状などの薄膜とした場合には、優れた透明性が得られる。また、着色剤を配合することで、その所望の色調と透明性を得ることができる。   The thermoplastic resin composition can contain various additives such as a colorant, an ultraviolet absorber, an antistatic agent, and a filler. The thermoplastic resin composition is molded into an arbitrary shape such as a film shape, a plate shape, a rod shape, a block shape, a hollow shape, and a spherical shape by using a normal molding method such as an extrusion molding method, an injection molding method, or a compression molding method. can do. Moreover, it can also be made into a fibrous shape by spinning. The color tone of the thermoplastic resin composition according to the present invention is colorless, white, or milky white, and excellent transparency can be obtained when it is a thin film such as a film. Moreover, the desired color tone and transparency can be obtained by mix | blending a coloring agent.

本発明に係る熱可塑性樹脂組成物に白色燃焼触媒を配合する方法としては、前記熱可塑性樹脂組成物用マスターバッチペレットを希釈用の熱可塑性樹脂に配合する方法を用いることができ、熱可塑性樹脂組成物用マスターバッチペレットを経由して熱可塑性樹脂組成物を製造した場合には、白色燃焼触媒を容易に均一分散できるので好ましい。また、熱可塑性樹脂に無機粒子粉末を配合する通常の方法を用いることもできる。   As a method of blending the white combustion catalyst with the thermoplastic resin composition according to the present invention, a method of blending the masterbatch pellet for the thermoplastic resin composition into the thermoplastic resin for dilution can be used. When a thermoplastic resin composition is produced via the master batch pellet for the composition, the white combustion catalyst can be easily and uniformly dispersed, which is preferable. Moreover, the normal method of mix | blending inorganic particle powder with a thermoplastic resin can also be used.

<作用>
本発明に係る熱可塑性樹脂組成物に配合する白色燃焼触媒は、高温加熱することなく得られているので、Pdコロイド粒子が酸化しにくく金属状態を維持している。
一方、通常の含浸法、イオン交換法等では、Pd元素を含有する溶液で処理した後、乾燥及び400〜800℃の温度範囲で焼成するため、Pd粒子の内部まで酸化した状態(PdO)となっている。
一般的には、Pdはいったん酸化されてPdOとなり、その酸素で相手物質を酸化させると言われているが、Pd粒子がPdOに酸化された状態よりも金属Pdの状態の方が、金属Pd粒子の表層に吸着された酸素原子が容易に活性化されるものと本発明者は考えている。
<Action>
Since the white combustion catalyst blended in the thermoplastic resin composition according to the present invention is obtained without heating at a high temperature, the Pd colloidal particles are hardly oxidized and maintain a metallic state.
On the other hand, in a normal impregnation method, an ion exchange method, etc., after processing with a solution containing Pd element, it is dried and baked in a temperature range of 400 to 800 ° C., so that the inside of Pd particles is oxidized (PdO) It has become.
In general, it is said that Pd is once oxidized to PdO, and its partner substance is oxidized by the oxygen. However, the state of the metal Pd is higher than that of the Pd particles oxidized to PdO. The present inventor believes that oxygen atoms adsorbed on the surface layer of particles are easily activated.

また、通常の含浸法などによってPd粒子を担持させる場合には、無機粒子担体の内部までPdが担持されている。
一方、本発明における白色燃焼触媒では、その製造法に起因してPdコロイド粒子が無機担体粒子の粒子表面に均一担持されるために、Pdコロイドのほぼ全量が触媒作用に寄与し、前述したとおりの金属Pdコロイドの有する高い触媒機能を十分に発揮することができるため、高い燃焼促進効果を有するものと本発明者は考えている。
Further, when Pd particles are supported by a normal impregnation method or the like, Pd is supported up to the inside of the inorganic particle carrier.
On the other hand, in the white combustion catalyst according to the present invention, Pd colloidal particles are uniformly supported on the particle surface of the inorganic carrier particles due to the production method thereof, so that almost the entire amount of Pd colloid contributes to the catalytic action. The present inventor believes that the high catalytic function of the metal Pd colloid can be sufficiently exerted, and therefore has a high combustion promoting effect.

陽イオン性、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子から選ばれる1種以上を含むPdコロイド中の金属Pdコロイド粒子は、凝集が抑制されて無機担体粒子に強固に担持されるので、Pdが有する触媒活性を十分に発揮することができ、更に、前記金属Pdコロイド粒子は、表面に界面活性剤又は水溶性高分子を吸着しているので、熱可塑性樹脂とのなじみがよく樹脂中での分散性に優れる。   Metal Pd colloidal particles in Pd colloids containing one or more selected from cationic, anionic or nonionic surfactants or water-soluble polymers are firmly supported on inorganic carrier particles with aggregation suppressed Therefore, the catalytic activity of Pd can be sufficiently exerted, and further, the metal Pd colloidal particles adsorb a surfactant or a water-soluble polymer on the surface, so that they are compatible with thermoplastic resins. Good dispersibility in resin.

また、本発明に係る熱可塑性樹脂組成物用マスターバッチペレットと希釈用熱可塑性樹脂とを混練した後、成形してなる熱可塑性樹脂組成物は、樹脂組成物中の白色燃焼触媒の均一度が高く、焼却時に完全燃焼を促進することで有害な有機化合物の発生を抑制でき、且つ所望の色調に着色可能な優れた透明性を有するものである。   In addition, the thermoplastic resin composition obtained by kneading the thermoplastic resin composition masterbatch pellets and the dilution thermoplastic resin according to the present invention and then forming the thermoplastic resin composition has a uniform degree of white combustion catalyst in the resin composition. It has high transparency that can suppress the generation of harmful organic compounds by promoting complete combustion during incineration and can be colored in a desired color tone.

本発明に係る熱可塑性樹脂組成物用マスターバッチペレットを用いて得られた熱可塑性樹脂組成物は、熱可塑性樹脂に直接、白色燃焼触媒を配合して得られた熱可塑性樹脂組成物に比べて、安定且つ優れた燃焼特性を有する。安定且つ優れた燃焼特性を有する理由について、白色燃焼触媒は微粒子で分散しにくいが、予めマスターバッチペレットを調製した後、希釈用熱可塑性樹脂と混練することで、熱可塑性樹脂組成物中における微細な白色燃焼触媒の分散性がより向上したことによって、本来の酸化活性がより充分発揮されたものと本発明者は考えている。   The thermoplastic resin composition obtained by using the master batch pellet for the thermoplastic resin composition according to the present invention is compared with the thermoplastic resin composition obtained by directly blending the thermoplastic resin with the white combustion catalyst. , Have stable and excellent combustion characteristics. The reason why it has stable and excellent combustion characteristics is that the white combustion catalyst is difficult to disperse with fine particles, but after preparing a master batch pellet in advance, it is kneaded with a dilution thermoplastic resin, so that the fineness in the thermoplastic resin composition can be reduced. The present inventor believes that the original oxidation activity is more sufficiently exhibited by further improving the dispersibility of the white combustion catalyst.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

白色燃焼触媒の無機担体粒子およびそれに担持されたPdコロイド粒子の平均粒子径は、透過型電子顕微鏡写真に示される粒子350個の粒子径を測定し、その平均値で示した。   The average particle size of the inorganic support particles of the white combustion catalyst and the Pd colloid particles supported thereon was measured by measuring the particle size of 350 particles shown in the transmission electron micrograph and showing the average value.

白色燃焼触媒中のPd担持量は、白色燃焼触媒1.00gを濃硝酸/濃塩酸(1/3容積比)溶液をイオン交換水で2倍に希釈した溶液30mlに煮沸溶解した後、濾過し濾液にイオン交換水を加えて100mlに希釈して、高周波プラズマ発光分光分析装置(日本ジャーレル・アゥシュ(株)製ICAP−575)で測定した。   The amount of Pd supported in the white combustion catalyst was obtained by boiling and dissolving 1.00 g of the white combustion catalyst in 30 ml of a solution obtained by diluting a concentrated nitric acid / concentrated hydrochloric acid (1/3 volume ratio) solution with ion-exchanged water twice. Ion exchanged water was added to the filtrate to dilute to 100 ml, and measurement was performed with a high-frequency plasma emission spectroscopic analyzer (ICAP-575 manufactured by Nippon Jarrell-Aush Co., Ltd.).

熱可塑性樹脂組成物用マスターバッチペレットを経由して得られた熱可塑性樹脂組成物中の白色燃焼触媒含有量は、熱可塑性樹脂組成物1.0gを磁性ルツボに入れて、空気中800℃にて1時間熱処理した際の重量差から計算した。尚、熱処理により白色触媒担体が変態するものについては,その変態による重量変化も加味して計算した。   The white combustion catalyst content in the thermoplastic resin composition obtained via the master batch pellet for the thermoplastic resin composition was as follows: 1.0 g of the thermoplastic resin composition was placed in a magnetic crucible and 800 ° C. in air. And calculated from the weight difference when heat-treated for 1 hour. For the case where the white catalyst support was transformed by heat treatment, the calculation was made taking into account the weight change due to the transformation.

<熱可塑性樹脂組成物の燃焼特性評価>
内径14mmφ×長さ65mmの石英試料管中に、熱可塑性樹脂組成物試料35mgを入れ、その試料を石英ウールで両端から挟んで固定した。酸素ガス200mL/minで4分間流しながら、700℃で燃焼させ、その間に生成した燃焼ガスの全量を1Lのテドラバック中に捕集して、そのガス組成と量の測定を行った。燃焼ガス組成は、ガスクロマトグラフによって、一酸化炭素、二酸化炭素及びベンゼンを測定することにより評価した。二酸化炭素の生成量が多く、一酸化炭素及びベンゼンが少ないほど、完全燃焼の度合いが高いことを示している。
<Combustion characteristic evaluation of thermoplastic resin composition>
35 mg of a thermoplastic resin composition sample was placed in a quartz sample tube having an inner diameter of 14 mmφ and a length of 65 mm, and the sample was fixed by being sandwiched from both ends by quartz wool. Burning at 700 ° C. while flowing oxygen gas at 200 mL / min for 4 minutes, the entire amount of combustion gas generated during that time was collected in 1 L of tedra bag, and the gas composition and amount were measured. The combustion gas composition was evaluated by measuring carbon monoxide, carbon dioxide and benzene by gas chromatography. It shows that the more carbon dioxide is produced and the less carbon monoxide and benzene, the higher the degree of complete combustion.

<熱可塑性樹脂組成物によるダイオキシン低減試験評価>
熱可塑性樹脂組成物90wt%と塩化ビニル樹脂10wt%を170℃にて3分間混練した後、厚さ1mmシートに成形して試料とした。700℃に加熱した内径15mmφ×長さ300mmの石英管中に、1回当たり上記試料20mgを乗せた石英ボート(幅10mm×長さ50mm×高さ10mm)を入れ、空気1.8L/minを流しながら燃焼させた。
その間に生成した燃焼ガスを、氷浴中でガス上流側より、イオン交換水、ジエチレングリコール、アンバーライトXAD−2(オルガノ(株)製)にてトラップした。この操作を70回繰り返した。実験終了後、石英管出口部分から吸収ユニットまでをイオン交換水、アセトンおよびジクロロメタンにより洗浄し、分析試料として回収した。さらに、上記洗液、イオン交換水及びジエチレングリコール溶液は濾過した後、残渣はXAD−2樹脂とともにトルエンにてソックスレー抽出し、濾液はトルエンを加えて振とう抽出した。
このトルエン吸収液中のダイオキシン類をガスクロマトグラフィー質量分析計(MICROMASS社製AUTOSPEC ULTIMA)で定量した。
<Evaluation of dioxin reduction test by thermoplastic resin composition>
A thermoplastic resin composition 90 wt% and a vinyl chloride resin 10 wt% were kneaded at 170 ° C. for 3 minutes, and then molded into a 1 mm thick sheet to prepare a sample. A quartz boat (width 10 mm × length 50 mm × height 10 mm) loaded with 20 mg of the above sample is placed in a quartz tube having an inner diameter of 15 mmφ × length of 300 mm heated to 700 ° C., and air of 1.8 L / min. Burned while flowing.
The combustion gas generated during that time was trapped with ion-exchanged water, diethylene glycol, and Amberlite XAD-2 (manufactured by Organo Corporation) from the gas upstream side in an ice bath. This operation was repeated 70 times. After the experiment was completed, the part from the quartz tube outlet to the absorption unit was washed with ion-exchanged water, acetone and dichloromethane and collected as an analysis sample. Furthermore, after the said washing | cleaning liquid, ion-exchange water, and the diethylene glycol solution were filtered, the residue was Soxhlet-extracted with toluene with XAD-2 resin, and the filtrate was shake-extracted by adding toluene.
Dioxins in the toluene absorption liquid were quantified with a gas chromatography mass spectrometer (AUTOSPEC ULTIMA manufactured by MICROMASS).

<Pdコロイド液1の調製>
18.5Lのイオン交換水に0.1mol/Lの塩化パラジウム水溶液500mLと1wt%ポリビニルアルコール水溶液500mLを攪拌下にて混合した。さらに、上記混合溶液に0.4mol/Lの水素化ホウ素ナトリウム水溶液500mlを攪拌下にて添加混合することによって、負電荷を有する黒色の2.5mmol/LのPdコロイド液1を得た。
<Preparation of Pd colloid solution 1>
To 18.5 L of ion exchange water, 500 mL of a 0.1 mol / L palladium chloride aqueous solution and 500 mL of a 1 wt% polyvinyl alcohol aqueous solution were mixed with stirring. Furthermore, a black 2.5 mmol / L Pd colloidal solution 1 having a negative charge was obtained by adding and mixing 500 ml of a 0.4 mol / L sodium borohydride aqueous solution with stirring to the above mixed solution.

<Pdコロイド液2の調製>
18.5Lのイオン交換水に0.1mol/Lの塩化パラジウム水溶液500mLを混合した後、さらに0.8wt%塩化ステアリルトリメチルアンモニウム水溶液500mLと0.4mol/Lの水素化ホウ素ナトリウム水溶液500mlを攪拌下にて同時に添加混合することによって、正電荷を有する黒色の2.5mmol/LのPdコロイド液2を得た。
<Preparation of Pd colloid solution 2>
After mixing 500 mL of 0.1 mol / L palladium chloride aqueous solution with 18.5 L of ion exchange water, 500 mL of 0.8 wt% stearyltrimethylammonium chloride aqueous solution and 500 mL of 0.4 mol / L sodium borohydride aqueous solution were further stirred. At the same time, a black 2.5 mmol / L Pd colloidal solution 2 having a positive charge was obtained.

製造例1<白色燃焼触媒1>
平均粒子径0.6μmのα−アルミナ担体粒子の50wt%水懸濁液20kgに、攪拌下にて前記Pdコロイド液1を15L滴下混合して、α−アルミナ担体粒子表面にPdコロイド粒子を担持した。その後、上記懸濁液を濾過、水洗した後、120℃にて8時間乾燥し、得られた乾燥物を粉砕して、Pdコロイド粒子が0.04wt%担持された乳白色のα−アルミナ粒子粉末10kgを得た。α−アルミナ粒子粉末に担持されたPdコロイド粒子の平均粒子径は3nmであった。
Production Example 1 <White Combustion Catalyst 1>
15 L of the Pd colloid liquid 1 is dropped and mixed with 20 kg of a 50 wt% aqueous suspension of α-alumina carrier particles having an average particle diameter of 0.6 μm with stirring to support the Pd colloid particles on the surface of the α-alumina carrier particles. did. Thereafter, the suspension was filtered, washed with water, dried at 120 ° C. for 8 hours, and the resulting dried product was pulverized to give milky white α-alumina particle powder carrying 0.04 wt% of Pd colloidal particles. 10 kg was obtained. The average particle diameter of the Pd colloidal particles supported on the α-alumina particle powder was 3 nm.

製造例2<白色燃焼触媒2>
平均粒子径0.5μmのアナターゼ型酸化チタン担体粒子の50wt%水懸濁液10kgに、攪拌下にて前記Pdコロイド液2を15L混合して、酸化チタン担体粒子表面にPdコロイド粒子を担持した。その後、上記懸濁液を濾過、水洗した後、120℃にて8時間乾燥し、得られた乾燥物を粉砕して、Pdコロイド粒子が0.08wt%担持された灰色の酸化チタン粒子粉末5.0kgを得た。酸化チタン粒子粉末に担持されたPdコロイド粒子の平均粒子径は6nmであった。
Production Example 2 <White Combustion Catalyst 2>
15 kg of the Pd colloid liquid 2 was mixed with 10 kg of a 50 wt% aqueous suspension of anatase-type titanium oxide carrier particles having an average particle diameter of 0.5 μm with stirring, and Pd colloid particles were supported on the surface of the titanium oxide carrier particles. . Thereafter, the suspension was filtered, washed with water, dried at 120 ° C. for 8 hours, and the resulting dried product was pulverized to obtain gray titanium oxide particle powder 5 carrying 0.08 wt% Pd colloidal particles. 0.0 kg was obtained. The average particle size of the Pd colloidal particles supported on the titanium oxide particle powder was 6 nm.

製造例3<白色燃焼触媒3>
平均粒子径0.6μmの炭酸カルシウム担体粒子の50wt%水懸濁液20kgに、攪拌下にて前記Pdコロイド液2を1.9L滴下混合して、炭酸カルシウム担体粒子表面にPdコロイド粒子を担持した。その後、上記懸濁液を濾過、水洗した後、120℃にて8時間乾燥し、得られた乾燥物を粉砕して、Pdコロイド粒子が0.005wt%担持された乳白色の炭酸カルシウム粒子粉末10kgを得た。炭酸カルシウム粒子粉末に担持されたPdコロイド粒子の平均粒子径は3nmであった。
Production Example 3 <White Combustion Catalyst 3>
1.9 L of the Pd colloid liquid 2 is dropped and mixed with 20 kg of a 50 wt% aqueous suspension of calcium carbonate carrier particles having an average particle diameter of 0.6 μm with stirring to support the Pd colloid particles on the surface of the calcium carbonate carrier particles. did. Thereafter, the suspension was filtered, washed with water, dried at 120 ° C. for 8 hours, and the resulting dried product was pulverized to give 10 kg of milky white calcium carbonate particle powder carrying 0.005 wt% of Pd colloidal particles. Got. The average particle size of the Pd colloidal particles supported on the calcium carbonate particle powder was 3 nm.

製造例4<白色燃焼触媒4>
平均粒子径0.6μmのα−アルミナ担体粒子粉末10kgに、7.5mmol/Lのジニトロジアンミンパラジウム水溶液5.0Lを含浸させ、120℃にて8時間乾燥後、500℃にて2時間焼成した。焼成物を粉砕して、0.04wt%Pdが担持された乳白色のα−アルミナ粒子粉末10kgを得た。α−アルミナ粒子粉末に担持されたPd粒子の平均粒子径は10nmであった。
Production Example 4 <White Combustion Catalyst 4>
10 kg of α-alumina carrier particle powder having an average particle size of 0.6 μm was impregnated with 5.0 L of 7.5 mmol / L dinitrodiammine palladium aqueous solution, dried at 120 ° C. for 8 hours, and then calcined at 500 ° C. for 2 hours. . The fired product was pulverized to obtain 10 kg of milky white α-alumina particle powder carrying 0.04 wt% Pd. The average particle size of the Pd particles supported on the α-alumina particle powder was 10 nm.

製造例5<白色燃焼触媒5>
α−アルミナ粒子粉末に担持されたPdコロイド粒子を、X線回折装置で同定するために、製造例1のα−アルミナ担体粒子水懸濁液を、1wt%水懸濁液8kgに変えた以外は、製造例1と同様な方法で調製し、Pdコロイド粒子が5.0wt%担持された灰色のα−アルミナ粒子粉末80gを得た。α−アルミナ粒子粉末に担持されたPdコロイド粒子は、X線回折装置で解析した結果、金属Pdの結晶面(111)のピークが確認された。また、PdOの結晶面のピークは確認されなかった。
Production Example 5 <White Combustion Catalyst 5>
In order to identify the Pd colloidal particles supported on the α-alumina particle powder with an X-ray diffractometer, the α-alumina carrier particle aqueous suspension of Production Example 1 was changed to 8 kg of 1 wt% aqueous suspension. Was prepared in the same manner as in Production Example 1 to obtain 80 g of gray α-alumina particle powder carrying 5.0 wt% of Pd colloidal particles. As a result of analyzing the Pd colloidal particles supported on the α-alumina particle powder with an X-ray diffractometer, the peak of the crystal plane (111) of the metal Pd was confirmed. Moreover, the peak of the crystal plane of PdO was not confirmed.

製造例6<白色燃焼触媒6>
α−アルミナ粒子粉末に担持されたPd粒子を、X線回折装置で同定するために、製造例4のα−アルミナ粒子粉末を1kgに、ジニトロジアンミンパラジウム水溶液を0.19mol/L、500mLに変えた以外は、製造例4と同様な方法で調製し、Pd粒子が1.0wt%担持された灰色のα−アルミナ粒子粉末1.0kgを得た。α−アルミナ粒子粉末に担持されたPdコロイド粒子は、X線回折装置で解析した結果、PdOの結晶面(101)のピークが確認された。また、金属Pdの結晶面のピークは確認されなかった。
Production Example 6 <White Combustion Catalyst 6>
In order to identify the Pd particles supported on the α-alumina particle powder with an X-ray diffractometer, the α-alumina particle powder of Production Example 4 was changed to 1 kg, and the dinitrodiammine palladium aqueous solution was changed to 0.19 mol / L, 500 mL. Except for the above, it was prepared in the same manner as in Production Example 4 to obtain 1.0 kg of gray α-alumina particle powder carrying 1.0 wt% of Pd particles. As a result of analyzing the Pd colloidal particles supported on the α-alumina particle powder with an X-ray diffractometer, the peak of the crystal plane (101) of PdO was confirmed. Moreover, the peak of the crystal plane of the metal Pd was not confirmed.

実施例1<熱可塑性樹脂組成物用マスターバッチペレットA>
85wt%の低密度ポリエチレン樹脂ペレットと15wt%の製造例1の白色燃焼触媒とを二軸混練機により160℃で混練、押出後、切断をして円柱状(3mmφ×3mm)のマスターバッチペレットAを得た。
Example 1 <Masterbatch Pellets A for Thermoplastic Resin Composition>
85 wt% low density polyethylene resin pellets and 15 wt% of the white combustion catalyst of Production Example 1 were kneaded at 160 ° C. with a twin-screw kneader, extruded, cut, and cylindrical (3 mmφ × 3 mm) master batch pellet A Got.

実施例2<熱可塑性樹脂組成物用マスターバッチペレットB>
95wt%の低密度ポリエチレン樹脂ペレットと5wt%の製造例2の白色燃焼触媒とを二軸混練機により160℃で混練、押出後、切断をして円柱状(3mmφ×3mm)のマスターバッチペレットBを得た。
Example 2 <Masterbatch Pellet B for Thermoplastic Resin Composition>
95 wt% low-density polyethylene resin pellets and 5 wt% of the white combustion catalyst of Production Example 2 are kneaded at 160 ° C. with a twin-screw kneader, extruded, cut, and cylindrical (3 mmφ × 3 mm) master batch pellet B Got.

実施例3<熱可塑性樹脂組成物用マスターバッチペレットC>
50wt%の低密度ポリエチレン樹脂ペレットと50wt%の製造例3の白色燃焼触媒とを二軸混練機により160℃で混練、押出後、切断をして円柱状(3mmφ×3mm)のマスターバッチペレットCを得た。
Example 3 <Masterbatch Pellet C for Thermoplastic Resin Composition>
A 50 wt% low density polyethylene resin pellet and 50 wt% of the white combustion catalyst of Production Example 3 were kneaded at 160 ° C. with a twin-screw kneader, extruded, cut, and cylindrical (3 mmφ × 3 mm) master batch pellet C Got.

比較例1<熱可塑性樹脂組成物用マスターバッチペレットD>
85wt%の低密度ポリエチレン樹脂ペレットと15wt%の製造例4の白色燃焼触媒とを二軸混練機により160℃で混練、押出後、切断をして円柱状(3mmφ×3mm)のマスターバッチペレットDを得た。
Comparative Example 1 <Master Batch Pellet D for Thermoplastic Resin Composition>
85 wt% low-density polyethylene resin pellets and 15 wt% of the white combustion catalyst of Production Example 4 are kneaded at 160 ° C. with a twin-screw kneader, extruded, cut, and cylindrical (3 mmφ × 3 mm) master batch pellet D Got.

<熱可塑性樹脂組成物の燃焼特性評価>
実施例4
99.5wt%の低密度ポリエチレンペレットと0.5wt%の製造例1の白色燃焼触媒とを180℃にて加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物1)を調製した。上記フィルムの色調は無色透明であった(Pd含有量:2ppm)。
<Combustion characteristics evaluation of thermoplastic resin composition>
Example 4
99.5 wt% of low density polyethylene pellets and 0.5 wt% of the white combustion catalyst of Production Example 1 were heat-kneaded at 180 ° C., and a film (thermoplastic resin composition 1) having a thickness of 50 μm was formed by inflation extrusion molding. Prepared. The color tone of the film was colorless and transparent (Pd content: 2 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの生成量は、それぞれ86.2%、4.5%および0.7%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in the above <Evaluation of combustion characteristics of thermoplastic resin composition>. As a result, the production amounts of carbon dioxide, carbon monoxide and benzene were 86.2% and 4.5 respectively. % And 0.7% (polyethylene carbon conversion ratio).

実施例5
99.0wt%の低密度ポリエチレンペレットと1.0wt%の製造例2の白色燃焼触媒とを180℃にて加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物2)を調製した。上記フィルムの色調は無色透明であった(Pd含有量:8ppm)。
Example 5
99.0 wt% of low density polyethylene pellets and 1.0 wt% of the white combustion catalyst of Production Example 2 were heat-kneaded at 180 ° C., and a film (thermoplastic resin composition 2) having a thickness of 50 μm was formed by inflation extrusion molding. Prepared. The color tone of the film was colorless and transparent (Pd content: 8 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの生成量は、それぞれ93.4%、1.5%および0.05%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in <Evaluation of combustion characteristics of thermoplastic resin composition>. As a result, the production amounts of carbon dioxide, carbon monoxide and benzene were 93.4% and 1.5%, respectively. % And 0.05% (polyethylene carbon conversion ratio).

実施例6
99.0wt%の低密度ポリエチレンペレットと1.0wt%の製造例3の白色燃焼触媒とを180℃にて加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物3)を調製した。上記フィルムの色調は無色透明であった(Pd含有量:0.5ppm)。
Example 6
99.0 wt% of low density polyethylene pellets and 1.0 wt% of the white combustion catalyst of Production Example 3 were kneaded at 180 ° C., and a film (thermoplastic resin composition 3) having a thickness of 50 μm was formed by an inflation extrusion molding method. Prepared. The color tone of the film was colorless and transparent (Pd content: 0.5 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの生成量は、それぞれ80.2%、5.1%および0.9%(ポリエチレン炭素換算比率)であり、少量のPd担持量でも完全燃焼を促進する効果が確認された。   Using this film, the combustion gas was measured in the above <Evaluation of Combustion Characteristics of Thermoplastic Resin Composition>. The production amounts of carbon dioxide, carbon monoxide and benzene were 80.2% and 5.1, respectively. % And 0.9% (polyethylene carbon conversion ratio), and the effect of promoting complete combustion was confirmed even with a small amount of Pd supported.

実施例7
96.7wt%の低密度ポリエチレン樹脂ペレットと3.3wt%の実施例1のマスターバッチペレットAを、リボンブレンダーにて180℃で加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物4)を調製した。上記フィルムの色調は無色透明であった(白色燃焼触媒含有量0.50wt%、Pd含有量:2ppm)。
Example 7
96.7 wt% of low density polyethylene resin pellets and 3.3 wt% of master batch pellet A of Example 1 were heat-kneaded at 180 ° C. in a ribbon blender, and a film (thermoplastic resin having a thickness of 50 μm was obtained by an inflation extrusion molding method. Composition 4) was prepared. The color tone of the film was colorless and transparent (white combustion catalyst content: 0.50 wt%, Pd content: 2 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの平均生成量は、それぞれ89.2%、4.3%および0.6%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in the above <Evaluation of Combustion Characteristics of Thermoplastic Resin Composition>. The average production amounts of carbon dioxide, carbon monoxide and benzene were 89.2% and 4. They were 3% and 0.6% (polyethylene carbon conversion ratio).

実施例8
80.0wt%の低密度ポリエチレン樹脂ペレットと20wt%の実施例2のマスターバッチペレットBとを、リボンブレンダーにて180℃で加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物5)を調製した。上記フィルムの色調は無色透明であった(白色燃焼触媒含有量1.0wt%、Pd含有量:8ppm)。
Example 8
80.0 wt% of low density polyethylene resin pellets and 20 wt% of master batch pellets B of Example 2 were heat-kneaded at 180 ° C. in a ribbon blender, and a film (thermoplastic resin composition) having a thickness of 50 μm was obtained by inflation extrusion molding. Article 5) was prepared. The color tone of the film was colorless and transparent (white combustion catalyst content: 1.0 wt%, Pd content: 8 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの平均生成量は、それぞれ96.0%、1.4%および0.05%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in the above <Evaluation of Combustion Characteristics of Thermoplastic Resin Composition>. The average production amounts of carbon dioxide, carbon monoxide and benzene were 96.0% and 1. They were 4% and 0.05% (polyethylene carbon conversion ratio).

実施例9
98.0wt%の低密度ポリエチレンペレットと2.0wt%の実施例3のマスターバッチペレットCとを180℃にて加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物6)を調製した。上記フィルムの色調は無色透明であった(白色燃焼触媒含有量1.0wt%、Pd含有量:0.5ppm)。
Example 9
98.0 wt% of low density polyethylene pellets and 2.0 wt% of master batch pellet C of Example 3 were heated and kneaded at 180 ° C., and a film having a thickness of 50 μm (thermoplastic resin composition 6) by an inflation extrusion molding method. Was prepared. The color tone of the film was colorless and transparent (white combustion catalyst content: 1.0 wt%, Pd content: 0.5 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの平均生成量は、それぞれ79.0%、4.9%および0.8%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in the above <Evaluation of Combustion Characteristics of Thermoplastic Resin Composition>. The average production amounts of carbon dioxide, carbon monoxide and benzene were 79.0% and 4. They were 9% and 0.8% (polyethylene carbon conversion ratio).

比較例2
99.5wt%の低密度ポリエチレンペレットと製造例4の0.5wt%の白色燃焼触媒を180℃にて加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物7)を調製した。上記フィルムの色調は無色透明であった(Pd含有量:2ppm)。
Comparative Example 2
99.5 wt% of low density polyethylene pellets and 0.5 wt% of the white combustion catalyst of Production Example 4 were kneaded at 180 ° C., and a 50 μm thick film (thermoplastic resin composition 7) was prepared by inflation extrusion molding. did. The color tone of the film was colorless and transparent (Pd content: 2 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの生成量は、それぞれ78.4%、5.2%および1.0%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in the above <Evaluation of Combustion Characteristics of Thermoplastic Resin Composition>. The production amounts of carbon dioxide, carbon monoxide and benzene were 78.4% and 5.2, respectively. % And 1.0% (polyethylene carbon conversion ratio).

比較例3
低密度ポリエチレンペレット単体を180℃にて加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物8)を調製した。上記フィルムの色調は無色透明であった。
Comparative Example 3
A single low-density polyethylene pellet was heat-kneaded at 180 ° C., and a film (thermoplastic resin composition 8) having a thickness of 50 μm was prepared by an inflation extrusion molding method. The color tone of the film was colorless and transparent.

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの生成量は、それぞれ72.9%、7.8%および1.7%(ポリエチレン炭素換算比率)であった。   Using this film, combustion gas measurement was performed in the above <Evaluation of combustion characteristics of thermoplastic resin composition>. As a result, the production amounts of carbon dioxide, carbon monoxide and benzene were 72.9% and 7.8, respectively. % And 1.7% (polyethylene carbon conversion ratio).

比較例4
96.7wt%の低密度ポリエチレン樹脂ペレットと比較例1の3.3wt%のマスターバッチペレットDを、リボンブレンダーにて180℃で加熱混練し、インフレーション押出成形法で厚み50μmのフィルム(熱可塑性樹脂組成物9)を調製した。上記フィルムの色調は無色透明であった(白色燃焼触媒含有量0.50wt%、Pd含有量:2ppm)。
Comparative Example 4
96.7 wt% low density polyethylene resin pellets and 3.3 wt% masterbatch pellet D of Comparative Example 1 were heat-kneaded at 180 ° C in a ribbon blender, and a film (thermoplastic resin having a thickness of 50 µm was obtained by inflation extrusion molding. Composition 9) was prepared. The color tone of the film was colorless and transparent (white combustion catalyst content: 0.50 wt%, Pd content: 2 ppm).

本フィルムを用いて、前記<熱可塑性樹脂組成物の燃焼特性評価>にて燃焼ガス測定を行ったところ、二酸化炭素、一酸化炭素およびベンゼンの平均生成量は、それぞれ80.6%、5.1%および0.9%(ポリエチレン炭素換算比率)であった。   Using this film, the combustion gas was measured in the above <Evaluation of combustion characteristics of thermoplastic resin composition>. The average production amounts of carbon dioxide, carbon monoxide and benzene were 80.6% and 5. 1% and 0.9% (polyethylene carbon conversion ratio).

<熱可塑性樹脂組成物によるダイオキシン低減試験評価>
実施例10
実施例4の熱可塑性樹脂組成物1を用いて、前記<熱可塑性樹脂組成物によるダイオキシン低減試験評価>にてダイオキシン測定を行った結果、ダイオシキシン生成量は70pg−TEQ/g試料であった。
<Evaluation of dioxin reduction test by thermoplastic resin composition>
Example 10
Using the thermoplastic resin composition 1 of Example 4, the dioxin measurement was carried out in the above <Dioxin reduction test evaluation with thermoplastic resin composition>, and as a result, the amount of diosixin produced was 70 pg-TEQ / g sample.

実施例11
実施例7の熱可塑性樹脂組成物4を用いて、前記<熱可塑性樹脂組成物によるダイオキシン低減試験評価>にてダイオキシン測定を行った結果、ダイオシキシン生成量は60pg−TEQ/g試料であった。
Example 11
Using the thermoplastic resin composition 4 of Example 7, dioxin measurement was performed in the above <Dioxin reduction test evaluation using thermoplastic resin composition>. As a result, the amount of diosixin produced was 60 pg-TEQ / g sample.

比較例5
比較例2の熱可塑性樹脂組成物7を用いて、前記<熱可塑性樹脂組成物によるダイオキシン低減試験評価>にてダイオキシン測定を行った結果、ダイオシキシン生成量は250pg−TEQ/g試料であった。
Comparative Example 5
Using the thermoplastic resin composition 7 of Comparative Example 2, dioxin measurement was performed in the above <Dioxin reduction test evaluation using thermoplastic resin composition>. As a result, the amount of diosixin produced was 250 pg-TEQ / g sample.

比較例6
比較例3の熱可塑性樹脂組成物8を用いて、前記<熱可塑性樹脂組成物によるダイオキシン低減試験評価>にてダイオキシン測定を行った結果、ダイオシキシン生成量は700pg−TEQ/g試料であった。
Comparative Example 6
Using the thermoplastic resin composition 8 of Comparative Example 3, dioxin measurement was performed in the above <Dioxin reduction test evaluation using thermoplastic resin composition>. As a result, the amount of diosixin produced was 700 pg-TEQ / g sample.

比較例7
比較例4の熱可塑性樹脂組成物9を用いて、前記<熱可塑性樹脂組成物によるダイオキシン低減試験評価>にてダイオキシン測定を行った結果、ダイオシキシン生成量は230pg−TEQ/g試料であった。
Comparative Example 7
Using the thermoplastic resin composition 9 of Comparative Example 4, dioxin measurement was performed in the above <Dioxin reduction test evaluation using thermoplastic resin composition>. As a result, the amount of diosixin produced was 230 pg-TEQ / g sample.

本発明に係る熱可塑性樹脂組成物用マスターバッチペレットは、該マスターバッチペレットを用いて作製した熱可塑性樹脂組成物中に白色燃焼触媒を容易に均一に分散させることができるので、熱可塑性樹脂組成物用マスターバッチペレットとして好適である。   The master batch pellet for the thermoplastic resin composition according to the present invention can easily and uniformly disperse the white combustion catalyst in the thermoplastic resin composition produced using the master batch pellet. Suitable as a master batch pellet for goods.

本発明に係る熱可塑性樹脂組成物は、強度や安全性等の本質的特性を有していることはもちろん、使用後の焼却時に完全燃焼を促進して有害な有機化合物の発生を抑制でき、且つ、透明性が高く所望の色調に容易に着色することができるので、野菜や肉等の食料品、衣料品の包装用途等の幅広い用途に好適である。
The thermoplastic resin composition according to the present invention not only has essential properties such as strength and safety, but can promote the complete combustion during incineration after use and suppress the generation of harmful organic compounds, And since it is highly transparent and can be easily colored to a desired color tone, it is suitable for a wide range of uses such as foods such as vegetables and meat, and packaging for clothing.

Claims (6)

熱可塑性樹脂中に白色燃焼触媒を配合した熱可塑性樹脂組成物用マスターバッチペレットであって、前記白色燃焼触媒は平均粒子径が0.1〜1.0μmの酸化アルミニウム、酸化ケイ素、炭酸カルシウム又は酸化チタンの中から選ばれる1種以上の無機担体粒子の表面に、平均粒子径10nm以下の金属Pdコロイド粒子を0.001〜0.10wt%担持させた白色燃焼触媒であり、該白色燃焼触媒を熱可塑性樹脂に2.0〜60wt%配合したことを特徴とする熱可塑性樹脂組成物用マスターバッチペレット。 A masterbatch pellet for a thermoplastic resin composition in which a white combustion catalyst is blended in a thermoplastic resin, wherein the white combustion catalyst has an average particle diameter of 0.1 to 1.0 μm of aluminum oxide, silicon oxide, calcium carbonate, or A white combustion catalyst in which 0.001 to 0.10 wt% of metal Pd colloidal particles having an average particle diameter of 10 nm or less is supported on the surface of one or more inorganic carrier particles selected from titanium oxide, A masterbatch pellet for a thermoplastic resin composition, wherein 2.0 to 60 wt% is blended in a thermoplastic resin. 無機担体粒子が酸化アルミニウムである請求項1記載の熱可塑性樹脂組成物用マスターバッチペレット。 The masterbatch pellet for a thermoplastic resin composition according to claim 1, wherein the inorganic carrier particles are aluminum oxide. 白色燃焼触媒が、陽イオン性、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子から選ばれる1種以上を含む金属Pdヒドロゾルと無機担体粒子粉末を含む水懸濁液とを接触混合させ、無機担体粒子表面に金属Pdコロイド粒子を電気的に担持させた白色燃焼触媒であることを特徴とする請求項1又は2記載の熱可塑性樹脂組成物用マスターバッチペレット。 A white combustion catalyst contacts a metal Pd hydrosol containing at least one selected from a cationic, anionic or nonionic surfactant or a water-soluble polymer and an aqueous suspension containing inorganic carrier particles. The masterbatch pellet for a thermoplastic resin composition according to claim 1 or 2, wherein the masterbatch pellet is a white combustion catalyst that is mixed and electrically supported with metal Pd colloidal particles on the surface of the inorganic carrier particles. 熱可塑性樹脂中に白色燃焼触媒を配合した熱可塑性樹脂組成物であって、前記白色燃焼触媒は平均粒子径が0.1〜1.0μmの酸化アルミニウム、酸化ケイ素、炭酸カルシウム又は酸化チタンの中から選ばれる1種以上の無機担体粒子の表面に、平均粒子径10nm以下の金属Pdコロイド粒子を0.001〜0.10wt%担持させた白色燃焼触媒であり、該白色燃焼触媒を熱可塑性樹脂に0.1〜2.0wt%配合したことを特徴とする熱可塑性樹脂組成物。 A thermoplastic resin composition in which a white combustion catalyst is blended in a thermoplastic resin, wherein the white combustion catalyst is an aluminum oxide, silicon oxide, calcium carbonate or titanium oxide having an average particle size of 0.1 to 1.0 μm. A white combustion catalyst in which 0.001 to 0.10 wt% of metal Pd colloidal particles having an average particle diameter of 10 nm or less is supported on the surface of one or more inorganic carrier particles selected from the above, the white combustion catalyst being a thermoplastic resin A thermoplastic resin composition characterized by containing 0.1 to 2.0 wt% in the composition. 無機担体粒子が酸化アルミニウムである請求項4の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 4, wherein the inorganic carrier particles are aluminum oxide. 白色燃焼触媒が、陽イオン性、陰イオン性若しくは非イオン性の界面活性剤又は水溶性高分子から選ばれる1種以上を含む金属Pdヒドロゾルと無機担体粒子粉末を含む水懸濁液とを接触混合させ、無機担体粒子表面に金属Pdコロイド粒子を電気的に担持させた白色燃焼触媒であることを特徴とする請求項4又は5記載の熱可塑性樹脂組成物。

A white combustion catalyst contacts a metal Pd hydrosol containing at least one selected from a cationic, anionic or nonionic surfactant or a water-soluble polymer and an aqueous suspension containing inorganic carrier particles. 6. The thermoplastic resin composition according to claim 4, wherein the thermoplastic resin composition is a white combustion catalyst which is mixed and electrically supported with metal Pd colloidal particles on the surface of the inorganic carrier particles.

JP2005082050A 2004-03-23 2005-03-22 Masterbatch pellet for thermoplastic resin composition and thermoplastic resin composition Active JP4671025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082050A JP4671025B2 (en) 2004-03-23 2005-03-22 Masterbatch pellet for thermoplastic resin composition and thermoplastic resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004085367 2004-03-23
JP2004169910 2004-06-08
JP2005082050A JP4671025B2 (en) 2004-03-23 2005-03-22 Masterbatch pellet for thermoplastic resin composition and thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2006022307A true JP2006022307A (en) 2006-01-26
JP4671025B2 JP4671025B2 (en) 2011-04-13

Family

ID=35795811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082050A Active JP4671025B2 (en) 2004-03-23 2005-03-22 Masterbatch pellet for thermoplastic resin composition and thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4671025B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160536A (en) * 1983-03-04 1984-09-11 Hitachi Ltd Combustion-catalyst and its manufacture
JPH03202153A (en) * 1989-12-28 1991-09-03 Mitsubishi Heavy Ind Ltd Preparation of catalyst
JPH04313340A (en) * 1991-04-12 1992-11-05 Toda Kogyo Corp Noble metal hydrosol and its production
JPH05293383A (en) * 1990-09-11 1993-11-09 Daiso Co Ltd Composite material with deposition of metal particle and/ or metal compound particle, and its production
US6197720B1 (en) * 1997-12-02 2001-03-06 Basf Aktiengesellschaft Palladium clusters and their use as catalysts
JP2002167516A (en) * 2000-09-20 2002-06-11 Okura Ind Co Ltd Thermoplastic resin composition and molding thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160536A (en) * 1983-03-04 1984-09-11 Hitachi Ltd Combustion-catalyst and its manufacture
JPH03202153A (en) * 1989-12-28 1991-09-03 Mitsubishi Heavy Ind Ltd Preparation of catalyst
JPH05293383A (en) * 1990-09-11 1993-11-09 Daiso Co Ltd Composite material with deposition of metal particle and/ or metal compound particle, and its production
JPH04313340A (en) * 1991-04-12 1992-11-05 Toda Kogyo Corp Noble metal hydrosol and its production
US6197720B1 (en) * 1997-12-02 2001-03-06 Basf Aktiengesellschaft Palladium clusters and their use as catalysts
JP2002167516A (en) * 2000-09-20 2002-06-11 Okura Ind Co Ltd Thermoplastic resin composition and molding thereof

Also Published As

Publication number Publication date
JP4671025B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
Wang et al. Mesoporous Carbon Nitride Supported Pd and Pd‐Ni Nanoparticles as Highly Efficient Catalyst for Catalytic Hydrolysis of NH3BH3
Kou et al. Beet juice‐induced green fabrication of plasmonic AgCl/Ag nanoparticles
CN105148964B (en) A kind of three-dimensional redox graphene Mn3O4/MnCO3Nano composite material and preparation method thereof
Jin et al. Smart paper transformer: new insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts
Zhang et al. Co3O4/C-PC composite derived from pomelo peel-loaded ZIF-67 for activating peroxymonosulfate (PMS) to degrade ciprofloxacin
Khan et al. Agar and egg shell derived calcium carbonate and calcium hydroxide nanoparticles: Synthesis, characterization and applications
CN111961290B (en) Low-zinc tire inner liner rubber and preparation method thereof
Trivedi et al. Selection of cobaltite and effect of preparation method of NiCo 2 O 4 for catalytic oxidation of CO–CH 4 mixture
Chen et al. A novel CeO2/MIL101 (Fe) heterojunction for enhanced photocatalytic degradation of tetracycline under visible‐light irradiation
CN110396348A (en) A kind of road coating and preparation method purifying vehicle exhaust
CN109046330A (en) A kind of platinum nanocomposite and its preparation method and application of carbon nanotube loaded nitrogen-doped graphene cladding
CN106582719A (en) Preparation method for CdS/MIL-53 (Fe) visible light catalyst
Dos Santos et al. Investigation of the photocatalytic and optical properties of the SrMoO4/g-C3N4 heterostructure obtained via sonochemical synthesis with temperature control
Zhang et al. Improved Photoactivities of Large‐surface‐area g‐C3N4 for CO2 Conversion by Controllably Introducing Co‐and Ni‐Species to Effectively Modulate Photogenerated Charges
Gou et al. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation
Vishnu et al. Combustion-assisted green-synthesized magnesium-doped cadmium ferrite nanoparticles for multifunctional applications
Tang et al. rGO/g-C3N4 photocatalyst with an enhanced catalytic activity for NO removal
Wang et al. Boosting the visible-light activity of ZrO 2/gC 3 N 4 by controlling the crystal structure of ZrO 2
Chai et al. Simple preparation of ZnO superstructures self-assembled by hexagonal prisms and their superb catalytic activity in the pyrolysis of ammonium perchlorate
Cheng et al. Recyclable Ag/halloysite nanotubes/polyvinyl alcohol sponges for enhanced reduction of 4-nitrophenol
JP4671025B2 (en) Masterbatch pellet for thermoplastic resin composition and thermoplastic resin composition
KR20060044466A (en) Master batch pellet for production of thermoplastic resin composition, and thermoplastic resin composition using the same
CN115443315A (en) Carbon black and process for producing carbon black
WO2010031247A1 (en) Iron-based ammonia synthesis catalyst and method for preparing the same
Mukhair et al. In-depth investigation on the photostability and charge separation mechanism of Ag3PO4/g-C3N4 photocatalyst towards very low visible light intensity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

R150 Certificate of patent or registration of utility model

Ref document number: 4671025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350