JP2006019558A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2006019558A
JP2006019558A JP2004196638A JP2004196638A JP2006019558A JP 2006019558 A JP2006019558 A JP 2006019558A JP 2004196638 A JP2004196638 A JP 2004196638A JP 2004196638 A JP2004196638 A JP 2004196638A JP 2006019558 A JP2006019558 A JP 2006019558A
Authority
JP
Japan
Prior art keywords
substrate
plasma
plasma processing
endless annular
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004196638A
Other languages
Japanese (ja)
Inventor
Shinzo Uchiyama
信三 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004196638A priority Critical patent/JP2006019558A/en
Publication of JP2006019558A publication Critical patent/JP2006019558A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing apparatus for easily unifying a plasma density distribution near a substrate under plasma processing conditions, such as a wide range of gas species and pressure. <P>SOLUTION: The microwave plasma processing apparatus, having a vessel capable of reducing pressure, a means for supplying gas to the vessel, a means for supplying microwaves to the vessel, and a means for retaining a substrate, easily changes a plasma density distribution on an entire surface near the substrate since the microwave supply means are a plurality of non-termination annular waveguides having different diameters that have a plurality of slots on a surface nearly orthogonally crossing a surface to be processed in the substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板、液晶基板等の半導体製造プロセスに用いるエッチング装置、アッシング装置、CVD装置、窒化装置、酸化装置等のプラズマ処理装置に関するものである。特に、基板近傍のプラズマ分布を所望の密度分布に調整する機構を有するプラズマ処理装置に関するものである。   The present invention relates to a plasma processing apparatus such as an etching apparatus, an ashing apparatus, a CVD apparatus, a nitriding apparatus, and an oxidizing apparatus used in a semiconductor manufacturing process such as a semiconductor substrate and a liquid crystal substrate. In particular, the present invention relates to a plasma processing apparatus having a mechanism for adjusting the plasma distribution near the substrate to a desired density distribution.

半導体基板をプラズマ処理装置により高品質に処理するには、半導体基板近傍のプラズマ密度分布を均一にすることが重要である。例えばエッチング処理装置においてプラズマ密度分布が不均一であると、エッチング形状が不均一になる等の不都合が生じる。また、窒化処理装置においては、部分的に窒化濃度が異なりチップ性能のバラツキ原因となる。また、CVD処理装置においては、部分的に堆積する膜厚が不均一となり生産歩留まり低下原因になることもある等々、半導体装置の性能劣化、品質低下に結びつく。   In order to process a semiconductor substrate with high quality using a plasma processing apparatus, it is important to make the plasma density distribution near the semiconductor substrate uniform. For example, if the plasma density distribution is non-uniform in the etching processing apparatus, problems such as non-uniform etching shape occur. Further, in the nitriding apparatus, the nitriding concentration is partially different, which causes variations in chip performance. Further, in the CVD processing apparatus, the partially deposited film thickness may be non-uniform, which may cause a reduction in production yield. This leads to deterioration in performance and quality of the semiconductor device.

特開平10−233295、特開平5−345982にある従来技術のプラズマ処理装置においては、スロット付き環状導波管に設けたスロットの配置と半導体基板とプラズマ発生部との位置関係を最適化することにより、半導体基板面内プラズマ処理均一性を得ていた。図2に従来技術プラズマ処理装置例を詳述する。21はプラズマ処理室、22は基板、23は基板2を保持する基板載置台、25は処理用ガス導入手段、26は排気口、28はマイクロ波をプラズマ処理室21に導入するためのスロット付無終端環状導波管、31は無終端環状導波管28にマイクロ波管内波長の1/2又は1/4毎に設けられたスロット、27はプラズマ処理室1内にマイクロ波を導入する誘電体窓、30は無終端環状導波管28に内蔵された冷却水路である。   In the conventional plasma processing apparatus disclosed in Japanese Patent Laid-Open Nos. 10-233295 and 5-345882, the slot arrangement provided in the slotted annular waveguide and the positional relationship between the semiconductor substrate and the plasma generation unit are optimized. Thus, the plasma processing uniformity within the semiconductor substrate surface was obtained. FIG. 2 details an example of a prior art plasma processing apparatus. 21 is a plasma processing chamber, 22 is a substrate, 23 is a substrate mounting table for holding the substrate 2, 25 is a processing gas introduction means, 26 is an exhaust port, and 28 is provided with a slot for introducing microwaves into the plasma processing chamber 21. An endless annular waveguide 31 is a slot provided in the endless annular waveguide 28 every 1/2 or 1/4 of the wavelength in the microwave tube, and 27 is a dielectric for introducing microwaves into the plasma processing chamber 1. A body window 30 is a cooling water channel built in the endless annular waveguide 28.

マイクロ波は環状導波管28を介し放射状に配置してあるスロット31からプラズマ処理室21ヘ導入される。マイクロ波は処理用ガスを励起し誘電体窓27近傍にプラズマを発生させる。また、誘電体窓27近傍に発生したプラズマが一定の密度を超えると、マイクロ波は、プラズマ処理室21内に侵入できず、誘電体窓27近傍に閉じ込められ、また、スロット31間で干渉する。放射状に配置してあるスロット31間で干渉するマイクロ波により、プラズマ発生部密度分布は輪帯状となる。誘電体窓27近傍で発生したプラズマは、拡散により基板22に到達する。   Microwaves are introduced into the plasma processing chamber 21 from the slots 31 arranged radially through the annular waveguide 28. The microwave excites the processing gas and generates plasma in the vicinity of the dielectric window 27. If the plasma generated in the vicinity of the dielectric window 27 exceeds a certain density, the microwave cannot enter the plasma processing chamber 21, is confined in the vicinity of the dielectric window 27, and interferes between the slots 31. . Due to the microwaves interfering between the radially arranged slots 31, the plasma generation portion density distribution becomes an annular shape. Plasma generated in the vicinity of the dielectric window 27 reaches the substrate 22 by diffusion.

基板22近傍のプラズマ密度分布を均一にするために、このスロット31の配置や、基板22と誘電体窓27つまりプラズマ発生部との距離や、プラズマ処理室21の内径等を調節していた。   In order to make the plasma density distribution in the vicinity of the substrate 22 uniform, the arrangement of the slots 31, the distance between the substrate 22 and the dielectric window 27, that is, the plasma generation unit, the inner diameter of the plasma processing chamber 21, and the like are adjusted.

しかしながら、その条件が大きく変化し、基板近傍のプラズマ密度が不均一になった場合に、調節が不便であるという課題があった。   However, there is a problem that adjustment is inconvenient when the conditions change greatly and the plasma density in the vicinity of the substrate becomes non-uniform.

一方、図3に示す特開平11−40397にある公知例は、基板に対向する二重の無終端環状導波管を備えている。また、図4に示す特開平10−233295にある公知例は、基板に対向する面にスロットを有する環状導波管と基板に直交する面にスロットを有する環状導波管を備えている。これら公知例は、プラズマ処理条件が大きく変化しても、各々の無終端環状導波管に導入するマイクロ波電力を変更して、基板近傍のプラズマ密度分布を均一にしている。   On the other hand, the known example disclosed in JP-A-11-40397 shown in FIG. 3 includes a double endless annular waveguide facing the substrate. In addition, the known example disclosed in Japanese Patent Laid-Open No. 10-233295 shown in FIG. 4 includes an annular waveguide having a slot on a surface facing the substrate and an annular waveguide having a slot on a surface orthogonal to the substrate. In these known examples, even if the plasma processing conditions change greatly, the microwave power introduced into each endless annular waveguide is changed to make the plasma density distribution near the substrate uniform.

しかしながら、これら公知例では、複数の無終端環状導波管のスロットから放出されたマイクロ波同士が干渉しやすいので、条件が大きく変化した場合に基板近傍プラズマ密度分布を調整しにくいという課題があった。
特開平10−233295号公報 特開平5−345982号公報 特開平11−40397号公報 特開平10−233295号公報
However, in these known examples, microwaves emitted from the slots of a plurality of endless annular waveguides easily interfere with each other, so that it is difficult to adjust the plasma density distribution in the vicinity of the substrate when the conditions change greatly. It was.
JP-A-10-233295 JP-A-5-345882 JP-A-11-40397 JP-A-10-233295

本発明は、従来技術の課題を解決するためになされたもので、広範囲なガス種や圧力等のプラズマ処理条件において基板近傍プラズマ密度分布を均一にするプラズマ処理装置を提供することを目的とする。   The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a plasma processing apparatus that makes the plasma density distribution in the vicinity of the substrate uniform under a wide range of plasma processing conditions such as gas types and pressures. .

本発明は、減圧可能な容器と該容器へガスを供給する手段と該容器にマイクロ波を供給する手段と基体を保持する手段とを備えたマイクロ波プラズマ処理装置であって、該マイクロ波供給手段が、基体被処理面と略直交する面に複数スロットを備えた互いに異径の複数の無終端環状導波管であることにより、基体近傍全面のプラズマ密度分布を簡易に変更するプラズマ処理装置を提供できる。   The present invention relates to a microwave plasma processing apparatus comprising a container capable of decompression, a means for supplying gas to the container, a means for supplying microwaves to the container, and a means for holding a substrate. A plasma processing apparatus for easily changing the plasma density distribution in the entire vicinity of the substrate by means of a plurality of endless annular waveguides having a plurality of different diameters having a plurality of slots on a surface substantially orthogonal to the substrate processing surface Can provide.

図1の第一の実施例を説明する図にあるように、容器を囲むように配置された無終端環状導波管のスロットから放出されたマイクロ波は、スロット近傍に容器側面に沿って円筒状プラズマを発生する。円筒状に発生したプラズマは、拡散輸送され、基板近傍にて輪帯状の密度分布となる。略中心が互いの内側にある異径の無終端環状導波管を複数備えているので、略同心の輪帯状プラズマ密度分布が、基板近傍に、無終端環状導波管と同じ数できる。この基板近傍の輪帯状プラズマ密度分布は、スロットから放出するマイクロ波電力により、相似形のまま増減する。また、基板近傍プラズマ密度分布はこれら略同心の異径の輪帯状プラズマの重ね合せである。よって、各無終端環状導波管のスロットから放出するマイクロ波電力により、各無終端環状導波管スロット近傍に発生するプラズマ平均密度を増減することで基板近傍の各輪帯状プラズマを分布をほぼ変えずに平均密度を増減し、もって、輪帯状プラズマ密度分布の重ね合せである基板近傍プラズマ密度分布を変更できる。   As shown in the drawing for explaining the first embodiment of FIG. 1, the microwaves emitted from the slot of the endless annular waveguide arranged so as to surround the container are cylindrical in the vicinity of the slot along the side surface of the container. A plasma is generated. The plasma generated in a cylindrical shape is diffused and transported, and has a ring-shaped density distribution near the substrate. Since a plurality of endless annular waveguides having different diameters whose inner centers are inside each other are provided, approximately the same number of concentric ring-shaped plasma density distributions as the endless annular waveguides can be formed in the vicinity of the substrate. The annular plasma density distribution in the vicinity of the substrate increases or decreases with a similar shape due to the microwave power emitted from the slot. The plasma density distribution in the vicinity of the substrate is a superposition of these substantially concentric ring-shaped plasmas having different diameters. Therefore, the distribution of each annular plasma in the vicinity of the substrate is substantially distributed by increasing or decreasing the average plasma density generated in the vicinity of each endless annular waveguide slot by the microwave power emitted from each endless annular waveguide slot. The average density can be increased or decreased without change, and the plasma density distribution in the vicinity of the substrate, which is a superposition of the annular plasma density distribution, can be changed.

また、互いに異径の無終端環状導波管に備えたスロットから放出されたマイクロ波は、同一曲面に互いのスロットが無いので、干渉しくにい。また、スロット間にプラズマを局在化させやすい。よって、本発明プラズマ処理装置は、プラズマ発生部密度分布を独立に変更しやすく基板近傍プラズマ密度分布を均一にしやすいので、図3、図4に示す公知のプラズマ処理装置より、十分進歩的である。   Further, the microwaves emitted from the slots provided in the endless annular waveguides having different diameters do not interfere with each other because there are no slots on the same curved surface. Moreover, it is easy to localize plasma between slots. Therefore, the plasma processing apparatus of the present invention is sufficiently advanced than the known plasma processing apparatuses shown in FIGS. 3 and 4 because the plasma generation unit density distribution can be easily changed independently and the plasma density distribution in the vicinity of the substrate can be made uniform easily. .

前記無終端環状導波管のスロットからのマイクロ波放出量を、スロットの長さや幅等の形状により変更しても良いし、前記無終端環状導波管各々に導入するマイクロ波電力を変更しても良い。   The amount of microwave emission from the slot of the endless annular waveguide may be changed according to the shape of the slot such as length and width, or the microwave power introduced into each of the endless annular waveguide may be changed. May be.

また、少なくとも一つの前記無終端環状導波管のスロットを含む円筒面の直径が前記基体の直径より大きいことにより、基板外周近傍のプラズマ密度を高くし、基板近傍のプラズマ密度分布を均一にしやすくしても良い。   In addition, since the diameter of the cylindrical surface including the slot of the at least one endless annular waveguide is larger than the diameter of the base, the plasma density near the outer periphery of the substrate can be increased and the plasma density distribution near the substrate can be made uniform. You may do it.

基板の内側にある無終端環状導波管近傍に発生したプラズマは、基板内側近傍をピークとした輪帯状プラズマ分布となる。よって、基板の内側にある無終端環状導波管近傍に発生したプラズマをいくつか重ね合せて用いても、基板外周近傍のプラズマ密度は基板中央より低下してしまう。そこで、無終端環状導波管のスロットを備えた面を基板より外側に配置することにより、基板外周近傍のプラズマ密度を増やし、基板近傍プラズマ密度分布を均一にしやすくする。   The plasma generated in the vicinity of the endless annular waveguide on the inner side of the substrate has an annular plasma distribution having a peak in the vicinity of the inner side of the substrate. Therefore, even if several plasmas generated in the vicinity of the endless annular waveguide inside the substrate are used in a superimposed manner, the plasma density in the vicinity of the outer periphery of the substrate decreases from the center of the substrate. Therefore, the surface of the endless annular waveguide having the slot is disposed outside the substrate, thereby increasing the plasma density near the outer periphery of the substrate and making the plasma density distribution near the substrate easy to make uniform.

また、無終端環状導波管を上下に移動することで、無終端環状導波管近傍に発生したプラズマと基板の距離を移動し、ガス種や圧力など広範囲なプラズマ条件においても、基板近傍のプラズマ密度分布を均一にしやすくしても良い。   Also, by moving the endless annular waveguide up and down, the distance between the plasma generated in the vicinity of the endless annular waveguide and the substrate is moved, and even in a wide range of plasma conditions such as gas species and pressure, The plasma density distribution may be made uniform easily.

プラズマは拡散により基板に到達するので、圧力やガス種などプラズマ条件が大きく変化すると、基板近傍プラズマ密度分布が大きく変化する。このような時、無終端環状導波管を上下することで、無終端環状導波管近傍に発生したプラズマと基板の距離を変え、基板近傍の輪帯状プラズマ密度分布を所望の分布にすることで、プラズマ密度分布を得やすくすることができる。   Since the plasma reaches the substrate by diffusion, if the plasma conditions such as pressure and gas type change greatly, the plasma density distribution in the vicinity of the substrate changes greatly. In such a case, by moving the endless annular waveguide up and down, the distance between the plasma generated near the endless annular waveguide and the substrate is changed, and the annular plasma density distribution in the vicinity of the substrate is changed to a desired distribution. Thus, the plasma density distribution can be easily obtained.

また、前記複数の無終端環状導波管近傍で励起されたプラズマ平均密度が互いに略等しくなるように制御することにより、マイクロ波表面波プラズマを維持しながら基板近傍プラズマ平均密度を広範囲で増減するプラズマ処理装置を提供できる。   Further, by controlling the average plasma densities excited in the vicinity of the plurality of endless annular waveguides to be substantially equal to each other, the plasma average density in the vicinity of the substrate is increased or decreased over a wide range while maintaining the microwave surface wave plasma. A plasma processing apparatus can be provided.

マイクロ波表面波プラズマは、プラズマ発生部において略10の11乗から13乗の密度である。例えばこの範囲より低密度になるとマイクロ波表面波とならず、マイクロ波が基板に照射される場合もある。基板近傍プラズマ平均密度は、無終端環状導波管近傍のプラズマ平均密度と略同率で増減するので、基板近傍プラズマ平均密度増減範囲は、無終端環状導波管近傍プラズマ平均密度増減範囲が広い程広い。よって、マイクロ波表面波プラズマを維持しながら基板近傍プラズマ平均密度を広範囲に増減するには、無終端環状導波管近傍のプラズマ平均密度を互いに略等しいまま増減すると良い。これは、無終端環状導波管近傍で励起されたプラズマ平均密度が互いに略等しい時、基板近傍プラズマ密度分布が均一になるように無終端環状導波管の径や位置を選ぶことにより、実現できる。好適には、外径300mmの基板に対して、内径が略400mmと略250mmである二つの無終端環状導波管を基板から略80mmと略180mmの高さに配置すると良い。   The microwave surface wave plasma has a density of approximately 10 to the 13th power in the plasma generation part. For example, when the density is lower than this range, the substrate may be irradiated with the microwave instead of the microwave surface wave. Since the plasma average density in the vicinity of the substrate increases and decreases at substantially the same rate as the plasma average density in the vicinity of the endless annular waveguide, the range of increase and decrease in the plasma average density in the vicinity of the substrate increases as the range of increase and decrease in the plasma average density in the vicinity of the endless annular waveguide increases. wide. Therefore, in order to increase or decrease the plasma average density in the vicinity of the substrate over a wide range while maintaining the microwave surface wave plasma, the plasma average density in the vicinity of the endless annular waveguide may be increased or decreased while being substantially equal to each other. This is achieved by selecting the diameter and position of the endless annular waveguide so that the plasma density distribution near the substrate is uniform when the average plasma densities excited in the vicinity of the endless annular waveguide are approximately equal to each other. it can. Preferably, with respect to a substrate having an outer diameter of 300 mm, two endless annular waveguides having inner diameters of about 400 mm and about 250 mm are arranged at heights of about 80 mm and about 180 mm from the substrate.

本発明は、基体被処理面と略直交する面に複数スロットを備えた互いに異径の複数の無終端環状導波管を備え、各々の環状導波管から放出するマイクロ波電力を変更することで、広範囲なガス種や圧力等のプラズマ処理条件においても基板近傍プラズマ密度分布を均一にするプラズマ処理装置を提供できる。   The present invention includes a plurality of endless annular waveguides having a plurality of different diameters provided on a surface substantially orthogonal to a substrate surface to be processed, and changes the microwave power emitted from each annular waveguide. Thus, it is possible to provide a plasma processing apparatus that makes the plasma density distribution near the substrate uniform even under a wide range of plasma processing conditions such as gas types and pressures.

(実施例1)
本発明プラズマ処理装置の第一の実施例を図1により詳細に説明する。1はマイクロ波を実質的に透過するプラズマ処理室、2は基板、3は基板2を保持する基板戴置台、5は上下それぞれのプラズマ発生部に向けて処理用ガスを吹き付ける様にまたプラズマを含むガスが基板2に到達しやすいようにノズルを設けた処理用ガス導入手段、6は排気口、7と8はマイクロ波管内波長の1/2又は1/4毎にスロット9を設けた無終端環状導波管、10は無終端環状導波管にマイクロ波を導入する導波管、11は無終端環状導波管7と8に導入するマイクロ波を分配する分配器である。無終端環状導波管7と8は円筒状で互いに異径で略同軸に配置されており、近傍のプラズマ処理室1内径は略230mmと略380mmである。また、基板2とそれぞれ略180mmと略80mm離れている。また、基板2は直径300mmであり、無終端環状導波管8の内側にある。無終端環状導波管7と8と基板2と基板戴置台3とプラズマ処理室1は略同軸対称である。
Example 1
A first embodiment of the plasma processing apparatus of the present invention will be described in detail with reference to FIG. 1 is a plasma processing chamber that substantially transmits microwaves, 2 is a substrate, 3 is a substrate mounting table that holds the substrate 2, and 5 is a plasma for spraying a processing gas toward the upper and lower plasma generation portions. A processing gas introducing means provided with a nozzle so that the contained gas can easily reach the substrate 2, 6 is an exhaust port, 7 and 8 are non-slots 9 provided every 1/2 or 1/4 of the wavelength in the microwave tube. A terminal annular waveguide 10 is a waveguide for introducing microwaves into the endless annular waveguide, and 11 is a distributor for distributing the microwaves introduced into the endless annular waveguides 7 and 8. Endless annular waveguides 7 and 8 are cylindrical and have different diameters and are arranged coaxially. The inner diameters of plasma processing chambers 1 in the vicinity are approximately 230 mm and approximately 380 mm. Further, they are separated from the substrate 2 by about 180 mm and about 80 mm, respectively. The substrate 2 has a diameter of 300 mm and is inside the endless annular waveguide 8. The endless annular waveguides 7 and 8, the substrate 2, the substrate mounting table 3 and the plasma processing chamber 1 are substantially coaxially symmetric.

本発明プラズマ処理装置を用いて、基板2を窒化処理する。表面に2nm厚の酸化膜付きシリコン基板2を基板戴置台3に不図示手段により搬送し戴置する。次に、不図示の排気系を介してプラズマ処理室1を0.1Pa以下まで排気する。続いて、処理用ガス導入手段5から500sccmの窒素をプラズマ処理室1に導入する。次に排気系に設けられた不図示のコンダクタンスバルブを調整し、プラズマ処理室1を130Paに保持する。次いで、分配器11を無終端環状導波管7にほとんど全てのマイクロ波を送るよう傾ける。続いて、マイクロ波電源より1.5kWのマイクロ波を、スロット付無終端環状導波管7を介して、プラズマ処理室1に供給する。マイクロ波は、スロット11間に表面干渉波プラズマ12を励起する。スロット11がプラズマ処理室に沿って円筒状に配列されているので、プラズマ12も円筒状に励起される。そして、プラズマ中の窒素イオンは拡散しながら基板2近傍に到達し、基板2表面に発生したイオンシースにより加速され基板2に入射し、シリコン酸化膜を窒化する。3分経過後、マイクロ波電源を停止し、窒素ガス供給を停止し、プラズマ処理室1を0.1Pa以下まで排気した後、基板2をプラズマ処理室1外に搬送する。   The substrate 2 is nitrided using the plasma processing apparatus of the present invention. A silicon substrate 2 with an oxide film having a thickness of 2 nm is transferred to the substrate mounting table 3 by means (not shown). Next, the plasma processing chamber 1 is exhausted to 0.1 Pa or less through an exhaust system (not shown). Subsequently, 500 sccm of nitrogen is introduced into the plasma processing chamber 1 from the processing gas introduction means 5. Next, a conductance valve (not shown) provided in the exhaust system is adjusted to hold the plasma processing chamber 1 at 130 Pa. The distributor 11 is then tilted to send almost all microwaves to the endless annular waveguide 7. Subsequently, a microwave of 1.5 kW is supplied from the microwave power source to the plasma processing chamber 1 via the slotted endless annular waveguide 7. The microwave excites the surface interference wave plasma 12 between the slots 11. Since the slots 11 are arranged in a cylindrical shape along the plasma processing chamber, the plasma 12 is also excited in the cylindrical shape. Nitrogen ions in the plasma reach the vicinity of the substrate 2 while diffusing, are accelerated by an ion sheath generated on the surface of the substrate 2 and enter the substrate 2 to nitride the silicon oxide film. After 3 minutes, the microwave power supply is stopped, the supply of nitrogen gas is stopped, the plasma processing chamber 1 is evacuated to 0.1 Pa or less, and then the substrate 2 is transferred out of the plasma processing chamber 1.

窒化処理後、基板2表面シリコン酸窒化膜の酸化シリコン膜換算厚さをKLAテンコール社製エリプソメーターで測定したところ、図5(a)のように中央が厚い分布であった。これは、基板2から離れた無終端環状導波管7付近に励起された小径の円筒状プラズマが、基板近傍まで拡散する間に凸状プラズマ密度分布になったためである。   After the nitriding treatment, when the silicon oxide film equivalent thickness of the silicon oxynitride film on the surface of the substrate 2 was measured with an ellipsometer manufactured by KLA Tencor, the distribution was thick at the center as shown in FIG. This is because the small-diameter cylindrical plasma excited near the endless annular waveguide 7 away from the substrate 2 has a convex plasma density distribution while diffusing to the vicinity of the substrate.

続いて、分配器11を無終端管状導波管8にほとんど全てのマイクロ波を送るように傾け、新たに基板2を窒化処理する。窒化処理後、基板2表面シリコン酸窒化膜の酸化シリコン膜換算厚さは、図5(b)のように周辺が厚い分布であった。これは、基板2の外側近くにある無終端環状導波管8付近に励起された円筒状プラズマに近い程プラズマ密度が高くなるので、基板外周近傍が中央よりプラズマ密度の高い凹状プラズマ密度分布になったためである。   Subsequently, the distributor 11 is tilted so as to send almost all the microwaves to the endless tubular waveguide 8, and the substrate 2 is newly nitrided. After the nitriding treatment, the silicon oxide film equivalent thickness of the silicon oxynitride film on the surface of the substrate 2 was distributed thickly as shown in FIG. This is because the plasma density increases as it approaches the cylindrical plasma excited in the vicinity of the endless annular waveguide 8 near the outside of the substrate 2, so that the vicinity of the outer periphery of the substrate has a concave plasma density distribution in which the plasma density is higher than the center. It is because it became.

続いて、分配器11により無終端環状導波管7と8に分配するマイクロ波を変えながら、いくつか基板2を窒化処理する。窒化処理後の基板2表面シリコン酸窒化膜の酸化シリコン膜換算厚さは、図5(c)のように無終端環状導波管7と8に分配するマイクロ波の分配比により異なる分布となった。マイクロ波の分配比を略1:1にするとほぼ均一な膜厚となり、無終端環状導波管7へのマイクロ波分配比を増やすと基板2中央の膜厚が厚い凸分布となり、無終端環状導波管8へのマイクロ波分配比を増やすと基板2外周の膜厚が厚い凹分布となる。   Subsequently, several substrates 2 are nitrided while changing the microwaves distributed to the endless annular waveguides 7 and 8 by the distributor 11. The silicon oxide equivalent thickness of the silicon oxynitride film on the surface of the substrate 2 after the nitriding treatment has different distributions depending on the distribution ratio of the microwaves distributed to the endless annular waveguides 7 and 8 as shown in FIG. It was. When the microwave distribution ratio is approximately 1: 1, the film thickness is substantially uniform. When the microwave distribution ratio to the endless annular waveguide 7 is increased, the film thickness at the center of the substrate 2 is thick and the convex distribution is obtained. When the microwave distribution ratio to the waveguide 8 is increased, a concave distribution with a thick film on the outer periphery of the substrate 2 is obtained.

以上説明したように、本発明は、基体と略直交する面に複数スロットを備えた二つの異径の無終端環状導波管を同軸対称に配置し、各々から放出するマイクロ波電力を変更することで、基板近傍で二つの同心輪帯状プラズマ密度分布を各々変更し、これら同心輪帯状プラズマ密度分布の重ね合せである基板近傍全面のプラズマ密度分布を簡易に均一にするプラズマ処理装置を提供できる。   As described above, according to the present invention, two endless annular waveguides having different diameters provided with a plurality of slots on a surface substantially orthogonal to the base are arranged coaxially symmetrically to change the microwave power emitted from each. Thus, it is possible to provide a plasma processing apparatus in which two concentric ring-shaped plasma density distributions are respectively changed in the vicinity of the substrate, and the plasma density distribution on the entire surface in the vicinity of the substrate, which is a superposition of these concentric ring-shaped plasma density distributions, can be easily made uniform. .

また、互いに異径の無終端環状導波管に備えたスロットから放出されたマイクロ波は、同一曲面にスロットが無いので、干渉しくにい。また、スロット間にプラズマを局在化させやすい。よって、本発明プラズマ処理装置は、プラズマ発生部密度分布を独立に変更しやすく基板近傍プラズマ密度分布を均一にしやすいので、図3、図4に示す公知のプラズマ処理装置より、十分進歩的である。   Further, the microwaves emitted from the slots provided in the endless annular waveguides having different diameters do not interfere with each other because there are no slots on the same curved surface. Moreover, it is easy to localize plasma between slots. Therefore, the plasma processing apparatus of the present invention is sufficiently advanced than the known plasma processing apparatuses shown in FIGS. 3 and 4 because the plasma generation unit density distribution can be easily changed independently and the plasma density distribution in the vicinity of the substrate can be made uniform easily. .

(実施例2)
本発明第二の実施例を図6により詳細に説明する。13は無終端環状導波管7を上下移動する駆動手段、14は無終端環状導波管8を上下する駆動手段である。無終端環状導波管7と8それぞれに独立したマイクロ波電源を接続し、上下移動しやすくしている。図1と同じものの説明を割愛する。
(Example 2)
A second embodiment of the present invention will be described in detail with reference to FIG. Reference numeral 13 denotes driving means for moving the endless annular waveguide 7 up and down, and reference numeral 14 denotes driving means for moving the endless annular waveguide 8 up and down. An independent microwave power source is connected to each of the endless annular waveguides 7 and 8 to facilitate vertical movement. The description of the same thing as FIG. 1 is omitted.

本発明プラズマ処理装置を用いて、基板2を以下のように窒化処理する。表面に2nm厚の酸化膜付きシリコン基板2を基板戴置台3に不図示手段により搬送し戴置する。次に、不図示の排気系を介してプラズマ処理室1を0.1Pa以下まで排気する。続いて、処理用ガス導入手段5から500sccmの窒素をプラズマ処理室1に導入する。次に排気系に設けられた不図示のコンダクタンスバルブを調整し、プラズマ処理室1を400Paに保持する。駆動装置14、13により無終端環状導波管7、8を上に移動する。次いで、マイクロ波電源より1.5kWのマイクロ波をスロット付無終端環状導波管7,8を介してプラズマ処理室1に導入する。マイクロ波は、スロット11間に表面干渉波プラズマ12を励起する。3分経過後、マイクロ波電源を停止し、窒素ガス供給を停止し、プラズマ処理室1を0.1Pa以下まで排気した後、基板2をプラズマ処理室1外に搬送する。   Using the plasma processing apparatus of the present invention, the substrate 2 is nitrided as follows. A silicon substrate 2 with an oxide film having a thickness of 2 nm is transferred to the substrate mounting table 3 by means (not shown). Next, the plasma processing chamber 1 is exhausted to 0.1 Pa or less through an exhaust system (not shown). Subsequently, 500 sccm of nitrogen is introduced into the plasma processing chamber 1 from the processing gas introduction means 5. Next, a conductance valve (not shown) provided in the exhaust system is adjusted to hold the plasma processing chamber 1 at 400 Pa. The endless annular waveguides 7 and 8 are moved upward by the driving devices 14 and 13. Next, a microwave of 1.5 kW is introduced from the microwave power source into the plasma processing chamber 1 through the slotted endless annular waveguides 7 and 8. The microwave excites the surface interference wave plasma 12 between the slots 11. After 3 minutes, the microwave power supply is stopped, the supply of nitrogen gas is stopped, the plasma processing chamber 1 is evacuated to 0.1 Pa or less, and then the substrate 2 is transferred out of the plasma processing chamber 1.

400Paという高圧では、プラズマが拡散しにくく基板近傍において急峻な輪帯状プラズマ分布となりやすいので、無終端環状導波管7,8すなわちプラズマ発生部を基板から遠ざけ、基板近傍で緩慢な輪帯状プラズマ密度分布とし、基板近傍全面のプラズマ密度分布を均一にしやすくする。   At a high pressure of 400 Pa, the plasma is difficult to diffuse and a steep annular plasma distribution is likely to occur in the vicinity of the substrate. Therefore, the endless annular waveguides 7 and 8, that is, the plasma generation part is kept away from the substrate, and the annular plasma density is slow in the vicinity of the substrate. Distribution to facilitate uniform plasma density distribution over the entire surface in the vicinity of the substrate.

以上説明したように、本発明は、無終端環状導波管を移動する手段により、圧力等のプラズマ条件に応じて無終端環状導波管のスロットと基板の距離を変えることで、より広いプラズマ条件においても、基板近傍全面のプラズマ密度分布を簡易に均一にするプラズマ処理装置を提供できる。   As described above, according to the present invention, the means for moving the endless annular waveguide changes the distance between the slot of the endless annular waveguide and the substrate in accordance with the plasma conditions such as pressure. Even under the conditions, it is possible to provide a plasma processing apparatus that makes the plasma density distribution over the entire surface of the substrate easy and uniform.

(実施例3)
本発明第三の実施例を図7により詳細に説明する。本発明第三の実施例は、無終端環状導波管を3つ利用している。
Example 3
A third embodiment of the present invention will be described in detail with reference to FIG. The third embodiment of the present invention uses three endless annular waveguides.

最上段の無終端環状導波管のスロットを備えた面の内径が最も小さく基板2と最も離れているので、最上段の無終端環状導波管から放出するマイクロ波により励起されるプラズマは、基板中央近傍の密度が最も高い凸分布となる。また、中段の無終端環状導波管から放出されるマイクロ波により励起されるプラズマは、基板中間近傍の密度が最も高い輪帯状分布となる。そして、下段の無終端環状導波管から放出されるマイクロ波により励起されるプラズマは、基板外周近傍の密度が最も高い輪帯状分布となる。基板近傍プラズマ密度はこれら3つのプラズマ密度分布の重ね合せであるので、これら3つのプラズマ密度分布の密度を実施例1と同様に各無終端環状導波管に導入するマイクロ波電力を変えることにより、基板近傍プラズマ密度分布を簡易に変更できる。   Since the inner diameter of the surface provided with the slot of the uppermost endless annular waveguide is the smallest and farthest from the substrate 2, the plasma excited by the microwaves emitted from the uppermost endless annular waveguide is: The convex distribution has the highest density near the center of the substrate. Further, the plasma excited by the microwave emitted from the middle-stage endless annular waveguide has an annular distribution with the highest density near the middle of the substrate. The plasma excited by the microwave emitted from the lower endless annular waveguide has an annular distribution with the highest density in the vicinity of the outer periphery of the substrate. Since the plasma density in the vicinity of the substrate is a superposition of these three plasma density distributions, the density of these three plasma density distributions is changed by changing the microwave power introduced into each endless annular waveguide as in the first embodiment. The plasma density distribution in the vicinity of the substrate can be easily changed.

本発明は、無終端環状導波管を3つ重ねて利用することにより、大口径基板近傍全面のプラズマを均一な密度分布にすることができる。また、プラズマが拡散しにくい高圧などのプラズマ条件においても、無終端環状導波管を多数重ねて利用することにより、基板近傍全面のプラズマを均一な密度分布にすることができる。   In the present invention, the plasma over the entire surface of the large-diameter substrate can have a uniform density distribution by using three endless annular waveguides in a stacked manner. Further, even under high-pressure plasma conditions where plasma is difficult to diffuse, the plasma over the entire surface of the substrate can be made to have a uniform density distribution by using a large number of endless annular waveguides.

(実施例4)
本発明第四の実施例を図8により詳細に説明する。本発明第四の実施例は、無終端環状導波管を小さい径のものから順に下から重ねている。プラズマ処理室1より小さな無終端環状導波管8を二つ用いている。また、無終端環状導波管8に設けたスロット9は、プラズマ処理室1内にマイクロ波を放出するように、外向きに開口している。処理用ガス導入手段5は、プラズマ発生部にガスノズルを向けている。
Example 4
A fourth embodiment of the present invention will be described in detail with reference to FIG. In the fourth embodiment of the present invention, endless annular waveguides are stacked from the bottom in order from the smallest diameter. Two endless annular waveguides 8 smaller than the plasma processing chamber 1 are used. The slot 9 provided in the endless annular waveguide 8 is opened outward so as to emit microwaves into the plasma processing chamber 1. The processing gas introduction means 5 has a gas nozzle directed toward the plasma generation unit.

第四の実施例は、プラズマ処理室1の外側に無終端環状導波管8を設置することにより、プラズマ処理装置を小型にできる。   In the fourth embodiment, the plasma processing apparatus can be downsized by installing the endless annular waveguide 8 outside the plasma processing chamber 1.

(実施例5)
本発明第五の実施例を図9により詳細に説明する。本発明第五の実施例は、略同じ高さに異径の無終端環状導波管を2つ配置している。マイクロ波を容器に向けて放出するように、内側の無終端環状導波管7のスロット9は外側を向き、外側の無終端環状導波管8のスロット9は内側を向いている。また、基板2にプラズマを含むガスが流れるように、ガス導入手段15は、無終端環状導波管8のスロット9に向け、下から上にガスが流れるように、ガスノズルを設けている。また、ガス導入手段16は、無終端環状導波管7のスロット9に向けて、上から下にガスが流れるように、ガスノズルを設けている。
(Example 5)
A fifth embodiment of the present invention will be described in detail with reference to FIG. In the fifth embodiment of the present invention, two endless annular waveguides having different diameters are arranged at substantially the same height. The slot 9 of the inner endless annular waveguide 7 faces outward and the slot 9 of the outer endless annular waveguide 8 faces inner so as to emit microwaves toward the container. Further, the gas introduction means 15 is provided with a gas nozzle so that the gas flows from the bottom to the top toward the slot 9 of the endless annular waveguide 8 so that a gas containing plasma flows through the substrate 2. The gas introducing means 16 is provided with a gas nozzle so that the gas flows from the top to the bottom toward the slot 9 of the endless annular waveguide 7.

第五の実施例は、無終端環状導波管7,8を略同じ高さに設けることにより、基板2と無終端環状導波管7,8との距離すなわち無終端環状導波管近傍に励起されるプラズマ12、17との距離を略同等とすることにより、プラズマ12、17が基板近傍に拡散し形成する輪帯状プラズマ密度分布の平均密度を略同等にしやすくすることができる。プラズマ発生部平均密度を略同等のとき、基板近傍プラズマ平均密度が略同等であるので、マイクロ波表面波プラズマを維持しながら基板近傍プラズマ平均密度をより広範囲に変更することができる。   In the fifth embodiment, the endless annular waveguides 7 and 8 are provided at substantially the same height, so that the distance between the substrate 2 and the endless annular waveguides 7 and 8, that is, in the vicinity of the endless annular waveguide. By making the distances between the excited plasmas 12 and 17 substantially the same, the average density of the annular plasma density distribution formed by the diffusion of the plasmas 12 and 17 near the substrate can be made almost equal. When the plasma generation unit average density is substantially the same, the substrate vicinity plasma average density is substantially the same, so that the substrate vicinity plasma average density can be changed in a wider range while maintaining the microwave surface wave plasma.

本発明は、半導体基板の窒化に限定するものではなく、例えば、半導体基板、液晶基板等の半導体製造プロセスに用いるエッチング装置、アッシング装置、CVD装置、窒化装置、酸化装置等のプラズマ処理装置にも有効である。   The present invention is not limited to nitridation of a semiconductor substrate. For example, the present invention is also applicable to a plasma processing apparatus such as an etching apparatus, an ashing apparatus, a CVD apparatus, a nitriding apparatus, and an oxidizing apparatus used in a semiconductor manufacturing process such as a semiconductor substrate and a liquid crystal substrate. It is valid.

本発明第一の実施例を説明する図。The figure explaining the 1st Example of this invention. 従来技術の一例を説明する図。The figure explaining an example of a prior art. 従来技術の一例を説明する図。The figure explaining an example of a prior art. 従来技術の一例を説明する図。The figure explaining an example of a prior art. 本発明第一の実施例プラズマ処理装置による基板窒化処理例。Example of substrate nitriding process by plasma processing apparatus according to the first embodiment of the present invention. 本発明第二の実施例を説明する図。The figure explaining the 2nd Example of this invention. 本発明第三の実施例を説明する図。The figure explaining the 3rd Example of this invention. 本発明第四の実施例を説明する図。The figure explaining the 4th Example of this invention. 本発明第五の実施例を説明する図。The figure explaining the 5th Example of this invention.

符号の説明Explanation of symbols

1 プラズマ処理室
2 基板
3 基板戴置台
5 ガス導入手段
6 排気口
7 無終端環状導波管
8 無終端環状導波管
9 スロット
10 導波管
11 分配器
12 プラズマ発生部
13 駆動装置
14 駆動装置
15 ガス導入手段
16 ガス導入手段
17 プラズマ発生部
21 プラズマ処理室
22 基板
23 基板戴置台
25 ガス導入手段
26 排気口
27 誘電体窓
28 無終端環状導波管
30 冷却水路
31 スロット
DESCRIPTION OF SYMBOLS 1 Plasma processing chamber 2 Substrate 3 Substrate mounting table 5 Gas introduction means 6 Exhaust port 7 Endless annular waveguide 8 Endless annular waveguide 9 Slot 10 Waveguide 11 Distributor 12 Plasma generator 13 Drive device 14 Drive device DESCRIPTION OF SYMBOLS 15 Gas introduction means 16 Gas introduction means 17 Plasma generation part 21 Plasma processing chamber 22 Substrate 23 Substrate mounting base 25 Gas introduction means 26 Exhaust port 27 Dielectric window 28 Endless annular waveguide 30 Cooling channel 31 Slot

Claims (6)

減圧可能な容器と該容器へのガス供給手段とマイクロ波供給手段と基体保持手段とを備えたマイクロ波プラズマ処理装置であって、該マイクロ波供給手段が、基体被処理面と略直交する面に複数スロットを備えた互いに異径の複数の無終端環状導波管であることを特徴とするプラズマ処理装置。   A microwave plasma processing apparatus comprising a container capable of depressurization, a gas supply means to the container, a microwave supply means, and a substrate holding means, wherein the microwave supply means is a surface substantially orthogonal to the substrate surface to be processed. A plasma processing apparatus comprising a plurality of endless annular waveguides having a plurality of slots and different diameters. 少なくとも一つの前記無終端環状導波管のスロットを含む円筒面の直径が前記基体の直径よりも大きいことを特徴とする請求項1記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein a diameter of a cylindrical surface including a slot of at least one endless annular waveguide is larger than a diameter of the substrate. 前記複数の無終端環状導波管各々に導入するマイクロ波電力を変更する手段を備えることを特徴とする請求項1または2記載のプラズマ処理装置。   3. The plasma processing apparatus according to claim 1, further comprising means for changing microwave power introduced into each of the plurality of endless annular waveguides. 前記無終端環状導波管を移動する手段を備えることを特徴とする請求項1〜3いずれか記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, further comprising means for moving the endless annular waveguide. 前記複数の無終端環状導波管近傍で発生したプラズマ平均密度が略等しくなるように制御する手段を備えることを特徴とする請求項1〜4いずれか記載のプラズマ処理装置。   5. The plasma processing apparatus according to claim 1, further comprising means for controlling the average plasma density generated in the vicinity of the plurality of endless annular waveguides to be substantially equal. 該スロットの間隔が無終端環状導波管内のマイクロ波管内波長の1/4あるいはその整数倍であることを特徴とする請求項1〜5いずれか記載のプラズマ処理装置。   6. The plasma processing apparatus according to claim 1, wherein the interval between the slots is 1/4 of the wavelength in the microwave tube in the endless annular waveguide or an integral multiple thereof.
JP2004196638A 2004-07-02 2004-07-02 Plasma processing apparatus Withdrawn JP2006019558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196638A JP2006019558A (en) 2004-07-02 2004-07-02 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196638A JP2006019558A (en) 2004-07-02 2004-07-02 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
JP2006019558A true JP2006019558A (en) 2006-01-19

Family

ID=35793523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196638A Withdrawn JP2006019558A (en) 2004-07-02 2004-07-02 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP2006019558A (en)

Similar Documents

Publication Publication Date Title
JP7171165B2 (en) Showerhead curtain gas method and showerhead gas curtain system for membrane profile adjustment
TWI452627B (en) Plasma processing apparatus and method
KR101494469B1 (en) Gas injection to etch a semiconductor substrate uniformly
CN102473634B (en) Plasma treatment device and plasma treatment method
JP5931063B2 (en) Plasma processing apparatus and plasma processing method
US20090275206A1 (en) Plasma process employing multiple zone gas distribution for improved uniformity of critical dimension bias
KR20090071002A (en) Atomic layer deposition apparatus having palasma generating portion
US9508546B2 (en) Method of manufacturing semiconductor device
TW201717253A (en) Composition-matched curtain gas mixtures for edge uniformity modulation in large-volume ALD reactors
KR20160094306A (en) Method of processing target object
KR20180135803A (en) Film forming apparatus, method of cleaning film forming apparatus, and storage medium
US20070062645A1 (en) Processing apparatus
US20200194235A1 (en) Apparatus for manufacturing semiconductor device
TW202333194A (en) Ultrahigh selective nitride etch to form finfet devices
KR20180018824A (en) Adjustable remote dissociation
KR100712172B1 (en) Plasma processing apparatus and method of designing the same
US8377206B2 (en) Apparatus and method of forming semiconductor devices
US10340136B1 (en) Minimization of carbon loss in ALD SiO2 deposition on hardmask films
TWI791202B (en) Gas shielding ring, plasma processing device and method for regulating polymer distribution
JP2019009403A (en) Plasma processing method and plasma processing device
JP2006019558A (en) Plasma processing apparatus
KR20060027549A (en) Method and apparatus for forming a thin film
US20230207291A1 (en) Dual pressure oxidation method for forming an oxide layer in a feature
JP2006019489A (en) Plasma processing apparatus
KR20030037092A (en) semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904